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Abstract. The use of statistical models to study the impact of weather on crop yield has not ceased to increase. Unfortunately,
this type of application is characterised by datasets with a very limited number of samples (typically one sample per year). In
general, statistical inference uses three datasets: the training dataset to optimise the model parameters, the validation datasets to
select the best model, and the testing dataset to evaluate the model generalisation ability. Splitting the overall database into three
datasets is impossible in crop yield modelling. The leave-one-out cross-validation method or simply Leave-One-Out (LOO) has
been introduced to facilitate statistical modelling when the database is limited. However, the model choice is made using only
the testing dataset, which can be misleading by favouring unnecessarily complex models. The nested cross-validation approach
was introduced in machine learning to avoid this problem by truly utilising three datasets even with limited databases. In this
study, we propose one particular implementation of the nested cross-validation, called the nested leave-two-out cross-validation
method or simply the Leave-Two-Out (LTO), to choose the best model with an optimal model selection (using the validation
dataset) and estimate the true model quality (using the testing dataset). Two applications are considered: Robusta coffee in Cu
M’ gar (Dak Lak, Vietnam) and grain maize over 96 French departments. In both cases, LOO is misleading by choosing too
complex models; LTO indicates that simpler models actually perform better when a reliable generalisation test is considered.
The simple models obtained using the LTO approach have reasonable yield anomaly forecasting skills in both study crops.
This LTO approach can also be used in seasonal forecasting applications. We suggest that the LTO method should become a

standard procedure for statistical crop modelling.

1 Introduction

Many approaches are available to study the impact of climate/weather variables on crop yield. Statistical modelling, which
aims to find relations between a set of explanatory variables and crop yields variability, is a widely used approach (Lobell and
Burke, 2010; Mathieu and Aires, 2016; Gornott and Wechsung, 2016; Kern et al., 2018). This approach has many advantages,
such as identifying crop production sensitivities (Mathieu and Aires, 2018a), complementing field experiments (Gaudio et al.,
2019), and helping in adaptation strategies (lizumi et al., 2013), but it is often complex to understand and to use for several
reasons.

Unfortunately, the crop model is often characterised by datasets with a very limited number of samples. For instance, Prasad

et al. (2006) built a crop yield estimation model with 19 years of yield data. Ceglar et al. (2016) studied the impact of meteoro-
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logical drivers over 26 years on grain maize and winter wheat yield in France. One year of data represents one sample in these
applications, and about 20 samples are small for a data-driven approach. The small sample size issue makes model selection
very challenging. It is not easy to assess the true quality of an obtained model. For example, increasing the model complexity
should increase the model quality. However, it can lead to “overfitting ” if the model is too complex and if we have a limited
information included in the database. Overfitting occurs when the model fits the training dataset artificially well, but it cannot
predict well on unseen data. To avoid this issue, in statistical modelling, the overall database is divided into three datasets:
the training dataset to optimise the model parameters, the validation dataset to select the best model, and the testing dataset to
evaluate the model generalisation ability (Ripley, 1996). Splitting a small number of samples into three datasets is not an easy
task.

Cross-validation (Allen, 1974; Stone, 1974) was introduced as an effective method for both model assessment and model
selection when the data is relatively small. A common type of cross-validation is the Leave-One-Out cross-validation (LOO)
that has been used in many crop models (Kogan et al., 2013; Zhao et al., 2018; Li et al., 2019; Dinh et al., 2022). This approach
relies on two datasets: a training dataset is used to calibrate the model, and a testing dataset is used to assess its quality.
The testing is also used to select the best model, which is not a good practice and introduces difficulties. Since the chosen
model is not independent of the testing dataset, the obtained testing score may be unreliable. This is not a problem if there
are many available samples (e.g., in remote sensing applications). However, a small sample size can cause many issues: the
model can overfit the training dataset; thus, the chosen model is not adequate, and our assessment of its generalisation ability
is false. This mistake is often seen in crop modelling when over-complex models are used with a limited number of samples.
Some regularisation techniques (e.g., information content techniques or dimension reduction techniques) can help to constrain
models toward lower complexity to limit the overfitting problem (Dinh et al., 2022). However, these approaches can become
more technical and more challenging to master from non-statisticians.

To solve the issues of LOO, another more complex approach has been introduced: the nested cross-validation (Stone, 1974),
also known as double cross-validation or k*1-fold cross-validation, is able to use three datasets: training, validation, and testing.
In detail, this approach considers one inner loop cross-validation nested in an outer cross-validation loop. The inner loop is to
select the best model (validation dataset), while the outer loop is to estimate its generalisation score (testing dataset). To our
knowledge, this approach has never been used in statistical crop modelling. This study proposes one particular implementation
of this nested cross-validation (or k*1-fold cross-validation when 1=k-1) called the Leave-Two-Out (LTO). The LTO will be
used here to obtain a reliable assessment of the model generalisation ability, to compare the performances of different predictive
models, and thus to determine the optimal complexity of the statistical crop models. This approach will be tested in two real-
world applications: Robusta coffee in Cu M’ gar (a district of Dak Lak province in Vietnam) from 2000 to 2018 and grain maize
over 96 departments (i.e., administrative units) in France for the 1989-2010 period. The following sections of this study will
(1) introduce the materials and databases used for statistical crop models, (2) describe the role of three datasets in statistical
inference, (3) introduce the two cross-validation approaches, (4) evaluate and select the “best model” by using LOO and LTO
approaches, (5) estimate the Robusta coffee yield anomalies in Cu M’gar (Dak Lak, Vietnam), and (6) assess the seasonal yield

anomaly forecasts for grain maize in France.
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2 Modeling crop yield using machine learning
2.1 Materials
2.1.1 Robusta coffee

Overview

Robusta (Coffea canephora) is among the two most common coffee species (i.e., Robusta and Arabica). About 40 % of
Robusta coffee is produced in the Central Highlands of Vietnam (USDA, 2019; FAO, 2019) due to its adequate conditions
in terms of elevation (200-1500 m), soil type (basalt soil), and climate (an annual average temperature of about 22 °C). In
addition, agricultural practices (e.g., fertilisation, irrigation, shade management, and pruning) are very intense in these coffee
farms (Amarasinghe et al., 2015; Kath et al., 2020). This region includes four main coffee-producing provinces, and each
province is divided into several districts. Here, we focus on Robusta coffee in Cu M’gar, one major coffee-producing district
in the Central Highlands.

