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Abstract 15 

The improved/updated Coupled Arctic Prediction System (CAPS) is evaluated using a set 16 

of Pan-Arctic prediction experiments for the year 2018. CAPS is built on Weather Research 17 

and Forecasting model (WRF), the Regional Ocean Modeling System (ROMS), the 18 

Community Ice CodE (CICE), and a data assimilation based on the Local Error Subspace 19 

Transform Kalman Filter. We analyze physical processes linking improved/changed physical 20 

parameterizations in WRF, ROMS, and CICE to changes in the simulated Arctic sea ice state. 21 

Our results show that the improved convection and boundary layer schemes in WRF result in 22 

an improved simulation of downward radiative fluxes and near surface air temperature, which 23 

influences the predicted ice thickness. The changed tracer advection and vertical mixing 24 

schemes in ROMS reduce the bias in sea surface temperature and change ocean temperature 25 

and salinity structure in the surface layer, leading to improved evolution of the predicted ice 26 

extent (particularly correcting the late ice recovery issue in the previous CAPS). The improved 27 

sea ice thermodynamics in CICE have noticeable influences on the predicted ice thickness. The 28 

updated CAPS can better predict the evolution of Arctic sea ice during the melting season 29 

compared with its predecessor, though the prediction still has some biases at the regional scale. 30 

We further show that the updated CAPS can remain skillful beyond the melting season, which 31 

may have potential values for stakeholders to make decisions for socioeconomical activities in 32 

the Arctic. 33 

 34 

  35 
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1. Introduction 36 

Over the past few decades, the extent of Arctic sea ice has decreased rapidly and entered 37 

a thinner/younger regime associated with global climate change (e.g., Kwok, 2018; Serreze 38 

and Meier, 2019). The dramatic changes in the properties of Arctic sea ice have gained 39 

increasing attentions by a wide range of stakeholders, such as trans-Arctic shipping, natural 40 

resource exploration, and activities of coastal communities relying on sea ice (e.g., Newton et 41 

al., 2016). This leads to increasing demands on skillful Arctic sea ice prediction, particularly at 42 

seasonal timescale (e.g., Jung et al., 2016; Liu et al., 2019; Stroeve et al., 2014). However, 43 

Arctic sea ice predictions based on different approaches (e.g., statistical method and dynamical 44 

model) submitted to the Sea Ice Outlook, a community effort managed by the Sea Ice Prediction 45 

Network (SIPN, https://www.arcus.org/sipn), show substantial biases in the predicted seasonal 46 

minimum of Arctic sea ice extent compared to the observations for most years since 2008 (Liu 47 

et al., 2019; Stroeve et al., 2014).  48 

Recently, we have developed an atmosphere-ocean-sea ice regional coupled modeling 49 

system for seasonal Arctic sea ice prediction (Yang et al., 2020, hereafter Y20), in which the 50 

Community Ice CodE (CICE) is coupled with the Weather Research and Forecasting Model 51 

(WRF) and the Regional Ocean Modeling System (ROMS), hereafter called Coupled Arctic 52 

Prediction System (CAPS). To improve the accuracy of initial sea ice conditions, CAPS 53 

employs an ensemble-based data assimilation system to assimilate satellite-based sea ice 54 

observations. Seasonal Pan-Arctic sea ice predictions with improved initial sea ice conditions 55 

conducted in Y20 have shown that CAPS has the potential to provide skillful Arctic sea ice 56 

https://www.arcus.org/sipn
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prediction at seasonal timescale.  57 

We know that the changes of sea ice variables (e.g., ice extent, ice concentration, ice 58 

thickness, ice drift) are mainly driven by forcings from the atmosphere and the ocean. 59 

Atmospheric cloudiness and related radiation influence surface ice melting (Huang et al., 2019; 60 

Kapsch et al., 2016; Kay et al., 2008) and the energy stored in the surface mixed layer that 61 

determines the seasonal ice melt and growth (e.g., Perovich et al., 2011, 2014). Atmospheric 62 

circulation is the primary driver for the transportation of sea ice and partly responsible for the 63 

variability of Arctic sea ice (e.g., Mallett et al., 2021; Ogi et al., 2010; Zhang et al., 2008). 64 

Olonscheck et al. (2019) suggested that atmospheric temperature fluctuations explain a 65 

majority of Arctic sea ice variability while other drivers (e.g., surface winds, and poleward heat 66 

transport) account for about 25% of Arctic sea ice variability. The oceanic heat inputs (as well 67 

as salt inputs) into the Arctic Ocean include the Atlantic Water (AW; Aagaard, 1989; 68 

McLaughlin et al., 2009) through the Barents Sea, and the Pacific Water (PW; Itoh et al., 2013; 69 

Woodgate et al., 2005) from the Bering Strait. The oceanic heat inputs from AW and PW are 70 

not directly available for sea ice since they are separated from a cold and fresh layer underlying 71 

sea ice (e.g., Carmack et al., 2015, Fig. 2). Vertical mixing by the internal wave (e.g., Fer, 2014) 72 

and double diffusion (e.g., Padman and Dillon, 1987; Turner, 1973) are the principal processes 73 

for upward heat transport from the subsurface layer (i.e., AW and PW) to the surface mixed 74 

layer in the Arctic Ocean. Sea ice thermodynamics determines how thermal properties of sea 75 

ice (e.g., temperature, salinity) change. These changes then influence the thermal structure of 76 

underlying ocean through interfacial fluxes (i.e., heat, salt and freshwater fluxes; DuVivier et 77 
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al., 2021; Kirkman IV and Bitz, 2011) and ice thickness (e.g., Bailey et al., 2020).  78 

CAPS is configured for the Arctic with sufficient flexibility. That means each model 79 

component of CAPS (WRF, ROMS, and CICE) has different physics options for us to choose 80 

and capability to integrate ongoing improvements in physical parameterizations. Recently, the 81 

WRF model has adapted improved convection and boundary layer schemes in the Rapid 82 

Refresh (RAP) model operational at the National Centers for Environmental Prediction (NCEP, 83 

Benjamin et al., 2016). The first question we want to answer in this paper is to what extent 84 

these modifications can improve atmospheric simulations in the Arctic (i.e., radiation, 85 

temperature, humidity, and wind), and then benefit seasonal Arctic sea ice simulation and 86 

prediction. The ROMS model provides several options for tracer advection schemes. These 87 

advection schemes can have different degrees of oscillatory behavior (e.g., Shchepetkin and 88 

McWilliams, 1998). The oscillatory behavior can have impacts on sea ice simulation through 89 

ice-ocean interactions (e.g., Naughten et al., 2017). The second question we want to answer in 90 

this paper is to what extent different advection schemes can change the simulation of upper 91 

ocean thermal structure and then Arctic sea ice prediction. Several recent efforts have 92 

incorporated prognostic salinity into sea ice models. The CICE model has a new mushy-layer 93 

thermodynamics parameterization that includes prognostic salinity and treats sea ice as a two-94 

phase mushy layer (Turner et al., 2013). Bailey et al. (2020) showed that the mushy-layer 95 

physics has noticeable impacts on Arctic sea ice simulation within the Community Earth 96 

