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Abstract. Simulation software in geophysics is traditionally written in Fortran or C++ due to the stringent performance re-

quirements these codes have to satisfy. As a result, researchers who use high-productivity languages for exploratory work often

find these codes hard to understand, hard to modify, and hard to integrate with their analysis tools. fv3gfs-wrapper is

an open-source Python-wrapped version of the NOAA (National Oceanic and Atmospheric Administration) FV3GFS (Finite-

Volume Cubed Sphere Global Forecasting System) global atmospheric model, which is coded in Fortran. The wrapper provides5

simple interfaces to progress the Fortran main loop and get or set variables used by the Fortran model. These interfaces enable

a wide range of use cases such as modifying the behavior of the model, introducing online analysis code, or saving model

variables and reading forcings directly to and from cloud storage. Model performance is identical to the fully-compiled Fortran

model, unless routines to copy state in and out of the model are used. This copy overhead is well within an acceptable range of

performance, and could be avoided with modifications to the Fortran source code. The wrapping approach is outlined and can10

be applied similarly in other Fortran models to enable more productive scientific workflows.

1 Introduction

FV3GFS (Finite-Volume Cubed Sphere Global Forecasting System) (Zhou et al., 2019) is a prototype of the operational Global

Forecast System of the National Centers for Environmental Prediction. In this document when we say FV3GFS we are referring

specifically to the atmospheric component of the U. S. National Oceanic and Atmospheric Administration (NOAA) Unified15

Forecast System (UFS, https://ufscommunity.org/) for operational numerical weather prediction. We forked this code from the

v1 branch of the UFS model in December 2019. It uses the Geophysical Fluid Dynamics Laboratory (GFDL) Finite-Volume

Cubed-Sphere Dynamical Core (FV3). FV3 solves the non-hydrostatic equations of atmospheric motion discretized on a cubed

sphere using a finite volume scheme on a terrain-following grid with D-grid wind staggering (Putman and Lin, 2007; Harris and

Lin, 2013). The model is written in Fortran (Global Engineering Documents, 1991) and parallelized using a hybrid OpenMP20

(Open Multi-Processing, OpenMP Architecture Review Board (2020)) / MPI (Message Passing Interface, Message Passing

Interface Forum (2015)) approach, which allows for performant execution through compilation.
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Figure 1. Schematic of Fortran-centric workflow using the filesystem to transfer data to Python user code. Arrowheads indicate the direction

of the model main loop, as well as data transfer out of the Fortran model and into the Python user script.

However, development of an atmospheric model using a low-level, strongly typed programming language with a small user

base has trade-offs. Libraries for interacting with cloud storage, performing physical or statistical analysis, and using machine

learning are not as readily available or widely used in languages like Fortran as they are in high-level languages such as Python.25

A Python interface to the compiled Fortran code can enable a much larger user base to interact with this code, and allow a large

ecosystem of Python tools to be interfaced with model routines.

Python is often integrated into Fortran modeling workflows as a post-processing tool, as shown in Figure 1. In this workflow,

Python is used to perform computations on data saved to the filesystem by the Fortran model. This approach has several

shortcomings. It is rarely feasible to store the full-resolution model state at each model time step, so often statistics over time30

are stored instead. Unless sufficiently frequent snapshots are stored, computing new statistics directly from full-resolution

instantaneous fields requires writing Fortran code to run in the model. This can be an issue if developer documentation is not

available or the user is not familiar with Fortran. This approach requires writing to disk before data can be used in Python, which

may be unnecessary if the written data is not a necessary end product. Such filesystem operations can be a significant bottleneck

in computation time. This approach also does not provide a way to use Python libraries when modifying the behavior of the35

Fortran model, as any logic after the data is read from disk must be written in Fortran. Instead, machine learning practitioners

port machine learning routines to Fortran using models that have been trained and saved using Python (Ott et al., 2020; Curcic,

2019).