A coffee tree is a perennial, which is highly productive for about 30 years (Wintgens, 2004) but can be much longer (more
than 50 years) with good management practices. Mature coffee trees undergo several stages before harvesting, including
the vegetative stage (bud development) and the productive stage (flowering, fruit development, and maturation) (Dinh et al.,
2022). It requires about eight months (May to December) for the vegetative stage and about 9-11 months (January to Septem-
ber/November) from flowering until fruit ripening for Robusta coffee. Although climate during the productive stage is sensitive
to coffee (Craparo et al., 2015b; Kath et al., 2020), it has been shown that a prolonged rainy season favours vegetative growth
and thus increases the potential coffee yield (Dinh et al., 2022). As a result, it is necessary to consider the weather variables
during both vegetative and productive stages when studying the weather impact on coffee yield. This study thus analyses the
weather of 19 months (from May of the previous year to November) preceding the harvest.

Yield database

The Robusta coffee yield data were obtained from the General Statistics Office of Vietnam for the 2000-2018 period
(Nsamp = 19). We focus on Cu M’gar district as it is one major coffee-producing district in Vietnam, but also this district
is most sensitive to weather (Dinh et al., 2022). Our goal is to forecast the weather sensitivity of crop yield.

The long-term trend represents the slow evolution of the crop yield; it often describes the changes in management like
fertilisation or irrigation. Thus, suppressing this trend from the yield time series allows removing the influence of non-weather
related factors and this is the common practice. For Robusta coffee, a simple linear function is used to define the yield trend:
7(t) = yo + « - t, where W is the long-term trend, ¥ is the yield in 2000, and « is the constant annual rate of improvement.
Once the yield trend is defined, the coffee yield anomalies are calculated by removing this trend from the raw yield data. The

Robusta coffee yield for year ¢ is noted as y(¢) and the coffee yield anomaly a(t) (in %) is calculated as:

a(t) = v —y®) 100 [—100,100]. (1)

y(t)
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Figure 1. Grain maize database: (a) the average planted area (in 102 ha), (b) the average production (in 10° tons), (c) the average yield (in
ton-ha~') over 96 French departments; (d) same as (c) but presenting over only ten major grain maize-producing departments. All data are
averaged from 2000-2010.

If a(t) > 0, then the yield in year ¢ is higher than in a regular year, and vice versa. For example, an anomaly of a(t) = —16

implies that the yield for year ¢ is 16 % lower than the annual trend.
2.1.2 Grain maize

95 Overview
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Grain maize (Zea mays L.) is among the most common annual crops in Europe. Our study will focus on French regions—the
leading grain maize producer in Europe (EUROSTAT, 2021). The study area has been improved a lot in agro-management and
irrigation practices after 1960, e.g., irrigation acres was about 50 % at the beginning of the 21%¢ century (Siebert et al., 2015;
Schauberger et al., 2018; Ceglar et al., 2020). Although there is a change in time from sowing to maturity (Olesen et al., 2012),
the average growing season of French grain maize ranges from April to September (Ceglar et al., 2017; Agridcast, 2021). Many
previous studies showed that grain maize yield is sensitive to weather conditions (Ceglar et al., 2016, 2017; Lecerf et al., 2019),
especially during crop growing season. Therefore, we will analyse the weather of the 6-month growing period of grain maize
in France.

Yield database

The French crop data (area, production, and yield) on the regional level (i.e., department which is an administrative unit in
France) were collected from Agreste website (https://agreste.agriculture.gouv.fr; “Statistique agricole annuelle ) for a period
of 22 years (from 1989 to 2010). The data are available for several crops such as soft wheat, durum wheat, maize, oats, etc.
Here we consider an application of grain maize over 96 French departments (Fig. 1). Some specific tests (in Sect. 5) will focus
on ten departments (as presented in Fig. 1(d)) where the average grain maize production is higher than 4 x 10° tons (or the area
is higher than 40 thousand hectares). Other available crop data will be considered in future studies.

Similar to Robusta coffee, the grain maize anomalies are calculated by removing the long-term yield trend. Here, a 10-year

moving average window is used because the trend is slightly more complex than Robusta coffee.
2.1.3 Weather database

The monthly-mean total Precipitation (P) and 2 m Temperature (T) variables were collected for the period 1981-2018 from
the ERAS-Land, i.e., a replay of the land component of ERAS re-analysis of the European Center for Medium-Range Weather
Forecasts (ECMWF) (Hersbach et al., 2018). This database is at a spatial resolution of 0.1° x 0.1° (about 10 km x 10 km in
the Equator). The monthly data are then projected from its original 0.1° x 0.1° regular grid into the crop administrative levels
to match the yield data.

This study considers the 2 x n monthly weather anomaly variables (representing P and T for n months). The number of

months n varies for each crop:

— For Robusta coffee: we evaluated n=19 corresponding to the period from the bud development process to the harvest
season’s peak (Sect. 2.1.1). Thus, 2 x 19 monthly weather data (P and T from May of year (¢ — 1) to November of year
i P]Way(tfl)? ) PDec(tfl)v PJan(t)’ ) PNov(t) and TMay(tfl)’ ) TDec(t71)7 TJan(t)a T TNov(t)) are used as

potential explanatory variables for Robusta coffee yield anomalies.

