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Abstract 15 

The improved/updated Coupled Arctic Prediction System (CAPS) is evaluated by a set of 16 

Pan-Arctic prediction experiments for the year 2018, which is built on Weather Research and 17 

Forecasting model (WRF), the Regional Ocean Modeling System (ROMS), the Community 18 

Ice CodE (CICE), and a data assimilation based on the Local Error Subspace Transform 19 

Kalman Filter. We analyze physical process linking improved/changed physical 20 

parameterizations in WRF, ROMS, and CICE to changes in the simulated Arctic sea ice state. 21 

Our results show that the improved convection and boundary layer schemes in WRF result in 22 

improved simulation in downward radiative fluxes and near surface air temperature, which 23 

influences the predicted ice thickness. The changed tracer advection and vertical mixing 24 

schemes in ROMS reduces the bias in sea surface temperature and changes ocean temperature 25 

and salinity structure in the surface layer, leading to improved evolution of the predicted ice 26 

extent (particularly correcting the late ice recovery issue in the previous CAPS). The improved 27 

sea ice thermodynamics in CICE have noticeable influences on the predicted ice thickness. The 28 

updated CAPS can better predict the evolution of Arctic sea ice during the melting season 29 

compared with its predecessor, though the prediction still have some biases at the regional scale. 30 

We further show that the updated CAPS can remain skillful beyond the melting season, which 31 

may have potential values for stakeholders making decisions for socioeconomical activities in 32 

the Arctic. 33 

 34 

  35 
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1. Introduction 36 

Over the past few decades, the extent of Arctic sea ice has decreased rapidly and entered 37 

a thinner/younger regime associated with global climate change (e.g., Kwok, 2018; Serreze 38 

and Meier, 2019). The dramatic changes in the properties of Arctic sea ice have gained 39 

increasing attentions by a wide range of stakeholders, such as trans-Arctic shipping, natural 40 

resource exploration, and activities of coastal communities relying on sea ice (e.g., Newton et 41 

al., 2016). This leads to increasing demands on skillful Arctic sea ice prediction, particularly at 42 

seasonal timescale (e.g., Jung et al., 2016; Liu et al., 2019; Stroeve et al., 2014). However, 43 

Arctic sea ice prediction based on different approaches (e.g., statistical method and dynamical 44 

model) submitted to the Sea Ice Outlook, a community effort managed by the Sea Ice Prediction 45 

Network (SPIN, https://www.arcus.org/sipn), shows substantial biases in the predicted seasonal 46 

minimum of Arctic sea ice extent compared to the observations for most years since 2008 (Liu 47 

et al., 2019; Stroeve et al., 2014).  48 

Recently, we have developed an atmosphere-ocean-sea ice regional coupled modeling 49 

system, for seasonal Arctic sea ice and climate prediction (Yang et al., 2020, hereafter Y20), in 50 

which the Los Alamos Sea Ice Model (CICE) is coupled with the Weather Research and 51 

Forecasting Model (WRF) and the Regional Ocean Modeling System (ROMS), hereafter called 52 

Coupled Arctic Prediction System (CAPS). To improve the accuracy of initial sea ice 53 

conditions, CAPS employs an ensemble-based data assimilation system to assimilate satellite-54 

based sea ice observations. Seasonal Pan-Arctic sea ice predictions with improved initial sea 55 

ice conditions conducted in Y20 have shown that CAPS has the potential to provide skillful 56 

https://www.arcus.org/sipn
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Arctic sea ice prediction at seasonal timescale.  57 

We know that the changes of sea ice variables (e.g., ice extent, ice concentration, ice 58 

thickness, ice drift) are mainly driven by forcings from the atmosphere and the ocean. 59 

Atmospheric cloudiness and related radiation influence surface ice melting (Huang et al., 2019; 60 

Kapsch et al., 2016; Kay et al., 2008) and the energy stored in the surface mixed layer that 61 

determines the seasonal ice melt and growth (e.g., Perovich et al., 2011, 2014). Atmospheric 62 

circulation is the primary driver for the transportation of sea ice and partly responsible for the 63 

variability of Arctic sea ice (e.g., Mallett et al., 2021; Ogi et al., 2010; Zhang et al., 2008). 64 

Olonscheck et al. (2019) suggested that atmospheric temperature fluctuations explain a 65 

majority of Arctic sea ice variability while other drivers (e.g., surface winds, and poleward heat 66 

transport) account for about 25% of Arctic sea ice variability. The oceanic heat inputs (as well 67 

as salt inputs) into the Arctic Ocean include the Atlantic Water (AW; Aagaard, 1989; 68 

McLaughlin et al., 2009) through the Barents Sea, and the Pacific Water (PW; Itoh et al., 2013; 69 

Woodgate et al., 2005) from the Bering Strait. The oceanic heat inputs from AW and PW are 70 

not directly available for sea ice since they are separated from a cold and fresh layer underlying 71 

sea ice (e.g., Carmack et al., 2015, Fig. 2). Vertical mixing by the internal wave (e.g., Fer, 2014) 72 

and double diffusion (e.g., Padman and Dillon, 1987; Turner, 1973) are the principal processes 73 

for upward heat transport from the subsurface layer (i.e., AW and PW) to the surface mixed 74 

layer in the Arctic Ocean. Sea ice thermodynamics determines how thermal properties of sea 75 

ice (e.g., temperature, salinity) change. These changes then influence the thermal structure of 76 

underlying ocean through interfacial fluxes (i.e., heat, salt and freshwater fluxes; DuVivier et 77 
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al., 2021; Kirkman IV and Bitz, 2011) and ice thickness (e.g., Bailey et al., 2020).  78 

The CAPS is configured for the Arctic with sufficient flexibility. That means each model 79 

component of CAPS (WRF, ROMS, and CICE) has different physics options for us to choose 80 

and capability to integrate ongoing improvements in physical parameterizations. Recently, the 81 

WRF model has adapted improved convection and boundary layer schemes in the Rapid 82 

Refresh (RAP) model operational at the National Centers for Environmental Prediction (NCEP, 83 

Benjamin et al., 2016). The first question we want to answer in this paper is to what extent 84 

these modifications can improve atmospheric simulations in the Arctic (i.e., radiation, 85 

temperature, humidity, and wind), and then benefit seasonal Arctic sea ice simulation and 86 

prediction. The ROMS model provides several options for tracer advection schemes. These 87 

advection schemes can have different degrees of oscillatory behavior (e.g., Shchepetkin and 88 

McWilliams, 1998). The oscillatory behavior can have impacts on sea ice simulation through 89 

ice-ocean interactions (e.g., Naughten et al., 2017). The second question we want to answer in 90 

this paper is to what extent different advection schemes can change the simulation of upper 91 

ocean thermal structure and then Arctic sea ice prediction. Several recent efforts have 92 

incorporated prognostic salinity into sea ice models. The CICE model has a new mushy-layer 93 

thermodynamics parameterization that includes prognostic salinity and treats sea ice as a two-94 

phase mushy layer (Turner et al., 2013). Bailey et al. (2020) showed that the mushy-layer 95 

physics has noticeable impacts on Arctic sea ice simulation within the Community Earth 96 