In this work, we present a Python wrapper for the FV3GFS global atmospheric model. As shown in Figure 2, the FV3GFS

model is compiled as a shared library with wrapper routines that provide an API to control and interact with the model. At40

the core of any weather or climate model is the main integration loop, which integrates the model state forward by a period

if time. The wrapper splits the simple model main loop into a sequence of subroutines that can be called from Python. This

allows the main loop to be written in Python, through calls to each section of the Fortran main loop (step_dynamics,

step_physics). Furthermore, it allows copying variables into (set_state) or out of (get_state) the Fortran runtime

environment, so it can be used in Python functions that can affect the integration of the Fortran model state. Data retrieved with45

get_state includes units information, for ease of debugging and for reference on data written to disk.
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Figure 2. Schematic of Python-centric workflow using fv3gfs-wrapper, showing how it can interface with Python libraries during model

execution. Arrowheads indicate data transfer between user Python code and Fortran model.

As the wrapper currently stands, configuration is deferred entirely to the Fortran model code. The only change in initialization

is that MPI is initialized by mpi4py, after which the MPI communicator is passed as a Fortran handle to the model initialization

routines. This allows us to maintain feature completeness with the existing Fortran model, without re-writing configuration

logic.50

This Python-centric workflow enables a fundamentally different way to integrate tools available in the Python ecosystem

into a Fortran modeling workflow. A user can add online diagnostic code after a physics or dynamics step, and perform input

or output (I/O) to or from cloud resources. The model state can be reset to a previous one, allowing sensitivity studies to be

run online. Custom logic can be added to the main loop after a physics or dynamics step, such as a machine learning corrector

parameterization or nudging to a cloud-based forcing dataset. The use of a Python main loop makes it significantly easier to55

integrate custom I/O, diagnostic routines, and physical parameterizations into the model.

This ease of integration is an important tool when developing parameterizations using machine learning. When developing

such schemes, offline performance does not guarantee performance when run online within a model. However it can be difficult

to rapidly train a model in a language with machine learning libraries such as Python and then convert it for use in Fortran.

Solutions have so far been based on Fortran executables, either by calling Python from Fortran (Brenowitz and Bretherton,60

2019) or by re-implementing neural network codes in Fortran (Ott et al., 2020; Curcic, 2019). Because of the strong tooling

available for machine learning in Python, it is advantageous to be able to include Python machine learning code within the

atmospheric model. Presently Python code can only be integrated outside of the dynamics and physics routines, and not within

the physics suite. Adding flexibility to introduce Python code between individual physics schemes remains a subject for future

work.65

This is not the first time Python and high-performance compiled programs have been combined. qtcm (Lin, 2009) applies

a similar wrapping approach to a quasi-equilibrium tropical circulation model using f2py (Peterson, 2009), an automated

Fortran to Python interface generator. PyCLES (Pressel et al., 2015) is a full large-eddy simulation written in Cython, a variant

of Python that compiles to C code and can interoperate with Python codes. CliMT (Monteiro et al., 2018) wraps Fortran

model components into Python objects that can be composed to define a model main loop in Python. In astronomy, Python70
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computational codes such as nbodykit (Hand and Feng, 2017) run using numpy (Harris et al., 2020) and MPI for Python (Dalcín

et al., 2008), and are shown to scale to thousands of ranks. These previous works provide confidence that a model using Python

to call compiled code can provide the level of scaling and performance required for atmospheric and climate science research.

A consideration in designing new atmospheric models is the large amount of legacy Fortran code already available. As a

consequence, new model components are often written in Fortran so they can interface with such legacy code. Efforts to re-75

write existing Fortran models (for example, to run on Graphics Processing Unit (GPU) architectures), can benefit from the

ability to progressively replace existing components with refactored or re-written codes in other languages.

To motivate the design choices made in this work, we present our main priorities: retain existing functionality of the Fortran

model, minimal sacrifice of performance, a main time stepping loop which is easy to understand and modify, and minimal

changes to Fortran code.80

Most of these priorities clearly come from our focus on improving model accessibility for researchers interested in modifying

the behavior of the Fortran code. They would benefit from retaining the existing functionality they would like to modify, and

they should be able to easily understand how the code can be modified. They may require efficient model performance on

high-performance computers for research problems using higher-resolution simulations. By minimizing the needed changes to

the Fortran code, we can reduce the effort required to switch to a new Fortran model version.85

While this wrapper has many applications, we will focus on illustrative scenarios relevant to our own FV3GFS model

development work. In addition to reproducing the existing model behavior, we will show how to: augment the Fortran model

with a machine learning parameterization, include custom MPI communication as part of online diagnostic code, and perform

online analysis in a Jupyter notebook.