— For grain maize: six months of growing period (from sowing to harvest) will be studied (Sect. 2.1.2). Thus, n = 6 results

into 2 x 6 weather variables: P and T from April to September (P 4, Paray, -+, Psep and T apr, Tasay, -5 Tsep)-

Weather anomalies could be considered as for crop yield data. However, the climate trend of the 10 to 20 years is relatively

low compared to the inter-annual variations. Thus, the long-term trend can be neglected, and the relative anomalies will be
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estimated based on the long-term average. This average value is computed for each of the n months before the harvest time.
In addition, we applied a 3-month moving average centred on the particular month (instead of the monthly data) to reduce the
variability at the monthly scale. This variability would introduce instabilities in our analysis due to the short database time
length. (It is actually a regularisation technique).

We also analysed other weather variables (not shown), e.g., maximum/minimum temperature, solar radiation. However,
these variables were finally excluded due to several reasons: (1) These variables show relatively low correlations to the crop
yield anomalies. (2) Or they are highly correlated to P and T variables, especially for the case of Robusta coffee. (3) It will be
seen in the following that considering the available yield database size, it is more reasonable to consider a limited number of

explanatory variables to avoid overfitting (see more in Sect. 2.3).
2.2 Statistical yield models

The statistical models intend to measure the impact of weather on crop yield anomalies, which can be noted as: a(t) = f,, (X),
where f,, is the parametric statistical model, w is the model parameters, and X is the set of weather inputs {X; for i =
1, 2,--+, Ninput }- The function f,, can be based on multiple statistical methods depending on the complexity of the application:
linear regression (Prasad et al., 2006; Kern et al., 2018; Lecerf et al., 2019), partial least-squares regression (Ceglar et al., 2016),
random forest (Beillouin et al., 2020), neural network (Mathieu and Aires, 2016, 2018a), or mixed-effects (Mathieu and Aires,
2016).

In this study, two statistical models are considered:

— Linear regression (LIN) is the simplest model and the most frequently used. The relationship between the crop yield

anomalies a and the weather variables X; is formulated as:
a=ag+or- X1+ +an Xn s )

where «; are the regression coefficients. Detailed description of the LIN model can be found, for example, in Dinh et al.

(2022).

— Neural Network (NN) is a non-linear statistical model. The simplest type of NN is the feedforward model (Bishop, 1995;
Schmidhuber, 2015), where there is only one direction—forward—ifrom the input nodes, through the hidden nodes and
to the output nodes. Only one hidden layer with 7, ¢q-0n, neurons is considered in the architecture here. The output crop

yield anomaly a is modelled by the following equation:

Nneuron Ninput
a = E wy X o § wjiXi + bhidden + boutput (3)
j=1 i=1

where w are the weights, b are the NN biases. A detailed description of the NN model (applied for impact models) is

described, for instance, in Mathieu and Aires (2016).
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The least-squares criterion, which measures the discrepancies between the targets and estimated crop yield anomalies, is
used to optimise the model during the calibration process for both LIN and NN models. It is used to obtain the coefficients c;
in Eq. (2) and the NN parameters w in Eq. (3) during the training stage.

Two diagnostics are considered here to measure the quality of the yield anomaly estimations. (1) The correlation COR

(unitless) between the estimated a.s; and observed a,ps yield anomalies. (2) The Root Mean Square Error is defined as: RMSE

= \/ LS4 (aest (1) — aobs(7))2. It includes systematic and random errors of the model. The RMSE unit is the same as

Nsamp

a(t); RMSE=40 represents an anomaly error of 40 %.
2.3 Model selection

To choose the best model, one should first estimate the performance of different models. This difference can be defined by
the model complexity level but also by the number of potential predictors. Various factors control the complexity level of a
statistical model: the model architecture (the number of inputs, the number of parameters or the model types (e.g., linear or
non-linear)) or the training process (e.g., the number of epochs in NN or the loss function). In theory, it is challenging to define
the exact definition of a model complexity: even the number of parameters in the models is only a proxy because a model with
a low number of parameters can be highly complex, e.g., Vapnik—Chervonenkis dimension (Hastie et al., 2009). This study

thus investigates some of the factors that control part of the model complexity:

— Number of inputs: The inputs are variables that are necessary for model execution through algorithms. The inputs are
selected among the potential predictors. We often have a big set of potential predictors (e.g., all-weather variables during
the crop growing season), but we select only some variables from this set as the model inputs. The number of inputs
defines the model complexity: the higher the number of inputs is, the more complex the model is (supposed that other

factors are fixed).

— Model types: Model complexity can be shown in two model types that we presented in Sect. 2.2. For example, with
Ninput iNputs, a simple LIN model requires (nmput + 1) parameters (Eq. (2)), while a feedforward NN model with one
hidden layer and one output requires much more parameters: (Ninput X Mneuron +Nneuron ) +Mneuron +1, Where npcuron
is the number of neurons in the hidden layer. The number of parameters in the model is often used as a proxy for the

model complexity.

In addition to model complexity, the choice and the number of potential predictors is also an important aspect of the model
selection. The potential predictors here refer to all possible variables that can potentially impact the yield. Our study considers
38 weather variables for Robusta coffee and 12 variables for grain maize (Sect. 2.1), but these numbers could be much larger.
For instance, in addition to selected weather variables, we could consider other variables (e.g., water deficit, soil moisture),
agro-climatic indices (e.g., degree-days, free frost period (Mathieu and Aires, 2018b)). Here, we use monthly variables, but
weekly or daily variables could have been considered. Therefore, establishing the list of potential predictors is not fixed in the
model selection: it is a crucial modelling step. The following sections (Sect. 4.1 and 5.1) will show that the number of potential

predictors drives the model quality: having too many potential predictors is dangerous, in particular, if the tools are not right.
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This large number of predictors issue was also identified in previous studies (Ambroise and McLachlan, 2002; Hastie et al.,
2009).

