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Abstract. This paper presents a three-dimensional variational (3DVAR) data30

assimilation (DA) system for aerosol optical properties, including aerosol optical

thickness (AOT) retrievals and lidar-based aerosol profiles, which was developed for the

Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) within the

Weather Research and Forecasting model coupled to Chemistry (WRF-Chem) model.

For computational efficiency, 32 model variables in the MOSAIC_4bin scheme are35

lumped into 20 aerosol state variables that are representative of mass concentrations in

the DA system. To directly assimilate aerosol optical properties, an observation operator

based on the Mie scattering theory was employed, which was obtained by simplifying the

optical module in WRF-Chem. The tangent linear (TL) and adjoint (AD) operators were

then established and passed the TL/AD sensitivity test. The Himawari-8 derived AOT40

data were assimilated to validate the system and investigate the effects of assimilation on

both AOT and PM2.5 simulations. Two comparative experiments were performed with a

cycle of 24 h from November 23 to 29, 2018, during which a heavy air pollution event

occurred in North China. The DA performances of the model simulation were evaluated

against independent aerosol observations, including the Aerosol Robotic Network45

(AERONET) AOT and surface PM2.5 measurements. The results show that Himawari-8

AOT assimilation can significantly improve model AOT analyses and forecasts.

Generally, the control experiments without assimilation seriously underestimated AOTs

compared with observed values and were therefore unable to describe real aerosol

pollution. The analysis fields closer to observations improved AOT simulations,50

indicating that the system successfully assimilated AOT observations into the model. In

terms of statistical metrics, assimilating Himawari-8 AOTs only limitedly improved

PM2.5 analyses in the inner simulation domain (D02); however, the positive effect can
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last for over 24 h. Assimilation effectively enlarged the underestimated PM2.5

concentrations to be closer to the real distribution in North China, which is of great value55

for studying heavy air pollution events.

Key words: Aerosol optical properties; Data assimilation; WRF-Chem; 3DVAR; PM2.5

forecasts

1. Introduction

Atmospheric aerosols have considerable impacts on weather, climate, and human health60

(Menon et al., 2002; Qian et al., 2009; Gao et al., 2015). They are involved in many

physical and chemical processes in the atmosphere, such as directly scattering and

absorbing solar radiation, sources of cloud condensation nuclei, and air pollution (Pöschl,

2005; Gao et al., 2015; Chen et al., 2019). Conventional observations such as surface

mass concentration measurements play an important role in aerosol analysis and65

monitoring. For instance, China National Environmental Monitoring Centre (CNEMC,

http://www.cnemc.cn/en/) has established a nationwide monitoring network consisting of

more than 1500 stations since 2013 to provide near-time data of pollutants, including

PM2.5, PM10, SO2, NO2, CO, and O3. However, conventional observations alone are

insufficient to describe three-dimensional aerosol distribution in detail, because70

monitoring stations are mostly located in urban areas and aerosol profiles, which are

important for studying aerosol transport, are scarce. Light extinction is an inherent

property of aerosols, and different aerosol particles have different extinctions, so optical

observations are utilized to study aerosols. Compared with conventional observations,

Remote sensing optical properties can cover a much larger domain (Kaufman et al., 2002)75
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and provide detailed aerosol profiles (Young and Vaughan, 2009), which are bound to

extend the aerosol study. Furthermore, with the development of remote sensing

technology, more aerosol optical properties have become available. For example,

Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical thickness

(AOT) data have been widely used (Liu et al., 2011; Schwartz et al., 2012; Saide et al.,80

2013), Aerosol Robotic Network (AERONET; http://aeronet.gsfc.nasa.gov/) (Holben et

al., 1998) AOT observations have been used for aerosol analyses (Rubin et al., 2017; Dai

et al., 2019), and AOT retrievals from the Japanese Himawari-8, a next-generation

geostationary meteorological satellite, have been operationally used since 2015

(Sekiyama et al., 2016). Additionally, aerosol extinction or backscattering coefficient85

detected by ground-based lidar (Wang et al., 2014; Cheng et al., 2019) or space-borne

lidar such as Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation

(CALIPSO) has also been employed to analyze aerosol profiles (Sekiyama et al., 2010).