We will begin by showing in Section 2 how fv3gfs-wrapper can be used to reproduce, bit-for-bit, the results of the existing90

Fortran model. We will then show in Section 3 how fv3gfs-wrapper enables each of these use cases while achieving our

priorities of performance, ease of understanding, and ease of modification. Having presented the features of fv3gfs-wrapper

by example, we will delve more deeply into their implementation in Section 4. Finally, we will discuss some of the challenges

encountered in designing and implementing fv3gfs-wrapper in Section 4.5 before drawing our conclusions in Section 5.

2 Validation95

For completeness and testing, fv3gfs-wrapper should be able to reproduce, bit-for-bit, the results of the Fortran model. This

allows us to test the logic wrapping the Fortran code. Because the wrapper executes Fortran code identical to the original

Fortran model, bit-for-bit regression on one parameter configuration or forcing dataset gives us confidence the code can be

used for any parameter configuration or forcing dataset. The implementation of this use case is as follows:

1 import fv3gfs.wrapper100

2

3 if __name__ == "__main__":

4 fv3gfs.wrapper.initialize()

5 for i in range(fv3gfs.wrapper.get_step_count()):
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Table 1. Run times of examples and compiled Fortran model. Baseline refers to reproducing existing Fortran behavior. Examples were run

for 6 hours of simulation time at C48 resolution on 6 processors on a 2019 Macbook Pro. Each example was run three times, and the shortest

time is reported.

Example Run time (s)

Fortran baseline 110

Wrapper baseline 110

Random Forest 116

Minimum Surface Pressure 110

6 fv3gfs.wrapper.step_dynamics()105

7 fv3gfs.wrapper.step_physics()

8 fv3gfs.wrapper.save_intermediate_restart_if_enabled()

9 fv3gfs.wrapper.cleanup()

The existing main routine in coupler_main.f90 separates relatively cleanly into five routines: one each to initialize

and finalize the model, one for dynamics (resolved fluid flow), one for physics (subgrid-scale processes), and one that will110

write intermediate restart data if intermediate restart files are enabled for the run and if we should write a restart on the current

timestep. Each of these Python routines calls that section of the Fortran code, and then returns to a Python context.

The overhead of the Python time step loop and the wrapper functions is negligible in comparison to the computation done

within a process (Table 1), meeting our performance goal. The conciseness of the main loop makes it easy to understand what

the code is doing at a high level. This example is easy to modify, as shown in the use cases in the next section.115

This code and the command-line examples below are available in the examples/gmd_timings directory of the git repository

for fv3gfs-wrapper as referenced in the Code and data availability statement, using a 6-hour C48 run directory available as

McGibbon et al. (2021d). The timings for each of these examples are included in Table 1. We can see the wrapper does not add

significant overhead to the Fortran baseline timing.

3 Use cases in action120

All examples discussed in this section are included in the public repository for fv3gfs-wrapper linked in the Code and data

availability statement. We encourage the reader to download and run these examples on their own computer, using the example

run directory available as McGibbon et al. (2021d).

3.1 Augmenting the model with machine learning

An important use case motivating this work is to be able to modify the operation of the model main loop, for example by adding125

a machine learning model that applies tendencies at the end of each timestep. This serves as an example for how the main loop
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can be modified more generically, such as by adding I/O functionality or online diagnostics, using fv3gfs.wrapper.get_state

and fv3gfs.wrapper.set_state to interface with the Fortran model.

1 import fv3gfs.wrapper

2 import fv3gfs.wrapper.examples130

3 from datetime import timedelta

4 import f90nml

5

6 if __name__ == "__main__":

7 # load timestep from the namelist135

8 namelist = f90nml.read("input.nml")

9 timestep = timedelta(seconds=namelist["coupler_nml"]["dt_atmos"])

10 # initialize the machine learning model

11 rf_model = fv3gfs.wrapper.examples.get_random_forest()

12 fv3gfs.wrapper.initialize()140

13 for i in range(fv3gfs.wrapper.get_step_count()):

14 fv3gfs.wrapper.step_dynamics()

15 fv3gfs.wrapper.step_physics()

16

17 # apply an update from the machine learning model145

18 state = fv3gfs.wrapper.get_state(rf_model.inputs)

19 rf_model.update(state, timestep=timestep)