System Model version 2. The third question we want to answer in this paper is whether the 97 

mushy-layer scheme can produce noticeable influence on seasonal Arctic sea ice prediction. 98 
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Currently, SIPN focuses on Arctic sea ice predictions during the melting season, particularly 99 

seasonal minimum. It is not clear that how predictive skills of dynamical models participating 100 

in SIPN may change for longer period, i.e., extending into the freezing up period, which also 101 

have significance on socioeconomic aspects. The assessment of the skills of global climate 102 

models (GCMs) in predicting Pan-Arctic sea ice extent with suites of hindcasts suggested that 103 

GCMs may have skill at lead times of 1-6 months (e.g., Blanchard-Wrigglesworth et al., 2015; 104 

Chevallier et al., 2013; Guemas et al., 2016; Merryfield et al., 2013; Msadek et al., 2014; 105 

Peterson et al., 2015; Sigmond et al., 2013; Wang et al., 2013; Zampieri et al., 2018). Moreover, 106 

some studies using a “perfect model” approach, which treats one member of an ensemble as 107 

the truth (i.e., assuming the model is prefect without bias) and analyzes the skill of other 108 

members in predicting the response of the “truth” member (e.g., Meehl et al., 2007), suggested 109 

that Arctic sea ice cover can be potentially predictable up to two years in advance (e.g., 110 

Blanchard-Wrigglesworth et al., 2011; Blanchard-Wrigglesworth and Bushuk, 2018; Day et al., 111 

2016; Germe et al., 2014; Tietsche et al., 2014). The last question we want to answer in this 112 

paper is whether CAPS has predictive skill for longer periods (up to 7 months). 113 

This paper is structured as follows. Section 2 provides a brief overview of CAPS, 114 

including model configurations and data assimilation procedures. Section 3 describes the 115 

designs of the prediction experiments for the year of 2018 based on major improvements/ 116 

changes in the model components compared to its predecessor described in Y20, examines the 117 

performance of the updated CAPS, and offers physical links between Arctic sea ice changes 118 

and improved/changed physical parameterizations. Section 4 discusses the predictive skill of 119 
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CAPS at longer timescale. Discussions and concluding remarks are given in section 5. 120 

2. Coupled Arctic Prediction System (CAPS) 121 

As described in Y20, the CAPS has been developed by coupling the Community Ice CodE 122 

(CICE) with the Weather Research and Forecasting Model (WRF) and the Regional Ocean 123 

Modeling System (ROMS) based on the framework of the Coupled Ocean-Atmosphere-Wave-124 

Sediment Transport (Warner et al., 2010). The general description of each model component in 125 

CAPS is referred to Y20. The advantage of CAPS is its model components have a variety of 126 

physics for us to choose and capability to integrate follow-up improvements of physical 127 

parameterizations. With recent achievements of community efforts, we update CAPS based on 128 

newly-released WRF, ROMS, and CICE models. During this update, we focus on the Rapid 129 

Refresh (RAP) physics in the WRF model, the oceanic tracer advection scheme in the ROMS 130 

model, sea ice thermodynamics in the CICE model (see details in section 3), and investigate 131 

physical process linking them to Arctic sea ice simulation and prediction. The same physical 132 

parameterizations described in Y20 are used here for the control simulation (see Table 1). Major 133 

changes in physical parameterizations as well as the model infrastructure in the WRF, ROMS, 134 

and CICE models are described in section 3.  135 

As described in Y20, the Parallel Data Assimilation Framework (PDAF, Nerger and Hiller, 136 

2013) was implemented in CAPS, which provides a variety of optimized ensemble-based 137 

Kalman filters. The Local Error Subspace Transform Kalman Filter (LESTKF; Nerger et al., 138 

2012) is used to assimilate satellite-observed sea ice parameters. The LESTKF projects the 139 

ensemble onto the error subspace and then directly computes the ensemble transformation in 140 
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the error subspace. This results in better assimilation performance and higher computational 141 

efficiency compared to the other filters as discussed in Nerger et al. (2012).  142 

The initial ensembles are generated by applying the second-order exact sampling (Pham, 143 

2001) to simulated sea ice state vectors (ice concentration and thickness) from an one-month 144 

free run, and then assimilating sea ice observations, including: 1) the near real-time daily Arctic 145 

sea ice concentration processed by the National Aeronautics and Space Administration (NASA) 146 

Team algorithm (Maslanik and Stroeve, 1999) obtained from the NSIDC 147 

(https://nsidc.org/data/NSIDC-0081/), and 2) a combined monthly sea ice thickness derived 148 

from the CryoSat-2 (Laxon et al., 2013; obtained from http://data.seaiceportal.de), and daily 149 

sea ice thickness derived from the Soil Moisture and Ocean Salinity (SMOS; Kaleschke et al., 150 

2012; Tian-Kunze et al., 2014; obtained from https://icdc.cen.uni-hamburg.de/en/l3c-smos-151 

sit.html). To address the issue that sea ice thickness derived from CyroSat-2 and SMOS are 152 

unavailable during the melting season, the melting season ice thickness is estimated based on 153 

the seasonal cycle of the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) 154 

daily sea ice thickness (Zhang and Rothrock, 2003).  155 

Different from Y20, in this study, we change the localization radius from 2 to 6 grids 156 

during the assimilation procedures to reduce some instability during initial Arctic sea ice 157 

simulations associated with 2 localization radii. As shown in Supplementary Figure S1, the ice 158 

thickness with 2 localization radii and 1.5 m uncertainty (used in Y20) shows some 159 

discontinuous features (Fig. S1a), which tends to result in numerical instability during the 160 

initial integration. Such discontinuous features are obviously corrected with 6 localization radii 161 

http://data.seaiceportal.de/
https://icdc.cen.uni-hamburg.de/en/l3c-smos-sit.html
https://icdc.cen.uni-hamburg.de/en/l3c-smos-sit.html
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and 0.75 m uncertainty (Fig. S1b). Following Y20, here we test the 2018 prediction experiment 162 

with 6 localization radii for the data assimilation, which shows very similar temporal evolution 163 

of the total Arctic sea ice extent for the July experiment relative to that of Y20, although it (red 164 

solid line) predicts slightly less ice extent than that of Y20 (blue line) (Supplementary Figure 165 

S2). In this study, this configuration is designated as the reference for the following assessment 166 

of the updated CAPS (hereafter Y20_MOD). 167 

For the evaluation of Arctic sea ice prediction, Sea Ice Index (Fetterer et al., 2017; 168 

obtained from https://nsidc.org/data/G02135) is used as the observed total sea ice extent, and 169 

the NSIDC sea ice concentrations (SIC) derived from Special Sensor Microwave 170 

Imager/Sounder (SSMIS) with the NASA Team algorithm (Cavalieri et al., 1996; obtained from 171 

https://nsidc.org/data/nsidc-0051) is also used. For the assessment of the simulated atmospheric 172 

and oceanic variables, the ECMWF reanalysis version 5 (ERA5; Hersbach et al., 2020; 173 

obtained from https://cds.climate.copernicus.eu) and National Oceanic and Atmospheric 174 

Administration (NOAA) Optimum Interpolation (OI) Sea Surface Temperature (SST) 175 

(Reynolds et al., 2007; obtained from 176 

https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html) are utilized. For the 177 

comparison of spatial distribution, SIC, ERA5, and OISST are interpolated to the model grid. 178 

