
fv3gfs-wrapper: a Python wrapper of the FV3GFS atmospheric
model
Jeremy McGibbon1, Noah D. Brenowitz1, Mark Cheeseman1, Spencer K. Clark1,2, Johann Dahm1,
Eddie Davis1, Oliver D. Elbert1,2, Rhea C. George1, Lucas M. Harris2, Brian Henn1, Anna Kwa1, W.
Andre Perkins1, Oliver Watt-Meyer1, Tobias Wicky1, Christopher S. Bretherton1,3, and Oliver Fuhrer1

1Vulcan Inc., Seattle, WA
2Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, NJ
3Department of Atmospheric Sciences, University of Washington, Seattle, WA

Correspondence: Jeremy McGibbon (mcgibbon@uw.edu)

Abstract. Simulation software in geophysics is traditionally written in Fortran or C++ due to the stringent performance require-

ments these codes have to satisfy. As a result, these codes are often hard to understand, hard to modify and hard to interface

with high-productivity languages used for exploratory work. fv3gfs-wrapper is an open-source Python-wrapped version

of NOAA’s
::
the

:::::::
NOAA

::::::::
(National

:::::::
Oceanic

:::
and

:::::::::::
Atmospheric

::::::::::::::
Administration)

:
FV3GFS

:::::::::::::
(Finite-Volume

:::::
Cubed

:::::::
Sphere

::::::
Global

:::::::::
Forecasting

:::::::
System)

:
global atmospheric model, which is coded in Fortran. The wrapper provides simple interfaces to progress5

the Fortran main loop and get or set state from
::::::::
variables

::::
used

::
by

:
the Fortran model. These interfaces enable a wide range of

use cases such as modifying the behavior of the model, introducing online analysis code, or saving model state
:::::::
variables

:
and

reading forcings directly to and from cloud storage. Model performance is identical to the fully-compiled Fortran model, unless

routines to copy state in and out of the model are used. This copy overhead is well within an acceptable range of performance,

and could be avoided with modifications to the Fortran source code. The wrapping approach is outlined and can be applied10

similarly in other Fortran models to enable more productive scientific workflows.

1 Introduction

FV3GFS
::::::::::::
(Finite-Volume

:::::
Cubed

::::::
Sphere

::::::
Global

::::::::::
Forecasting

:::::::
System)

:
(Zhou et al., 2019) is a prototype of the operational Global

Forecast System of the National Centers for Environmental Prediction. It is used within the
:
In

::::
this

::::::::
document

:::::
when

:::
we

::::
say

:::::::
FV3GFS

:::
we

:::
are

:::::::
referring

::::::::::
specifically

::
to

:::
the

::::::::::
atmospheric

::::::::::
component

::
of

:::
the U. S. National Oceanic and Atmospheric Adminis-15

tration (NOAA) Unified Forecast System (UFS, https://ufscommunity.org/) for operational numerical weather prediction.
:::
We

:::::
forked

::::
this

::::
code

:::::
from

:::
the

::
v1

::::::
branch

:::
of

:::
the

::::
UFS

::::::
model

::
in

:::::::::
December

:::::
2019. It uses the Geophysical Fluid Dynamics Labora-

tory (GFDL) Finite-Volume Cubed-Sphere Dynamical Core (FV3). FV3 solves the non-hydrostatic equations of atmospheric

motion discretized on a cubed sphere using a finite volume scheme on a terrain-following grid with D-grid wind staggering

(Putman and Lin, 2007; Harris and Lin, 2013). The model is written in Fortran
::::::::::::::::::::::::::::::::
(Global Engineering Documents, 1991) and20

parallelized using a hybrid OpenMP
:::::
(Open

:::::::::::::::
Multi-Processing,

::::::::::::::::::::::::::::::::::::
OpenMP Architecture Review Board (2020)

:
)
:
/ MPI

::::::::
(Message

1



Figure 1. Schematic of Fortran-centric workflow using the filesystem to transfer data to Python user code.
:::::::::
Arrowheads

::::::
indicate

:::
the

:::::::
direction

:
of
:::

the
:::::
model

::::
main

::::
loop,

::
as

::::
well

::
as

:::
data

::::::
transfer

:::
out

::
of

::
the

::::::
Fortran

:::::
model

:::
and

:::
into

:::
the

::::::
Python

:::
user

:::::
script.

::::::
Passing

::::::::
Interface,

:::::::::::::::::::::::::::::::::
Message Passing Interface Forum (2015)

:
)
:
approach, which allows for performant execution through compi-

lation.

However, development of an atmospheric model using a low-level, strongly typed programming language with a small user

base has trade-offs. Libraries for interacting with cloud storage, performing physical or statistical analysis, and using machine25

learning are not as readily available or widely used
:
in

:::::::::
languages

:::
like

::::::
Fortran

:
as they are in high-level languages such as Python.

A Python interface to the compiled Fortran code can enable a much larger Python user base to interact with this code, and allow

a large ecosystem of Python tools to be interfaced with model routines.

Python is often integrated into Fortran modelling
::::::::
modeling

:
workflows as a post-processing tool, as shown in Figure 1. In

this workflow, Python is used to perform computations on data saved to the filesystem by the Fortran model. This approach has30

several shortcomings. It is rarely feasible to store the full-resolution model state at each model time step, so often statistics over

time are stored instead. Unless sufficiently frequent snapshots are stored, computing new statistics directly from full-resolution

instantaneous fields requires writing Fortran code to run in the model. This can be an issue if developer documentation is not

available or the user is not familiar with Fortran. This approach requires writing to disk before data can be used in Python,

which may be unnecessary if the written data is not a necessary end product. Such filesystem operations can be a significant35

bottleneck in computation time. This approach also does not provide a way for Python to modify
:
to
::::
use

::::::
Python

:::::::
libraries

:::::
when

::::::::
modifying

:
the behavior of the Fortran model. User code which modifies model behavior must be re-written in Fortran, for

example when machine learning routines are trained in Python and exported to be used in a Fortran model ,
:::
as

:::
any

:::::
logic

::::
after

::
the

::::
data

::
is

::::
read

::::
from

::::
disk

:::::
must

::
be

::::::
written

::
in

:::::::
Fortran.

