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Abstract 30 

The improved/updated Coupled Arctic Prediction System (CAPS) is evaluated using a set 31 

of Pan-Arctic prediction experiments for the year 2018. CAPS is built on Weather Research 32 

and Forecasting model (WRF), the Regional Ocean Modeling System (ROMS), the 33 

Community Ice CodE (CICE), and a data assimilation based on the Local Error Subspace 34 

Transform Kalman Filter. We analyze physical processes linking improved/changed physical 35 

parameterizations in WRF, ROMS, and CICE to changes in the simulated Arctic sea ice state. 36 

Our results show that the improved convection and boundary layer schemes in WRF result in 37 

an improved simulation of downward radiative fluxes and near surface air temperature, which 38 

influences the predicted ice thickness. The changed tracer advection and vertical mixing 39 

schemes in ROMS reduce the bias in sea surface temperature and change ocean temperature 40 

and salinity structure in the surface layer, leading to improved evolution of the predicted ice 41 

extent (particularly correcting the late ice recovery issue in the previous CAPS). The improved 42 

sea ice thermodynamics in CICE have noticeable influences on the predicted ice thickness. The 43 

updated CAPS can better predict the evolution of Arctic sea ice during the melting season 44 

compared with its predecessor, though the prediction still has some biases at the regional scale. 45 

We further show that the updated CAPS can remain skillful beyond the melting season, which 46 

may have potential values for stakeholders to make decisions for socioeconomical activities in 47 

the Arctic. 48 

 49 

  50 
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1. Introduction 51 

Over the past few decades, the extent of Arctic sea ice has decreased rapidly and entered 52 

a thinner/younger regime associated with global climate change (e.g., Kwok, 2018; Serreze 53 

and Meier, 2019). The dramatic changes in the properties of Arctic sea ice have gained 54 

increasing attentions by a wide range of stakeholders, such as trans-Arctic shipping, natural 55 

resource exploration, and activities of coastal communities relying on sea ice (e.g., Newton et 56 

al., 2016). This leads to increasing demands on skillful Arctic sea ice prediction, particularly at 57 

seasonal timescale (e.g., Jung et al., 2016; Liu et al., 2019; Stroeve et al., 2014). However, 58 

Arctic sea ice predictions based on different approaches (e.g., statistical method and dynamical 59 

model) submitted to the Sea Ice Outlook, a community effort managed by the Sea Ice Prediction 60 

Network (SIPN, https://www.arcus.org/sipn), show substantial biases in the predicted seasonal 61 

minimum of Arctic sea ice extent compared to the observations for most years since 2008 (Liu 62 

et al., 2019; Stroeve et al., 2014).  63 

Recently, we have developed an atmosphere-ocean-sea ice regional coupled modeling 64 

system for seasonal Arctic sea ice prediction (Yang et al., 2020, hereafter Y20), in which the 65 

Community Ice CodE (CICE) is coupled with the Weather Research and Forecasting Model 66 

(WRF) and the Regional Ocean Modeling System (ROMS), hereafter called Coupled Arctic 67 

Prediction System (CAPS). To improve the accuracy of initial sea ice conditions, CAPS 68 

employs an ensemble-based data assimilation system to assimilate satellite-based sea ice 69 

observations. Seasonal Pan-Arctic sea ice predictions with improved initial sea ice conditions 70 

conducted in Y20 have shown that CAPS has the potential to provide skillful Arctic sea ice 71 

https://www.arcus.org/sipn
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prediction at seasonal timescale.  72 

We know that the changes of sea ice variables (e.g., ice extent, ice concentration, ice 73 

thickness, ice drift) are mainly driven by forcings from the atmosphere and the ocean. 74 

Atmospheric cloudiness and related radiation influence surface ice melting (Huang et al., 2019; 75 

Kapsch et al., 2016; Kay et al., 2008) and the energy stored in the surface mixed layer that 76 

determines the seasonal ice melt and growth (e.g., Perovich et al., 2011, 2014). Atmospheric 77 

circulation is the primary driver for the transportation of sea ice and partly responsible for the 78 

variability of Arctic sea ice (e.g., Mallett et al., 2021; Ogi et al., 2010; Zhang et al., 2008). 79 

Olonscheck et al. (2019) suggested that atmospheric temperature fluctuations explain a 80 

majority of Arctic sea ice variability while other drivers (e.g., surface winds, and poleward heat 81 

transport) account for about 25% of Arctic sea ice variability. The oceanic heat inputs (as well 82 

as salt inputs) into the Arctic Ocean include the Atlantic Water (AW; Aagaard, 1989; 83 

McLaughlin et al., 2009) through the Barents Sea, and the Pacific Water (PW; Itoh et al., 2013; 84 

Woodgate et al., 2005) from the Bering Strait. The oceanic heat inputs from AW and PW are 85 

not directly available for sea ice since they are separated from a cold and fresh layer underlying 86 

sea ice (e.g., Carmack et al., 2015, Fig. 2). Vertical mixing by the internal wave (e.g., Fer, 2014) 87 

and double diffusion (e.g., Padman and Dillon, 1987; Turner, 1973) are the principal processes 88 

for upward heat transport from the subsurface layer (i.e., AW and PW) to the surface mixed 89 

layer in the Arctic Ocean. Sea ice thermodynamics determines how thermal properties of sea 90 

ice (e.g., temperature, salinity) change. These changes then influence the thermal structure of 91 

underlying ocean through interfacial fluxes (i.e., heat, salt and freshwater fluxes; DuVivier et 92 
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al., 2021; Kirkman IV and Bitz, 2011) and ice thickness (e.g., Bailey et al., 2020).  93 

CAPS is configured for the Arctic with sufficient flexibility. That means each model 94 

component of CAPS (WRF, ROMS, and CICE) has different physics options for us to choose 95 

and capability to integrate ongoing improvements in physical parameterizations. Recently, the 96 

WRF model has adapted improved convection and boundary layer schemes in the Rapid 97 

Refresh (RAP) model operational at the National Centers for Environmental Prediction (NCEP, 98 

Benjamin et al., 2016). The first question we want to answer in this paper is to what extent 99 

these modifications can improve atmospheric simulations in the Arctic (i.e., radiation, 100 

temperature, humidity, and wind), and then benefit seasonal Arctic sea ice simulation and 101 

prediction. The ROMS model provides several options for tracer advection schemes. These 102 

advection schemes can have different degrees of oscillatory behavior (e.g., Shchepetkin and 103 

McWilliams, 1998). The oscillatory behavior can have impacts on sea ice simulation through 104 

ice-ocean interactions (e.g., Naughten et al., 2017). The second question we want to answer in 105 

this paper is to what extent different advection schemes can change the simulation of upper 106 

ocean thermal structure and then Arctic sea ice prediction. Several recent efforts have 107 

incorporated prognostic salinity into sea ice models. The CICE model has a new mushy-layer 108 

thermodynamics parameterization that includes prognostic salinity and treats sea ice as a two-109 

phase mushy layer (Turner et al., 2013). Bailey et al. (2020) showed that the mushy-layer 110 

physics has noticeable impacts on Arctic sea ice simulation within the Community Earth 111 