2.4 Opverfitting

When performing the model selection, it is possible to artificially fit better the training datasset. For example, increasing the
model complexity can increase the model quality because a more complex model can fit better a database. However, such a
simple reasoning is dangerous: the model complexity can be too high compared to the limited information included in the
training database. This limitation leads to the overfitting (or overtraining) problem, i.e., the model fits the training dataset
artificially well but it cannot predict well data not present in the training dataset. Thus, using this type of model is not reliable.
There is no general rule determining the model complexity based on the number of samples. An empirical tool needs to be used
to check the adequacy of the model. In the following, by studying the sensitivity of the model quality to different complexity

levels, we want to determine the optimal statistical crop model that truly estimates the yield anomalies as best as possible.
2.5 Training, validation and testing datasets

One of the main challenges in statistical inference is that the model is set up using a samples database, but it must perform
well on new—opreviously unseen—samples. For that purpose, the overall database 53 needs to be divided into three datasets:

B= BTrain + BVal + BTest (Rlpley’ 1996)
— The training dataset 57,.,;,, is used to calibrate the model parameters once the model structures has been chosen.

— The validation dataset By ,; is a sample of data held back from the training dataset, which is used to find the best
model. For instance, it helps tune the model hyper-parameters: choose the more adequate inputs (i.e., feature selection),

determine the number of predictors, find the best model type (LIN, random forest, NN), determine some training choices.

— The testing dataset Bp.; is held back from the training and the validation datasets to estimate the true model generali-

sation ability.

The process of partitioning B will be called in the following as the “folding” process. For example, the folding choice can
be chosen using Bryqin = 50 %, By ai = 25 %, and Bres = 25 %.

The need for the validation dataset is not always understood. The training dataset is used to fit the parameters; the testing
dataset is often used to estimate the model quality but also to choose the best model (as in the LOO approach). However,
using only this testing dataset without a validation dataset brings a risk of choosing the model that best suits to this particular
testing dataset. This issue is a special kind of overfitting, which is not on the model calibration but on the model choice. If the
database is big, many samples in the testing dataset will be representative enough; therefore, choosing the best model based on
it is acceptable. If the database is small (as in crop modelling tasks), the model selection can be too specific for the particular
samples of the testing dataset; thus, an overfitting problem can appear (Sect. 2.4). It will be seen in the following that using

only the testing dataset instead of the testing and validation datasets can be misleading. We avoid this difficulty by having a
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dataset to calibrate the model (training) and another one to choose the best model (validation). The truly independent testing

dataset is then used to measure the model generalisation ability to process truly unseen data.

3 Measuring the quality of statistical yield models

With a limited number of samples, the training process may need every possible data point to determine model parameters
(Kuhn and Johnson, 2013). It is thus impossible to keep a significant percentage of the database for the validation and the testing
datasets. To choose an adequate model and avoid overfitting, a robust way to measure the generalisation ability is necessary,
using as few samples as possible. Cross-validation (Allen, 1974; Stone, 1974) was introduced as an effective method for both

model selection and model assessment when having a small number of samples.
3.1 Traditional Leave-One-Out

The LOO method is one common type of cross-validation in which the model uses only two datasets: one to train, another
to choose the model and evaluate the result. The main idea of LOO is that given 144y, available samples in B; the model
is calibrated 744y, times using (nmmp — 1) samples in the training dataset Br,4;, (leaving one sample out). The resulting
model is then tested on the left sample (Bres:). There are ngqm)p testing score estimations, one for each sample. In this case,
B = Bryrain + Brest and By, is empty. The averaging of these n54m, testing scores is expected to be a robust assessment of
the model ability to generalise on new samples. However, since no validation dataset is used to select the best model, the choice
of the best model may be biased towards this testing dataset (Cawley and Talbot, 2010). The chosen model is not independent

of the testing dataset, and thus, the obtained testing score is not reliable.
3.2 Proposed Leave-Two-Out

LOO is very useful in many cases (Kogan et al., 2013; Li et al., 2019; Dinh et al., 2022) but as described in Sect. 2.5, the overall
database needs to be divided into three datasets. A LTO approach, adapted from the nested cross-validation is then proposed in

the following.
3.2.1 Folding scheme

A folding process is used to generate the training, validation, and testing scores. Each fold divides the database B into a training
dataset Bryqin Of (Nsamp — 2) samples, a validation By, and a testing B, datasets with one sample each. Two samples are
considered out of the training dataset instead of one in the LOO procedure. This folding process is presented in Fig. 2, with the

number of folds 1751 = Nsamp X (nmmp —1). This is why this approach is also called k*1-fold cross-validation when I1=k-1.
3.2.2 Validation and testing scores

Figure 3 illustrates how the LTO evaluation procedure is conducted. In part (al), the number of candidate models 1,04

(represented in the horizontal axis) is defined with a fixed complexity A of the model. For instance, for the LIN3 model
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Figure 2. Folding strategy for the LTO procedure with 1 so1q = Nsamp X (Nsamp — 1) folds (corresponding to the n f4iq rows). In each fold,

there are one testing, one validation, and (nsqmp — 2) training samples.
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Figure 3. Illustration of the LTO procedure to estimate a model quality for a fixed complexity level A with n,,,,4 candidate models (horizontal
axis). (a) The model errors obtained for each candidate model and each fold of the database B (vertical axes); (b) The obtained RMSE values

for the validation and testing datasets. (See detailed description in Sect. 3.2.)
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Figure 4. Schematic illustration of validation and testing RMSE values of predicted yield anomalies for an increasing model complexity
obtained from the LTO procedure. For a fixed complexity level A, two RMSE values are obtained: V) for validation and 7T’ for testing

datasets.