Besides, numerical simulations conducted by atmospheric chemistry models or air

quality models have increasingly played an essential role in aerosol analysis and90

prediction. Significant progress has been achieved in recent years; however, accurate

aerosol modeling remains challenging given the large uncertainties associated with

aerosol emissions, initial conditions, and complex interactions with meteorological

processes. Solving these uncertainties is of great significance for improving aerosol

modeling. Data assimilation (DA), a statistically optimal approach combining95

observations with numerical model outputs, can reduce uncertainties in the initial aerosol

fields. Chemical DA, especially aerosol DA, has gradually developed to improve the

prediction of air quality in recent years. In early studies of aerosol DA, the optimal

interpolation (OI) technique was employed to assimilate the total mass concentrations of
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PM2.5 or PM10 using a control variable scheme (Tombette et al., 2009). The variational100

algorithm was also employed in some studies. Niu et al. (2008) used the three-

dimensional variational (3DVAR) technique to assimilate dust aerosol observations

based on one control variable and obtained a positive assimilation result. With an

understanding of the aerosol chemical mechanism, as well as the improvement of

computing performance, multi-variable aerosol DA studies were conducted, which105

mainly focused on the development of the 3DVAR technique and Coupled Chemistry

Meteorology Model (CCMM). For example, the open-source Grid-point Statistical

Interpolation (GSI) tool presented by National Centers for Environmental Prediction

(NCEP) (Wu et al., 2002; Kleist et al., 2009) has been widely applied to aerosol DA

(Pagowski et al., 2010; Liu et al., 2011; Jiang et al., 2013; Feng et al., 2018；Pang et al.,110

2018). The GSI tool was preliminary developed for the Goddard Chemistry Aerosol

Radiation and Transport (GOCART) aerosol scheme (Chin et al., 2000) using the

3DVAR algorithm. To overcome the systematic underestimation of the GOCART

scheme in the assimilation context, researchers developed an aerosol DA system based

on the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) aerosol115

scheme (Li et al., 2013; Zang et al., 2016; Wang et al., 2020; Liang et al., 2020). For

instance, Li et al. (2013) lumped eight aerosol species within MOSAIC into five control

variables and then constructed a 3DVAR DA system to assimilate PM2.5 mass

concentrations, and the results showed that DA has a beneficial effect on both the initial

field and PM2.5 forecasts within a 24 h period. Although the four-dimensional variational120

(4DVAR) technique has been extensively used in operations (Gauthier at al., 2007;

Benedetti et al., 2019), and also been employed to assimilate atmospheric chemical

compositions such as O3, SO2, and CO based on the simple offline chemical transport
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model (CTM) (Eibern and Schmidt, 1999; Elbern and Schmidt, 2001), it is greatly

challenging to develop a 4DVAR DA system coupled with the sophisticated aerosol125

model such as MOSAIC because of the high computational cost and complex adjoint

model. Consequently, the 3DVAR algorithm is still commonly used for aerosol DA.

As mentioned above, optical properties have great potential for studying aerosols, so it is

natural to incorporate them into models via assimilation. The key issue of directly

assimilating aerosol optical properties is the establishment of an observation operator and130

its adjoint for variational methods. Liu et al. (2011) added the forward AOT operator and

its adjoint module within the Community Radiative Transfer Model (CRTM) (Han et al.,

2006) to the GSI for the first time and successfully assimilated MODIS AOTs. This

extended assimilation tool was then employed to assimilate various AOT retrievals from

different platforms (Schwartz et al., 2012; Saide et al., 2014; Tang et al., 2017; Pang et135

al., 2018; Ha et al., 2020), and achieved encouraging results. Similar to AOT,

assimilating lidar aerosol profiles also involves the complex forward operator and its

adjoint (Cheng et al., 2019; Wang et al., 2014). In order to simplify the observation

operator, an approximate approach was utilized to directly assimilate aerosol profiles.

For example, Liang et al. (2020) employed the Interagency Monitoring of Protected140

Visual Environments (IMPROVE) equation which is the linear link between the

extinction coefficient and aerosol chemical species mass as the forward operator to

construct a 3DVAR DA system and then assimilated ground-based lidar aerosol profiles

and PM2.5 mass concentrations simultaneously. Also, some researchers have used

sequential approaches, such as the ensemble Kalman filter, to advance aerosol DA145

(Schutgens et al., 2010; Yumimoto et al., 2016; Sekiyama et al., 2016; Dai et al., 2019).

Nevertheless, the ensemble based aerosol forecasts are very expensive due to the heavy
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computational load, especially online meteorology-chemistry modelling, it is difficult to

widely implement them in the operational air quality DA systems (Pang et al., 2021).