20 fv3gfs.wrapper.set_state(state)

21

22 fv3gfs.wrapper.save_intermediate_restart_if_enabled()150

23 fv3gfs.wrapper.cleanup()

The example includes a compact random forest we have trained on nudging tendencies towards reanalysis data. The separa-

tion of physics and dynamics steps in the code makes it clear that the machine learning update is applied at the end of a physics

step, and is included in any intermediate restart data. The random forest model used in this example is trained according to

the approach in Watt-Meyer et al. (2021), with a small number of trees and layers chosen to decrease model size. As a proof155

of concept, the example model has not been tuned for stability, and may crash if run for longer than 6 hours or using a run

directory other than the example provided. Model stability can be increased by enforcing the model specific humidity to be

non-negative after applying the random forest update.

This example showcases how the wrapper makes it easy to modify the operation of the Fortran model. In our own efforts to

re-write the FV3 dynamical core in a Python-based domain-specific language (DSL), we have directly replaced a call to the160

Fortran dynamics step with Python-based code. We have also added nudging routines that directly access Zarr (Miles et al.,

2020) reference datasets stored in the cloud, and I/O routines to save model snapshots to Zarr files in cloud storage as the model

executes. With Python’s threading support, this data transfer can happen as the Fortran code is running. These tasks would be

difficult to implement in Fortran, due to more complex threading interfaces, no existing bindings for Zarr, and a lack of support

from cloud storage providers.165
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3.2 MPI communication

When writing parallel models, inter-process communication is an important functionality. MPI4py (Dalcín et al., 2008) pro-

vides Python bindings for MPI routines, and supports the use of numpy arrays. Using MPI4py, we have been able to implement

halo updates, gather, and scatter operations. The syntax for MPI4py is similar to the syntax used in Fortran. In our implemen-

tation, the same MPI communicator is used by the Fortran code as is used by MPI4py.170

Here we show a simple example of computing the minimum global surface temperature and printing it from the root process.

This showcases how you can use MPI4py within the model to compute diagnostics using inter-rank communication.

1 import fv3gfs.wrapper

2 import numpy as np

3 from mpi4py import MPI175

4

5 ROOT = 0

6

7 if __name__ == "__main__":

8 fv3gfs.wrapper.initialize()180

9 # MPI4py requires a receive "buffer" array to store incoming data

10 min_surface_temperature = np.array(0)

11 for i in range(fv3gfs.wrapper.get_step_count()):

12 fv3gfs.wrapper.step_dynamics()

13 fv3gfs.wrapper.step_physics()185

14

15 # Retrieve model minimum surface temperature

16 state = fv3gfs.wrapper.get_state(["surface_temperature"])

17 MPI.COMM_WORLD.Reduce(

18 state["surface_temperature"].view[:].min(),190

19 min_surface_temperature,

20 root=ROOT,

21 op=MPI.MIN,

22 )

23 if MPI.COMM_WORLD.Get_rank() == ROOT:195

24 units = state["surface_temperature"].units

25 print(f"Minimum surface temperature: {min_surface_temperature} {units}")

26

27 fv3gfs.wrapper.save_intermediate_restart_if_enabled()

28 fv3gfs.wrapper.cleanup()200

3.3 Interactive use in a Jupyter notebook

While we typically run the model using batch submission or from the command line, all of the examples above can be executed

from within a Jupyter notebook using ipyparallel. This allows retrieving, computing, and plotting variables from the Fortran
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Figure 3. Screenshot of Jupyter notebook example using MPI communication to gather a field on 6 processes and plot it on the first process.

Note the FV3GFS uses a "cubed sphere" grid, so that for 6 processes each one is responsible for one face of the cube.