:::::::
Instead,

:::::::
machine

:::::::
learning

:::::::::::
practitioners

:::
port

::::::::
machine

:::::::
learning

:::::::
routines

::
to

::::::
Fortran

:::::
using

::::::
models

:::
that

:::::
have

::::
been

::::::
trained

:::
and

:::::
saved

:::::
using

::::::
Python

:
(Ott et al., 2020; Curcic, 2019).40

In this work, we present a Python wrapper for the FV3GFS global atmospheric model. As shown in Figure 2, the FV3GFS

model is compiled as a shared library with wrapper routines that provide an API to control and interact with the model. At

the core of any weather or climate model is the main integration loop, which integrates the model state forward by a period

if time. The wrapper splits the simple model main loop into a sequence of subroutines which
:::
that

:
can be called from Python.

This allows the main loop to be written in Python, through calls to each section of the Fortran main loop (step_dynamics,45

step_physics). Furthermore, it allows copying variables into (get
:::
set_state) or out of (set

::::
get_state) the Fortran

2



Figure 2. Schematic of Python-centric workflow using fv3gfs-wrapper, showing how it can interface with Python libraries during model

execution.
:::::::::
Arrowheads

::::::
indicate

:::
data

::::::
transfer

:::::::
between

:::
user

::::::
Python

:::
code

:::
and

::::::
Fortran

::::::
model.

runtime environment, so it can be used in Python functions which are also able to
:::
that

:::
can

:
affect the integration of the Fortran

model state.
:::
Data

::::::::
retrieved

::::
with

::::::::::::
get_state

::::::
includes

:::::
units

:::::::::::
information,

:::
for

::::
ease

::
of

:::::::::
debugging

::::
and

:::
for

::::::::
reference

:::
on

::::
data

::::::
written

::
to

::::
disk.

:

As the wrapper currently stands, configuration is deferred entirely to the Fortran model code. The only change in initialization50

is that MPI is initialized by mpi4py, after which the MPI communicator is passed as a Fortran handle to the model initialization

routines. This allows us to maintain feature completeness with the existing Fortran model, without re-writing configuration

logic.

This Python-centric workflow enables a fundamentally different way to integrate tools available in the Python ecosystem

into a Fortran modeling workflow. A user can add online diagnostic code after a physics or dynamics step, and perform input55

or output (I/O) to or from cloud resources. The model state can be reset to a previous one, allowing sensitivity studies to be

run online. Custom logic can be added to the main loop after a physics or dynamics step, such as a machine learning corrector

parameterization or nudging to a cloud-based forcing dataset. The use of a Python main loop makes it significantly easier to

integrate custom IO
:::
I/O, diagnostic routines, and physical parameterizations into the model.

This ease of integration is an important tool when developing parameterizations using machine learning. When developing60

such schemes, offline performance does not guarantee performance when run online within a model. However it can be difficult

to rapidly train a model in a language with machine learning libraries such as Python and then convert it for use in Fortran.

Solutions have so far been based on Fortran executables, either by calling Python from Fortran (Brenowitz and Bretherton,

2019) or by re-implementing neural network codes in Fortran (Ott et al., 2020; Curcic, 2019). Because of the strong tooling

available for machine learning in Python, it is an advantage
:::::::::::
advantageous

:
to be able to include Python machine learning code65

within the atmospheric model. Presently Python code can only be integrated outside of the dynamics and physics routines, and

not within the physics suite. Adding flexibility to introduce Python code between individual physics schemes remains a subject

for future work.

Previous work exists using Python with compiled code to write atmospheric models and other
::::
This

:
is
:::
not

:::
the

::::
first

::::
time

::::::
Python

:::
and high-performance parallel codes

::::::::
compiled

::::::::
programs

::::
have

::::
been

:::::::::
combined. qtcm (Lin, 2009) applies a similar wrapping ap-70

3



proach to a quasi-equilibrium tropical circulation model using f2py (Peterson, 2009), an automated Fortran to Python interface

generator. PyCLES (Pressel et al., 2015) is a full large-eddy simulation written in Cython, a variant of Python which
:::
that

compiles to C code and can interoperate with Python codes. CliMT (Monteiro et al., 2018) wraps Fortran model components

into Python objects which
:::
that

:
can be composed to define a model main loop in Python. In astronomy

:
, Python computational

codes such as nbodykit (Hand and Feng, 2017) run using numpy (Harris et al., 2020) and MPI for Python (Dalcín et al., 2008),75

and are shown to scale to thousands of ranks. These previous works give
::::::
provide confidence that a model using Python to call

compiled code can provide the level of scaling and performance required for atmospheric and climate science research.

A consideration in designing new atmospheric models is the large amount of legacy Fortran code already available. As

a consequence, new model components are often written in Fortran so they can interface with such legacy code. Efforts to

re-write existing Fortran models , for example
:::
(for

::::::::
example,

:
to run on GPU architectures

:::::::
Graphics

:::::::::
Processing

:::::
Unit

::::::
(GPU)80

:::::::::::
architectures), can benefit from the ability to progressively replace existing components with refactored or re-written codes in

other languages.