System Model version 2. The third question we want to answer in this paper is whether the 112 

mushy-layer scheme can produce noticeable influence on seasonal Arctic sea ice prediction. 113 
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Currently, SIPN focuses on Arctic sea ice predictions during the melting season, particularly 114 

the seasonal minimum. It is not clear that how predictive skills of dynamical models 115 

participating in SIPN may change for longer period, i.e., extending into the freezing up period, 116 

which also have significance on socioeconomic aspects. The assessment of the skills of global 117 

climate models (GCMs) in predicting Pan-Arctic sea ice extent with suites of hindcasts 118 

suggested that GCMs may have skills at lead times of 1-6 months (e.g., Blanchard-119 

Wrigglesworth et al., 2015; Chevallier et al., 2013; Guemas et al., 2016; Merryfield et al., 2013; 120 

Msadek et al., 2014; Peterson et al., 2015; Sigmond et al., 2013; Wang et al., 2013; Zampieri 121 

et al., 2018). Moreover, some studies using a “perfect model” approach, which treats one 122 

member of an ensemble as the truth (i.e., assuming the model is prefect without bias) and 123 

analyzes the skill of other members in predicting the response of the “truth” member (e.g., 124 

Meehl et al., 2007), suggested that Arctic sea ice cover can be potentially predictable up to two 125 

years in advance (e.g., Blanchard-Wrigglesworth et al., 2011; Blanchard-Wrigglesworth and 126 

Bushuk, 2018; Day et al., 2016; Germe et al., 2014; Tietsche et al., 2014). The last question we 127 

want to answer in this paper is whether CAPS has predictive skill for longer periods (up to 7 128 

months). 129 

This paper is structured as follows. Section 2 provides a brief overview of CAPS, 130 

including model configurations and data assimilation procedures. Section 3 describes the 131 

designs of the prediction experiments for the year of 2018 based on major improvements/ 132 

changes in the model components compared to its predecessor described in Y20, examines the 133 

performance of the updated CAPS, and offers physical links between Arctic sea ice changes 134 
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and improved/changed physical parameterizations. Section 4 discusses the predictive skill of 135 

CAPS at longer timescale. Discussions and concluding remarks are given in section 5. 136 

2. Coupled Arctic Prediction System (CAPS) 137 

As described in Y20, CAPS has been developed by coupling the Community Ice CodE 138 

(CICE) with the Weather Research and Forecasting Model (WRF) and the Regional Ocean 139 

Modeling System (ROMS) based on the framework of the Coupled Ocean-Atmosphere-Wave-140 

Sediment Transport (Warner et al., 2010). The general description of each model component in 141 

CAPS is referred to Y20. The advantage of CAPS is its model components have a variety of 142 

physics for us to choose and capability to integrate follow-up improvements of physical 143 

parameterizations. With recent achievements of community efforts, we update CAPS based on 144 

newly-released WRF, ROMS, and CICE models. During this update, we focus on the Rapid 145 

Refresh (RAP) physics in the WRF model, the oceanic tracer advection scheme in the ROMS 146 

model, sea ice thermodynamics in the CICE model (see details in section 3), and investigate 147 

physical processes linking them to Arctic sea ice simulation and prediction. The same physical 148 

parameterizations described in Y20 are used here for the control simulation (see Table 1). Major 149 

changes in physical parameterizations as well as the model infrastructure in the WRF, ROMS, 150 

and CICE models are described in section 3.  151 

As described in Y20, the Parallel Data Assimilation Framework (PDAF, Nerger and Hiller, 152 

2013) was implemented in CAPS, which provides a variety of optimized ensemble-based 153 

Kalman filters. The Local Error Subspace Transform Kalman Filter (LESTKF; Nerger et al., 154 

2012) is used to assimilate satellite-observed sea ice parameters. The LESTKF projects the 155 
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ensemble onto the error subspace and then directly computes the ensemble transformation in 156 

the error subspace. This results in better assimilation performance and higher computational 157 

efficiency compared to the other filters as discussed in Nerger et al. (2012).  158 

The initial ensembles are generated by applying the second-order exact sampling (Pham, 159 

2001) to simulated sea ice state vectors (ice concentration and thickness) from an one-month 160 

free run, and then assimilating sea ice observations, including: 1) the near real-time daily Arctic 161 

sea ice concentration processed by the National Aeronautics and Space Administration (NASA) 162 

Team algorithm (Maslanik and Stroeve, 1999) obtained from the NSIDC 163 

(https://nsidc.org/data/NSIDC-0081/), and 2) a combined monthly sea ice thickness derived 164 

from the CryoSat-2 (Laxon et al., 2013; obtained from http://data.seaiceportal.de), and daily 165 

sea ice thickness derived from the Soil Moisture and Ocean Salinity (SMOS; Kaleschke et al., 166 

2012; Tian-Kunze et al., 2014; obtained from https://icdc.cen.uni-hamburg.de/en/l3c-smos-167 

sit.html). To address the issue that sea ice thickness derived from CyroSat-2 and SMOS are 168 

unavailable during the melting season, the melting season ice thickness is estimated based on 169 

the seasonal cycle of the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) 170 

daily sea ice thickness (Zhang and Rothrock, 2003).  171 

Different from Y20, in this study, we change the localization radius from 2 to 6 grids 172 

during the assimilation procedures to reduce some instability during initial Arctic sea ice 173 

simulations associated with 2 localization radii. As shown in Supplementary Figure S1, the ice 174 

thickness with 2 localization radii and 1.5 m uncertainty (used in Y20) shows some 175 

discontinuous features (Fig. S1a), which tend to result in numerical instability during the initial 176 

http://data.seaiceportal.de/
https://icdc.cen.uni-hamburg.de/en/l3c-smos-sit.html
https://icdc.cen.uni-hamburg.de/en/l3c-smos-sit.html
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integration. Such discontinuous features are obviously corrected with 6 localization radii and 177 

0.75 m uncertainty (Fig. S1b). Following Y20, here we test the 2018 prediction experiment 178 

with 6 localization radii for the data assimilation, which shows very similar temporal evolution 179 

of the total Arctic sea ice extent for the July experiment relative to that of Y20, although it (red 180 

solid line) predicts slightly less ice extent than that of Y20 (blue line) (Supplementary Figure 181 

S2). In this study, this configuration is designated as the reference for the following assessment 182 

of the updated CAPS (hereafter Y20_MOD). 183 

For the evaluation of Arctic sea ice prediction, Sea Ice Index (Fetterer et al., 2017; 184 

obtained from https://nsidc.org/data/G02135) is used as the observed total sea ice extent, and 185 

the NSIDC sea ice concentrations (SIC) derived from Special Sensor Microwave 186 

Imager/Sounder (SSMIS) with the NASA Team algorithm (Cavalieri et al., 1996; obtained from 187 

https://nsidc.org/data/nsidc-0051) is also used. For the assessment of the simulated atmospheric 188 

and oceanic variables, the European Centre for Medium-Range Weather Forecasts (ECMWF) 189 

reanalysis version 5 (ERA5; Hersbach et al., 2020; obtained from 190 

https://cds.climate.copernicus.eu) and National Oceanic and Atmospheric Administration 191 