System Model version 2. The third question we want to answer in this paper is whether the 97 

mushy-layer scheme can produce noticeable influence on seasonal Arctic sea ice prediction. 98 
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Currently, SIPN focuses on Arctic sea ice predictions during the melting season, particularly 99 

the seasonal minimum. It is not clear that how predictive skills of dynamical models 100 

participating in SIPN may change for longer period, i.e., extending into the freezing up period, 101 

which also have significance on socioeconomic aspects. The assessment of the skills of global 102 

climate models (GCMs) in predicting Pan-Arctic sea ice extent with suites of hindcasts 103 

suggested that GCMs may have skills at lead times of 1-6 months (e.g., Blanchard-104 

Wrigglesworth et al., 2015; Chevallier et al., 2013; Guemas et al., 2016; Merryfield et al., 2013; 105 

Msadek et al., 2014; Peterson et al., 2015; Sigmond et al., 2013; Wang et al., 2013; Zampieri 106 

et al., 2018). Moreover, some studies using a “perfect model” approach, which treats one 107 

member of an ensemble as the truth (i.e., assuming the model is prefect without bias) and 108 

analyzes the skill of other members in predicting the response of the “truth” member (e.g., 109 

Meehl et al., 2007), suggested that Arctic sea ice cover can be potentially predictable up to two 110 

years in advance (e.g., Blanchard-Wrigglesworth et al., 2011; Blanchard-Wrigglesworth and 111 

Bushuk, 2018; Day et al., 2016; Germe et al., 2014; Tietsche et al., 2014). The last question we 112 

want to answer in this paper is whether CAPS has predictive skill for longer periods (up to 7 113 

months). 114 

This paper is structured as follows. Section 2 provides a brief overview of CAPS, 115 

including model configurations and data assimilation procedures. Section 3 describes the 116 

designs of the prediction experiments for the year of 2018 based on major improvements/ 117 

changes in the model components compared to its predecessor described in Y20, examines the 118 

performance of the updated CAPS, and offers physical links between Arctic sea ice changes 119 
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and improved/changed physical parameterizations. Section 4 discusses the predictive skill of 120 

CAPS at longer timescale. Discussions and concluding remarks are given in section 5. 121 

2. Coupled Arctic Prediction System (CAPS) 122 

As described in Y20, CAPS has been developed by coupling the Community Ice CodE 123 

(CICE) with the Weather Research and Forecasting Model (WRF) and the Regional Ocean 124 

Modeling System (ROMS) based on the framework of the Coupled Ocean-Atmosphere-Wave-125 

Sediment Transport (Warner et al., 2010). The general description of each model component in 126 

CAPS is referred to Y20. The advantage of CAPS is its model components have a variety of 127 

physics for us to choose and capability to integrate follow-up improvements of physical 128 

parameterizations. With recent achievements of community efforts, we update CAPS based on 129 

newly-released WRF, ROMS, and CICE models. During this update, we focus on the Rapid 130 

Refresh (RAP) physics in the WRF model, the oceanic tracer advection scheme in the ROMS 131 

model, sea ice thermodynamics in the CICE model (see details in section 3), and investigate 132 

physical processes linking them to Arctic sea ice simulation and prediction. The same physical 133 

parameterizations described in Y20 are used here for the control simulation (see Table 1). Major 134 

changes in physical parameterizations as well as the model infrastructure in the WRF, ROMS, 135 

and CICE models are described in section 3.  136 

As described in Y20, the Parallel Data Assimilation Framework (PDAF, Nerger and Hiller, 137 

2013) was implemented in CAPS, which provides a variety of optimized ensemble-based 138 

Kalman filters. The Local Error Subspace Transform Kalman Filter (LESTKF; Nerger et al., 139 

2012) is used to assimilate satellite-observed sea ice parameters. The LESTKF projects the 140 
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ensemble onto the error subspace and then directly computes the ensemble transformation in 141 

the error subspace. This results in better assimilation performance and higher computational 142 

efficiency compared to the other filters as discussed in Nerger et al. (2012).  143 

The initial ensembles are generated by applying the second-order exact sampling (Pham, 144 

2001) to simulated sea ice state vectors (ice concentration and thickness) from an one-month 145 

free run, and then assimilating sea ice observations, including: 1) the near real-time daily Arctic 146 

sea ice concentration processed by the National Aeronautics and Space Administration (NASA) 147 

Team algorithm (Maslanik and Stroeve, 1999) obtained from the NSIDC 148 

(https://nsidc.org/data/NSIDC-0081/), and 2) a combined monthly sea ice thickness derived 149 

from the CryoSat-2 (Laxon et al., 2013; obtained from http://data.seaiceportal.de), and daily 150 

sea ice thickness derived from the Soil Moisture and Ocean Salinity (SMOS; Kaleschke et al., 151 

2012; Tian-Kunze et al., 2014; obtained from https://icdc.cen.uni-hamburg.de/en/l3c-smos-152 

sit.html). To address the issue that sea ice thickness derived from CyroSat-2 and SMOS are 153 

unavailable during the melting season, the melting season ice thickness is estimated based on 154 

the seasonal cycle of the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) 155 

daily sea ice thickness (Zhang and Rothrock, 2003).  156 

Different from Y20, in this study, we change the localization radius from 2 to 6 grids 157 

during the assimilation procedures to reduce some instability during initial Arctic sea ice 158 

simulations associated with 2 localization radii. As shown in Supplementary Figure S1, the ice 159 

thickness with 2 localization radii and 1.5 m uncertainty (used in Y20) shows some 160 

discontinuous features (Fig. S1a), which tend to result in numerical instability during the initial 161 

http://data.seaiceportal.de/
https://icdc.cen.uni-hamburg.de/en/l3c-smos-sit.html
https://icdc.cen.uni-hamburg.de/en/l3c-smos-sit.html
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integration. Such discontinuous features are obviously corrected with 6 localization radii and 162 

0.75 m uncertainty (Fig. S1b). Following Y20, here we test the 2018 prediction experiment 163 

with 6 localization radii for the data assimilation, which shows very similar temporal evolution 164 

of the total Arctic sea ice extent for the July experiment relative to that of Y20, although it (red 165 

solid line) predicts slightly less ice extent than that of Y20 (blue line) (Supplementary Figure 166 

S2). In this study, this configuration is designated as the reference for the following assessment 167 

of the updated CAPS (hereafter Y20_MOD). 168 

For the evaluation of Arctic sea ice prediction, Sea Ice Index (Fetterer et al., 2017; 169 

obtained from https://nsidc.org/data/G02135) is used as the observed total sea ice extent, and 170 

the NSIDC sea ice concentrations (SIC) derived from Special Sensor Microwave 171 

Imager/Sounder (SSMIS) with the NASA Team algorithm (Cavalieri et al., 1996; obtained from 172 

https://nsidc.org/data/nsidc-0051) is also used. For the assessment of the simulated atmospheric 173 

and oceanic variables, the European Centre for Medium-Range Weather Forecasts (ECMWF) 174 

reanalysis version 5 (ERA5; Hersbach et al., 2020; obtained from 175 

https://cds.climate.copernicus.eu) and National Oceanic and Atmospheric Administration 176 