To motivate the design choices made in this work, we present our main priorities:

retain existing functionality of the Fortran model,
:
minimal sacrifice of performance

:
,
:
a
::::
main

::::
time

::::::::
stepping

::::
loop

:::::
which

::
is easy

to understand and modifythe main time stepping loop
:
,
:::
and

:
minimal changes to Fortran code

:
.85

Most of these priorities should be obvious, with a focus on improving model usability for researchers interested in modifying

the behavior of the Fortran code. They would benefit from retaining the existing functionality they would like to modify, and

they should be able to easily understand how the code can be modified. They may require efficient model performance on

high-performance computers for research problems using higher-resolution simulations. By minimizing the needed changes to

the Fortran code, we can reduce the effort required to switch to a new Fortran model version.90

While this wrapper has many applications, we will focus on illustrative scenarios relevant to our own FV3GFS model

development work. In addition to reproducing the existing model behavior, we will show :

augmenting
:::
how

:::
to:

::::::::
augment the Fortran model with a machine learning parameterization,

:
include custom MPI communi-

cation as part of online diagnostic code
:
,
:::
and

:
perform online analysis in a Jupyter notebook

:
.

We will begin by showing in Section 2 how fv3gfs-wrapper can be used to reproduce,
:
bit-for-bit

:
, the results of the existing95

Fortran model. We will then show in Section 3 how fv3gfs-wrapper enables each of these use cases while achieving our

priorities of performance, ease of understanding, and ease of modification. Having presented the features of fv3gfs-wrapper

by example, we will delve more deeply into their implementation in Section 4. Finally, we will discuss some of the challenges

encountered in designing and implementing fv3gfs-wrapper in Section 4.5 before drawing our conclusions in Section 5.

2 Validation100

For completeness and testing, fv3gfs-wrapper should be able to reproduce
:
, bit-for-bit

:
, the results of the Fortran model. This

allows us to test the logic wrapping the Fortran code. Because the wrapper executes identical Fortran code from
::::::
Fortran

::::
code

:::::::
identical

::
to
:
the original Fortran model, bit-for-bit regression on one parameter configuration or forcing dataset gives us

4



Table 1. Run times of examples and compiled Fortran model. Baseline refers to reproducing existing Fortran behavior. Examples were run

for 6 hours of simulation time at C48 resolution on 6 processors on a 2019 Macbook Pro. Each example was run three times, and the shortest

time is reported.

Example Run time (s)

Fortran baseline 110

Wrapper baseline 110

Random Forest 116

Minimum Surface Pressure 110

confidence the code can be used for any parameter configuration or forcing dataset. The implementation of this use case is as

follows:105

1 import fv3gfs.wrapper

2

3 if __name__ == "__main__":

4 fv3gfs.wrapper.initialize()

5 for i in range(fv3gfs.wrapper.get_step_count()):110

6 fv3gfs.wrapper.step_dynamics()

7 fv3gfs.wrapper.step_physics()

8 fv3gfs.wrapper.save_intermediate_restart_if_enabled()

9 fv3gfs.wrapper.cleanup()

The existing main routine in coupler_main.f90 separates relatively cleanly into five routines: one each to initialize and115

finalize the model, one for dynamics (resolved fluid flow), one for physics (subgrid-scale processes), and one which
:::
that

:
will

write intermediate restart data if intermediate restart files are enabled for the run and if we should write a restart on the current

timestep. Each of these Python routines calls that section of the Fortran code, and then returns to a Python context.

The overhead of the Python time step loop and the wrapper functions is negligible in comparison to the computation done

within a process (Table 1), meeting our performance goal. The conciseness of the main loop makes it easy to understand what120

the code is doing at a high level. This example is easy to modify, as shown in the use cases in the next section.

This code and the command-line examples below are available in the examples/gmd_timings directory of the git repository

for fv3gfs-wrapper
::
as

:::::::::
referenced

::
in
::::

the
:::::
Code

:::
and

::::
data

::::::::::
availability

:::::::
section, using a 6-hour C48 run directory available at

https://doi.org/10.5281/zenodo.4429297. The timings of
::
for each of these examples is

:::
are included in Table 1. We can see the

wrapper does not add significant overhead to the Fortran baseline timing.125

5



3 Use cases in action

All examples discussed in this section are included in the public repository
::
for

:::::::::::::
fv3gfs-wrapper linked in the acknowledgements

::::
Code

:::
and

::::
data

:::::::::
availability

::::::
section. We encourage the reader to download and run these examples on their own computer, using the

example run directory available at https://doi.org/10.5281/zenodo.4429297.

3.1 Augmenting the model with machine learning130

An important use case motivating this work is to be able to modify the operation of the model main loop, for example by

adding a machine learning model which
:::
that applies tendencies at the end of each timestep. This serves as an example

for how the main loop can be modified more generically, such as by adding I/O functionality or online diagnostics, using

fv3gfs.wrapper.get_state and fv3gfs.wrapper.set_state to interface with the Fortran model.

1 import fv3gfs.wrapper135

2 import fv3gfs.wrapper.examples

3 import f90nml

4 from datetime import timedelta

5
::::::
import

::::::
f90nml

6140

7 if __name__ == "__main__":

8 # load timestep from the namelist

9 namelist = f90nml.read("input.nml")

10 timestep = timedelta(seconds=namelist["coupler_nml"]["dt_atmos"])

11 # initialize the machine learning model145

12 rf_model = fv3gfs.wrapper.examples.get_random_forest()

13 fv3gfs.wrapper.initialize()

14 for i in range(fv3gfs.wrapper.get_step_count()):

15 fv3gfs.wrapper.step_dynamics()

16 fv3gfs.wrapper.step_physics()150

17

18 # apply an update from the machine learning model

19 state = fv3gfs.wrapper.get_state(rf_model.inputs)

20 rf_model.update(state, timestep=timestep)

21 fv3gfs.wrapper.set_state(state)155

22

23 fv3gfs.wrapper.save_intermediate_restart_if_enabled()

24 fv3gfs.wrapper.cleanup()