(NOAA) Optimum Interpolation (OI) Sea Surface Temperature (SST) (Reynolds et al., 2007; 192 

obtained from https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html) are utilized. 193 

For the comparison of spatial distribution, SIC, ERA5, and OISST are interpolated to the model 194 

grid. 195 

3. Evaluation of updated CAPS 196 

3.1. Experiment designs and methodology 197 
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The model domain includes 319 (449) x- (y-) grid points with a ~24 km grid spacing for 198 

all model components (see Figure 2 in Y20). The WRF model uses 50 vertical levels, the 199 

ROMS model uses 40 vertical levels, and the CICE model uses 7 ice layers, 1 snow layer, and 200 

5 categories of sea ice thickness. The coupling frequency across all model components is 30 201 

minutes. Initial and boundary conditions for the WRF and ROMS models are generated from 202 

the Climate Forecast System version 2 (CFSv2, Saha et al., 2014) operational forecast archived 203 

at NCEP (http://nomads.ncep.noaa.gov/pub/data/nccf/com/cfs/prod/). Sea ice initial conditions 204 

are generated from the data assimilation described in section 2. Ensemble predictions with 8 205 

members are conducted. A set of numerical experiments for the Pan-Arctic seasonal sea ice 206 

prediction with different physics, starting from July 1st to October 1st for the year of 2018, has 207 

been conducted. Table 2 provides the details of these experiments that allow us to examine 208 

physical processes linking improved/changed physical parameterizations in the updated CAPS 209 

to Arctic sea ice simulation and prediction. 210 

In this study, sea ice extent is calculated as the sum of area of all grid cells with ice 211 

concentration greater than 15%. Besides the total Arctic sea ice extent, we also calculate the 212 

ice extent for the following subregions: 1) Beaufort and Chukchi Seas (120°W-180, 60°N-213 

80°N), 2) East Siberian and Laptev Seas (90°E-180, 60°N-80°N), and 3) Barents, Kara, and 214 

Greenland Seas (30°W-90°E, 60°N-80°N). To further assess the predictive skill of Arctic sea 215 

ice predictions, we show the climatology prediction (CLIM, the period of 1998-2017) and the 216 

damped anomaly persistence prediction (DAMP). Following Van den Dool (2006), the DAMP 217 

prediction is generated from the initial sea ice extent anomaly (relative to the 1998-2017 218 
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climatology) scaled by the autocorrelation and the ratio of standard deviation between different 219 

lead times and initial times (see the DAMP equation in Y20). 220 

In order to understand physical contributors that drive the evolution of Arctic sea ice state 221 

(the standard variables of the ice concentration and thickness), the mass budget of Arctic sea 222 

ice for all experiments is analyzed in this study as defined in Notz et al. (2016, Append. E), 223 

including: 224 

⚫ sea ice growth in supercooled open water (frazil) 225 

⚫ sea ice growth at the bottom of the ice (basal growth) 226 

⚫ sea ice growth due to transformation of snow to sea ice (snowice) 227 

⚫ sea ice melt at the air-ice interface (top melt) 228 

⚫ sea ice melt at the bottom of the ice (basal melt) 229 

⚫ sea ice melt at the sides of the ice (lateral melt) 230 

⚫ sea ice mass change due to dynamics-related processes (e.g. advection) (dynamics) 231 

These diagnostic variables are determined by saving the ice mass tendency of above 232 

processes separately every time step and integrated to output the daily-mean value. 233 

3.2. Impacts of the RAP physics in the WRF model 234 

To examine the performance of the upgrades of physical parameterization in component 235 

models in CAPS one step at a time compared to its predecessor in Y20, we define the 236 

Y21_CTRL experiment that uses the RAP physics in the WRF model (see Table 2 for 237 

differences between Y21_CTRL and Y20_MOD). Recently, the Rapid Refresh (RAP) model, 238 

a high-frequency weather prediction/assimilation modeling system operational at the National 239 
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Centers for Environmental Prediction (NCEP), has made some improvements in the WRF 240 

model physics (Benjamin et al., 2016), including improved Grell-Freitas convection scheme 241 

(GF) and Mellor-Yamada-Nakanishi-Niino planetary boundary layer scheme (MYNN). For the 242 

GF scheme, the major improvements relative to the original scheme (Grell and Freitas, 2014) 243 

include: 1) a beta probability density function used as the normalized mass flux profile for 244 

representing height-dependent entrainment/detrainment rates within statistical-averaged deep 245 

convective plumes, which is given as: 246 

𝑍𝑢,𝑑(𝑟𝑘) = 𝑐𝑟𝑘
𝛼 − (1 − 𝑟𝑘)𝛽 − 1 259 

where 𝑍𝑢,𝑑 is the mass flux profiles for updrafts and downdrafts, c is a normalization constant, 247 

𝑟𝑘 is the location of the mass flux maximum, 𝛼 and 𝛽 determine the skewness of the beta 248 

probability density function, and 2) the ECMWF approach used for momentum transport due 249 

to convection (Biswas et al. 2020; Freitas et al. 2018; 2021). For the MYNN scheme, the RAP 250 

model improves the mixing-length formulation, which is designed as: 251 

1

𝑙𝑚
=

1

𝑙𝑠
+

1

𝑙𝑡
+

1

𝑙𝑏
 260 

where 𝑙𝑚 is the mixing length, 𝑙𝑠 is the surface length, 𝑙𝑡 is the turbulent length, and 𝑙𝑏 is 252 

the buoyancy length. Compared to the original scheme, the RAP model changed coefficients 253 

in the formulation of 𝑙𝑠, 𝑙𝑡, and 𝑙𝑏 for reducing the near-surface turbulent mixing, and the 254 

diffusivity of the scheme. The RAP model also removes numerical deficiencies to better 255 

represent subgrid-scale cloudiness (Benjamin et al. 2016, see Append. B) compared to the 256 

original scheme (Nakanishi and Nino, 2009). In addition, some minor issues in the Noah land 257 

surface model (Chen and Dudhia, 2001) have been fixed, including discontinuous behavior for 258 
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soil ice melting, negative moisture fluxes over glacial, and associated with snow melting.  261 

Apparently, the above RAP physics can have influence on the behavior of simulated 262 

atmospheric thermodynamics (i.e., radiation, temperature). Figure 1 and 2 show the spatial 263 

distribution of the ERA5 surface downward solar and thermal radiation (SWDN and LWDN), 264 

the prediction errors (ensemble mean minuses ERA5) of Y20_MOD, and the difference 265 

between Y21_CTRL and Y20_MOD. For July, Y20_MOD (Fig. 1d) results in less SWDN over 266 

most of ocean basins as well as Alaska and northeast US, western Siberia, and eastern Europe, 267 

but more SWDN over southern and eastern Siberia compared with ERA5. For August and 268 