3. Evaluation of updated CAPS 179 

3.1. Experiment designs and methodology 180 

The model domain includes 319 (449) x- (y-) grid points with a ~24 km grid spacing for 181 

all model components (see Figure 2 in Y20). The WRF model uses 50 vertical levels, the 182 
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ROMS model uses 40 vertical levels, and the CICE model uses 7 ice layers, 1 snow layer, and 183 

5 categories of sea ice thickness. The coupling frequency across all model components is 30 184 

minutes. Initial and boundary conditions for the WRF and ROMS models are generated from 185 

the Climate Forecast System version 2 (CFSv2, Saha et al., 2014) operational forecast archived 186 

at NCEP (http://nomads.ncep.noaa.gov/pub/data/nccf/com/cfs/prod/). Sea ice initial conditions 187 

are generated from the data assimilation described in section 2. Ensemble predictions with 8 188 

members are conducted. A set of numerical experiments for the Pan-Arctic seasonal sea ice 189 

prediction with different physics, starting from July 1st to October 1st for the year of 2018, has 190 

been conducted. Table 2 provides the details of these experiments that allow us to examine 191 

physical process linking improved/changed physical parameterizations in the updated CAPS 192 

to Arctic sea ice simulation and prediction. 193 

In this study, sea ice extent is calculated as the sum of area of all grid cells with ice 194 

concentration greater than 15%. Besides the total Arctic sea ice extent, we also calculate the 195 

ice extent for the following subregions: 1) Beaufort and Chukchi Seas (120°W-180, 60°N-196 

80°N), 2) East Siberian and Laptev Seas (90°E-180, 60°N-80°N), and 3) Barents, Kara, and 197 

Greenland Seas (30°W-90°E, 60°N-80°N). To further assess the predictive skill of Arctic sea 198 

ice predictions, we show the climatology prediction (CLIM, the period of 1998-2017) and the 199 

damped anomaly persistence prediction (DAMP). Following Van den Dool (2006), the DAMP 200 

is generated from the initial sea ice extent anomaly (relative to the 1998-2017 climatology) 201 

scaled by the autocorrelation and the ratio of standard deviation between different lead times 202 

and initial times (see the DAMP equation in Y20). 203 
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In order to understand physical contributors that drive the evolving Arctic sea ice state, 204 

the mass budget of Arctic sea ice for all experiments is analyzed in this study as defined in 205 

Notz et al. (2016, Append. E), including 1) sea ice growth in supercooled open water (frazil ice 206 

formation), 2) basal growth, 3) snow-to-ice conversion, 4) top melt, 5) basal melt, 6) lateral 207 

melt, and 7) dynamics process. 208 

3.2. Impacts of the RAP physics in the WRF model 209 

To examine the performance of the upgrades of physical parameterization in component 210 

models in CAPS one step at a time compared to its predecessor in Y20, we define the 211 

Y21_CTRL experiment that uses the RAP physics in the WRF model (see Table 2 for 212 

differences between Y21_CTRL and Y20_MOD). Recently, the Rapid Refresh (RAP) model, 213 

a high-frequency weather prediction/assimilation modeling system operational at the National 214 

Centers for Environmental Prediction (NCEP), has made some improvements in the WRF 215 

model physics (Benjamin et al., 2016), including improved Grell-Freitas convection scheme 216 

(GF) and Mellor-Yamada-Nakanishi-Niino planetary boundary layer scheme (MYNN). For the 217 

GF scheme, the major improvements relative to the original scheme (Grell and Freitas, 2014) 218 

include: 1) a beta probability density function used as the normalized mass flux profile for 219 

representing height-dependent entrainment/detrainment rates within statistical-averaged deep 220 

convective plumes, which is given as: 221 

𝑍𝑢,𝑑(𝑟𝑘) = 𝑐𝑟𝑘
𝛼 − (1 − 𝑟𝑘)𝛽 − 1 224 

where 𝑍𝑢,𝑑 is the mass flux profiles for updrafts and downdrafts, c is a normalization constant, 222 

𝑟𝑘 is the location of the mass flux maximum, 𝛼 and 𝛽 determine the skewness of the beta 223 
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probability density function, and 2) the ECMWF approach used for momentum transport due 225 

to convection (Biswas et al. 2020; Freitas et al. 2018; 2021). For the MYNN scheme, the RAP 226 

model improves the mixing-length formulation, which is designed as: 227 

1

𝑙𝑚
=

1

𝑙𝑠
+

1

𝑙𝑡
+

1

𝑙𝑏
 236 

where 𝑙𝑚 is the mixing length, 𝑙𝑠 is the surface length, 𝑙𝑡 is the turbulent length, and 𝑙𝑏 is 228 

the buoyancy length. Compared to the original scheme, the RAP model changed coefficients 229 

in the formulation of 𝑙𝑠, 𝑙𝑡, and 𝑙𝑏 for reducing the near-surface turbulent mixing, and the 230 

diffusivity of the scheme. The RAP model also removes numerical deficiencies to better 231 

represent subgrid-scale cloudiness (Benjamin et al. 2016, see Append. B) compared to the 232 

original scheme (Nakanishi and Nino, 2009). In addition, some minor issues in the Noah land 233 

surface model (Chen and Dudhia, 2001) have been fixed, including discontinuous behavior for 234 

soil ice melting, negative moisture fluxes over glacial, and associated with snow melting.  235 

Apparently, the above RAP physics can have influence on the behavior of simulated 237 

atmospheric thermodynamics (i.e., radiation, temperature). Figure 1 and 2 show the spatial 238 

distribution of the ERA5 surface downward solar and thermal radiation (SWDN and LWDN), 239 

the prediction errors (ensemble mean minuses ERA5) of Y20_MOD, and the difference 240 

between Y21_CTRL and Y20_MOD. For July, Y20_MOD (Fig. 1d) results in less SWDN over 241 

most of ocean basins as well as Alaska and northeast US, western Siberia, and eastern Europe, 242 

but more SWDN over southern and eastern Siberia compared with ERA5. For August and 243 

September (Fig. 1e-f), the spatial distribution is generally similar to that of July, except that 244 

eastern Siberia (less SWDN) and northern Canada (more SWDN) in August. It appears that the 245 
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magnitude of the prediction errors tends to decrease over the areas with large prediction errors 246 

as the prediction time increases (i.e., July vs. September). Compared with Y20_MOD, the RAP 247 

physics in Y21_CTRL result in large areas with smaller prediction errors in July (e.g., the 248 

positive difference between Y21_CTRL and Y20_MOD reduces the negative prediction errors 249 

in Y20_MOD), except the north Pacific (especially the Sea of Okhotsk) and north Canada (Fig. 250 

1g). For August and September (Fig. 1h, i), encouragingly, there are more areas with smaller 251 

prediction errors.  252 

In contrast to SWDN, the prediction errors of LWDN in Y20_MOD has much smaller 253 

magnitude (up to 100 W/m2 in SWDN vs. 50 W/m2 in LWDN) for the entire prediction period 254 

(Fig. 2d-f). For July, Y20_MOD (Fig. 2d) simulates less LDWN over most of the model domain 255 

compared with ERA5, except the Atlantic sector and north Greenland. For August, the areas 256 

with negative prediction errors expand and the magnitude of prediction errors increases 257 