The example includes a compact random forest we have trained on nudging tendencies towards reanalysis data. The separa-

tion of physics and dynamics steps in the code makes it clear that the machine learning update is applied at the end of a physics160

step, and is included in any intermediate restart data. The random forest model used in this example is trained according to

the approach in Watt-Meyer et al. (2021), with a small number of trees and layers chosen to decrease model size. As a proof

of concept, the example model has not been tuned for stability, and may crash if run for longer than 6 hours or using a run

6



directory other than the example provided. Model stability can be increased by enforcing the model specific humidity to be

non-negative after applying the random forest update.165

This example showcases how the wrapper makes it easy to modify the operation of the Fortran model. In our own efforts to

re-write the FV3 dynamical core in a Python-based domain-specific language (DSL), we have directly replaced a call to the

Fortran dynamics step with Python-based code. We have also added nudging routines which
:::
that

:
directly access Zarr (Miles

et al., 2020) reference datasets stored in the cloud, and IO
:::
I/O routines to save model snapshots to Zarr files in cloud storage as

the model executes. With Python’s threading support, this data transfer can happen as the Fortran code is running. These tasks170

would be difficult to implement in Fortran, due to more complex threading interfaces, no existing bindings for Zarr, and a lack

of support from cloud storage providers.

3.2 MPI communication

When writing parallel models, inter-process communication is an important functionality. MPI4py (Dalcín et al., 2008) pro-

vides Python bindings for MPI routines, and supports the use of numpy arrays. Using MPI4py, we have been able to implement175

halo updates, gather, and scatter operations. The syntax for MPI4py is similar to the syntax used in Fortran. In our implemen-

tation, the same MPI communicator is used by the Fortran code as is used by MPI4py.

Here we show an
:
a
::::::
simple example of computing the minimum global surface temperature and print

::::::
printing

:
it from the

root process. This is a relatively simple example showcasing
:::::::::
showcases how you can use MPI4py within the model to compute

diagnostics using inter-rank communication.180

1 import fv3gfs.wrapper

2 import numpy as np

3 from mpi4py import MPI

4

5 ROOT = 0185

6

7 if __name__ == "__main__":

8 fv3gfs.wrapper.initialize()

9 # MPI4py requires a receive "buffer" array to store incoming data

10 min_surface_temperature = np.array(0)190

11 for i in range(fv3gfs.wrapper.get_step_count()):

12 fv3gfs.wrapper.step_dynamics()

13 fv3gfs.wrapper.step_physics()

14

15 # Retrieve model minimum surface temperature195

16 state = fv3gfs.wrapper.get_state(["surface_temperature"])

17 MPI.COMM_WORLD.Reduce(

18 state["surface_temperature"].view[:].min(),

19 min_surface_temperature,

20 root=ROOT,200

21 op=MPI.MIN,

7



22 )

23 if MPI.COMM_WORLD.Get_rank() == ROOT:

24 units = state["surface_temperature"].units

25 print(f"Minimum surface temperature: {min_surface_temperature} {units}")205

26

27 fv3gfs.wrapper.save_intermediate_restart_if_enabled()

28 fv3gfs.wrapper.cleanup()

3.3 Interactive use in a Jupyter notebook

While we typically run the model using batch submission or from the command-line
::::::::
command

:::
line, all of the examples above210

can be executed from within a Jupyter notebook using ipyparallel. This allows retrieving, computing, and plotting variables

from the Fortran model while it is paused at a point of interest. It also can serve as explicit documentation of modelled

phenomena, whether to communicate to other model developers or for use in an educational setting.

We have prepared an example which
:::
that inspects the machine learning example model, using MPI communication from

Python to gather and plot variables on a single rank (Figure 3). It can be accessed in the examples/jupyter directory215

of the Github repository, and makes use of Docker to ensure portability. While the example is written to run on 6 processes,

ipyparallel allows notebooks to be run at larger scales on high-performance computing (HPC) clusters if the configuration is

modified appropriately.

4 Implementation

4.1 Information transfer220

To augment the Fortran model, we need to be able to
::::
must read from and write to its state. This information transfer can be done

in two ways, either by providing an interface to copy data between Fortran and Python arrays (effectively C arrays), or using

the same memory in both codes. Re-using memory requires that the Fortran code use a pointer to a C array, allowing the same

pointer to be used by the numpy array on the Python side. In the Fortran code for FV3GFS, arrays used for physical variables are

defined as non-target allocatable arrays, which precludes sharing them with Python. It would require significant changes225

to the Fortran code to instead use pointers to C arrays, which conflicts with our priority of making minimal changes to the

Fortran code. Instead, the getters and setters
:::
(the

:::::::
routines

:::::
which

:::::::
transfer

:::::::
variable

:::::
values

:::::::
between

::::::
Python

::::
and

:::::::
Fortran) perform

a data copy between numpy-allocated C arrays and Fortran arrays within the wrapper layer.

4.2 Metaprogramming to pass arrays

Copying data from Python into a Fortran array requires independent codefor
:
a
:::::::::
significant

:::::::
amount

::
of

:::::
code.

::::::
Unless

:
a
::::::::
structure230

::
of

:::
the

::::::
Fortran

::::
data

:::
can

::
be

::::::::
assumed,

:
each Fortran variable to provide an explicit mapping

::
be

:::::::
accessed

:::::
needs

::
at

::::
least

::
its

::::
own

::::
line

::
of

::::::
Fortran

:::::
code,

:::
and

::
in

:::::::
practice

:::
its

:::
own

::::
pair

::
of

:::::::::::
subroutines,

::::::::
containing

:::
an

:::::::::
assignment

:
between a Python variable or string and

8



Figure 3. Screenshot of Jupyter notebook example using MPI communication to gather a field on 6 processes and plot it on the first process.