September (Fig. 1e-f), the spatial distribution is generally similar to that of July, except that 269 

eastern Siberia (less SWDN) and northern Canada (more SWDN) in August. It appears that the 270 

magnitude of the prediction errors tends to decrease over the areas with large prediction errors 271 

as the prediction time increases (i.e., July vs. September). Compared with Y20_MOD, the RAP 272 

physics in Y21_CTRL results in large areas with smaller prediction errors in July (e.g., the 273 

positive difference between Y21_CTRL and Y20_MOD reduces the negative prediction errors 274 

in Y20_MOD), except the north Pacific (especially the Sea of Okhotsk) and north Canada (Fig. 275 

1g). For August and September (Fig. 1h, i), encouragingly, there are more areas with smaller 276 

prediction errors.  277 

In contrast to SWDN, the prediction errors of LWDN in Y20_MOD have much smaller 278 

magnitude (up to 100 W/m2 in SWDN vs. 50 W/m2 in LWDN) for the entire prediction period 279 

(Fig. 2d-f). For July, Y20_MOD (Fig. 2d) simulates less LDWN over most of the model domain 280 

compared with ERA5, except the Atlantic sector and north Greenland. For August, the areas 281 
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with negative prediction errors expand and the magnitude of prediction errors increases 282 

(particularly in southeastern Siberia and northeast US) compared to that of July (Fig. 2e). For 283 

September (Fig. 2f), the spatial distribution of LWDN is mostly similar to that of July, except 284 

that north Canada and Canadian Archipelago show positive prediction errors. The Y21_CTRL 285 

experiment with the RAP physics tends to reduce the prediction errors in Y20_MOD, especially 286 

over eastern Siberia and the Atlantic sector in July to September (Fig. 2g-i). However, 287 

Y21_CTRL results in larger bias in the central Northern Atlantic in August than that of 288 

Y20_MOD (Fig. 2h). 289 

Figure 3 shows the spatial distribution of the ERA5 2m air temperature, the prediction 290 

errors of Y20_MOD, and the difference between Y21_CTRL and Y20_MOD. For Y20_MOD, 291 

the predicted air temperature in July has small cold prediction errors over all ocean basins, 292 

small-to-moderate cold prediction errors (~3-5 degrees) over Canada and Siberia, and 293 

moderate-to-large cold prediction errors (~6-9 degrees) over eastern Europe (Fig. 3d). In 294 

August (Fig. 3e), the cold prediction errors over most of the model domain are increased, in 295 

particular, very large cold prediction error (over 10 degrees) is located over east Siberia. In 296 

September, these cold prediction errors are decreased relatively, and some warm prediction 297 

errors are found in north of Greenland (Fig. 3f). With the adaptation of the RAP physics in the 298 

WRF model, Y21_CTRL, in general, produces a warmer state in most of the model domain 299 

compared to that of Y20_MOD during the entire prediction period. For July (Fig. 3g), the 300 

predicted air temperature is slightly warmer over the Arctic Ocean, the Pacific, and Atlantic 301 

sectors, moderately warmer (~1-2 degrees) over central and eastern Siberia and Canadian 302 



 

15 

 

Archipelago, but the slightly colder over northern Canada than that of Y20_MOD. For August 303 

and September (Fig. 3h), most of the model domain is warmer in Y21_CTRL than that of 304 

Y20_MOD, in particular excessive cold prediction errors shown in Y20_MOD over Siberia are 305 

reduced notably (~2.5-4 degrees). We notice that the RAP physics does not have significant 306 

impacts on atmospheric circulations, given that Y21_CTRL and Y20_MOD have very similar 307 

wind patterns (not shown).  308 

Figure 4 shows the temporal evolution of the ensemble mean of the predicted Arctic sea 309 

ice extent along with the NSIDC observations. In terms of total ice extent, compared to the 310 

Y20_MOD experiment (blue line), the Y21_CTRL experiment (yellow line) produces ~0.5 311 

million km2 more ice extent at the initial. Note that the difference in the initial ice extent is 312 

related to that sea ice fields in Y20_MOD and Y21_CTRL (as well as other experiments listed 313 

in Table 2) are initialized based on one-month free runs (section 2), which use different physical 314 

configurations listed in Table 2. These one-month free runs do not have the same evolution in 315 

sea ice fields and result in different initial ice fields after data assimilation. The ice extent in 316 

Y21_CTRL decreases faster than Y20_MOD during the first 2-week integration. After that, 317 

they track each other closely, and predict nearly the same minimum ice extent (~4.3 million 318 

km2). Like Y20_MOD, Y21_CTRL still has a delayed ice recovery in late September compared 319 

to the observations. Compared with the CLIM/DAMP predictions (black dashed and dotted 320 

lines), both Y20_MOD and Y21_CTRL have smaller prediction errors in August, but 321 

comparable prediction errors after early September.  322 

The difference in sea ice extent becomes larger at regional scales, in the East Siberian-323 
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Laptev Seas, Y21_CTRL shows faster ice decline after mid-July than that of Y20_MOD, 324 

whereas in the Beaufort-Chukchi Seas, Y21_CTRL predicts slower ice retreat after late July 325 

than that of Y20_MOD (Fig. 4a, 4b). They are consistent with that Y21_CTRL predicts warmer 326 

(relatively colder) temperature than that of Y20_MOD in the East Siberian-Laptev (Beaufort-327 

Chukchi) Seas. Both Y20_MOD and Y21_CTRL agree well with the observations in the 328 

Barents-Kara-Greenland Seas (Fig. 4c). Compared with the observations, Y20_MOD performs 329 

relatively better in regional ice extents than that of Y21_CTRL. Figure 5 shows the spatial 330 

distribution of the NSIDC sea ice concentration and the difference between the predicted ice 331 

concentration and the observations for all grid cells that the predictions and the observations 332 

both have at least 15% ice concentration. The vertical and horizontal lining areas represent 333 

difference of the ice edge location. Like regional ice extent shown in Figure 4, Y21_CTRL 334 

predicts lower (higher) ice concentration along the East Siberian-Laptev (Beaufort-Chukchi) 335 

Seas (Fig. 5e1-e3). Y21_CTRL also predicts less ice in the central Arctic Ocean in August and 336 

September, which is consistent with warmer temperature in Y21_CTRL relative to Y20_MOD. 337 

Figure 6 shows the evolution of sea ice mass budget terms of Y20_MOD and Y21_CTRL, 338 

averaged with cell-area weighting over the entire model domain. During the entire prediction 339 

period, most of the ice loss in Y20_MOD and Y21_CTRL are caused by basal melting. The 340 

surface melting has relatively small contribution in the total ice loss and mainly occurs in July. 341 

However, compared with Y20_MOD (Fig. 6a), Y21_CTRL (Fig. 6b) shows much larger 342 

magnitude for basal and surface melt. In a fully coupled predictive model, the changes of sea 343 

ice are determined by the fluxes from the atmosphere above and the ocean below. Associated 344 
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with the increased downward radiation of the above RAP physics, Y21_CTRL absorbs more 345 

shortwave radiation (SWABS, Fig. 7a) and allows more penetrating solar radiation into the 346 

upper ocean below sea ice (SWTHRU, Fig. 7b) than that of Y20_MOD, especially in July. This 347 

explains why Y21_CTRL has larger magnitude of surface and basal melting terms. Although 348 