Following Li et al. (2013) and You (2017), this study further extends the assimilation of150

aerosol optical properties. Using an observation operator based on the Mie scattering

theory, a comprehensive 3DVAR DA system aiming for aerosol optical properties,

including AOT retrievals and aerosol profiles, is developed for the MOSAIC aerosol

scheme within the Weather Research and Forecasting model coupled to Chemistry

(WRF-Chem) model for the first time. The remainder of this paper is organized as155

follows. Sect. 2 presents the aerosol DA system in detail. The data and experimental

methods used in this study are described in Sect. 3. The background error statistics

necessary for the assimilation experiment are analysed in Sect. 4. The results are

summarized in Sect. 5, discussing the assimilation effects. Finally, a summary is

presented in Sect. 6, along with discussions on the limitations of this study and160

suggestions for future research.

2 Aerosol data assimilation design

2.1 Model description

WRF-Chem is an advanced online coupled meteorology-aerosol model (Grell et al., 2005)

that can simultaneously simulate meteorological fields and atmospheric chemical165

compositions including aerosols. It has been widely used in air quality forecasting and

aerosol-related studies (Chen et al., 2016). Aerosol processes are treated by modules or

schemes in WRF-Chem, such as GOCART (Chin et al., 2000), MOSAIC (Zaveri et al.,

2008), and Modal Aerosol Dynamics Model for Europe (MADE) (Ackermann et al.,
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1998). There is no size information but total mass for sulfate, black carbon (BC), and170

organic carbon (OC), while there is size information only for dust and sea salt in

GOCART, in addition to no description of second organic aerosol (SOA), resulting in its

numerical efficiency. Due to more detailed descriptions of dust, GOCART has been

applied more extensively in dust aerosol research. MADE is a modal aerosol scheme that

describes more aerosol species than GOCART, including sulfate, ammonium salt, black175

carbon, organic carbon, sea salt, nitrate, dust, and SOA. Moreover, it employs three log-

normal modes, that is, Aitken, accumulation, and coarse, to describe aerosol size

distributions in detail. Although such a scheme is ideal for aerosols, it consumes more

computational resources; therefore, its applications are limited. As a newly developed

scheme, MOSAIC is a sectional aerosol scheme that incorporates tradeoffs between180

detailed descriptions of aerosol chemical species, size distributions, and computational

cost. Previous studies have shown that this scheme has a good ability to simulate the

compound aerosol pollution process in China (Gao et al., 2015; Chen et al., 2016; Chen

et al., 2019). The MOSAIC scheme divides atmospheric aerosols into eight species,

including BC, OC, nitrate (NO3−), sulfate (SO42−), chloride (Cl−), sodium (NA+),185

ammonium salt (NH4+), and other unclassified inorganic mass (OIN). At the same time,

4 or 8 discrete size sections or bins are employed to represent the size distribution of

each species. In this study, we selected four bins for computational efficiency. The first,

second, third, and fourth size sections are set to be 0.0390625–0.15625 μm, 0.15625–

0.625 μm, 0.625–2.5 μm, and 2.5–10.0 μm, respectively. The sum of the eight species in190

the first three sections corresponds to PM2.5, whereas the sum of all the sections

corresponds to PM10. This approach ensures that aerosols are represented efficiently and

accurately. Thus, it can be concluded that the MOSAIC aerosol mechanism of multiple
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species in multi-particle size sections has an advantage in anthropogenic aerosol studies

over other schemes. Therefore, we conducted aerosol analyses and forecasts using195

MOSAIC, and a DA system was developed for the MOSAIC scheme.

The WRF-Chem version 4.0 was used to perform assimilation simulation experiments.

Both physical and chemical parameterization schemes are indispensable for numerical

simulations. The main parameterization schemes used in this study include the WRF

single-moment 6-class microphysics scheme (WSM6, Hong and Lim, 2006), the Rapid200

Radiative Transfer Model for General Circulation Model (RRTMG) longwave and

shortwave radiation scheme (Iacono et al., 2008), the Noah land-surface scheme (Chen

and Dudhia, 2001), the Yonsei University (YSU) atmospheric boundary layer scheme

( Hong and Lim, 2006), the Grell-Freitas convective parameterization scheme, the Fast-J

photolysis scheme (Ruggaber et al., 1994), the Regional Acid Deposition Model, Version205

2 (RADM2, Stockwell et al., 1990), the Modal Aerosol Dynamics Model for Europe

(MADE, Ackermann et al., 1998)/Second Organic Aerosol Model (SORGAM, Schell et

al., 2001) anthropogenic emissions, and the MOSAIC_4bin scheme described above.