(particularly in southeastern Siberia and northeast US) compared to that of July (Fig. 2e). For 258 

September (Fig. 2f), the spatial distribution of LWDN is mostly similar to that of July, except 259 

that north Canada and Canadian Archipelago show positive prediction errors. The Y21_CTRL 260 

experiment with the RAP physics tends to reduce the prediction errors in Y20_MOD, especially 261 

over eastern Siberia and the Atlantic sector in July to September (Fig. 2g-i).  262 

Figure 3 shows the spatial distribution of the ERA5 2m air temperature, the prediction 263 

errors of Y20_MOD, and the difference between Y21_CTRL and Y20_MOD. For Y20_MOD, 264 

the predicted air temperature in July has small cold prediction errors over all ocean basins, 265 

small-to-moderate cold prediction errors (~3-5 degrees) over Canada and Siberia, and 266 
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moderate-to-large cold prediction errors (~6-9 degrees) over eastern Europe (Fig. 3d). In 267 

August (Fig. 3e), the cold prediction errors over most of the model domain are increased, in 268 

particular, very large cold prediction error (over 10 degrees) is located over east Siberia. In 269 

September, these cold prediction errors are decreased relatively, and some warm prediction 270 

errors are found in north of Greenland (Fig. 3f). With the adaptation of the RAP physics in the 271 

WRF model, Y21_CTRL, in general, produces a warmer state in most of the model domain 272 

compared to that of Y20_MOD during the entire prediction period. For July (Fig. 3g), the 273 

predicted air temperature is slightly warmer over the Arctic Ocean, the Pacific, and Atlantic 274 

sectors, moderately warmer (~1-2 degrees) over central and eastern Siberia and Canadian 275 

Archipelago, but the slightly colder over northern Canada than that of Y20_MOD. For August 276 

and September (Fig. 3h), most of the model domain is warmer in Y21_CTRL than that of 277 

Y20_MOD, in particular excessive cold prediction errors shown in Y20_MOD over Siberia are 278 

reduced notably (~2.5-4 degrees). We notice that the RAP physics does not have significant 279 

impacts on atmospheric circulation, given that Y21_CTRL and Y20_MOD have very similar 280 

wind pattern (not shown).  281 

Figure 4 shows the temporal evolution of the ensemble mean of the predicted Arctic sea 282 

ice extent along with the NSIDC observations. In terms of the total ice extent, compared to the 283 

Y20_MOD experiment (blue line), the Y21_CTRL experiment (yellow line) produces ~0.5 284 

million km2 more ice extent at the initial. Note that the difference in the initial ice extent is 285 

related to that sea ice fields in Y20_MOD and Y21_CTRL (as well as other experiments listed 286 

in Table 2) are initialized based on one-month free runs (section 2), which use different physical 287 
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configurations listed in Table 2. These one-month free runs do not have the same evolution in 288 

sea ice fields and result in different initial ice fields after data assimilation. The ice extent in 289 

Y21_CTRL decreases faster than Y20_MOD during the first 2-week integration. After that, 290 

they track each other closely, and predict nearly the same minimum ice extent (~4.3 million 291 

km2). Like Y20_MOD, Y21_CTRL still has a delayed ice recovery in late September compared 292 

to the observation. Compared with the CLIM/DAMP predictions (black dashed and dotted 293 

lines), both Y20_MOD and Y21_CTRL have smaller prediction errors in August, but 294 

comparable prediction errors after early September.  295 

The difference in sea ice extent becomes larger at regional scales, in the East Siberian-296 

Laptev Seas, Y20_CTRL shows faster ice decline after mid-July than that of Y21_MOD, 297 

whereas in the Beaufort-Chukchi Seas, Y21_CTRL predicts slower ice retreat after late July 298 

than that of Y20_MOD (Fig. 4a, 4b). They are consistent with that Y21_CTRL predicts warmer 299 

(relatively colder) temperature than that of Y20_MOD in the East Siberian-Laptev (Beaufort-300 

Chukchi) Seas. Both Y20_MOD and Y21_CTRL agree well with the observations in the 301 

Barents-Kara-Greenland Seas (Fig. 4c). Compared with the observations, Y20_MOD performs 302 

relatively better in regional ice extents than that of Y21_CTRL. Figure 5 shows the spatial 303 

distribution of the NSIDC sea ice concentration and the difference between the predicted ice 304 

concentration and the observations for all grid cells that the predictions and the observations 305 

both have at least 15% ice concentration. The vertical and horizontal lining areas represent 306 

difference of the ice edge location. Like the regional ice extent shown in Figure 4, Y21_CTRL 307 

predicts lower (higher) ice concentration along the East Siberian-Laptev (Beaufort-Chukchi) 308 



 

16 

 

Seas (Fig. 5e1-e3). Y21_CTRL also predicts less ice in the central Arctic Ocean in August and 309 

September, which is consistent with warmer temperature in Y21_CTRL relative to Y20_MOD. 310 

Figure 6 shows the evolution of sea ice mass budget terms of Y20_MOD and Y21_CTRL, 311 

averaged with cell-area weighting over the entire model domain. During the entire prediction 312 

period, most of the ice loss in Y20_MOD and Y21_CTRL are caused by basal melting. The 313 

surface melting has relatively small contribution in the total ice loss and mainly occurs in July. 314 

However, compared with Y20_MOD (Fig. 6a), Y21_CTRL (Fig. 6b) shows much larger 315 

magnitude for basal and surface melt. In a fully coupled predictive model, the changes of sea 316 

ice are determined by the fluxes from the atmosphere above and the ocean below. Associated 317 

with the increased downward radiation of the above RAP physics, Y21_CTRL absorbs more 318 

shortwave radiation (SWABS, Fig. 7a) and allows more penetrating solar radiation into the 319 

upper ocean below sea ice (SWTHRU, Fig. 7b) than that of Y20_MOD, especially in July. This 320 

explains why Y21_CTRL has larger magnitude of surface and basal melting terms. Although 321 

Y21_CTRL show larger magnitude in surface and basal melting than that of Y20_MOD, the 322 

ice extent in Y21_CTRL and Y20_MOD shown in Figure 4 show similar evolution. The effect 323 

of larger surface and basal melting in Y21_CTRL is largely reflected in the ice thickness change. 324 

As shown in Figure S3, Y21_CTRL has thinner ice thickness than that of Y20_MOD, in the 325 

East Siberian-Laptev Seas in July and in the much of central Arctic Ocean in August and 326 

September.  327 

 328 

3.3. Impacts of the tracer advection in ROMS model 329 
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Currently, the ROMS model that uses a generalized topography-following coordinate has 330 

two vertical coordinate transformation options: 331 

𝑧(𝑥, 𝑦, 𝜎, 𝑡) = 𝑆(𝑥, 𝑦, 𝜎) + 𝜁(𝑥, 𝑦, 𝑡) [1 +
𝑆(𝑥, 𝑦, 𝜎)

ℎ(𝑥, 𝑦)
]

𝑆(𝑥, 𝑦, 𝜎) = ℎ𝑐𝜎 + [ℎ(𝑥, 𝑦) − ℎ𝑐]𝐶(𝜎)