Y21_CTRL show larger magnitude in surface and basal melting than that of Y20_MOD, the 349 

ice extent in Y21_CTRL and Y20_MOD shown in Figure 4 show similar evolution. The effect 350 

of larger surface and basal melting in Y21_CTRL is largely reflected in the ice thickness change. 351 

As shown in Figure S3, Y21_CTRL has thinner ice thickness than that of Y20_MOD, in the 352 

East Siberian-Laptev Seas in July and in the much of central Arctic Ocean in August and 353 

September.  354 

 355 

3.3. Impacts of the tracer advection in ROMS model 356 

Currently, the ROMS model that uses a generalized topography-following coordinate has 357 

two vertical coordinate transformation options: 358 

𝑧(𝑥, 𝑦, 𝜎, 𝑡) = 𝑆(𝑥, 𝑦, 𝜎) + 𝜁(𝑥, 𝑦, 𝑡) [1 +
𝑆(𝑥, 𝑦, 𝜎)

ℎ(𝑥, 𝑦)
]

𝑆(𝑥, 𝑦, 𝜎) = ℎ𝑐𝜎 + [ℎ(𝑥, 𝑦) − ℎ𝑐]𝐶(𝜎)

(1) 363 

or 359 

𝑧(𝑥, 𝑦, 𝜎, 𝑡) = 𝜁(𝑥, 𝑦, 𝑡) + [𝜁(𝑥, 𝑦, 𝑡) + ℎ(𝑥, 𝑦)]𝑆(𝑥, 𝑦, 𝜎)

𝑆(𝑥, 𝑦, 𝜎) =
ℎ𝑐𝜎 + ℎ(𝑥, 𝑦)𝐶(𝜎)

ℎ𝑐 + ℎ(𝑥, 𝑦)

(2) 364 

where 𝑆(𝑥, 𝑦, 𝜎) is a nonlinear vertical transformation function, 𝜁(𝑥, 𝑦, 𝑡) is the free-surface, 360 

ℎ(𝑥, 𝑦) is the unperturbed water column thickness, 𝐶(𝜎) is the non-dimensional, monotonic, 361 

vertical stretching function, and ℎ𝑐 controls the behavior of the vertical stretching. In Y20, we 362 
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used the transformation 1 and the vertical stretching function introduced by Song and 365 

Haidvogel (1994). However, the vertical transformation 1 has an inherent limitation for the 366 

value of ℎ𝑐 (expected to be the thermocline depth), which must be less than or equal to the 367 

minimum value in ℎ(𝑥, 𝑦). As a result, ℎ𝑐 was chosen as 10 meters due to the limitation of 368 

the minimum value in  ℎ(𝑥, 𝑦)  in Y20. This limitation is removed with the vertical 369 

transformation 2 and ℎ𝑐 can be any positive value. Here the Y21_VT experiment is conducted 370 

to examine the impact of the vertical transformation in the ROMS model on seasonal Arctic 371 

sea ice simulation and prediction, which uses the vertical transformation 2, the Shchepetkin 372 

vertical stretching function (a function introduced in a research version of ROMS at University 373 

of California, Los Angeles), and 300 meters for ℎ𝑐. As shown in Supplementary Figure S4-S5, 374 

compared to Y21_CTRL, Y21_VT is less sensitive to the bathymetry and its layers are more 375 

evenly-distributed in the upper 300 meters. With the changes of vertical layers of the upper 376 

ocean, the Y21_VT experiment has minor SST changes relative to Y21_CTRL. The simulated 377 

temporal evolution of total ice extent of Y21_VT (Fig. 4, red line) resembles to that of 378 

Y21_CTRL (Fig. 4, yellow line), although some differences are seen at the regional scale in 379 

the areas with shallow water (e.g., East Siberian, Laptev, Barents, and Kara Seas). The 380 

configuration of Y21_VT is used in the following experiments. 381 

It has been recognized that the tracer advection and the vertical mixing schemes have 382 

important effects on ocean and sea ice simulation (e.g., Liang and Losch, 2018; Naughten et 383 

al., 2017). Here the Y21_RP experiment is designated to explore the influence of different 384 

advection schemes in the ROMS model. Specifically, the tracer advection scheme is changed 385 
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from the Multidimensional positive definite advection transport algorithm (MPDATA; 386 

Smolarkiewicz, 2006) to the third-order upwind horizontal advection (U3H; Rasch, 1994; 387 

Shchepetkin, and McWilliams, 2005) and the fourth-order centered vertical advection schemes 388 

(C4V; Shchepetkin, and McWilliams, 1998; 2005). The MPDATA scheme applied in 389 

Y20_MOD, Y21_CTRL, and Y21_VT is a non-oscillatory scheme but a sign preserving 390 

scheme (Smolarkiewicz, 2006). This means MPDATA is not suitable for tracer fields having 391 

both positive and negative values (i.e., temperature with degree Celsius in the ROMS model). 392 

The upwind third-order (U3H) scheme used in Y21_RP is an oscillatory scheme but it 393 

significantly reduces oscillations compared to other centered schemes (e.g., Hecht et al., 2000; 394 

Naughten et al., 2017) available in the ROMS model. 395 

Figure 8 shows the spatial distribution of the SST changes of Y21_VT and Y21_RP 396 

relative to Y21_CTRL (as well as the OISST and the difference between Y21_CTRL and 397 

OISST). In general, Y21_CTRL shows cold prediction errors in the North Pacific (~2 degrees) 398 

and the Atlantic (~3 degrees) compared to that of OISST in July, and these cold prediction 399 

errors are enhanced as the prediction time increases (to 3-5 degrees, Fig. 8d-f). With the 400 

U3H/C4V tracer advection scheme in Y21_RP, cold prediction errors shown in Y21_CTRL are 401 

reduced significantly in the north Pacific and Atlantic, but SST under sea ice in much of the 402 

Arctic Ocean is slightly colder than that of Y21_CTRL (Fig. 8j-l). 403 

Y21_RP (Fig. 4, green line) shows comparable temporal evolution of the ice extent as 404 

Y21_CTRL (as well as Y21_VT) until near the end of July. After that, the ice melting slows 405 

down (closer to the observations) and the ice extent begins to recover earlier (after the first 406 
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week of September) in Y21_RP compared to that of Y21_CRTL. This leads to much smaller 407 

prediction error in seasonal minimum ice extent relative to the observation. Y21_RP also shows 408 

better predictive skill after late August compared with the CLIM/DAMP predictions (black 409 

dashed and dotted lines). This suggests the delayed ice recovery in late September shown in 410 

Y20_MOD, Y21_CTRL and Y21_VT is in part due to the choice of ocean advection and 411 

vertical mixing schemes, which change the behavior of ocean state. At the regional scale, the 412 

slower ice decline after July and earlier recovery of the ice extent in September mainly occur 413 

in the Beaufort-Chukchi and Barents-Kara-Greenland Seas compared to that of Y21_CTRL 414 

(Fig. 4a, c). With U3H/C4V scheme, the Y21_RP experiment simulates higher sea ice 415 

concentration than that of Y21_VT (Fig. 5f1-f3). For September, the Y21_RP experiment better 416 

predicts the ice edge location in the Atlantic sector of the Arctic (i.e., smaller areas with 417 

horizontal/vertical lining) compared to the experiments described above (not shown). 418 