model while it is paused at a point of interest. It also can serve as explicit documentation of modelled phenomena, whether to

communicate to other model developers or for use in an educational setting.205

We have prepared an example that inspects the machine learning example model, using MPI communication from Python to

gather and plot variables on a single rank (Figure 3). It can be accessed in the examples/jupyter directory of the Github

repository, and makes use of Docker to ensure portability. While the example is written to run on 6 processes, ipyparallel

allows notebooks to be run at larger scales on high-performance computing (HPC) clusters if the configuration is modified

appropriately.210

4 Implementation

4.1 Information transfer

To augment the Fortran model, we must read from and write to its state. This information transfer can be done in two ways,

either by providing an interface to copy data between Fortran and Python arrays (effectively C arrays), or using the same

memory in both codes. Re-using memory requires that the Fortran code use a pointer to a C array, allowing the same pointer to215

be used by the numpy array on the Python side. In the Fortran code for FV3GFS, arrays used for physical variables are defined

as non-target allocatable arrays, which precludes sharing them with Python. It would require significant changes to the
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Fortran code to instead use pointers to C arrays, which conflicts with our priority of making minimal changes to the Fortran

code. Instead, the getters and setters (the routines which transfer variable values between Python and Fortran) perform a data

copy between numpy-allocated C arrays and Fortran arrays within the wrapper layer.220

4.2 Metaprogramming to pass arrays

Copying data from Python into a Fortran array requires a significant amount of code. Unless a structure of the Fortran data can

be assumed, each Fortran variable to be accessed needs at least its own line of Fortran code, and in practice its own pair of

subroutines, containing an assignment between a Python buffer and the correct Fortran variable. In our approach, each variable

has two Fortran wrapper subroutines for getting and setting that variable, logic within a C wrapper layer for calling those225

Fortran wrapper subroutines, and header declarations for those subroutines.

Writing each of these manually would take significant time and effort. Instead we use Jinja templates (The Pallets Projects,

2019) to generate these wrappers using JSON files declaring necessary information such as the Fortran variable name, standard

name, units, and dimensionality. For example, the Fortran variable name "zorl" has standard name "surface_roughness", units

"cm", and dimensionality ["y", "x"]. This greatly reduces the number of lines required to write the code. For physics230

variables, the template file and data file are 89 and 459 lines, respectively while the generated Fortran file is 1894 lines. Physics

variables are also responsible for most of the lines in the 1680-line generated Cython file. Adding a new physics variable

requires adding an entry to a JSON file with its standard name, Fortran name, Fortran container struct name, dimensions, and

units. This JSON file is also used to automatically enable unit tests for the getters and setters of each physics variable.

4.3 Portability and testing using Docker235

One choice made in developing fv3gfs-wrapper was to use Docker containers for testing and our own research use of the

wrapped model. Using a Docker image ensures that across systems, we can consistently install the dependencies of FV3GFS,

Flexible Modeling System (FMS), and Earth System Modeling Framework (ESMF) on a host system. Users can make use

of the Docker container identically on cloud computing resources, continuous integration systems, and our host machines

without the need for separate configuration of the compilation process for each system. This removes the possibility for error240

from incorrect build instructions or execution of those instructions, or unexpected interactions with the host environment.

Furthermore, it documents the process required to build the environment for the model and fv3gfs-wrapper, which should

help in setting it up directly (i.e. without use of containers) on a machine. Finally, it facilitates distribution of the model to

others who may not have access to HPC resources and may want to reproduce our results on personal computers or cloud

resources. The docker image at time of publication can be retrieved as gcr.io/vcm-ml/fv3gfs-wrapper:v0.6.0, or245

from McGibbon et al. (2021b).
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4.4 Extending this approach to other models

While we have applied this wrapping approach to the FV3GFS model specifically, nothing about it is particular to this model.

Our methodology should generalize to other atmospheric and climate models. This wrapper is an example of how one can

wrap Fortran models in general to be accessible through Python. While using Cython and Fortran wrapper layers (as we have250

done here) involves writing more code than using automated wrapping tools such as f90wrap (Kermode, 2020), it provides

the flexibility necessary to wrap the existing Fortran code with minimal changes. We found much of the repetitive boilerplate

needed for this wrapping could be handled through Jinja templating. With this approach, a Python wrapper can be produced

for very complex build systems with only minimal modifications (such as ensuring the necessary variables and routines are

externally accessible) to the existing model code.255

The use of getters and setters introduces a copy overhead cost when modifying the base model behavior. However, it

avoids refactoring necessary for a shared memory implementation, which would require modifying the Fortran code to use

C-accessible arrays that can be shared with Python. Writing a Fortran wrapper layer for the getters and setters ensures that any

variable modifiable in Fortran can also be modified in Python.