:::
Note

:::
the

:::::::
FV3GFS

::::
uses

:
a
:::::
"cubed

::::::
sphere"

::::
grid,

::
so

:::
that

:::
for

:
6
::::::::
processes

:::
each

:::
one

::
is

:::::::::
responsible

::
for

:::
one

::::
face

::
of

::
the

:::::
cube.

its variable name in Fortran
:::::
buffer

:::
and

::::
the

::::::
correct

::::::
Fortran

:::::::
variable. In our approach, each variable has two Fortran wrapper

subroutines for getting and setting that variable, logic within a C wrapper layer for calling those Fortran wrapper subroutines,

and header declarations for those subroutines.235

Writing each of these manually would take significant time and effort. Instead we use Jinja templates
:::::::::::::::::::::::
(The Pallets Projects, 2019)

to generate these wrappers using JSON files declaring necessary information such as the Fortran variable name, standard name,

units, and dimensionality. For example, the Fortran variable name "zorl" has standard name "surface_roughness", units "cm",

and dimensionality ["y", "x"]. This greatly reduces the number of lines required to write the code. For physics variables,

the template file and data file are 89 and 459 lines, respectively while the generated Fortran file is 1894 lines. Physics variables240

are also responsible for most of the lines in the 1680-line generated Cython file. Adding a new physics variable requires adding

an entry to a JSON file with its standard name, Fortran name, Fortran container struct name, dimensions, and units. This JSON

file is also used to automatically enable unit tests for the getters and setters of each physics variable.

4.3 Portability and testing using Docker

One choice made in developing fv3gfs-wrapper was to use Docker containers for testing and our own research use of the245

wrapped model. It requires significant effort to properly
::::
Using

::
a

::::::
Docker

:::::
image

:::::::
ensures

:::
that

::::::
across

:::::::
systems,

:::
we

:::
can

::::::::::
consistently

install the dependencies of FV3GFS, Flexible Modeling System (FMS), and Earth System Modeling Framework (ESMF) on

9



a host system, and use the correct compiler flags and library setup to compile the Fortran model. However, once defined the

Docker container can be used .
:::::
Users

::::
can

:::::
make

:::
use

::
of

:::
the

:::::::
Docker

::::::::
container

:
identically on cloud computing resources, con-

tinuous integration systems, and our host machines without the need for separate configuration of the compilation process250

for each system.
:::
This

::::::::
removes

:::
the

:::::::::
possibility

::
for

:::::
error

::::
from

::::::::
incorrect

:::::
build

::::::::::
instructions

::
or

::::::::
execution

::
of

:::::
those

::::::::::
instructions,

:::
or

:::::::::
unexpected

::::::::::
interactions

::::
with

:::
the

::::
host

:::::::::::
environment.

:
Furthermore, it documents the process required to build the environment

for the model and fv3gfs-wrapper, which should help in setting it up directly (i.e. without use of containers) on a machine.

Finally, it facilitates distribution of the model to others who may not have access to HPC resources and may want to re-

produce our results on personal computers or cloud resources. The docker image at time of publication can be retrieved as255

gcr.io/vcm-ml/fv3gfs-wrapper:v0.6.0, or from McGibbon et al. (2021b).

4.4 Extending this approach to other models

While we have applied this wrapping approach to the FV3GFS model specifically, nothing about it is particular to this model.

Our methodology should generalize to other atmospheric and climate models. This wrapper is an example of how one can

wrap Fortran models in general to be accessible through Python. While using Cython and Fortran wrapper layers (as we have260

done here) involves writing more code than
:::::
using automated wrapping tools such as f90wrap (Kermode, 2020), it provides

the flexibility necessary to wrap the existing Fortran code with minimal changes. We found much of the repetitive boilerplate

needed for this wrapping could be handled through Jinja templating. With this approach, the wrapper provides the flexibility

required to interface with the potentially a
:::::::
Python

:::::::
wrapper

:::
can

::
be

::::::::
produced

:::
for very complex build systems of existing Fortran

models, and requires
::::
with only minimal modifications to the existing Fortran, such as making

::::
(such

::
as

:::::::
ensuring

:::
the

:::::::::
necessary265

variables and routines public to be accessed from the wrapper layer
::
are

:::::::::
externally

:::::::::
accessible)

::
to

:::
the

:::::::
existing

:::::
model

:::::
code.

The use of getters and setters introduces a copy overhead cost when modifying the base model behavior. On the other

hand
:::::::
However, it avoids refactoring necessary for a shared memory implementation, which would require modifying the Fortran

code to use C-accessible arrays which
:::
that

:
can be shared with Python. Writing a Fortran wrapper layer for the getters and setters

ensures that any variable modifiable in Fortran can also be modified in Python.270

In wrapping the FV3GFS, we have split the simple
:::::::
FV3GFS model main loop into a sequence of subroutines, which are then

wrapped to call from Python. This task is likely to be different in other Fortran models, particularly models with abstract main

loops or complex coupling infrastructures. So long as Fortran subroutines can be defined to execute each part of the model

main loop, these can be wrapped to call from Python for model integration.

4.5 Challenges and limitations275

Python reads many files on initialization when it imports packages. This can cause significant slow-down on HPC systems

using shared filesystems. Approaches using parallel filesystems, such as Sarus on HPC or Docker-based cloud solutions, can

avoid this issue. When a shared filesystem must be used, solutions exist such as python-mpi-bcast by Yu Feng
::::::::::
(Feng, 2021), or

modifying the CPython binary as reported by Enkovaara et al. (2011).

10



The wrapper currently treats the dynamics and physics routines each as a single subroutine. This does not allow inserting280

Python code within the physics suite, between schemes. This limitation may be removed in the future by adding a wrapper

for physics schemes in the Common Community Physics Package (CCPP, Heinzeller et al. (2020)). Through CCPP, it should

be possible to separate the physics driver into multiple calls, allowing Python code to be called between any chosen physics

schemes.