(NOAA) Optimum Interpolation (OI) Sea Surface Temperature (SST) (Reynolds et al., 2007; 177 

obtained from https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html) are utilized. 178 

For the comparison of spatial distribution, SIC, ERA5, and OISST are interpolated to the model 179 

grid. 180 

3. Evaluation of updated CAPS 181 

3.1. Experiment designs and methodology 182 
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The model domain includes 319 (449) x- (y-) grid points with a ~24 km grid spacing for 183 

all model components (see Figure 2 in Y20). The WRF model uses 50 vertical levels, the 184 

ROMS model uses 40 vertical levels, and the CICE model uses 7 ice layers, 1 snow layer, and 185 

5 categories of sea ice thickness. The coupling frequency across all model components is 30 186 

minutes. Initial and boundary conditions for the WRF and ROMS models are generated from 187 

the Climate Forecast System version 2 (CFSv2, Saha et al., 2014) operational forecast archived 188 

at NCEP (http://nomads.ncep.noaa.gov/pub/data/nccf/com/cfs/prod/). Sea ice initial conditions 189 

are generated from the data assimilation described in section 2. Ensemble predictions with 8 190 

members are conducted. A set of numerical experiments for the Pan-Arctic seasonal sea ice 191 

prediction with different physics, starting from July 1st to October 1st for the year of 2018, has 192 

been conducted. Table 2 provides the details of these experiments that allow us to examine 193 

physical processes linking improved/changed physical parameterizations in the updated CAPS 194 

to Arctic sea ice simulation and prediction. 195 

In this study, sea ice extent is calculated as the sum of area of all grid cells with ice 196 

concentration greater than 15%. Besides the total Arctic sea ice extent, we also calculate the 197 

ice extent for the following subregions: 1) Beaufort and Chukchi Seas (120°W-180, 60°N-198 

80°N), 2) East Siberian and Laptev Seas (90°E-180, 60°N-80°N), and 3) Barents, Kara, and 199 

Greenland Seas (30°W-90°E, 60°N-80°N). To further assess the predictive skill of Arctic sea 200 

ice predictions, we show the climatology prediction (CLIM, the period of 1998-2017) and the 201 

damped anomaly persistence prediction (DAMP). Following Van den Dool (2006), the DAMP 202 

prediction is generated from the initial sea ice extent anomaly (relative to the 1998-2017 203 
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climatology) scaled by the autocorrelation and the ratio of standard deviation between different 204 

lead times and initial times (see the DAMP equation in Y20). 205 

In order to understand physical contributors that drive the evolution of Arctic sea ice state 206 

(the standard variables of the ice concentration and thickness), the mass budget of Arctic sea 207 

ice for all experiments is analyzed in this study as defined in Notz et al. (2016, Append. E), 208 

including: 209 

⚫ sea ice growth in supercooled open water (frazil) 210 

⚫ sea ice growth at the bottom of the ice (basal growth) 211 

⚫ sea ice growth due to transformation of snow to sea ice (snowice) 212 

⚫ sea ice melt at the air-ice interface (top melt) 213 

⚫ sea ice melt at the bottom of the ice (basal melt) 214 

⚫ sea ice melt at the sides of the ice (lateral melt) 215 

⚫ sea ice mass change due to dynamics-related processes (e.g. advection) (dynamics) 216 

These diagnostic variables are determined by saving the ice mass tendency of above 217 

processes separately every time step and integrated to output the daily-mean value. 218 

3.2. Impacts of the RAP physics in the WRF model 219 

To examine the performance of the upgrades of physical parameterization in component 220 

models in CAPS one step at a time compared to its predecessor in Y20, we define the 221 

Y21_CTRL experiment that uses the RAP physics in the WRF model (see Table 2 for 222 

differences between Y21_CTRL and Y20_MOD). Recently, the Rapid Refresh (RAP) model, 223 

a high-frequency weather prediction/assimilation modeling system operational at the National 224 
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Centers for Environmental Prediction (NCEP), has made some improvements in the WRF 225 

model physics (Benjamin et al., 2016), including improved Grell-Freitas convection scheme 226 

(GF) and Mellor-Yamada-Nakanishi-Niino planetary boundary layer scheme (MYNN). For the 227 

GF scheme, the major improvements relative to the original scheme (Grell and Freitas, 2014) 228 

include: 1) a beta probability density function used as the normalized mass flux profile for 229 

representing height-dependent entrainment/detrainment rates within statistical-averaged deep 230 

convective plumes, which is given as: 231 

𝑍𝑢,𝑑(𝑟𝑘) = 𝑐𝑟𝑘
𝛼 − (1 − 𝑟𝑘)𝛽 − 1 244 

where 𝑍𝑢,𝑑 is the mass flux profiles for updrafts and downdrafts, c is a normalization constant, 232 

𝑟𝑘 is the location of the mass flux maximum, 𝛼 and 𝛽 determine the skewness of the beta 233 

probability density function, and 2) the ECMWF approach used for momentum transport due 234 

to convection (Biswas et al. 2020; Freitas et al. 2018; 2021). For the MYNN scheme, the RAP 235 

model improves the mixing-length formulation, which is designed as: 236 

1

𝑙𝑚
=

1

𝑙𝑠
+

1

𝑙𝑡
+

1

𝑙𝑏
 245 

where 𝑙𝑚 is the mixing length, 𝑙𝑠 is the surface length, 𝑙𝑡 is the turbulent length, and 𝑙𝑏 is 237 

the buoyancy length. Compared to the original scheme, the RAP model changed coefficients 238 

in the formulation of 𝑙𝑠, 𝑙𝑡, and 𝑙𝑏 for reducing the near-surface turbulent mixing, and the 239 

diffusivity of the scheme. The RAP model also removes numerical deficiencies to better 240 

represent subgrid-scale cloudiness (Benjamin et al. 2016, see Append. B) compared to the 241 

original scheme (Nakanishi and Nino, 2009). In addition, some minor issues in the Noah land 242 

surface model (Chen and Dudhia, 2001) have been fixed, including discontinuous behavior for 243 
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soil ice melting, negative moisture fluxes over glacial, and associated with snow melting.  246 

Apparently, the above RAP physics can have influence on the behavior of simulated 247 

atmospheric thermodynamics (i.e., radiation, temperature). Figure 1 and 2 show the spatial 248 

distribution of the ERA5 surface downward solar and thermal radiation (SWDN and LWDN), 249 

the prediction errors (ensemble mean minuses ERA5) of Y20_MOD, and the difference 250 

between Y21_CTRL and Y20_MOD. For July, Y20_MOD (Fig. 1d) results in less SWDN over 251 

most of ocean basins as well as Alaska and northeast US, western Siberia, and eastern Europe, 252 

but more SWDN over southern and eastern Siberia compared with ERA5. For August and 253 