(1) 348 

or 332 

𝑧(𝑥, 𝑦, 𝜎, 𝑡) = 𝜁(𝑥, 𝑦, 𝑡) + [𝜁(𝑥, 𝑦, 𝑡) + ℎ(𝑥, 𝑦)]𝑆(𝑥, 𝑦, 𝜎)

𝑆(𝑥, 𝑦, 𝜎) =
ℎ𝑐𝜎 + ℎ(𝑥, 𝑦)𝐶(𝜎)

ℎ𝑐 + ℎ(𝑥, 𝑦)

(2) 349 

where 𝑆(𝑥, 𝑦, 𝜎) is a nonlinear vertical transformation function, 𝜁(𝑥, 𝑦, 𝑡) is the free-surface, 333 

ℎ(𝑥, 𝑦) is the unperturbed water column thickness, 𝐶(𝜎) is the non-dimensional, monotonic, 334 

vertical stretching function, and ℎ𝑐 controls the behavior of the vertical stretching. In Y20, we 335 

used the transformation 1 and the vertical stretching function introduced by Song and 336 

Haidvogel (1994). However, the vertical transformation 1 has an inherent limitation for the 337 

value of ℎ𝑐 (expected to be the thermocline depth), which must be less than or equal to the 338 

minimum value in ℎ(𝑥, 𝑦). As a result, ℎ𝑐 was chosen as 10 meters due to the limitation of 339 

the minimum value in  ℎ(𝑥, 𝑦)  in Y20. This limitation is removed with the vertical 340 

transformation 2 and the vertical stretching function introduced by Shchepetkin (2010), and 341 

ℎ𝑐 can be any positive value. Here the Y21_VT experiment is conducted to examine the impact 342 

of the vertical transformation in the ROMS model on seasonal Arctic sea ice simulation and 343 

prediction, which uses the vertical transformation 2, the Shchepetkin stretching function, and 344 

300 meters for ℎ𝑐 . As shown in Supplementary Figure S4-S5, compared to Y21_CTRL, 345 

Y21_VT is less sensitive to the bathymetry and its layers are more evenly-distributed in the 346 

upper 300 meters. With the changes of vertical layers of the upper ocean, the Y21_VT 347 
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experiment has minor SST changes relative to Y21_CTRL. The simulated temporal evolution 350 

of total ice extent of Y21_VT (Fig. 4, red line) resembles to that of Y21_CTRL (Fig. 4, yellow 351 

line), although some differences are seen at the regional scale in the areas with shallow water 352 

(e.g., East Siberian, Laptev, Barents, and Kara Seas). The configuration of Y21_VT is used in 353 

the following experiments. 354 

It has been recognized that the tracer advection and the vertical mixing schemes have 355 

important effects on ocean and sea ice simulation (e.g., Liang and Losch, 2018; Naughten et 356 

al., 2017). Here the Y21_RP experiment is designated to explore the influence of different 357 

advection schemes in the ROMS model. Specifically, the tracer advection scheme is changed 358 

from the Multidimensional positive definite advection transport algorithm (MPDATA; 359 

Smolarkiewicz, 2006) to the third-order upwind horizontal advection (U3H; Rasch, 1994; 360 

Shchepetkin, and McWilliams, 2005) and the fourth-order centered vertical advection schemes 361 

(C4V; Shchepetkin, and McWilliams, 1998; 2005). The MPDATA scheme applied in 362 

Y20_MOD, Y21_CTRL, and Y21_VT is a non-oscillatory scheme but a sign preserving 363 

scheme (Smolarkiewicz, 2006) that means MPDATA is not suitable for tracer fields having 364 

both positive and negative values (i.e., temperature with degree Celsius in the ROMS model). 365 

The upwind third-order (U3H) scheme used in Y21_RP is an oscillatory scheme but it 366 

significantly reduces oscillations compared to other centered schemes (e.g., Hecht et al., 2000; 367 

Naughten et al., 2017) available in the ROMS model. 368 

Figure 8 shows the spatial distribution of the SST changes of Y21_VT and Y21_RP 369 

relative to Y21_CTRL (as well as the OI SST and the difference between Y21_CTRL and 370 
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OISST). In general, Y21_CTRL shows cold prediction errors in the North Pacific (~2 degrees) 371 

and the Atlantic (~3 degrees) compared to that of OISST in July, and these cold prediction 372 

errors are enhanced as the prediction time increases (to 3-5 degrees, Fig. 8d-f). With the 373 

U3H/C4V tracer advection scheme in Y21_RP, cold prediction errors shown in Y21_CTRL are 374 

reduced significantly in the north Pacific and Atlantic, but SST under sea ice in much of the 375 

Arctic Ocean is slightly colder than that of Y21_CTRL (Fig. 8j-l). 376 

Y21_RP (Fig. 4, green line) shows comparable temporal evolution of the ice extent as 377 

Y21_CTRL (as well as Y21_VT) until near the end of July. After that, the ice melting slows 378 

down (closer to the observation) and the ice extent begins to recover earlier (after the first week 379 

of September) in Y21_RP compared to Y21_CRTL. This leads to much smaller prediction error 380 

in seasonal minimum ice extent relative to the observation. Y21_RP also shows better 381 

predictive skill after late August compared with the CLIM/DAMP predictions (black dashed 382 

and dotted lines). This suggests the delayed ice recovery in late September shown in Y20_MOD, 383 

Y21_CTRL and Y21_VT is in part due to the choice of ocean advection and vertical mixing 384 

schemes, which change the behavior of ocean state. At the regional scale, the slower ice decline 385 

after July and earlier recovery of the ice extent in September mainly occur in the Beaufort-386 

Chukchi and Barents-Kara-Greenland Seas compared to that of Y21_CTRL (Fig. 4a, c). By 387 

using U3H/C4V scheme, the Y21_RP experiment simulates higher sea ice concentration than 388 

that of Y21_VT (Fig. 5f1-f3). For September, the Y21_RP experiment better predicts the ice 389 

edge location in the Atlantic sector of the Arctic (i.e., smaller areas with horizontal/vertical 390 

lining) compared to the experiments described above (not shown). 391 



 

20 

 

Figure 9 shows the evolution of sea ice mass budget terms of Y21_VT and Y21_RP. 392 

Relative to Y21_VT, Y21_RP (with U3H/C4V scheme) results in increased frazil ice formation 393 

in July, which is partly compensated by increased surface melting. Y21_RP also leads to 394 

increased basal growth in mid- and late September (Fig. 9a, b).  395 

Figure 10 shows the difference in the vertical profile of ocean temperature and salinity in 396 

the upper 150 m averaged for the central Arctic Ocean between Y21_RP and Y21_VT. The 397 

ocean temperature in the surface layer of Y21_RP is slightly colder during the prediction period 398 

compared to that of Y21_VT (Fig. 10a), especially in August and September. Moreover, the 399 

water in the surface layer (0-20 m) of Y21_RP is fresher than that of Y21_VT (Fig. 10b). They 400 

reduce the freezing temperature and favor frazil ice formation. In the CAPS, the frazil ice 401 

formation is determined by the freezing potential, which is the vertical integral of the difference 402 

between temperature in upper ocean layer and the freezing temperature in the upper 5 m-layer. 403 