In wrapping the FV3GFS, we have split the FV3GFS model main loop into a sequence of subroutines, which are then260

wrapped to call from Python. This task is likely to be different in other Fortran models, particularly models with abstract main

loops or complex coupling infrastructures. So long as Fortran subroutines can be defined to execute each part of the model

main loop, these can be wrapped to call from Python for model integration.

4.5 Challenges and limitations

Python reads many files on initialization when it imports packages. This can cause significant slow-down on HPC systems265

using shared filesystems. Approaches using parallel filesystems, such as Sarus on HPC or Docker-based cloud solutions, can

avoid this issue. When a shared filesystem must be used, solutions exist such as python-mpi-bcast by Yu Feng (Feng, 2021), or

modifying the CPython binary as reported by Enkovaara et al. (2011).

The wrapper currently treats the dynamics and physics routines each as a single subroutine. This does not allow inserting

Python code within the physics suite, between schemes. This limitation may be removed in the future by adding a wrapper270

for physics schemes in the Common Community Physics Package (CCPP, Heinzeller et al. (2020)). Through CCPP, it should

be possible to separate the physics driver into multiple calls, allowing Python code to be called between any chosen physics

schemes.

It is also important to remember when trying to modify the behavior of FV3GFS that, with or without a wrapper, it is still

fundamentally a complex parallel model. Parallel code is difficult to test, since the order of code execution is non-deterministic275

(Bianchi et al., 2018).

It may also be necessary to understand the physical relationships between different model variables in the Fortran code. For

example, the dry air mass of a model layer in FV3GFS is a diagnostic function of the layer pressure thickness and tracer mixing

ratios. Increasing the model specific humidity will remove dry air mass, unless the layer pressure thickness is also increased.
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To account for this, we have included a routine fv3gfs.set_state_mass_conserving that modifies layer pressure280

thickness according to any changes in water tracer amounts.

5 Conclusions

We have presented fv3gfs-wrapper, a Python-wrapped version of the FV3GFS atmospheric model. The wrapper allows

users to control and interact with an atmospheric model written in Fortran. The simple and intuitive interface allows for a

Python-centric workflow and can be used to enable a wide range of use cases, such as machine learning parameterization285

development, online analysis, and interactive model execution. We do not see a decrease in model performance relative to the

fully-compiled model, unless routines to copy the model state in and out of the Fortran model are used. This copy overhead is

well within an acceptable range of performance, and could be avoided with modifications to the Fortran source code.

We showed examples of how Python and Docker can be used to reproduce and modify the existing Fortran model, and how

the Fortran code can be called in an interactive Jupyter environment. In addition to accelerating research and development290

workflows, these examples show how a full-fledged weather and climate model can be made available for reproducible science

and teaching.

The wrapping approach that is outlined can be applied similarly to other Fortran models. The Python-wrapped FV3GFS

atmospheric model shows the way for a new generation of weather and climate models, where the top-level control flow of the

model is implemented in a high-level language such as Python while the performance critical sections are implemented in a295

low-level, performant language. This is a powerful approach that has already been used in popular Python packages such as

Numpy and Tensorflow. We hope to see this approach extended to other models, enabling more widespread access to Python

tools in developing traditional Fortran models, and reducing the barrier to access for researchers and students interested in

introducing online analysis code into these models.

Code and data availability. Code for this project is available in on GitHub at https://github.com/VulcanClimateModeling/fv3gfs-wrapper tag300

v0.6.0 (McGibbon et al., 2021a), https://github.com/VulcanClimateModeling/fv3gfs-fortran tag gmd_submission (Heinzeller et al., 2021),

and https://github.com/VulcanClimateModeling/fv3gfs-util tag v0.6.0 (McGibbon et al., 2021c). It is also available as a Docker image at

gcr.io/vcm-ml/fv3gfs-wrapper:v0.6.0 (McGibbon et al., 2021b). The model forcing directory used to time the examples is available as

McGibbon et al. (2021d).

Author contributions. Jeremy McGibbon contributed the initial version of the wrapper and has led its development. Significant code con-305

tributions have been made by Noah Brenowitz, Oliver Watt-Meyer, Spencer Clark, Mark Cheeseman, Brian Henn, Tobias Wicky, Oliver

Fuhrer, and Anna Kwa. All authors were involved in design discussions and provided feedback on the code. Jeremy McGibbon prepared the

manuscript with contributions from co-authors.
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