September (Fig. 1e-f), the spatial distribution is generally similar to that of July, except that 254 

eastern Siberia (less SWDN) and northern Canada (more SWDN) in August. It appears that the 255 

magnitude of the prediction errors tends to decrease over the areas with large prediction errors 256 

as the prediction time increases (i.e., July vs. September). Compared with Y20_MOD, the RAP 257 

physics in Y21_CTRL results in large areas with smaller prediction errors in July (e.g., the 258 

positive difference between Y21_CTRL and Y20_MOD reduces the negative prediction errors 259 

in Y20_MOD), except the north Pacific (especially the Sea of Okhotsk) and north Canada (Fig. 260 

1g). For August and September (Fig. 1h, i), encouragingly, there are more areas with smaller 261 

prediction errors.  262 

In contrast to SWDN, the prediction errors of LWDN in Y20_MOD have much smaller 263 

magnitude (up to 100 W/m2 in SWDN vs. 50 W/m2 in LWDN) for the entire prediction period 264 

(Fig. 2d-f). For July, Y20_MOD (Fig. 2d) simulates less LDWN over most of the model domain 265 

compared with ERA5, except the Atlantic sector and north Greenland. For August, the areas 266 
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with negative prediction errors expand and the magnitude of prediction errors increases 267 

(particularly in southeastern Siberia and northeast US) compared to that of July (Fig. 2e). For 268 

September (Fig. 2f), the spatial distribution of LWDN is mostly similar to that of July, except 269 

that north Canada and Canadian Archipelago show positive prediction errors. The Y21_CTRL 270 

experiment with the RAP physics tends to reduce the prediction errors in Y20_MOD, especially 271 

over eastern Siberia and the Atlantic sector in July to September (Fig. 2g-i). However, 272 

Y21_CTRL results in larger bias in the central Northern Atlantic in August than that of 273 

Y20_MOD (Fig. 2h). 274 

Figure 3 shows the spatial distribution of the ERA5 2m air temperature, the prediction 275 

errors of Y20_MOD, and the difference between Y21_CTRL and Y20_MOD. For Y20_MOD, 276 

the predicted air temperature in July has small cold prediction errors over all ocean basins, 277 

small-to-moderate cold prediction errors (~3-5 degrees) over Canada and Siberia, and 278 

moderate-to-large cold prediction errors (~6-9 degrees) over eastern Europe (Fig. 3d). In 279 

August (Fig. 3e), the cold prediction errors over most of the model domain are increased, in 280 

particular, very large cold prediction error (over 10 degrees) is located over east Siberia. In 281 

September, these cold prediction errors are decreased relatively, and some warm prediction 282 

errors are found in north of Greenland (Fig. 3f). With the adaptation of the RAP physics in the 283 

WRF model, Y21_CTRL, in general, produces a warmer state in most of the model domain 284 

compared to that of Y20_MOD during the entire prediction period. For July (Fig. 3g), the 285 

predicted air temperature is slightly warmer over the Arctic Ocean, the Pacific, and Atlantic 286 

sectors, moderately warmer (~1-2 degrees) over central and eastern Siberia and Canadian 287 
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Archipelago, but the slightly colder over northern Canada than that of Y20_MOD. For August 288 

and September (Fig. 3h), most of the model domain is warmer in Y21_CTRL than that of 289 

Y20_MOD, in particular excessive cold prediction errors shown in Y20_MOD over Siberia are 290 

reduced notably (~2.5-4 degrees). We notice that the RAP physics does not have significant 291 

impacts on atmospheric circulations, given that Y21_CTRL and Y20_MOD have very similar 292 

wind patterns (not shown).  293 

Figure 4 shows the temporal evolution of the ensemble mean of the predicted Arctic sea 294 

ice extent along with the NSIDC observations. In terms of total ice extent, compared to the 295 

Y20_MOD experiment (blue line), the Y21_CTRL experiment (yellow line) produces ~0.5 296 

million km2 more ice extent at the initial. Note that the difference in the initial ice extent is 297 

related to that sea ice fields in Y20_MOD and Y21_CTRL (as well as other experiments listed 298 

in Table 2) are initialized based on one-month free runs (section 2), which use different physical 299 

configurations listed in Table 2. These one-month free runs do not have the same evolution in 300 

sea ice fields and result in different initial ice fields after data assimilation. The ice extent in 301 

Y21_CTRL decreases faster than Y20_MOD during the first 2-week integration. After that, 302 

they track each other closely, and predict nearly the same minimum ice extent (~4.3 million 303 

km2). Like Y20_MOD, Y21_CTRL still has a delayed ice recovery in late September compared 304 

to the observations. Compared with the CLIM/DAMP predictions (black dashed and dotted 305 

lines), both Y20_MOD and Y21_CTRL have smaller prediction errors in August, but 306 

comparable prediction errors after early September.  307 

The difference in sea ice extent becomes larger at regional scales, in the East Siberian-308 
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Laptev Seas, Y21_CTRL shows faster ice decline after mid-July than that of Y20_MOD, 309 

whereas in the Beaufort-Chukchi Seas, Y21_CTRL predicts slower ice retreat after late July 310 

than that of Y20_MOD (Fig. 4a, 4b). They are consistent with that Y21_CTRL predicts warmer 311 

(relatively colder) temperature than that of Y20_MOD in the East Siberian-Laptev (Beaufort-312 

Chukchi) Seas. Both Y20_MOD and Y21_CTRL agree well with the observations in the 313 

Barents-Kara-Greenland Seas (Fig. 4c). Compared with the observations, Y20_MOD performs 314 

relatively better in regional ice extents than that of Y21_CTRL. Figure 5 shows the spatial 315 

distribution of the NSIDC sea ice concentration and the difference between the predicted ice 316 

concentration and the observations for all grid cells that the predictions and the observations 317 

both have at least 15% ice concentration. The vertical and horizontal lining areas represent 318 

difference of the ice edge location. Like regional ice extent shown in Figure 4, Y21_CTRL 319 

predicts lower (higher) ice concentration along the East Siberian-Laptev (Beaufort-Chukchi) 320 

Seas (Fig. 5e1-e3). Y21_CTRL also predicts less ice in the central Arctic Ocean in August and 321 

September, which is consistent with warmer temperature in Y21_CTRL relative to Y20_MOD. 322 

Figure 6 shows the evolution of sea ice mass budget terms of Y20_MOD and Y21_CTRL, 323 

averaged with cell-area weighting over the entire model domain. During the entire prediction 324 

period, most of the ice loss in Y20_MOD and Y21_CTRL are caused by basal melting. The 325 

surface melting has relatively small contribution in the total ice loss and mainly occurs in July. 326 

However, compared with Y20_MOD (Fig. 6a), Y21_CTRL (Fig. 6b) shows much larger 327 

magnitude for basal and surface melt. In a fully coupled predictive model, the changes of sea 328 

ice are determined by the fluxes from the atmosphere above and the ocean below. Associated 329 
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with the increased downward radiation of the above RAP physics, Y21_CTRL absorbs more 330 

shortwave radiation (SWABS, Fig. 7a) and allows more penetrating solar radiation into the 331 

upper ocean below sea ice (SWTHRU, Fig. 7b) than that of Y20_MOD, especially in July. This 332 

explains why Y21_CTRL has larger magnitude of surface and basal melting terms. Although 333 