The supercooled water is adjusted based on the freezing potential to form new ice and rejects 404 

brine into the ocean that leads to saltier water between 20-50 m in Figure 10. It should be noted 405 

that the increased frazil ice formation in July in Y21_RP might be also partly due to the 406 

oscillatory behavior of U3H scheme, which makes the temperature fall below the freezing point 407 

and then instantaneously forms new ice (as well as temperature/salinity adjustments). 408 

 409 

3.4. Impacts of sea ice thermodynamics in the CICE model 410 

In Y20, we used sea ice thermodynamics introduced by Bitz and Lipscomb (1999; 411 

hereafter BL99) as the setup of CAPS, which assumes a fixed vertical salinity profile based on 412 
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observations. The new CICE model includes a MUSHY-layer ice thermodynamics introduced 413 

by Turner et al. (2013), which simulates vertically and time-varying prognostic salinity and 414 

associated effects on thermodynamic properties of sea ice. In the Y21_MUSHY experiment, 415 

we change the ice thermodynamics from BL99 to MUSHY (Table 2) to examine whether 416 

improved ice thermodynamics has noticeable influence on Arctic sea ice simulation and 417 

prediction at seasonal timescale. Compared to Y21_RP, Y21_MUSHY (Fig. 4, pink line) 418 

produces very similar evolution of the total ice extent. However, it simulates relatively larger 419 

ice extent near the end of September, which is also reflected by the basin-wide increased ice 420 

cover shown in Figure 5h3. At the regional scale, compared to Y21_RP, Y21_MUSHY predicts 421 

less ice in August in the Beaufort-Chukchi. The opposite is the case for the East Siberian-422 

Laptev Seas (Fig. 4a, b).  423 

Figure 11 shows the difference of the ensemble mean of the predicted ice thickness 424 

between Y21_MUSHY and Y21_RP. Compared with Y21_RP, Y21_MUSHY simulates 425 

thicker ice (from ~0.2m in July to over 0.4m in September) extending from the Canadian Arctic, 426 

through the central Arctic Ocean, to the Laptev Sea (Fig. 11a-c). This seems to be consistent 427 

with previous studies, which show that the Mushy-layer thermodynamics simulates thicker ice 428 

than BL99 thermodynamics in both standalone CICE (Turner and Hunke, 2015) and the fully-429 

coupled (Bailey et al., 2020), but Y21_MUSHY shows thinner ice (~0.2m) in an arc extending 430 

from north of Alaska to north of eastern Siberia compared to Bailey et al. (2020). Note that 431 

Y21_MUSHY focuses the effects of Mushy-thermodynamics on seasonal timescale while the 432 

results in Bailey et al. (2020) are based on 50-year simulations.  433 
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Compared to Y21_RP, the mass budget of Y21_MUSHY (Fig. S6) shows that both surface 434 

melting and frazil ice formation terms are increased. This compensation between surface 435 

melting and frazil ice formation from the Mushy-layer thermodynamics in the CAPS leads to 436 

relatively unchanged total ice extent between Y21_MUSHY and Y21_RP (Fig. 4 green and 437 

pink lines).  438 

 439 

4. Prediction skill of CAPS at longer timescale 440 

The design of Arctic sea ice prediction experiments described above follow the protocol 441 

of the Sea Ice Prediction Network (SPIN), in which the outlook start from June 1st, July 1st, and 442 

August 1st to predict seasonal minimum of the ice extent in September. It is not clear that how 443 

predictive skills of dynamical models participating in SIPN may change for longer period. Here 444 

we conduct two more experiments to investigate the predictive capability of CAPS beyond the 445 

SPIN prediction period. For the prediction experiments discussed above, we use a simple 446 

approach to merge CryoSat-2 and SMOS ice thickness by replacing ice thickness less than 1m 447 

in CryoSat-2 data with SMOS data for ice thickness assimilation. Ricker et al. (2017) presented 448 

a new ice thickness product (CS2SMOS) based on the optimal interpolation to statistically 449 

merge CrySat-2 and SMOS data. Here we utilize the configuration of Y21_RP but use 450 

CS2SMOS SIT for the assimilation (Y21_SIT; Table 2). The predicted total ice extent is almost 451 

identical to Y21_RP in July but slightly larger total extent after July than that of Y21_RP (not 452 

shown). The configuration of Y21_SIT is used in the following experiments. Taking advantage 453 

of the entire prediction period provided by CFS forecasts (7 months), the Y21_EXT-7 454 
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experiment is designed to extend the prediction period to the end of January next year (Table 455 

2). Figure 12 shows the temporal evolution of the ensemble mean of the predicted total Arctic 456 

sea ice extent (as well as regional ice extent) for Y21_EXT-7. The total ice extent exhibits 457 

reasonable evolution in terms of seasonal minimum and timing of recovery compared with the 458 

observations until late November. Y21_EXT-7 also performs better than that of the 459 

CLIM/DAMP predictions (black dashed and dotted lines) until mid-to-late November. After 460 

that, Y21_EXT-7 overestimates the total ice extent relative to the observations, and such 461 

overestimation is largely contributed by more extensive sea ice in the Barents-Kara-Greenland 462 

Seas (Fig. 12c), which is a result of a sharp increase in the basal growth term after mid-to-late 463 

November (not shown).  464 

A growing number of studies have shown evidences of Arctic sea ice spring predictability 465 

barrier. It means that predictions initialized prior to spring (before May) have much lower 466 

predictive skill than predictions initialized after/on that date (e.g., Bonan et al., 2019; Bushuk 467 

et al., 2017; 2018; Day et al., 2014). To investigate the predictive capability of CAPS initialized 468 

prior to the summer melting season, the Y21_MAR-7 experiment is initialized on March 1st, 469 

2018 and predicts sea ice evolution until the end of September (Table 2). Figure 13 shows the 470 

temporal evolution of the ensemble mean of the predicted total Arctic sea ice extent (as well as 471 

regional ice extent) for the Y21_MAR-7 experiment. The evolution of predicted total sea ice 472 

extent shows faster ice melting rate than the observations after mid-May, but slower ice 473 

retreating after mid-July. As a result, the predicted minimum of ice extent has an overestimation 474 

(~1.2 million km2) compared to the observed minimum. In contrast to Y21_MAR-7, the DAMP 475 
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prediction (black dotted line) agrees better with the observations throughout the 7-month 476 

prediction period. At the regional scale, Y21_MAR-7 shows abrupt ice decline after May in the 477 

Beaufort-Chukchi Seas (Fig. 13a), and this decline is mainly contributed by ice retreating along 478 

the Alaskan coast (not shown). Sea ice in the East Siberian-Laptev Seas exhibits slow melting 479 

after July (Fig. 13b), and ice cover still connect to the Siberian coast, which is different from 480 

the observations (not shown). For the Barents-Kara-Greenland Seas (Baffin Bay-Canadian 481 

Archipelago), there are systematic overestimations (underestimations) throughout the entire 482 

prediction period (Fig. 13c-d). Bushuk et al. (2020) suggested that Arctic sea ice predictability 483 

prior to the barrier date is mainly limited by synoptic events, which are only predictable for 484 

few weeks, whereas the predictability after the barrier date is enhanced by ice-albedo feedback 485 

with the onset of ice melting. 486 

 487 

5. Conclusions and Discussions 488 

This paper presents and evaluates the updated Coupled Arctic Prediction System (CAPS) 489 

designated for Arctic sea ice prediction through a case study for the year of 2018. A set of Pan-490 