(i.e., LIN model with three inputs) with 12 potential predictors, we obtain 7,,,q4 = Cj, = 220 models. These models are
used to perform the yield anomaly estimations. In the vertical axis, for each of the 7n44m, choices of the testing value
idest € {1, 2, -+, Ngamp ), there are (ngqmp — 1) possible validation datasets, and thus training datasets. These (7sqmp — 1)
training datasets correspond each to the training of the models in the horizontal axis, i.e., to fit model parameters. So (15gmp—1)
validation and (n54mp — 1) testing estimations are obtained for each one of the n,,,,q models. The averaged validation score is
used to choose the best model bm; fori =1, 2, ---, ngqmyp; this is the role of the validation dataset.

Each choice of the testing value (each id;.s;) corresponds to a selected best model bmn; and two distributions (i.e., Probability
Density Functions (PDFs)) for (nsqmp — 1) validation errors and (nsqmp — 1) testing errors, shown in Fig. 3(a2). These two
distributions result in a validation score (blue dot) and a testing score (red dot). The shape of these distributions give the average
score and its uncertainty.

Finally, the 154, testing choices give nq.m, validation and 71444y, testing scores that form a validation PDF in blue line, a
testing PDF in red line, and thus the two scores V), and T} in Fig. 3(b).

A pseudo-code is provided in “Appendix A ” to facilitate the implementation of the LTO procedure in any language.
3.2.3 Generalisation ability versus model selection

The process represented in Fig. 3 is used to obtain the validation (V) and testing (7)) scores from the LTO approach for
a given model complexity A. Here, the model complexity is considered as a representative example of model selection. A
different complexity level (different \) results into different V) and T values. The V) and T} evolution curves obtained

for validation and testing RMSE values of yield anomalies for an increasing model complexity are presented in Fig. 4. For

11
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simplicity, only validation and testing scores will be discussed since the training error should consistently decrease with model
complexity. When increasing the complexity level (A > )), the validation error is smaller (V), < V) but the testing error is
bigger (T\+ > T)); this is typical from overfitting (Sect. 2.4). In the following applications (Sect. 4 and 5), we will study these
evolution curves for different models with various choices in order to identify the appropriate yield models for Robusta coffee

and grain maize.

4 Robusta coffee in Cu M’gar

The first application concerns the statistical yield modelling of Robusta coffee in Cu M’ gar (Dak Lak, Vietnam). The goal is to
define a model that can predict the yield anomalies and then estimate its true applicability measured by a reliable generalisation
score. We first assess several models (with varying number of inputs or number of potential predictors) to find the appropriate
model choices using LOO (Sect. 3.1) and LTO (Sect. 3.2) approaches.

4.1 Yield model selection

We first investigated the model choice by varying the number of inputs. In this example, the number of potential predictors is
fixed to 18 (n,,.=18). The number of inputs is chosen from two to six, as shown on the horizontal axis in Fig. 5. We used the
LOO and LTO procedures to compute the corresponding training, validation, and testing RMSE values. The LOO procedure (in
Fig. 5(a)) prefers a model with more inputs: both training and testing RMSE values decrease with the increase of the number
of inputs. In the LTO case, the training and validation RMSE values decrease with the model complexity, similar to the training
and testing errors in the LOO procedure. This similarity is because the LTO validation dataset has the same role as the LOO
testing dataset: to find the best model! However, the testing errors do increase with the increase of the number of inputs (i.e.,
from three to six, shown in Fig. 5(b)). The LTO procedure indicates that a simpler model—with only three inputs—is more
optimal.

Figure 6 shows the RMSE values of the predicted Robusta coffee yield anomalies for the LIN models, with the number
of potential predictors ranging from 5 to 38 (on the horizontal axis). These values are computed using the LOO and LTO
procedures for the training, validation, and testing datasets. Several models have been tested; we presented here a particular
example of LINS5 model, which is the linear regression model with five inputs. These inputs are selected among the considered
potential predictors. For instance, for LINS model with six potential predictors, LOO and LTO aim at choosing five inputs
among {Pnou(t—1)> PNov(t)s Tazar(t)s Taan(t)> Taray(t)s Poct(t—1)}-

The LOO procedure suggests that the more potential predictors the model have, the better results are. Both training and
testing RMSE values decrease gradually (Fig. 6(a)) with the increase of the number of potential predictors for LINS models.
On the other hand, the same behaviour is observed for the LTO procedure in Figs. 6(b): the testing errors show an opposite trend
to the training/validation errors and gradually increase with the number of potential predictors. The LTO procedure indicates
that a simpler model with fewer potential predictors is more adequate. This conclusion makes sense since it is inappropriate

to use a very complex model (as the LOO model choice) when having only 19 samples.

12



305

25

20

RMSE (%)

——LOO - Testing Error

L (a)
~+LOO - Training Error

Number of inputs

20 ~=-LTO - Training Error

——LTO - Testing Error
-—LTO - Validation Error

(b)

15+ 1
10" 1
T, .
e = T e s = o o
R Tttt - === ——— -+
5 | B T e O ?
o : : :
2 3 4 5 ©

Number of inputs

Figure 5. The training/validation/testing RMSE values of the predicted coffee yield anomalies, using different LIN models (with 18 potential
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Figure 6. The training/validation/testing RMSE values of the predicted coffee yield anomalies, using LINS models by increasing the number

of potential predictors, in Cu M’gar (Dak Lak, Vietnam): (a) is induced from LOO procedure, (b) is from LTO procedure.

The LOO procedure is actually misleading because it suffers from overfitting: it chooses the best model and assesses the

generalisation ability on the same testing dataset. This overfitting issue is suppressed in the LTO procedure since we chose the

model on the validation dataset and assessed its generalisation score on an independent testing dataset.