Y21_CTRL show larger magnitude in surface and basal melting than that of Y20_MOD, the 334 

ice extent in Y21_CTRL and Y20_MOD shown in Figure 4 show similar evolution. The effect 335 

of larger surface and basal melting in Y21_CTRL is largely reflected in the ice thickness change. 336 

As shown in Figure S3, Y21_CTRL has thinner ice thickness than that of Y20_MOD, in the 337 

East Siberian-Laptev Seas in July and in the much of central Arctic Ocean in August and 338 

September.  339 

 340 

3.3. Impacts of the tracer advection in ROMS model 341 

Currently, the ROMS model that uses a generalized topography-following coordinate has 342 

two vertical coordinate transformation options: 343 

𝑧(𝑥, 𝑦, 𝜎, 𝑡) = 𝑆(𝑥, 𝑦, 𝜎) + 𝜁(𝑥, 𝑦, 𝑡) [1 +
𝑆(𝑥, 𝑦, 𝜎)

ℎ(𝑥, 𝑦)
]

𝑆(𝑥, 𝑦, 𝜎) = ℎ𝑐𝜎 + [ℎ(𝑥, 𝑦) − ℎ𝑐]𝐶(𝜎)

(1) 348 

or 344 

𝑧(𝑥, 𝑦, 𝜎, 𝑡) = 𝜁(𝑥, 𝑦, 𝑡) + [𝜁(𝑥, 𝑦, 𝑡) + ℎ(𝑥, 𝑦)]𝑆(𝑥, 𝑦, 𝜎)

𝑆(𝑥, 𝑦, 𝜎) =
ℎ𝑐𝜎 + ℎ(𝑥, 𝑦)𝐶(𝜎)

ℎ𝑐 + ℎ(𝑥, 𝑦)

(2) 349 

where 𝑆(𝑥, 𝑦, 𝜎) is a nonlinear vertical transformation function, 𝜁(𝑥, 𝑦, 𝑡) is the free-surface, 345 

ℎ(𝑥, 𝑦) is the unperturbed water column thickness, 𝐶(𝜎) is the non-dimensional, monotonic, 346 

vertical stretching function, and ℎ𝑐 controls the behavior of the vertical stretching. In Y20, we 347 
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used the transformation 1 and the vertical stretching function introduced by Song and 350 

Haidvogel (1994). However, the vertical transformation 1 has an inherent limitation for the 351 

value of ℎ𝑐 (expected to be the thermocline depth), which must be less than or equal to the 352 

minimum value in ℎ(𝑥, 𝑦). As a result, ℎ𝑐 was chosen as 10 meters due to the limitation of 353 

the minimum value in  ℎ(𝑥, 𝑦)  in Y20. This limitation is removed with the vertical 354 

transformation 2 and ℎ𝑐 can be any positive value. Here the Y21_VT experiment is conducted 355 

to examine the impact of the vertical transformation in the ROMS model on seasonal Arctic 356 

sea ice simulation and prediction, which uses the vertical transformation 2, the Shchepetkin 357 

vertical stretching function (a function introduced in a research version of ROMS at University 358 

of California, Los Angeles), and 300 meters for ℎ𝑐. As shown in Supplementary Figure S4-S5, 359 

compared to Y21_CTRL, Y21_VT is less sensitive to the bathymetry and its layers are more 360 

evenly-distributed in the upper 300 meters. With the changes of vertical layers of the upper 361 

ocean, the Y21_VT experiment has minor SST changes relative to Y21_CTRL. The simulated 362 

temporal evolution of total ice extent of Y21_VT (Fig. 4, red line) resembles to that of 363 

Y21_CTRL (Fig. 4, yellow line), although some differences are seen at the regional scale in 364 

the areas with shallow water (e.g., East Siberian, Laptev, Barents, and Kara Seas). The 365 

configuration of Y21_VT is used in the following experiments. 366 

It has been recognized that the tracer advection and the vertical mixing schemes have 367 

important effects on ocean and sea ice simulation (e.g., Liang and Losch, 2018; Naughten et 368 

al., 2017). Here the Y21_RP experiment is designated to explore the influence of different 369 

advection schemes in the ROMS model. Specifically, the tracer advection scheme is changed 370 



 

19 

 

from the Multidimensional positive definite advection transport algorithm (MPDATA; 371 

Smolarkiewicz, 2006) to the third-order upwind horizontal advection (U3H; Rasch, 1994; 372 

Shchepetkin, and McWilliams, 2005) and the fourth-order centered vertical advection schemes 373 

(C4V; Shchepetkin, and McWilliams, 1998; 2005). The MPDATA scheme applied in 374 

Y20_MOD, Y21_CTRL, and Y21_VT is a non-oscillatory scheme but a sign preserving 375 

scheme (Smolarkiewicz, 2006). This means MPDATA is not suitable for tracer fields having 376 

both positive and negative values (i.e., temperature with degree Celsius in the ROMS model). 377 

The upwind third-order (U3H) scheme used in Y21_RP is an oscillatory scheme but it 378 

significantly reduces oscillations compared to other centered schemes (e.g., Hecht et al., 2000; 379 

Naughten et al., 2017) available in the ROMS model. 380 

Figure 8 shows the spatial distribution of the SST changes of Y21_VT and Y21_RP 381 

relative to Y21_CTRL (as well as the OISST and the difference between Y21_CTRL and 382 

OISST). In general, Y21_CTRL shows cold prediction errors in the North Pacific (~2 degrees) 383 

and the Atlantic (~3 degrees) compared to that of OISST in July, and these cold prediction 384 

errors are enhanced as the prediction time increases (to 3-5 degrees, Fig. 8d-f). With the 385 

U3H/C4V tracer advection scheme in Y21_RP, cold prediction errors shown in Y21_CTRL are 386 

reduced significantly in the north Pacific and Atlantic, but SST under sea ice in much of the 387 

Arctic Ocean is slightly colder than that of Y21_CTRL (Fig. 8j-l). 388 

Y21_RP (Fig. 4, green line) shows comparable temporal evolution of the ice extent as 389 

Y21_CTRL (as well as Y21_VT) until near the end of July. After that, the ice melting slows 390 

down (closer to the observations) and the ice extent begins to recover earlier (after the first 391 
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week of September) in Y21_RP compared to that of Y21_CRTL. This leads to much smaller 392 

prediction error in seasonal minimum ice extent relative to the observation. Y21_RP also shows 393 

better predictive skill after late August compared with the CLIM/DAMP predictions (black 394 

dashed and dotted lines). This suggests the delayed ice recovery in late September shown in 395 

Y20_MOD, Y21_CTRL and Y21_VT is in part due to the choice of ocean advection and 396 

vertical mixing schemes, which change the behavior of ocean state. At the regional scale, the 397 

slower ice decline after July and earlier recovery of the ice extent in September mainly occur 398 

in the Beaufort-Chukchi and Barents-Kara-Greenland Seas compared to that of Y21_CTRL 399 

(Fig. 4a, c). With U3H/C4V scheme, the Y21_RP experiment simulates higher sea ice 400 

concentration than that of Y21_VT (Fig. 5f1-f3). For September, the Y21_RP experiment better 401 

predicts the ice edge location in the Atlantic sector of the Arctic (i.e., smaller areas with 402 

horizontal/vertical lining) compared to the experiments described above (not shown). 403 