Arctic prediction experiments with improved/changed physical parameterizations as well as 491 

different configurations starting from July 1st to the end of September are performed for 2018 492 

to assess their impacts of the updated CAPS on the predictive skill of Arctic sea ice at seasonal 493 

timescale. Specifically, we focus on the Rapid Refresh (RAP) physics in the WRF model, the 494 

oceanic tracer advection scheme in the ROMS model, sea ice thermodynamics in the CICE 495 

model, and investigate physical process linking them to Arctic sea ice simulation and prediction. 496 
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The results show that the updated CAPS with improved physical parameterizations can 497 

better predict the evolution of the total ice extent compared with its predecessor described in 498 

Yang et al. (2020), though the predictions exhibit some prediction errors in regional ice extent. 499 

The key improvements of WRF, including cumulus, boundary layer, and land surface schemes, 500 

result in improved simulations in downward radiative fluxes and near surface air temperature. 501 

These improvements mainly influence the predicted ice thickness instead of total ice extent. 502 

The difference in the predicted ice thickness can have potential impacts on the icebreakers 503 

planning their routes across the ice-covered regions. The major changes of ROMS, including 504 

tracer advection and vertical mixing schemes, reduces the prediction error in sea surface 505 

temperature and changes ocean temperature and salinity structure in the surface layer, leading 506 

to improved evolution of the predicted total ice extent (particularly correcting the late ice 507 

recovery issue in the previous CAPS). The change of CICE, including improved ice 508 

thermodynamics, have noticeable influences on the predicted ice thickness. 509 

We demonstrate that CAPS can remain skillful beyond the designated period of Sea Ice 510 

Prediction Network (SIPN), which has potential values for stakeholders making decisions 511 

regarding the socioeconomical activities. Although CAPS shows extended predictive skill to 512 

the freeze-up period, the prediction produces extensive ice through the basal growth near the 513 

end of prediction. The excessive basal growth may be partly due to that the bias of the CFS 514 

data propagates into the model domain through lateral boundary conditions and its accumulated 515 

effect influences Arctic sea ice simulation during the freeze-up period.  516 

Keen et al. (2021) analyzed the Arctic mass budget of 15 models participated in the 517 
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Coupled Model Intercomparison Project Phase 6 (CMIP6). We notice that, first, the top melting 518 

and the basal melting terms in CMIP6 models have comparable contributions in July while the 519 

top melting term only has ~50% contribution relative to the basal melting term in the CAPS. 520 

The updated CAPS with the RAP physics improves the performance of shortwave/longwave 521 

radiation at the surface (Fig. 1 and Fig. 2). The net flux at the surface, however, may still be 522 

underestimated in the CAPS. Besides, the surface property of sea ice (i.e., the amount of melt 523 

ponds, bare ice, and snow) is a factor that influences surface albedo and thus the absorbed 524 

shortwave radiation (e.g., Nicolaus et al., 2012; Nicolaus and Katlein, 2013). The prediction 525 

experiments starting at July 1st in this study do not consider the initialization of melt ponds (i.e., 526 

zero melt pond coverage at the initial). However, melt ponds start to develop in early May 527 

based on the satellite observations (e.g., Liu et al., 2015, Fig. 1). The initialization of melt pond 528 

based on the observations (e.g., Ding et al., 2020) in the CAPS is a direction to improve the 529 

representation of the ice surface properties. Second, the mass budget analysis by both Keen et 530 

al. (2021) and this study show that the contribution of lateral melting term is relatively small, 531 

which might be due to that CMIP6 models and the CAPS assume constant floe-size (i.e., 300 532 

meters in CICE), which is a critical value to determine the strength of lateral melting (e.g., 533 

Horvat et al., 2016; Steele, 1992). Recently, several studies have proposed floe size distribution 534 

models (e.g., Bateson et al., 2020; Bennetts et al., 2017; Boutin et al., 2020; Horvat and 535 

Tziperman, 2015; Roach et al., 2018, 2019; Zhang et al., 2015, 2016). Incorporating floe size 536 

distribution model in the CAPS and understanding its impacts on seasonal Arctic sea ice 537 

prediction will be a future direction of developing CAPS. Lastly, the prediction experiments 538 
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with the upwind advection scheme (i.e., Y21_RP, Y21_EXT-7) shows spurious large frazil ice 539 

formation, particularity in July, which is different from the analysis shown in Keen et al. (2021). 540 

An approach for reducing spurious frazil ice formation is proposed by Naughten et al. (2017) 541 

that they implemented upwind limiter (Leonard and Mokhtari, 1990) to the U3H scheme to 542 

further reduce the oscillations. Naughten et al. (2018) also suggested that the oscillatory 543 

behaviors can be smoothed out by applying the Akima fourth-order tracer advection scheme 544 

combined with Laplacian horizontal diffusion at a level strong enough. Beside of the oscillatory 545 

behaviors of advection scheme, the ice-ocean heat flux can also play a role in the spurious frazil 546 

ice formation. As discussed in section 3.3, the freezing/melting potential not only determines 547 

the amount of newly-formed ice, but also limits the amount of energy that can be extracted 548 

from the ocean surface layer to melt sea ice. This implies that the ocean surface layer will be 549 

close to the freezing temperature if the ice-ocean heat fluxes reach the limit imposed by the 550 

melting potential. Shi et al. (2021) discussed the impacts of different ice-ocean heat flux 551 

parametrizations on sea ice simulations. Their results suggest that Arctic sea ice will be thicker 552 

and ocean temperature will warmer beneath high-concentration ice with a complex approach 553 

proposed by Schmidt et al. (2004) that limits melt rates (heat fluxes) of sea ice through 554 

considering a fresh water layer underlying sea ice. The warmer ocean temperature under sea 555 

ice with a more complex approach in ice-ocean heat flux may be the solution to reduce the 556 

occurrence of local temperature falling below freezing temperature with oscillatory advection 557 

schemes. 558 

Based on the prediction experiments discussed in this paper, the configuration with the 559 
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RAP physics, the U3H/C4V ocean advection, BL99 ice thermodynamics, and CS2SMOS ice 560 

thickness assimilation (Table 2, Y21_SIT) is assigned as the finalized CAPS version 1.0. 561 

Improving the representation of physical processes in the CAPS version 1.0 for further 562 

reducing the model bias will remain the main focus for the development of CAPS. Since the 563 

CAPS is a regional modeling system, it relies on the forecasts form global climate models as 564 

initial and lateral boundary conditions. That is, biases existed in GCM simulations (here the 565 

CFS forecast) can be propagated into and affect the entire area-limited domain (e.g., Bruyère 566 

et al., 2014; Rocheta et al., 2020; Wu et al., 2005). This issue can be a potential source that 567 

influences the predictive capability of CAPS for longer timescales. Studies have applied bias 568 

correction techniques with different complexities for improving the performance of regional 569 

modeling system (e.g., Bruyère et al., 2014; Colette et al., 2012; Rocheta et al., 2017, 2020). 570 

Further investigation is needed to address biases inherited from GCM predictions through 571 

lateral boundaries for improving the predictive capability of CAPS.  572 

  573 
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Code and data availability: The COAWST and CICE models are open source and can be 574 

downloaded from their developers at https://github.com/jcwarner-usgs/COAWST and 575 
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7. Tables 948 

Table 1 The summary of physic parameterizations used in the Y21_CRTL experiment  949 

WRF physics 

Cumulus parameterization Grell-Freitas (Freitas et al. 2018; 

improved from Y20) 

Microphysics parameterization Morrison 2-moment (Morrison et al. 