In short, considering the limited information in the available database—that is used to train, select the model, and evaluate

its quality—it is not possible to use more than a very simple and limited model. Therefore, for this 19-sample coffee yield
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modelling case, using a simple LIN model is better than a complex one, and it will be illusory to think that complex plant

relations can be inferred from such a limited number of samples.
4.2 Yield anomaly estimation

The previous section shows that the LTO procedure allows us to choose a reasonable model, simple enough, with fewer inputs
and potential predictors. Thus, the crop yield estimations of the LTO method will be assessed here to see how good the selected
model (LIN3 model with three predictors) is. The final model includes {Pyoy(¢t—1)> Pnou(t)s Tarar(s)} and these selected
variables coincide with the key moments of Robusta coffee. For example, there is the need for a dry period for the buds to
develop into dormancy at the end of the development stage, i.€., Nov(t-1). Therefore, P4, (:—1) impacts directly the buds, thus
the potential yield. Similarly, the fruit maturation stage (Nov(t)) benefits from weather conditions with less precipitation. At
the beginning of the fruit development period (Mar(t)), too low temperature slows maturation rate to the detriment of yield,

while the higher temperature is beneficial.
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Figure 7. The observed (solid line) and LTO estimated (dashed line) coffee yield anomalies time series in Cu M’gar (Dak Lak, Vietnam).

Figure 7 presents the estimated yield anomalies time series for Robusta coffee in Cu M’gar from 2000 to 2018. The esti-
mation (a.s; in the dashed line) describes quite well the observations (a.s in the solid line) with a correlation of 0.57. With
precipitation and temperature variables, the selected model is able to identify many extreme years (e.g., 2005-2009, 2010,
2011) or a decreasing trend from 2011 to 2015. Also, the correlation score means that the model can explain more than 30 %
(0.57?) of the variation in coffee yield anomalies, which is in agreement, for instance, with Dinh et al. (2022). This value
is reasonable as the weather is among several factors (e.g., agricultural practices, diseases, irrigation) affecting coffee yield.

Climate could potentially explain a higher percentage of variability, with a more complex model. However, for that, we would
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need a longer historical record. It is possible to apply the resulting statistical crop yield model to future climate simulations
and then study the impact of climate change on coffee (Bunn et al., 2015; Craparo et al., 2015a; Laderach et al., 2017). This

would be the subject of a forthcoming study.

5 Grain maize over France

This application considers several aspects of grain maize over France. First, the sensitivity of the forecasting quality to the
model selection is studied, using the LOO and LTO approaches, over Bas-Rhin and Landes—the major grain maize-producing
departments and all 96 departments in France. Then, the forecasting scores are investigated over ten major grain maize-

producing departments.
5.1 Yield model selection - Focus on Bas-Rhin and Landes

This section aims to define an appropriate statistical model for grain maize using 22 years of yield data. This test is done over
Bas-Rhin and Landes (i.e., two major grain maize-producing departments in France). As shown in Sect. 4.1, the LOO approach
is misleading in choosing too complex models; we focus here on the LTO results for different models with various selections:

number of inputs, model types, number of neurons in hidden layer, and number of potential predictors.

Bas-Rhin Landes
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Figure 8. The training/validation/testing RMSE values of the predicted grain maize yield anomalies, using different LIN models (with 12

potential predictors) by increasing the number of inputs, in (a) Bas-Rhin and (b) Landes.

Similar to Robusta coffee case (Sect. 4.1), we fixed the number of potential predictors n,,. = 12 and gradually increased the
number of inputs from two to six in the horizontal axis of Fig. 8. In both Bas-Rhin and Landes examples, the LTO procedure
shows a similar behaviour as previous examples (Sect. 4.1): the validation/training errors decrease gradually with the number
of inputs, while the testing errors show an opposite trend. This behaviour suggests that a simple model (e.g., LIN3 for both

Bas-Rhin and Landes) is more adequate.
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Figure 9. The training/validation/testing RMSE values of the predicted grain maize yield anomalies, using different NN models with various

choices, in Bas-Rhin (France): (a) NN models (with npre = 12 and nneuron = 7) by increasing the number of inputs, (b) NN3 models (with

npre = 4) by increasing the number of neurons in the hidden layer.

More complex models were tested in Fig. 9: (a) NN models (with 12 potential predictors and seven neurons in the hidden

layer) by increasing the number of inputs, (b) NN3 models (with four potential predictors) by increasing the number of neurons

in the hidden layer. The impact of overfitting (Sect. 2.3) is noticeable when the model is too complex. For instance, in both

cases (Fig. 9), the training errors get smaller—close to O—for more inputs or more neurons in the hidden layer, as expected.

However, the testing and validation errors show large fluctuations when increasing the model complexity. Same results (not

shown) are obtained for NN3 models with n potential predictors, where n = 3, 7, 12. Thus, the NN models are unreliable due

to the limited number of samples to train a non-linear model.
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Figure 10. The training/validation/testing RMSE values of the predicted grain maize yield anomalies, using different models by increasing

the number of potential predictors, in Bas-Rhin (France): (a) LIN3 and (b) NN3 (with nneuron = 7) models.
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We also tested other examples with LIN3 and NN3 models (Fig. 10) to illustrate the cases where model types and number
of potential predictors affect the model quality. Figure 10 describes the RMSE values of the predicted grain maize yield
anomalies for three datasets (training, validation, and testing) of the LTO procedure. The results of LIN3 models are presented
in Fig. 10(a), and NN3 models (with seven neurons in the hidden layer) are in Fig. 10(b), with a different number of potential
predictors ranging from 3 to 12 in the horizontal axis. The same behaviours are observed: the validation/training errors decrease,
while the testing errors increase with the number of potential predictors. Also, the NN3 models show much higher testing and
validation RMSE values compared to the LIN3 models. Again, we can conclude—in this grain maize application—that a

simpler model will be more beneficial than the complex one.
5.2 Reliability model assessment

In this section, a statistical yield model is applied first over 96 French departments to assess the true model quality. Then, we
will focus on ten major departments to assess how the selected models perform for yield anomaly predictions.