Figure 9 shows the evolution of sea ice mass budget terms of Y21_VT and Y21_RP. 404 

Relative to Y21_VT, Y21_RP (with U3H/C4V scheme) results in increased frazil ice formation 405 

in July, which is partly compensated by increased surface melting. Y21_RP also leads to 406 

increased basal growth in mid- and late September (Fig. 9a, b).  407 

Figure 10 shows the difference in the vertical profile of ocean temperature and salinity in 408 

the upper 150 m averaged for the central Arctic Ocean between Y21_RP and Y21_VT. The 409 

ocean temperature in the surface layer of Y21_RP is slightly colder during the prediction period 410 

compared to that of Y21_VT (Fig. 10a), especially in August and September. Moreover, the 411 

water in the surface layer (0-20 m) of Y21_RP is fresher than that of Y21_VT (Fig. 10b). It 412 



 

21 

 

reduces the freezing temperature and favors frazil ice formation. In CAPS, frazil ice formation 413 

is determined by the freezing potential, which is the vertical integral of the difference between 414 

temperature in upper ocean layer and the freezing temperature in the upper 5 m-layer. The 415 

temperature of supercooled water is adjusted based on the freezing potential to form new ice 416 

and rejects brine into the ocean that leads to saltier water between 20-50 m in Figure 10. It 417 

should be noted that the increased frazil ice formation in July in Y21_RP might be also the 418 

results of model adjustment and/or numerical error. The oscillatory behavior of U3H scheme 419 

can make the temperature fall below the freezing point and then instantaneously forms new ice 420 

(as well as temperature/salinity adjustments). 421 

3.4. Impacts of sea ice thermodynamics in the CICE model 422 

In Y20, we used sea ice thermodynamics introduced by Bitz and Lipscomb (1999; 423 

hereafter BL99) as the setup of CAPS, which assumes a fixed vertical salinity profile based on 424 

observations. The new CICE model includes a MUSHY-layer ice thermodynamics introduced 425 

by Turner et al. (2013), which simulates vertically and time-varying prognostic salinity and 426 

associated effects on thermodynamic properties of sea ice. In the Y21_MUSHY experiment, 427 

we change the ice thermodynamics from BL99 to MUSHY (Table 2) to examine whether 428 

improved ice thermodynamics has noticeable influence on Arctic sea ice simulation and 429 

prediction at seasonal timescale. Compared to Y21_RP, Y21_MUSHY (Fig. 4, pink line) 430 

produces very similar evolution of total ice extent. However, it simulates relatively larger ice 431 

extent near the end of September, which is also reflected by the basin-wide increased ice cover 432 

shown in Figure 5h3. At the regional scale, compared to Y21_RP, Y21_MUSHY predicts less 433 
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ice in August in the Beaufort-Chukchi. The opposite is the case for the East Siberian-Laptev 434 

Seas (Fig. 4a, b).  435 

Figure 11 shows the difference of the ensemble mean of the predicted ice thickness 436 

between Y21_MUSHY and Y21_RP. Compared with Y21_RP, Y21_MUSHY simulates 437 

thicker ice (from ~0.2m in July to over 0.4m in September) extending from the Canadian Arctic, 438 

through the central Arctic Ocean, to the Laptev Sea (Fig. 11a-c). This seems to be consistent 439 

with previous studies, which show that the Mushy-layer thermodynamics simulates thicker ice 440 

than BL99 thermodynamics in both standalone CICE (Turner and Hunke, 2015) and the fully-441 

coupled (Bailey et al., 2020), but Y21_MUSHY shows thinner ice (~0.2m) in an arc extending 442 

from north of Alaska to north of eastern Siberia compared to Bailey et al. (2020). Note that 443 

Y21_MUSHY focuses the effects of Mushy-thermodynamics on seasonal timescale while the 444 

results in Bailey et al. (2020) are based on 50-year simulations.  445 

Compared to Y21_RP, the mass budget of Y21_MUSHY (Fig. S6) shows that both surface 446 

melting and frazil ice formation terms are increased. This compensation between surface 447 

melting and frazil ice formation from the Mushy-layer thermodynamics in CAPS leads to 448 

relatively unchanged total ice extent between Y21_MUSHY and Y21_RP (Fig. 4 green and 449 

pink lines).  450 

 451 

4. Prediction skill of CAPS at longer timescale 452 

The design of Arctic sea ice prediction experiments described above follow the protocol 453 

of the Sea Ice Prediction Network (SIPN), in which the outlook start from June 1st, July 1st, and 454 
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August 1st to predict seasonal minimum of the ice extent in September. It is not clear that how 455 

predictive skills of dynamical models participating in SIPN may change for longer period. Here 456 

we conduct two more experiments to investigate the predictive capability of CAPS beyond the 457 

SIPN prediction period. For the prediction experiments discussed above, we use a simple 458 

approach to merge CryoSat-2 and SMOS ice thickness by replacing ice thickness less than 1m 459 

in CryoSat-2 data with SMOS data for ice thickness assimilation. Ricker et al. (2017) presented 460 

a new ice thickness product (CS2SMOS) based on the optimal interpolation to statistically 461 

merge CrySat-2 and SMOS data. Here we utilize the configuration of Y21_RP but use 462 

CS2SMOS SIT for the assimilation (Y21_SIT; Table 2). The predicted total ice extent is almost 463 

identical to Y21_RP in July but slightly larger total extent after July than that of Y21_RP (not 464 

shown). The configuration of Y21_SIT is used in the following experiments. Taking advantage 465 

of the entire prediction period provided by CFS forecasts (7 months), the Y21_EXT-7 466 

experiment is designed to extend the prediction period to the end of January next year (Table 467 

2). Figure 12 shows the temporal evolution of the ensemble mean of the predicted total Arctic 468 

sea ice extent (as well as regional ice extent) for Y21_EXT-7. Total ice extent of Y21_EXT-7 469 

exhibits reasonable evolution in terms of seasonal minimum and timing of recovery compared 470 

with the observations until late November. Y21_EXT-7 also performs better than that of the 471 

CLIM/DAMP predictions (black dashed and dotted lines) until mid-to-late November. After 472 

that, Y21_EXT-7 overestimates total ice extent relative to the observations, and such 473 

overestimation is largely contributed by more extensive sea ice in the Barents-Kara-Greenland 474 

Seas (Fig. 12c), which is a result of a sharp increase in the basal growth term after mid-to-late 475 
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November (not shown).  476 

5. Conclusions and Discussions 477 

This paper presents and evaluates the updated Coupled Arctic Prediction System (CAPS) 478 

designated for Arctic sea ice prediction through a case study for the year of 2018. A set of Pan-479 