Figure 9 shows the evolution of sea ice mass budget terms of Y21_VT and Y21_RP. 419 

Relative to Y21_VT, Y21_RP (with U3H/C4V scheme) results in increased frazil ice formation 420 

in July, which is partly compensated by increased surface melting. Y21_RP also leads to 421 

increased basal growth in mid- and late September (Fig. 9a, b).  422 

Figure 10 shows the difference in the vertical profile of ocean temperature and salinity in 423 

the upper 150 m averaged for the central Arctic Ocean between Y21_RP and Y21_VT. The 424 

ocean temperature in the surface layer of Y21_RP is slightly colder during the prediction period 425 

compared to that of Y21_VT (Fig. 10a), especially in August and September. Moreover, the 426 

water in the surface layer (0-20 m) of Y21_RP is fresher than that of Y21_VT (Fig. 10b). It 427 
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reduces the freezing temperature and favors frazil ice formation. In CAPS, frazil ice formation 428 

is determined by the freezing potential, which is the vertical integral of the difference between 429 

temperature in upper ocean layer and the freezing temperature in the upper 5 m-layer. The 430 

temperature of supercooled water is adjusted based on the freezing potential to form new ice 431 

and rejects brine into the ocean that leads to saltier water between 20-50 m in Figure 10. It 432 

should be noted that the increased frazil ice formation in July in Y21_RP might be also the 433 

results of model adjustment and/or numerical error. The oscillatory behavior of U3H scheme 434 

can make the temperature fall below the freezing point and then instantaneously forms new ice 435 

(as well as temperature/salinity adjustments). 436 

3.4. Impacts of sea ice thermodynamics in the CICE model 437 

In Y20, we used sea ice thermodynamics introduced by Bitz and Lipscomb (1999; 438 

hereafter BL99) as the setup of CAPS, which assumes a fixed vertical salinity profile based on 439 

observations. The new CICE model includes a MUSHY-layer ice thermodynamics introduced 440 

by Turner et al. (2013), which simulates vertically and time-varying prognostic salinity and 441 

associated effects on thermodynamic properties of sea ice. In the Y21_MUSHY experiment, 442 

we change the ice thermodynamics from BL99 to MUSHY (Table 2) to examine whether 443 

improved ice thermodynamics has noticeable influence on Arctic sea ice simulation and 444 

prediction at seasonal timescale. Compared to Y21_RP, Y21_MUSHY (Fig. 4, pink line) 445 

produces very similar evolution of total ice extent. However, it simulates relatively larger ice 446 

extent near the end of September, which is also reflected by the basin-wide increased ice cover 447 

shown in Figure 5h3. At the regional scale, compared to Y21_RP, Y21_MUSHY predicts less 448 
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ice in August in the Beaufort-Chukchi. The opposite is the case for the East Siberian-Laptev 449 

Seas (Fig. 4a, b).  450 

Figure 11 shows the difference of the ensemble mean of the predicted ice thickness 451 

between Y21_MUSHY and Y21_RP. Compared with Y21_RP, Y21_MUSHY simulates 452 

thicker ice (from ~0.2m in July to over 0.4m in September) extending from the Canadian Arctic, 453 

through the central Arctic Ocean, to the Laptev Sea (Fig. 11a-c). This seems to be consistent 454 

with previous studies, which show that the Mushy-layer thermodynamics simulates thicker ice 455 

than BL99 thermodynamics in both standalone CICE (Turner and Hunke, 2015) and the fully-456 

coupled (Bailey et al., 2020), but Y21_MUSHY shows thinner ice (~0.2m) in an arc extending 457 

from north of Alaska to north of eastern Siberia compared to Bailey et al. (2020). Note that 458 

Y21_MUSHY focuses the effects of Mushy-thermodynamics on seasonal timescale while the 459 

results in Bailey et al. (2020) are based on 50-year simulations.  460 

Compared to Y21_RP, the mass budget of Y21_MUSHY (Fig. S6) shows that both surface 461 

melting and frazil ice formation terms are increased. This compensation between surface 462 

melting and frazil ice formation from the Mushy-layer thermodynamics in CAPS leads to 463 

relatively unchanged total ice extent between Y21_MUSHY and Y21_RP (Fig. 4 green and 464 

pink lines).  465 

 466 

4. Prediction skill of CAPS at longer timescale 467 

The design of Arctic sea ice prediction experiments described above follow the protocol 468 

of the Sea Ice Prediction Network (SIPN), in which the outlook start from June 1st, July 1st, and 469 
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August 1st to predict seasonal minimum of the ice extent in September. It is not clear that how 470 

predictive skills of dynamical models participating in SIPN may change for longer period. Here 471 

we conduct two more experiments to investigate the predictive capability of CAPS beyond the 472 

SIPN prediction period. For the prediction experiments discussed above, we use a simple 473 

approach to merge CryoSat-2 and SMOS ice thickness by replacing ice thickness less than 1m 474 

in CryoSat-2 data with SMOS data for ice thickness assimilation. Ricker et al. (2017) presented 475 

a new ice thickness product (CS2SMOS) based on the optimal interpolation to statistically 476 

merge CrySat-2 and SMOS data. Here we utilize the configuration of Y21_RP but use 477 

CS2SMOS SIT for the assimilation (Y21_SIT; Table 2). The predicted total ice extent is almost 478 

identical to Y21_RP in July but slightly larger total extent after July than that of Y21_RP (not 479 

shown). The configuration of Y21_SIT is used in the following experiments. Taking advantage 480 

of the entire prediction period provided by CFS forecasts (7 months), the Y21_EXT-7 481 

experiment is designed to extend the prediction period to the end of January next year (Table 482 

2). Figure 12 shows the temporal evolution of the ensemble mean of the predicted total Arctic 483 

sea ice extent (as well as regional ice extent) for Y21_EXT-7. Total ice extent of Y21_EXT-7 484 

exhibits reasonable evolution in terms of seasonal minimum and timing of recovery compared 485 

with the observations until late November. Y21_EXT-7 also performs better than that of the 486 

CLIM/DAMP predictions (black dashed and dotted lines) until mid-to-late November. After 487 

that, Y21_EXT-7 overestimates total ice extent relative to the observations, and such 488 

overestimation is largely contributed by more extensive sea ice in the Barents-Kara-Greenland 489 

Seas (Fig. 12c), which is a result of a sharp increase in the basal growth term after mid-to-late 490 
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November (not shown).  512 

5. Conclusions and Discussions 513 

This paper presents and evaluates the updated Coupled Arctic Prediction System (CAPS) 514 

designated for Arctic sea ice prediction through a case study for the year of 2018. A set of Pan-515 