Figure 11 shows the true testing RMSE maps of predicted grain maize yield anomalies in France. Here, the testing errors
induced from the LTO procedure are used on the models chosen by the LOO and LTO approaches. In other words, both
methods (LOO and LTO) can be considered to identify optimal crop models, but only the LTO method is used (as a reliable
tool) to estimate the model generalisation ability. For example, when considering only LIN3 models, LOO chooses models
with 12 potential predictors, while LTO chooses three. From these choices, the true model generalisation scores (i.e., testing
errors) are estimated using the LTO approach, shown in the RMSE maps of Figs. 11(al) and (bl). Another example focuses on
LINS models (presented in Figs. 11(a2) and (b2)). The true errors obtained from the LOO choice are clearly higher than those
from the LTO choice for LIN3 models. For instance, the testing RMSE values range from 10 % to 18 % in many departments
in Fig. 11(al), while these values are often lower than 10 % in Fig. 11(b1). This difference shows that the LOO approach
under-estimates these true errors, as seen in Fig. 11(al). Thus, the model choice of the LOO approach is misleading. For more
complex models like LINS models—that is prefered by the LOO choice—in the second row of Fig. 11, the higher errors are
observed, especially for LOO model errors of many northern departments with up to 22 % of RMSE (Fig. 11(a2)). This grain
maize application confirms the benefit of LTO to select and assess the true quality of statistical yield models, while LOO is
misleading by under-estimating the true errors of its selected models. A simple LIN3 model with three potential predictors is
adequate for this application considering the limited amount of data.

We now analyse how good the LTO testing estimations are compared to the observations over ten major grain maize-
producing departments (as shown in Fig. 1(d)). Figure 12 presents the boxplots of residuals for these departments, which are the
differences between the observed and estimated yield anomalies (Residual=a,ps — @, in %). The medians of the residuals lie
near zero. It means that the selected models can predict the yield anomalies with acceptable coverage and precision. Although
there are some extreme values (Lot-et-Garonne) and some outliers, the interquartile, which ranges from about -8 % to 8 %,

shows slight differences between the observations and estimations over study departments.
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Figure 11. The true testing RMSE maps of predicted grain maize yield anomalies in France for LOO (first column) and LTO (second column)

approaches, induced from two LIN models with a different number of inputs: LIN3 (first row) and LINS5 (second row).

5.3 Seasonal yield forecasting

The LTO approach is helpful for selecting an adequate model with better forecasting. Here, the model chosen by the LTO pro-
cedure is tested for seasonal forecasting, from the sowing time (April) to the forecasting months (i.e., from June to September):
all-weather variables (including P and T) from April to June can be selected for the June forecasting. Table 1 represents the
correlations between the observed and estimated yield anomalies of the forecasts from June to September. The quality of the

seasonal forecasting models gradually increases when approaching the harvest because more information is provided. With
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Figure 12. Boxplots of residuals (the difference between the observed and estimated yield anomalies) for ten major grain maize-producing
departments: red horizontal bars are medians, boxes show the 25th-75th percentiles, error bars depict the minimum and maximum values,

and red + signs are suspected outliers.

the weather information at the beginning of the season (April, May, and June), the June forecasting model obtains an average
correlation of 0.35 between the observations and estimations. This score is significantly improved when adding information
of July (correlation of 0.51). This improvement means that the weather in July strongly influences grain maize yields. The
improvement from July to August is much less than from June to July, with an average increase of 0.01 and 0.16, respectively.
No information is added in the September forecasting model since it coincides with the harvest time. In other words, the final
model should consider only variables from April to August. As in our case, statistical model selects {T j.;, Paray, Papr} as the
final inputs for grain maize in the eatern region (Bas-Rhin, Haut-Rhin); {T 7y;, P jui, T apr} for the southern region (e.g., Lan-
des, Pyrénées-Atlantiques, Gers); and {P 7., P apr, Pjun or T sy} for the central part (Vendée, Charente-Maritime, Vienne). It
is reasonable to have different inputs for different regions (or even departments) due to their distinct environmental conditions.
In general, weather variables in July—the flowering period—are among the most influential variables. During this time, a high
temperature affects the photosynthesis process, thus reducing the potential yield; in contrast, positive precipitation anomalies
are preferable (Ceglar et al., 2016; Mathieu and Aires, 2018b). Precipitations in April and May also show significant impacts
on grain maize as a water deficit during this vegetative stage decreases plant height (Cakir, 2004).

In addition, Fig. 13 shows time series plots of the yield anomaly observations and estimations for different forecasting
months in Landes (France). In this case, the June forecasting results show a high correlation with the observed yield anomalies
(0.63). This score slightly increases when approaching the harvest. It also indicates that the weather can explain more than 40 %

(0.67% = 44.89 %) of variations in grain maize yield anomalies in this region, which is in line with other crop studies (Ray
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Forecasting months

Departments
June July August September

Bas-Rhin 0.46 0.47 0.47 0.47
Haut-Rhin 0.35 0.53 0.53 0.53
Landes 0.63 0.64 0.66 0.67
Lot-et-Garonne 0.02 0.22 0.22 0.29
Pyrénées-Atlantiques 0.34 0.60 0.60 0.60
Gers 0.33 0.61 0.60 043
Vendée 0.63 0.63 0.63 0.63
Charente-Maritime 0.21 0.52 0.53 0.62
Vienne 0.39 0.40 0.40 0.40
Ain 0.17 0.52 0.52 0.52
Average 0.35 0.51 0.52 0.52

Table 1. The correlation between the observed and estimated yield anomalies for different forecasting months (from June to September),

over ten major grain maize-producing departments.
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Figure 13. The observed (aops) and the estimated yield anomalies time series, for different forecasting months from June to September (e.g.,

a.jun means June forecasting), for grain maize in Landes (France).
et al., 2015; Ceglar et al., 2017). However, the forecasting models cannot predict all the extremes (e.g., negative yield anomaly

405 in 1990) that are probably influenced by the climate extremes (Hawkins et al., 2013; Ceglar et al., 2016). The statistical models

could be improved by adding the indices that focus on extreme weather events.
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6 Conclusions and perspectives

Crop yield modelling is very useful in agriculture as it can help increase the yield, improve the production quality, and minimise
the impact of adverse conditions. Statistical models are among the most used approaches with many advantages. The main
difficulty in this context is the limitation of the available crop databases to calibrate such statistical models. Applications
typically rely on only two or three decades of data. This small sample size issue directly impacts the complexity level that
can be used in the statistical model: a model too complex cannot be fit with such limited data, and assessing the true model
quality is also challenging. In practice, statistical inference requires three datasets: one for calibrating the model, a second one
for choosing the right model (or tuning the model hyper-parameters), and another for assessing the true model generalisation
skills. Dividing a very small database into such three datasets is very difficult.