It is also important to remember when trying to modify the behavior of FV3GFS that,
:

with or without a wrapper, it is still285

fundamentally a complex parallel model. Parallel code is difficult to testand can result in race conditions. It may
:
,
:::::
since

:::
the

::::
order

::
of

:::::
code

::::::::
execution

::
is

::::::::::::::
non-deterministic

::::::::::::::::::
(Bianchi et al., 2018).

:

:
It
::::
may

::::
also

:
be necessary to understand the physical relationships between different model variables in the Fortran code,

and when they are updated. For example, a change to model specific humidity
::
the

::::
dry

::
air

:::::
mass

::
of

::
a

:::::
model

:::::
layer in FV3GFS

requires a corresponding change to
:
is

:
a
:::::::::
diagnostic

:::::::
function

::
of

:::
the

:
layer pressure thickness in order to conserve mass

:::
and

:::::
tracer290

::::::
mixing

:::::
ratios.

:::::::::
Increasing

:::
the

::::::
model

:::::::
specific

::::::::
humidity

::::
will

::::::
remove

::::
dry

:::
air

:::::
mass,

:::::
unless

::::
the

::::
layer

::::::::
pressure

::::::::
thickness

::
is

::::
also

::::::::
increased. To account for this, we have included a routine fv3gfs.set_state_mass_conserving which

:::
that

:
modifies

layer pressure thickness according to any changes in water tracer amounts.

5 Conclusions

We have presented fv3gfs-wrapper, a Python-wrapped version of the FV3GFS atmospheric model. The wrapper allows295

users to control and interact with an atmospheric model written in Fortran. The simple and intuitive interface allows for a

Python-centric workflow and can be used to enable a wide range of use cases, such as machine learning parameterization

development, online analysis, and interactive model execution. We do not see a decrease in model performance relative to the

fully-compiled model, unless routines to copy
:::
the

:::::
model

:
state in and out of the Fortran model are used. This copy overhead is

well within an acceptable range of performance, and could be avoided with modifications to the Fortran source code.300

We showed examples of how Python and Docker can be used to reproduce and modify the existing Fortran model, and how

the Fortran code can be called in an interactive Jupyter environment. In addition to accelerating research and development

workflows, these examples show how a full-fledged weather and climate model can be made available for reproducible science

and teaching.

The wrapping approach is outlined and
:::
that

::
is

:::::::
outlined

:
can be applied similarly in

::
to other Fortran models. The Python-305

wrapped FV3GFS atmospheric model shows the way for a new generation of weather and climate models, where the top-level

control flow of the model is implemented in a high-level language such as Python while the performance critical sections are

implemented in a low-level, performant language. This is a powerful approach which
:::
that

:
has already been used in popular

Python packages such as Numpy and Tensorflow. We hope to see this approach extended to other models, enabling more

widespread access to Python tools in developing traditional Fortran models, and reducing the barrier to access for researchers310

and students interested in introducing online analysis code into these models.

11



Code and data availability. Code for this project is available in on GitHub at https://github.com/VulcanClimateModeling/fv3gfs-wrapper tag

v0.6.0 (McGibbon et al., 2021a), https://github.com/VulcanClimateModeling/fv3gfs-fortran tag gmd_submission (Heinzeller et al., 2021),

and https://github.com/VulcanClimateModeling/fv3gfs-util tag v0.6.0 (McGibbon et al., 2021c). It is also available as a Docker image at

gcr.io/vcm-ml/fv3gfs-wrapper:v0.6.0 (McGibbon et al., 2021b). The model forcing directory used to time the examples is available as315

McGibbon et al. (2021d).

Author contributions. Jeremy McGibbon contributed the initial version of the wrapper and has led its development. Significant code con-

tributions have been made by Noah Brenowitz, Oliver Watt-Meyer, Spencer Clark, Mark Cheeseman, Brian Henn, Tobias Wicky, Oliver

Fuhrer, and Anna Kwa. All authors were involved in design discussions and provided feedback on the code. Jeremy McGibbon prepared the

manuscript with contributions from co-authors.320

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We thank Vulcan, Inc. for supporting this work. We acknowledge NOAA-EMC, NOAA-GFDL and the UFS Com-

munity for publicly hosting source code for the FV3GFS model (https://github.com/ufs-community/ufs-weather-model) and NOAA-EMC

for providing the necessary forcing data to run FV3GFS.
::
The

:::::::
FV3GFS

:::::
model

::::
code

::::
used

:::
was

::::::
forked

:::
from

:::
the

::::
UFS

:::::
public

:::::
release

::::::
branch

::
in

:::::::
December

:::::
2019. Computations supporting this work were also supported by a grant from the Swiss National Supercomputing Centre (CSCS)325

under project ID s1053.

12



References

Bianchi, F. A., Margara, A., and Pezzè, M.: A Survey of Recent Trends in Testing Concurrent Software Systems, IEEE Transactions on

Software Engineering, 44, 747–783, https://doi.org/10.1109/TSE.2017.2707089, 2018.

Brenowitz, N. D. and Bretherton, C. S.: Spatially Extended Tests of a Neural Network Parametrization Trained by Coarse-Graining, Journal330

of Advances in Modeling Earth Systems, 11, 2728–2744, https://doi.org/10.1029/2019MS001711, https://agupubs.onlinelibrary.wiley.

com/doi/abs/10.1029/2019MS001711, 2019.

Curcic, M.: A parallel Fortran framework for neural networks and deep learning, CoRR, abs/1902.06714, http://arxiv.org/abs/1902.06714,

2019.