Arctic prediction experiments with improved/changed physical parameterizations as well as 480 

different configurations starting from July 1st to the end of September are performed for 2018 481 

to assess their impacts of the updated CAPS on the predictive skill of Arctic sea ice at seasonal 482 

timescale. Specifically, we focus on the Rapid Refresh (RAP) physics in the WRF model, the 483 

oceanic tracer advection scheme in the ROMS model, sea ice thermodynamics in the CICE 484 

model, and investigate physical processes linking them to Arctic sea ice simulation and 485 

prediction. 486 

The results show that the updated CAPS with improved physical parameterizations can 487 

better predict the evolution of total ice extent compared with its predecessor described in Yang 488 

et al. (2020), though the predictions exhibit some prediction errors in regional ice extent. The 489 

key improvements of WRF, including cumulus, boundary layer, and land surface schemes, 490 

result in improved simulations in downward radiative fluxes and near surface air temperature. 491 

These improvements mainly influence the predicted ice thickness instead of total ice extent. 492 

The difference in the predicted ice thickness can have potential impacts on the icebreakers 493 

planning their routes across the ice-covered regions. The major changes of ROMS, including 494 

tracer advection and vertical mixing schemes, reduces the prediction errors in sea surface 495 

temperature and changes ocean temperature and salinity structure in the surface layer, leading 496 
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to improved evolution of the predicted total ice extent (particularly correcting the late ice 497 

recovery issue in the previous CAPS). The changes of CICE, including improved ice 498 

thermodynamics, have noticeable influences on the predicted ice thickness. 499 

We demonstrate that CAPS can remain skillful beyond the designated period of Sea Ice 500 

Prediction Network (SIPN), which has potential values for stakeholders to make decisions 501 

regarding the socioeconomical activities in the Arctic. Although CAPS shows extended 502 

predictive skill to the freeze-up period, the prediction produces extensive ice through the basal 503 

growth near the end of prediction. The excessive basal growth may be partly due to that the 504 

bias of the CFS data propagates into the model domain through lateral boundary conditions 505 

and its accumulated effect influences Arctic sea ice simulation during the freeze-up period.  506 

Keen et al. (2021) analyzed the Arctic mass budget of 15 models participated in the 507 

Coupled Model Intercomparison Project Phase 6 (CMIP6). We notice that, first, the top melting 508 

and the basal melting terms in CMIP6 models have comparable contributions in July while the 509 

top melting term only has ~50% contribution relative to the basal melting term in CAPS. The 510 

updated CAPS with the RAP physics improves the performance of shortwave/longwave 511 

radiation at the surface (Fig. 1 and Fig. 2). The net flux at the ice surface, however, may still 512 

be underestimated in the updated CAPS. Besides, the surface property of sea ice (i.e., the 513 

amount of melt ponds, bare ice, and snow) is a factor that influences surface albedo and thus 514 

the absorbed shortwave radiation (e.g., Nicolaus et al., 2012; Nicolaus and Katlein, 2013). The 515 

prediction experiments starting at July 1st in this study do not consider the initialization of melt 516 

ponds (i.e., zero melt pond coverage at the initial). However, melt ponds start to develop in 517 
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early May based on the satellite observations (e.g., Liu et al., 2015, Fig. 1). The initialization 518 

of melt pond based on the observations (e.g., Ding et al., 2020) in CAPS is a direction to 519 

improve the representation of the ice surface properties. Second, the mass budget analysis by 520 

both Keen et al. (2021) and this study show that the contribution of lateral melting term is 521 

relatively small, which might be due to that CMIP6 models and CAPS assume constant floe-522 

size (i.e., 300 meters in CICE), which is a critical value to determine the strength of lateral 523 

melting (e.g., Horvat et al., 2016; Steele, 1992). Recently, several studies have proposed floe 524 

size distribution models (e.g., Bateson et al., 2020; Bennetts et al., 2017; Boutin et al., 2020; 525 

Horvat and Tziperman, 2015; Roach et al., 2018, 2019; Zhang et al., 2015, 2016). Incorporating 526 

floe size distribution model in CAPS and understanding its impacts on seasonal Arctic sea ice 527 

prediction will be a future direction of developing CAPS. Lastly, the prediction experiments 528 

with the upwind advection scheme (i.e., Y21_RP, Y21_EXT-7) shows spurious large frazil ice 529 

formation, particularity in July, which is different from the analysis shown in Keen et al. (2021). 530 

An approach for reducing spurious frazil ice formation is proposed by Naughten et al. (2017) 531 

that they implemented upwind flux limiter (Leonard and Mokhtari, 1990) to the U3H scheme 532 

to further reduce the oscillations. Naughten et al. (2018) also suggested that the oscillatory 533 

behaviors can be smoothed out by applying the Akima fourth-order tracer advection scheme 534 

combined with Laplacian horizontal diffusion at a level strong enough. Beside of the oscillatory 535 

behaviors of advection scheme, the ice-ocean heat flux may also play a role in the spurious 536 

frazil ice formation. As discussed in section 3.3, the freezing/melting potential not only 537 

determines the amount of newly-formed ice, but also limits the amount of energy that can be 538 
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extracted from the ocean surface layer to melt sea ice. This implies that the ocean surface layer 539 

will be close to the freezing temperature if the ice-ocean heat fluxes reach the limit imposed by 540 

the melting potential. Shi et al. (2021) discussed the impacts of different ice-ocean heat flux 541 

parametrizations on sea ice simulations. Their results suggest that Arctic sea ice will be thicker 542 

and ocean temperature will warmer beneath high-concentration ice with a complex approach 543 

proposed by Schmidt et al. (2004) that limits melt rates (heat fluxes) of sea ice through 544 

considering a fresh water layer underlying sea ice. The warmer ocean temperature under sea 545 

ice with a more complex approach in parameterizing ice-ocean heat flux may be the solution 546 

to reduce the occurrence of local temperature falling below freezing temperature with 547 

oscillatory advection schemes. 548 

Based on the prediction experiments discussed in this paper, the configuration with the 549 

RAP physics, the U3H/C4V ocean advection, BL99 ice thermodynamics, and CS2SMOS ice 550 

thickness assimilation (Table 2, Y21_SIT) is assigned as the finalized CAPS version 1.0. 551 

Improving the representation of physical processes in CAPS version 1.0 for further reducing 552 

the model bias will remain the main focus for the development of CAPS. Since CAPS is a 553 

regional modeling system, it relies on the forecasts form global climate models as initial and 554 

lateral boundary conditions. That is, biases existed in GCM simulations (here the CFS forecast) 555 

can be propagated into and affect the entire area-limited domain (e.g., Bruyère et al., 2014; 556 

Rocheta et al., 2020; Wu et al., 2005). This issue can be a potential source that influences the 557 

predictive capability of CAPS for longer timescales. Studies have applied bias correction 558 

techniques with different complexities for improving the performance of regional modeling 559 
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system (e.g., Bruyère et al., 2014; Colette et al., 2012; Rocheta et al., 2017, 2020). Further 560 

investigation is needed to address biases inherited from GCM predictions through lateral 561 

boundaries for improving the predictive capability of CAPS.  562 

  563 
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Code and data availability: The COAWST and CICE models are open source and can be 564 

downloaded from their developers at https://github.com/jcwarner-usgs/COAWST and 565 
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https://doi.org/10.5281/zenodo.5034971. The prediction data analyzed in this paper can be 568 

accessed from https://doi.org/10.5281/zenodo.4911415. 569 
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7. Tables 924 

Table 1 The summary of physic parameterizations used in the Y21_CRTL experiment  925 

WRF physics 

Cumulus parameterization Grell-Freitas (Freitas et al. 2018; 

improved from Y20) 

Microphysics parameterization Morrison 2-moment (Morrison et al. 