The LOO method has been used as a cross-validation tool to calibrate, select, and assess the model (Kogan et al., 2013; Zhao
et al., 2018; Dinh et al., 2022). It was shown in this paper that LOO is highly misleading because it uses only one dataset to
choose the best model and estimate its generalisation skills simultaneously. This is a true problem as LOO is one of the main
statistical tools to obtain crop yield models. This study proposes a particular form of nested cross-validation approach that
we call a LTO method. This method uses a complex folding scheme to estimate independent training, validation, and testing
scores. In contrast to LOO, LTO shows that only very simple models can be used when the database is limited in size. The LTO
implementation proposed here is very general and can be applied to any statistical crop modelling application.

Two applications have been considered. The first one concerns the coffee yield modelling over a major Robusta coffee-
producing district in Vietnam. It was shown that considering the available historical yield record, we can only set up a statistical
model that explains about 30 % of the coffee yield anomaly variability. The remaining variability is due to non-climatic factors
(agricultural practices, diseases, or political and social context). It also could come from climate; however, the model would
require much more samples to go into deeper details of the climate-crop yield relationship. In addition, explaining a third of the
coffee yield variability is in line with the literature (Ray et al., 2015; Craparo et al., 2015b; Dinh et al., 2022). LTO was able to
identify the suitable model trained on the historical record and estimate the true model ability to predict yield on independent
years. The final model includes {Pxoy(t—1)> PNov(t)s Tarar(t) }» Which corresponds to the key moments of Robusta coffee: the
end of the bud development, the fruit maturation, and the beginning of the fruit development, respectively.

The second application is related to grain maize over France. The LTO was used here to choose between simple linear models
and more complex neural network models. Our findings also show that LOO was misleading in overestimating the testing
scores. LTO indicated that a simple linear model should be used and estimated the model generalisation ability correctly. This
approach can also be helpful in seasonal forecasting applications (during the growing and the beginning of harvest seasons).
In this application, the weather can explain more than 40 % of the yield anomaly variability, which is a reasonable score (Ray
etal., 2015; Ceglar et al., 2017). This score can vary depending on study regions because some regions are more sensitive to the
climate than others. Generally, grain maize yield anomalies are mainly influenced by weather variables during the flowering

period (July) and the early season (April).
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In the future, the mixed-effects model can be considered instead of a straightforward statistical model. This approach—which
intends to use samples in several regions (e.g., gathering samples into groups) to compensate for the lack of historical
data—could help us obtain more complex crop models (Mathieu and Aires, 2016). Such a mixed-effect could benefit from
the LTO scheme. In terms of applications, the crop models that we derived here could be used on climate simulations (from an
ensemble of climate models for the next 50 years) to investigate the crop yield sensitivity to climate change. Other crops will
be investigated, over France (e.g., wheat, oats, sunflower (Ceglar et al., 2016; Schauberger et al., 2018; Ceglar et al., 2020),
over Europe (e.g., wheat, grain maize, barley (Lecerf et al., 2019), or globally (e.g., coffee (Bunn et al., 2015)). Furthermore,
statistical crop models should benefit the definition of adaptation and mitigation strategies. For instance, it is expected that the

climate runs could help us identify the change in optimality for the crop culture in the world.

Code availability. The Matlab code used to run an example of the leave-two-out method is available at the following Zenodo link for the

revision process of GMD: https://zenodo.org/record/5159363 (Anh and Filipe, 2021).

Data availability. The coffee data were provided by Vietnam’s General Statistics Office (GSO) for the 2000-2018 period. These data are
available from GSO on reasonable request. For any inquiries, please send an email to banbientap @gso.gov.vn. The data on French grain maize
(and other French crops) are available at http://agreste.agriculture.gouv.fr from 1989 on. In addition, the weather data, i.e., ERA5-Land data,

can be downloaded from https://cds.climate.copernicus.eu (last access: 22 Apr 2021).

Appendix A: Appendix

Nsamp = number of samples; S%years
npre = number of potential predictors;
Nmod = number of models;

Nfolg = number of folds of the dataset;
Score(2,NfoldsMmod) i srepresenting RMSE or COR; 2 for [Test,Vall;
bm = best model € {1, - ,Nmod};
$Step 1: Build scores for each fold, each model
for inp = 1 to ngfed
$Define the folding process
Test = 1 sample € {1, ,nsamp};
Val = 1 sample € {1,---,nsamp} — Test;
Learn = {1,---,nsamp} — Test - Val;
for imod = 1 to Mmod

$Train models

model = train(model, Learn);
Score(l, inp,imod) = RMSE (model, Test);
Score (2, inp, imod) = RMSE (model, Val);
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end
end

%$Step 2: Choose best model for all folds; estimate its score

for isamp = 1 to Nsamp
Meany 4 = mean (Score(2,nyfoq{isamp}, :)); (1,1, Nmod)
ibm(isamp) = argmin(Meanval);
Scorerest (1samp) l= mean (Score (1, ngfoq{isamp}, ibm(isamp))); Test score
Scorey g, (isamp) = mean (Score (2,nyfoq{isamp}, ibm(isamp))); Val score
end

FinalScoreresy = mean (Scorerest)

FinalScorey 4, = mean (Scoreyq;)
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