Arctic prediction experiments with improved/changed physical parameterizations as well as 516 

different configurations starting from July 1st to the end of September are performed for 2018 517 

to assess their impacts of the updated CAPS on the predictive skill of Arctic sea ice at seasonal 518 

timescale. Specifically, we focus on the Rapid Refresh (RAP) physics in the WRF model, the 519 

oceanic tracer advection scheme in the ROMS model, sea ice thermodynamics in the CICE 520 

model, and investigate physical processes linking them to Arctic sea ice simulation and 521 

prediction. 522 

The results show that the updated CAPS with improved physical parameterizations can 523 

better predict the evolution of total ice extent compared with its predecessor described in Yang 524 

et al. (2020), though the predictions exhibit some prediction errors in regional ice extent. The 525 

key improvements of WRF, including cumulus, boundary layer, and land surface schemes, 526 

result in improved simulations in downward radiative fluxes and near surface air temperature. 527 

These improvements mainly influence the predicted ice thickness instead of total ice extent. 528 

The difference in the predicted ice thickness can have potential impacts on the icebreakers 529 

planning their routes across the ice-covered regions. The major changes of ROMS, including 530 

tracer advection and vertical mixing schemes, reduces the prediction errors in sea surface 531 

temperature and changes ocean temperature and salinity structure in the surface layer, leading 532 

设置了格式: 上标
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to improved evolution of the predicted total ice extent (particularly correcting the late ice 533 

recovery issue in the previous CAPS). The changes of CICE, including improved ice 534 

thermodynamics, have noticeable influences on the predicted ice thickness. 535 

We demonstrate that CAPS can remain skillful beyond the designated period of Sea Ice 536 

Prediction Network (SIPN), which has potential values for stakeholders to make decisions 537 

regarding the socioeconomical activities in the Arctic. Although CAPS shows extended 538 

predictive skill to the freeze-up period, the prediction produces extensive ice through the basal 539 

growth near the end of prediction. The excessive basal growth may be partly due to that the 540 

bias of the CFS data propagates into the model domain through lateral boundary conditions 541 

and its accumulated effect influences Arctic sea ice simulation during the freeze-up period.  542 

Keen et al. (2021) analyzed the Arctic mass budget of 15 models participated in the 543 

Coupled Model Intercomparison Project Phase 6 (CMIP6). We notice that, first, the top melting 544 

and the basal melting terms in CMIP6 models have comparable contributions in July while the 545 

top melting term only has ~50% contribution relative to the basal melting term in CAPS. The 546 

updated CAPS with the RAP physics improves the performance of shortwave/longwave 547 

radiation at the surface (Fig. 1 and Fig. 2). The net flux at the ice surface, however, may still 548 

be underestimated in the updated CAPS. Besides, the surface property of sea ice (i.e., the 549 

amount of melt ponds, bare ice, and snow) is a factor that influences surface albedo and thus 550 

the absorbed shortwave radiation (e.g., Nicolaus et al., 2012; Nicolaus and Katlein, 2013). The 551 

prediction experiments starting at July 1st in this study do not consider the initialization of melt 552 

ponds (i.e., zero melt pond coverage at the initial). However, melt ponds start to develop in 553 
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early May based on the satellite observations (e.g., Liu et al., 2015, Fig. 1). The initialization 554 

of melt pond based on the observations (e.g., Ding et al., 2020) in CAPS is a direction to 555 

improve the representation of the ice surface properties. Second, the mass budget analysis by 556 

both Keen et al. (2021) and this study show that the contribution of lateral melting term is 557 

relatively small, which might be due to that CMIP6 models and CAPS assume constant floe-558 

size (i.e., 300 meters in CICE), which is a critical value to determine the strength of lateral 559 

melting (e.g., Horvat et al., 2016; Steele, 1992). Recently, several studies have proposed floe 560 

size distribution models (e.g., Bateson et al., 2020; Bennetts et al., 2017; Boutin et al., 2020; 561 

Horvat and Tziperman, 2015; Roach et al., 2018, 2019; Zhang et al., 2015, 2016). Incorporating 562 

floe size distribution model in CAPS and understanding its impacts on seasonal Arctic sea ice 563 

prediction will be a future direction of developing CAPS. Lastly, the prediction experiments 564 

with the upwind advection scheme (i.e., Y21_RP, Y21_EXT-7) shows spurious large frazil ice 565 

formation, particularity in July, which is different from the analysis shown in Keen et al. (2021). 566 

An approach for reducing spurious frazil ice formation is proposed by Naughten et al. (2017) 567 

that they implemented upwind flux limiter (Leonard and Mokhtari, 1990) to the U3H scheme 568 

to further reduce the oscillations. Naughten et al. (2018) also suggested that the oscillatory 569 

behaviors can be smoothed out by applying the Akima fourth-order tracer advection scheme 570 

combined with Laplacian horizontal diffusion at a level strong enough. Beside of the oscillatory 571 

behaviors of advection scheme, the ice-ocean heat flux may also play a role in the spurious 572 

frazil ice formation. As discussed in section 3.3, the freezing/melting potential not only 573 

determines the amount of newly-formed ice, but also limits the amount of energy that can be 574 
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extracted from the ocean surface layer to melt sea ice. This implies that the ocean surface layer 575 

will be close to the freezing temperature if the ice-ocean heat fluxes reach the limit imposed by 576 

the melting potential. Shi et al. (2021) discussed the impacts of different ice-ocean heat flux 577 

parametrizations on sea ice simulations. Their results suggest that Arctic sea ice will be thicker 578 

and ocean temperature will warmer beneath high-concentration ice with a complex approach 579 

proposed by Schmidt et al. (2004) that limits melt rates (heat fluxes) of sea ice through 580 

considering a fresh water layer underlying sea ice. The warmer ocean temperature under sea 581 

ice with a more complex approach in parameterizing ice-ocean heat flux may be the solution 582 

to reduce the occurrence of local temperature falling below freezing temperature with 583 

oscillatory advection schemes. 584 

Based on the prediction experiments discussed in this paper, the configuration with the 585 

RAP physics, the U3H/C4V ocean advection, BL99 ice thermodynamics, and CS2SMOS ice 586 

thickness assimilation (Table 2, Y21_SIT) is assigned as the finalized CAPS version 1.0. 587 

Improving the representation of physical processes in CAPS version 1.0 for further reducing 588 

the model bias will remain the main focus for the development of CAPS. Since CAPS is a 589 

regional modeling system, it relies on the forecasts form global climate models as initial and 590 

lateral boundary conditions. That is, biases existed in GCM simulations (here the CFS forecast) 591 

can be propagated into and affect the entire area-limited domain (e.g., Bruyère et al., 2014; 592 

Rocheta et al., 2020; Wu et al., 2005). This issue can be a potential source that influences the 593 

predictive capability of CAPS for longer timescales. Studies have applied bias correction 594 

techniques with different complexities for improving the performance of regional modeling 595 
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system (e.g., Bruyère et al., 2014; Colette et al., 2012; Rocheta et al., 2017, 2020). Further 596 

investigation is needed to address biases inherited from GCM predictions through lateral 597 

boundaries for improving the predictive capability of CAPS.  598 

  599 
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https://doi.org/10.5281/zenodo.5034971. The prediction data analyzed in this paper can be 604 
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7. Tables 960 

Table 1 The summary of physic parameterizations used in the Y21_CRTL experiment  961 

WRF physics 

Cumulus parameterization Grell-Freitas (Freitas et al. 2018; 

improved from Y20) 

Microphysics parameterization Morrison 2-moment (Morrison et al. 