Dalcín, L., Paz, R., Storti, M., and D’Elía, J.: MPI for Python: Performance improvements and MPI-2 extensions, Journal of Parallel and335

Distributed Computing, 68, 655–662, https://doi.org/10.1016/j.jpdc.2007.09.005, https://doi.org/10.1016/j.jpdc.2007.09.005, 2008.

Enkovaara, J., Romero, N. A., Shende, S., and Mortensen, J. J.: GPAW - massively parallel electronic structure calculations with Python-based

software, Procedia Computer Science, 4, 17–25, https://doi.org/10.1016/j.procs.2011.04.003, https://doi.org/10.1016/j.procs.2011.04.003,

2011.

Feng, Y.: python-mpi-bcast, https://github.com/rainwoodman/python-mpi-bcast, 2021.340

Global Engineering Documents: Fortran 90, Global Engineering Documents, Washington, DC, USA, 1991.

Hand, N. and Feng, Y.: nbodykit, in: Proceedings of the 7th Workshop on Python for High-Performance and Scientific Computing -

PyHPC'17, ACM Press, https://doi.org/10.1145/3149869.3149876, https://doi.org/10.1145/3149869.3149876, 2017.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J.,

Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant,345

P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming with NumPy, Nature, 585,

357–362, https://doi.org/10.1038/s41586-020-2649-2, https://doi.org/10.1038/s41586-020-2649-2, 2020.

Harris, L. M. and Lin, S.-J.: A Two-Way Nested Global-Regional Dynamical Core on the Cubed-Sphere Grid, Monthly Weather Review, 141,

283 – 306, https://doi.org/10.1175/MWR-D-11-00201.1, https://journals.ametsoc.org/view/journals/mwre/141/1/mwr-d-11-00201.1.xml,

2013.350

Heinzeller, D., Firl, G., Bernardet, L., Carson, L., Zhang, M., and Kain, J.: The Common Community Physics Package (CCPP): bridg-

ing the gap between research and operations to improve U.S. numerical weather prediction capabilities, EGU General Assembly 2020,

https://doi.org/10.5194/egusphere-egu2020-23, 2020.

Heinzeller, D., Underwood, S., DomHeinzeller, grantfirl, Wang, J., Liang, Z., menzel gfdl, Robinson, T., Brown, T., bensonr, Hartnett, E.,

JulieSchramm, uramirez8707, gbw gfdl, Carson, L., McGibbon, J., Fuhrer, O., Jess, Clark, S., tanyasmirnova, Hallberg, R., ligiabernardet,355

Potts, M., Zadeh, N., Olson, J., Jovic, D., rheacangeo, fabienpaulot, goldy, and haiqinli: VulcanClimateModeling/fv3gfs-fortran: GMD

release, https://doi.org/10.5281/zenodo.4470023, https://doi.org/10.5281/zenodo.4470023, 2021.

Kermode, J. R.: f90wrap: an automated tool for constructing deep Python interfaces to modern Fortran codes, J. Phys. Condens. Matter,

https://doi.org/10.1088/1361-648X/ab82d2, 2020.

Lin, J. W.-B.: qtcm 0.1.2: a Python implementation of the Neelin-Zeng Quasi-Equilibrium Tropical Circulation Model, Geoscientific Model360

Development, 2, 1–11, https://doi.org/10.5194/gmd-2-1-2009, https://gmd.copernicus.org/articles/2/1/2009/, 2009.

13

https://doi.org/10.1109/TSE.2017.2707089
https://doi.org/10.1029/2019MS001711
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001711
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001711
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001711
http://arxiv.org/abs/1902.06714
https://doi.org/10.1016/j.jpdc.2007.09.005
https://doi.org/10.1016/j.jpdc.2007.09.005
https://doi.org/10.1016/j.procs.2011.04.003
https://doi.org/10.1016/j.procs.2011.04.003
https://github.com/rainwoodman/python-mpi-bcast
https://doi.org/10.1145/3149869.3149876
https://doi.org/10.1145/3149869.3149876
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1175/MWR-D-11-00201.1
https://journals.ametsoc.org/view/journals/mwre/141/1/mwr-d-11-00201.1.xml
https://doi.org/10.5194/egusphere-egu2020-23
https://doi.org/10.5281/zenodo.4470023
https://doi.org/10.5281/zenodo.4470023
https://doi.org/10.1088/1361-648X/ab82d2
https://doi.org/10.5194/gmd-2-1-2009
https://gmd.copernicus.org/articles/2/1/2009/


McGibbon, J., Brenowitz, N. D., Watt-Meyer, O., Clark, S., Cheeseman, M., brianhenn, Fuhrer, O., Wicky, T., and oelbert:

VulcanClimateModeling/fv3gfs-wrapper: v0.6.0 GMD release, https://doi.org/10.5281/zenodo.4474598, https://doi.org/10.5281/zenodo.

4474598, 2021a.

McGibbon, J., Brenowitz, N. D., Watt-Meyer, O., Clark, S., Cheeseman, M., Henn, B., Fuhrer, O., Wicky, T., and Elbert, O.:365

VulcanClimateModeling/fv3gfs-wrapper: v0.6.0 GMD release Docker Image, https://doi.org/10.5281/zenodo.4474639, https://doi.org/

10.5281/zenodo.4474639, 2021b.

McGibbon, J., Watt-Meyer, O., Brenowitz, N. D., Clark, S., Kwa, A., Cheeseman, M., Wicky, T., and brianhenn:

VulcanClimateModeling/fv3gfs-util: v0.6.0 GMD release, https://doi.org/10.5281/zenodo.4470011, https://doi.org/10.5281/zenodo.

4470011, 2021c.370

McGibbon, J., Watt-Meyer, O., Yang, F., and Harris, L.: Example 6-hour directory for FV3GFS atmospheric model,

https://doi.org/10.5281/zenodo.4429298, https://doi.org/10.5281/zenodo.4429298, We would like to acknowledge the many contributions

of colleagues at NOAA EMC and GFDL towards the data used to compile this dataset., 2021d.

Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 3.1, https://www.mpi-forum.org/docs/mpi-3.1/

mpi31-report.pdf, 2015.375

Miles, A., jakirkham, Durant, M., Bussonnier, M., Bourbeau, J., Onalan, T., Hamman, J., Patel, Z., Rocklin, M., shikharsg, Abernathey,

R., Moore, J., Schut, V., raphael dussin, de Andrade, E. S., Noyes, C., Jelenak, A., Banihirwe, A., Barnes, C., Sakkis, G., Funke, J.,

Kelleher, J., Jevnik, J., Swaney, J., Rahul, P. S., Saalfeld, S., john, Tran, T., pyup.io bot, and sbalmer: zarr-developers/zarr-python: v2.5.0,

https://doi.org/10.5281/zenodo.4069231, https://doi.org/10.5281/zenodo.4069231, 2020.

Monteiro, J. M., McGibbon, J., and Caballero, R.: sympl (v. 0.4.0) and climt (v. 0.15.3) – towards a flexible framework for build-380

ing model hierarchies in Python, Geoscientific Model Development, 11, 3781–3794, https://doi.org/10.5194/gmd-11-3781-2018, https:

//gmd.copernicus.org/articles/11/3781/2018/, 2018.

OpenMP Architecture Review Board: OpenMP Application Programming Interface Version 5.0, https://www.openmp.org/wp-content/

uploads/OpenMP-API-Specification-5-1.pdf, 2020.

Ott, J., Pritchard, M., Best, N., Linstead, E., Curcic, M., and Baldi, P.: A Fortran-Keras Deep Learning Bridge for Scientific Computing,385

Scientific Programming, 2020, 8888 811, https://doi.org/10.1155/2020/8888811, https://doi.org/10.1155/2020/8888811, 2020.

Peterson, P.: F2PY: a tool for connecting Fortran and Python programs, International Journal of Computational Science and Engineering, 4,

296, https://doi.org/10.1504/ijcse.2009.029165, https://doi.org/10.1504/ijcse.2009.029165, 2009.

Pressel, K. G., Kaul, C. M., Schneider, T., Tan, Z., and Mishra, S.: Large-eddy simulation in an anelastic framework with closed water

and entropy balances, Journal of Advances in Modeling Earth Systems, 7, 1425–1456, https://doi.org/10.1002/2015MS000496, https:390

//agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015MS000496, 2015.

Putman, W. M. and Lin, S.-J.: Finite-volume transport on various cubed-sphere grids, Journal of Computational Physics, 227, 55 – 78,

https://doi.org/https://doi.org/10.1016/j.jcp.2007.07.022, http://www.sciencedirect.com/science/article/pii/S0021999107003105, 2007.

The Pallets Projects: Jinja, https://jinja.palletsprojects.com/en/2.10.x/, 2019.

Watt-Meyer, O., Brenowitz, N. D., Clark, S. K., Henn, B., Kwa, A., McGibbon, J. J., Perkins, W. A., and Bretherton, C. S.: Correct-395

ing weather and climate models by machine learning nudged historical simulations, Earth and Space Science Open Archive, p. 13,

https://doi.org/10.1002/essoar.10505959.1, https://doi.org/10.1002/essoar.10505959.1, 2021.

14

https://doi.org/10.5281/zenodo.4474598
https://doi.org/10.5281/zenodo.4474598
https://doi.org/10.5281/zenodo.4474598
https://doi.org/10.5281/zenodo.4474598
https://doi.org/10.5281/zenodo.4474639
https://doi.org/10.5281/zenodo.4474639
https://doi.org/10.5281/zenodo.4474639
https://doi.org/10.5281/zenodo.4474639
https://doi.org/10.5281/zenodo.4470011
https://doi.org/10.5281/zenodo.4470011
https://doi.org/10.5281/zenodo.4470011
https://doi.org/10.5281/zenodo.4470011
https://doi.org/10.5281/zenodo.4429298
https://doi.org/10.5281/zenodo.4429298
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://doi.org/10.5281/zenodo.4069231
https://doi.org/10.5281/zenodo.4069231
https://doi.org/10.5194/gmd-11-3781-2018
https://gmd.copernicus.org/articles/11/3781/2018/
https://gmd.copernicus.org/articles/11/3781/2018/
https://gmd.copernicus.org/articles/11/3781/2018/
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://doi.org/10.1155/2020/8888811
https://doi.org/10.1155/2020/8888811
https://doi.org/10.1504/ijcse.2009.029165
https://doi.org/10.1504/ijcse.2009.029165
https://doi.org/10.1002/2015MS000496
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015MS000496
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015MS000496
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015MS000496
https://doi.org/https://doi.org/10.1016/j.jcp.2007.07.022
http://www.sciencedirect.com/science/article/pii/S0021999107003105
https://jinja.palletsprojects.com/en/2.10.x/
https://doi.org/10.1002/essoar.10505959.1
https://doi.org/10.1002/essoar.10505959.1


Zhou, L., Lin, S.-J., Chen, J.-H., Harris, L. M., Chen, X., and Rees, S. L.: Toward Convective-Scale Prediction within the Next Generation

Global Prediction System, Bulletin of the American Meteorological Society, 100, 1225 – 1243, https://doi.org/10.1175/BAMS-D-17-

0246.1, https://journals.ametsoc.org/view/journals/bams/100/7/bams-d-17-0246.1.xml, 2019.400

15

https://doi.org/10.1175/BAMS-D-17-0246.1
https://doi.org/10.1175/BAMS-D-17-0246.1
https://doi.org/10.1175/BAMS-D-17-0246.1
https://journals.ametsoc.org/view/journals/bams/100/7/bams-d-17-0246.1.xml