2009; same as Y20) 

Longwave radiation parameterization CAM spectral band scheme (Collins et 

al. 2004; same as Y20) 

Shortwave radiation parameterization CAM spectral band scheme (Collins et 

al. 2004; same as Y20) 

Boundary layer physics MYNN2 (Nakanishi and Niino, 2006; 

improved from Y20) 

Land surface physics Unified Noah LSM (Chen and Dudhia, 

2001; improved from Y20) 

  

ROMS physics 

Tracer advection scheme MPDATA (Smolarkiewicz, 2006; same 

as Y20) 

Tracer vertical mixing scheme GLS (Umlauf and Burchard, 2003; 

same as Y20) 
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Bottom drag scheme Quadratic bottom friction (QDRAG; 

(same as Y20) 

  

CICE physics 

Ice dynamics EVP (Hunke and Dukowicz, 1997; 

improved from Y20) 

Ice thermodynamics Bitz and Lipscomb (1999; same as 

Y20) 

Shortwave albedo Delta-Eddington (Briegleb and Light, 

2007; same as Y20) 

 950 

  951 
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Table 2 The summary of the prediction experiments and details of experiment designs. 952 

Note: All experiments use the CFS operational forecasts as initial and boundary conditions; VT: 953 

vertical transformation function; VS: vertical stretching function; SH94: stretching function of 954 

Song and Haidvogel (1994); S10: stretching function of Shchepetkin (2010). 955 

Experiment Physics Assimilation ROMS 

vertical 

coordinate 

Simulation 

period 

Y20_MOD Physics (old version) 

listed in Table 1 

6 localization radii 

SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VT 1 

VS SH94 

ℎ𝑐 10m 

2018.07.01-

2018.10.01 

Y21_CTRL Physics (new version) 

listed in Table 1 

6 localization radii 

SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VT 1 

VS SH94 

ℎ𝑐 10m 

2018.07.01-

2018.10.01 

Y21_VT Physics (new version) 

listed in Table 1 

6 localization radii 

SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VT 2 

VS S10 

ℎ𝑐 300m 

2018.07.01-

2018.10.01 

Y21_RP Advection: U3H/C4V 6 localization radii VT 2 2018.07.01-
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 SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VS S10 

ℎ𝑐 300m 

2018.10.01 

Y21_MUSHY Same physics as 

Y21_RP 

CICE: Mushy layer 

thermodynamics 

6 localization radii 

SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VT 2 

VS S10 

ℎ𝑐 300m 

2018.07.01-

2018.10.01 

Y21_ SIT Same physics as 

Y21_RP 

 

6 localization radii 

SSMIS SIC 

OI-merged CryoSat-

2/SMOS SIT 

VT 2 

VS S10 

ℎ𝑐 300m 

2018.07.01-

2018.10.01 

Y21_EXT-7 Same physics as 

Y21_RP 

 

6 localization radii 

SSMIS SIC 

OI-merged CryoSat-

2/SMOS SIT 

VT 2 

VS S10 

ℎ𝑐 300m 

2018.07.01-

2019.01.31 

Y21_MAR-7 Same physics as 

Y21_RP 

 

6 localization radii 

SSMIS SIC 

OI-merged CryoSat-

2/SMOS SIT 

VT 2 

VS S10 

ℎ𝑐 300m 

2018.03.01-

2018.09.30 

 956 

  957 
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8. Figures 958 

 959 

Figure 1 ERA5 monthly mean of downward shortwave radiation at the surface for (a) July, (b) 960 

August, and (c) September, the difference between Y20_MOD and ERA5 for (d) July, (e) 961 

August, (f) September, and the difference between Y21_CTRL and Y20_MOD for (g) July, (h) 962 

August, and (i) September. 963 

  964 
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 965 

Figure 2 Same as Figure 1, but for downward thermal radiation at the surface. 966 

  967 
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  968 

Figure 3 Same as Figure 1, but for near-surface air temperature. 969 

 970 

  971 
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 972 

Figure 4 Top panel: Time-series of Arctic sea ice extent for the observations (black line) and 973 

the ensemble-mean of Y20_MOD (blue line), Y21_CTRL (yellow line), Y21_VT (red line), 974 

Y21_RP (green line), and Y21_MUSHY (pink line). Dashed and dotted lines are the 975 

climatology and the damped anomaly persistence predictions. Bottom panel: Time-series of 976 

the observed (black line) and the ensemble-mean of regional sea ice extents for Y20_MOD 977 

(blue line), Y21_CTRL (yellow line), Y21_VT (red line), Y21_RP (green line), and 978 

Y21_MUSHY (pink line) for (a) Beaufort-Chukchi Seas, (b) East Siberian-Laptev Seas, and 979 

(c) Barents-Kara-Greenland Seas.  980 
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 981 

Figure 5 Monthly mean of sea ice concentration for (a) July, (b) August, (c) September of the 982 

NSIDC observations, and the difference between the all prediction experiments and the 983 

observations for (d1-g1) July, (d2-g2) August, (d3-g3) September. Vertical/horizontal-line areas 984 

represent the difference of ice edge location (15% concentration). 985 

  986 
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 987 

 988 

Figure 6 Time-series of sea ice mass budget terms for (a) Y20_MOD and (b) Y21_CTRL. 989 

 990 

  991 
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 992 

Figure 7 Time-series of (a) shortwave radiation absorbed by ice surface, and (b) penetrating 993 

shortwave radiation to the upper ocean averaged over ice-covered grid cells for Y20_MOD 994 

(blue line) and Y21_CTRL (red line). 995 
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 997 

Figure 8 First column: monthly mean of sea surface temperature for (a) July, (b) August, (c) 998 

September of the OI SST. Second column: the difference between Y21_CTRL and the OI SST 999 

for (d) July, (e) August, (f) September. Right panel: Monthly mean of sea surface temperature 1000 

difference between Y21_VT/Y21_RP and Y21_CTRL for (g) July, (h) August, (i) September 1001 

of Y21_VT, (j) July, (k) August, and (l) September of Y21_RP. 1002 

  1003 
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 1004 

Figure 9 Same as Figure 6, but for (a) Y21_VT, and (b) Y21_RP. 1005 
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 1007 

Figure 10 (a) the average temperature profile of upper 150 m under ice-covered areas for the 1008 

difference between Y21_RP and Y21_VT. (b) same as (a), but for the salinity profile. 1009 
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 1011 

Figure 11 Monthly mean of sea ice thickness difference between Y21_MUSHY and Y21_RP 1012 

for (a) July, (b) August, and (c) September.  1013 
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 1014 

Figure 12 Same as Figure 4, but for Y21_EXT-7. 1015 
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 1017 

Figure 13 Same as Figure 4, bur for Y21_MAR-7. 1018 

 1019 