2009; same as Y20) 

Longwave radiation parameterization CAM spectral band scheme (Collins et 

al. 2004; same as Y20) 

Shortwave radiation parameterization CAM spectral band scheme (Collins et 

al. 2004; same as Y20) 

Boundary layer physics MYNN2 (Nakanishi and Niino, 2006; 

improved from Y20) 

Land surface physics Unified Noah LSM (Chen and Dudhia, 

2001; improved from Y20) 

  

ROMS physics 

Tracer advection scheme MPDATA (Smolarkiewicz, 2006; same 

as Y20) 

Tracer vertical mixing scheme GLS (Umlauf and Burchard, 2003; 

same as Y20) 
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Bottom drag scheme Quadratic bottom friction (QDRAG; 

(same as Y20) 

  

CICE physics 

Ice dynamics EVP (Hunke and Dukowicz, 1997; 

improved from Y20) 

Ice thermodynamics Bitz and Lipscomb (1999; same as 

Y20) 

Shortwave albedo Delta-Eddington (Briegleb and Light, 

2007; same as Y20) 

 962 

  963 
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Table 2 The summary of the prediction experiments and details of experiment designs. 964 

Note: All experiments use the CFS operational forecasts as initial and boundary conditions; VT: 965 

vertical transformation function; VS: vertical stretching function; SH94: stretching function of 966 

Song and Haidvogel (1994); S10: stretching function of Shchepetkin (2010). 967 

Experiment Physics Assimilation ROMS 

vertical 

coordinate 

Simulation 

period 

Y20_MOD Physics (old version) 

listed in Table 1 

6 localization radii 

SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VT 1 

VS SH94 

ℎ𝑐 10m 

2018.07.01-

2018.10.01 

Y21_CTRL Physics (new version) 

listed in Table 1 

6 localization radii 

SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VT 1 

VS SH94 

ℎ𝑐 10m 

2018.07.01-

2018.10.01 

Y21_VT Physics (new version) 

listed in Table 1 

6 localization radii 

SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VT 2 

VS S10 

ℎ𝑐 300m 

2018.07.01-

2018.10.01 

Y21_RP Advection: U3H/C4V 6 localization radii VT 2 2018.07.01-
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 SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VS S10 

ℎ𝑐 300m 

2018.10.01 

Y21_MUSHY Same physics as 

Y21_RP 

CICE: Mushy layer 

thermodynamics 

6 localization radii 

SSMIS SIC 

Simply-merged CryoSat-

2/SMOS SIT 

VT 2 

VS S10 

ℎ𝑐 300m 

2018.07.01-

2018.10.01 

Y21_ SIT Same physics as 

Y21_RP 

 

6 localization radii 

SSMIS SIC 

OI-merged CryoSat-

2/SMOS SIT 

VT 2 

VS S10 

ℎ𝑐 300m 

2018.07.01-

2018.10.01 

Y21_EXT-7 Same physics as 

Y21_RP 

 

6 localization radii 

SSMIS SIC 

OI-merged CryoSat-

2/SMOS SIT 

VT 2 

VS S10 

ℎ𝑐 300m 

2018.07.01-

2019.01.31 

 970 

  971 

删除了: Y21_MAR-7972 
...
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8. Figures 973 

 974 

Figure 1 ERA5 monthly mean of downward shortwave radiation at the surface for (a) July, (b) 975 

August, and (c) September, the difference between Y20_MOD and ERA5 for (d) July, (e) 976 

August, (f) September, and the difference between Y21_CTRL (changes in the atmospheric 977 

physics) and Y20_MOD (the original CAPS) for (g) July, (h) August, and (i) September. 978 

  979 
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 980 

Figure 2 Same as Figure 1, but for downward thermal radiation at the surface. 981 

  982 
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  983 

Figure 3 Same as Figure 1, but for near-surface air temperature. 984 

 985 

  986 
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 987 

Figure 4 Top panel: Time-series of Arctic sea ice extent for the observations (black line) and 988 

the ensemble-mean of Y20_MOD (blue line, the original CAPS), Y21_CTRL (yellow line, 989 

changes in the atmospheric physics), Y21_VT (red line, changes in the ocean vertical 990 

coordinate), Y21_RP (green line, changes in the oceanic advection), and Y21_MUSHY (pink 991 

line, changes in sea ice thermodynamics). Dashed and dotted lines are the climatology and the 992 

damped anomaly persistence predictions. Bottom panel: Time-series of the observed (black 993 

line) and the ensemble-mean of regional sea ice extents for Y20_MOD (blue line), Y21_CTRL 994 

(yellow line), Y21_VT (red line), Y21_RP (green line), and Y21_MUSHY (pink line) for (a) 995 

Beaufort-Chukchi Seas, (b) East Siberian-Laptev Seas, and (c) Barents-Kara-Greenland Seas.  996 
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 997 

Figure 5 Monthly mean of sea ice concentration for (a) July, (b) August, (c) September of the 998 

NSIDC observations, and the difference between the all prediction experiments and the 999 

observations for (d1-g1) July, (d2-g2) August, (d3-g3) September. Vertical/horizontal-line areas 1000 

represent the difference of ice edge location (15% concentration). 1001 

  1002 
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 1003 

 1004 

Figure 6 Time-series of sea ice mass budget terms for (a) Y20_MOD (the original CAPS) and 1005 

(b) Y21_CTRL (changes in the atmospheric physics). 1006 

 1007 

  1008 
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 1009 

Figure 7 Time-series of (a) shortwave radiation absorbed by ice surface, and (b) penetrating 1010 

shortwave radiation to the upper ocean averaged over ice-covered grid cells for Y20_MOD 1011 

(blue line, the original CAPS) and Y21_CTRL (red line, changes in the atmospheric physics). 1012 

  1013 
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 1014 

Figure 8 First column: monthly mean of sea surface temperature for (a) July, (b) August, (c) 1015 

September of the OI SST. Second column: the difference between Y21_CTRL and the OI SST 1016 

for (d) July, (e) August, (f) September. Right panel: Monthly mean of sea surface temperature 1017 

difference between Y21_VT/Y21_RP and Y21_CTRL for (g) July, (h) August, (i) September 1018 

of Y21_VT, (j) July, (k) August, and (l) September of Y21_RP. 1019 

  1020 
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 1021 

Figure 9 Same as Figure 6, but for (a) Y21_VT (changes in the ocean vertical coordinate), and 1022 

(b) Y21_RP (changes in the oceanic advection). 1023 

  1024 
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 1025 

Figure 10 (a) the average temperature profile of upper 150 m under ice-covered areas for the 1026 

difference between Y21_RP and Y21_VT. (b) same as (a), but for the salinity profile. 1027 

  1028 
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 1029 

Figure 11 Monthly mean of sea ice thickness difference between Y21_MUSHY (changes in 1030 

sea ice thermodynamics) and Y21_RP for (a) July, (b) August, and (c) September.  1031 
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 1032 

Figure 12 Same as Figure 4, but for Y21_EXT-7. 1033 

  1034 
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 1035 