2009; same as Y20) 

Longwave radiation parameterization CAM spectral band scheme (Collins et 

al. 2004; same as Y20) 

Shortwave radiation parameterization CAM spectral band scheme (Collins et 

al. 2004; same as Y20) 

Boundary layer physics MYNN2 (Nakanishi and Niino, 2006; 

improved from Y20) 

Land surface physics Unified Noah LSM (Chen and Dudhia, 

2001; improved from Y20) 

  

ROMS physics 

Tracer advection scheme MPDATA (Smolarkiewicz, 2006; same 

as Y20) 

Tracer vertical mixing scheme GLS (Umlauf and Burchard, 2003; 

same as Y20) 
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Bottom drag scheme Quadratic bottom friction (QDRAG; 

(same as Y20) 

  

CICE physics 

Ice dynamics EVP (Hunke and Dukowicz, 1997; 

improved from Y20) 

Ice thermodynamics Bitz and Lipscomb (1999; same as 

Y20) 

Shortwave albedo Delta-Eddington (Briegleb and Light, 

2007; same as Y20) 

 926 

  927 
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Table 2 The summary of the prediction experiments and details of experiment designs. 928 

Note: All experiments use the CFS operational forecasts as initial and boundary conditions; VT: 929 

vertical transformation function; VS: vertical stretching function; SH94: stretching function of 930 

Song and Haidvogel (1994); S10: stretching function of Shchepetkin (2010). 931 

Experiment Physics Assimilation ROMS 

vertical 

coordinate 

Simulation 

period 

Y20_MOD Physics (old version) 

listed in Table 1 

6 localization radii 

SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VT 1 

VS SH94 

ℎ𝑐 10m 

2018.07.01-

2018.10.01 

Y21_CTRL Physics (new version) 

listed in Table 1 

6 localization radii 

SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VT 1 

VS SH94 

ℎ𝑐 10m 

2018.07.01-

2018.10.01 

Y21_VT Physics (new version) 

listed in Table 1 

6 localization radii 

SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VT 2 

VS S10 

ℎ𝑐 300m 

2018.07.01-

2018.10.01 

Y21_RP Advection: U3H/C4V 6 localization radii VT 2 2018.07.01-
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 SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VS S10 

ℎ𝑐 300m 

2018.10.01 

Y21_MUSHY Same physics as 

Y21_RP 

CICE: Mushy layer 

thermodynamics 

6 localization radii 

SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VT 2 

VS S10 

ℎ𝑐 300m 

2018.07.01-

2018.10.01 

Y21_ SIT Same physics as 

Y21_RP 

 

6 localization radii 

SSMIS SIC 

OI-merged CryoSat-

2/SMOS SIT 

VT 2 

VS S10 

ℎ𝑐 300m 

2018.07.01-

2018.10.01 

Y21_EXT-7 Same physics as 

Y21_RP 

 

6 localization radii 

SSMIS SIC 

OI-merged CryoSat-

2/SMOS SIT 

VT 2 

VS S10 

ℎ𝑐 300m 

2018.07.01-

2019.01.31 

 932 

  933 
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8. Figures 934 

 935 

Figure 1 ERA5 monthly mean of downward shortwave radiation at the surface for (a) July, (b) 936 

August, and (c) September, the difference between Y20_MOD and ERA5 for (d) July, (e) 937 

August, (f) September, and the difference between Y21_CTRL (changes in the atmospheric 938 

physics) and Y20_MOD (the original CAPS) for (g) July, (h) August, and (i) September. 939 

  940 



 

48 

 

 941 

Figure 2 Same as Figure 1, but for downward thermal radiation at the surface. 942 

  943 
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  944 

Figure 3 Same as Figure 1, but for near-surface air temperature. 945 

 946 

  947 
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 948 

Figure 4 Top panel: Time-series of Arctic sea ice extent for the observations (black line) and 949 

the ensemble-mean of Y20_MOD (blue line, the original CAPS), Y21_CTRL (yellow line, 950 

changes in the atmospheric physics), Y21_VT (red line, changes in the ocean vertical 951 

coordinate), Y21_RP (green line, changes in the oceanic advection), and Y21_MUSHY (pink 952 

line, changes in sea ice thermodynamics). Dashed and dotted lines are the climatology and the 953 

damped anomaly persistence predictions. Bottom panel: Time-series of the observed (black 954 

line) and the ensemble-mean of regional sea ice extents for Y20_MOD (blue line), Y21_CTRL 955 

(yellow line), Y21_VT (red line), Y21_RP (green line), and Y21_MUSHY (pink line) for (a) 956 

Beaufort-Chukchi Seas, (b) East Siberian-Laptev Seas, and (c) Barents-Kara-Greenland Seas.  957 
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 958 

Figure 5 Monthly mean of sea ice concentration for (a) July, (b) August, (c) September of the 959 

NSIDC observations, and the difference between the all prediction experiments and the 960 

observations for (d1-g1) July, (d2-g2) August, (d3-g3) September. Vertical/horizontal-line areas 961 

represent the difference of ice edge location (15% concentration). 962 

  963 
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 964 

 965 

Figure 6 Time-series of sea ice mass budget terms for (a) Y20_MOD (the original CAPS) and 966 

(b) Y21_CTRL (changes in the atmospheric physics). 967 

 968 

  969 
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 970 

Figure 7 Time-series of (a) shortwave radiation absorbed by ice surface, and (b) penetrating 971 

shortwave radiation to the upper ocean averaged over ice-covered grid cells for Y20_MOD 972 

(blue line, the original CAPS) and Y21_CTRL (red line, changes in the atmospheric physics). 973 

  974 
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 975 

Figure 8 First column: monthly mean of sea surface temperature for (a) July, (b) August, (c) 976 

September of the OI SST. Second column: the difference between Y21_CTRL and the OI SST 977 

for (d) July, (e) August, (f) September. Right panel: Monthly mean of sea surface temperature 978 

difference between Y21_VT/Y21_RP and Y21_CTRL for (g) July, (h) August, (i) September 979 

of Y21_VT, (j) July, (k) August, and (l) September of Y21_RP. 980 

  981 
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 982 

Figure 9 Same as Figure 6, but for (a) Y21_VT (changes in the ocean vertical coordinate), and 983 

(b) Y21_RP (changes in the oceanic advection). 984 
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 986 

Figure 10 (a) the average temperature profile of upper 150 m under ice-covered areas for the 987 

difference between Y21_RP and Y21_VT. (b) same as (a), but for the salinity profile. 988 
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 990 

Figure 11 Monthly mean of sea ice thickness difference between Y21_MUSHY (changes in 991 

sea ice thermodynamics) and Y21_RP for (a) July, (b) August, and (c) September.  992 
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 993 

Figure 12 Same as Figure 4, but for Y21_EXT-7. 994 
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