The configuration of the two-level nested simulation domain is shown in Fig. 1a,

including most of East Asia in Domain 1 (denoted by D01, hereafter) with a horizontal210

grid spacing of 27 km, and the entirety of North China as well as parts of East and

Central China in Domain 2 (denoted by D02, hereafter) with a horizontal resolution of 9

km, 1/3 that of D01. To ensure a detailed simulation of aerosol vertical distributions, 40

vertical layers were modelled in the simulation, and it is worth mentioning that the

vertical axis is on hybrid sigma-pressure levels with a resolution decreasing with height.215

The lowest layer is at the surface, whereas the top reaches 50 hPa.
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2.2 Basic formulation

The 3DVAR algorithm has been extensively used for aerosol analysis and forecasts, such

as the GSI tool, because of its high computational efficiency and the advantages of

handling unconventional observations. Thus, it was employed to construct a DA system220

aiming for aerosol optical properties in this study. The 3DVAR algorithm can produce an

aerosol analysis field with minimum analysis error covariance after a correction to the

background field through the introduction of various observation information. For this

purpose, an incremental approach was adopted, similar to the operational use in

meteorology (Courtier et al., 1998). In its incremental formulation, 3DVAR attempts to225

minimize the cost function J.

� δ� = 1
2
��T�−1�� + 1

2
��� − � T�−1 ��� − � . (1)

where x is the increment, corresponding to an aerosol state vector that defines the state

variables of three-dimensional grid, also known as control variables in the DA process.

At the minimum, the resulting analysis increment xa is added to the background xb to230

provide the analysis xa. B is the background error covariance matrix, and d is the

innovation vector, which is expressed as:

� = � − � �b , (2)

where y is the observation vector. H is a suitable linear approximation of the observation

operator H in the vicinity of xb, known as the tangent linear (TL) operator, and its235

transpose is the adjoint (AD) operator (see below). R is the observation error covariance

matrix. Sect. 5 describes the calculation of B. In most cases, observations are

independently conducted, so R is assumed to be a diagonal matrix without correlations

among different observation errors considered. In general, observation errors associated
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with AOT retrievals are determined by measurement and representation errors (Elbern240

and Schmidt, 2001; Schwartz et al., 2012; Jiang et al., 2013). According to Yumimoto et

al. (2016), the observation error of Himawari-8 AOT retrievals is set to 0.06 in this study.

However, further studies on observation errors of aerosol optical properties are necessary.

The search for a minimum solution to the cost function usually involves a numerical

iterative process using a descent algorithm. However, it is difficult to solve using Eq. (1)245

because it includes the inverse of B. We used the methods of Li et al. (2013) to deal with

the inversion of B. First, B can be represented as the product of submatrices (Bannister,

2008), B=DCDT, where D is the background error standard deviation (STD) matrix, and

C is the background error correlation matrix. Second, a Cholesky factorization is applied

to C because it is a symmetric and positive definite matrix. The Cholesky factorization is:250

� = �1/2 �1/2 T
, (3)

where the matrix C1/2 is a lower triangular matrix. Using this Cholesky factorization, we

can transform the control variables x to z through:

δ� = ��1/2δ�, (4)

Finally, substituting Eq. (4) into Eq. (1), we obtain the desired form of Eq. (1) as255

� δ� = 1
2
δ�Tδ� + 1

2
���1/2δ� − �

T
�−1 ���1/2δ� − � . (5)

The transformed cost function is generally better conditioned, and thus, this

transformation expedites convergence when it is iteratively minimized. Along with the

cost function J(z) computed at each iterative step, the derivative of J(z) with respect to

z is computed as:260

∇� δ� = δ� + ��1/2 T�T�−1(���1/2�� − �), (6)
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The iteration starts with z = 0 and does not finish until the convergence condition is met

or it reaches the maximum number of iterations. The descent algorithm used is the

limited memory BFGS method (L-BFGS) (Liu and Nocedal, 1989). Finally, a return

from the resulting z at the minimum to xa is obtained through Eq. (4).265

2.3 Control variables

As discussed above, the basic framework of Li et al. (2013) was employed to develop a

DA system. To assimilate aerosol optical properties, a set of control variables different

from those of Li et al. (2013) was designed, which are key elements in the DA system.

The control variables vary with the aerosol scheme. Because the background field xb was270

simulated with the MOSAIC_4bin scheme within WRF-Chem described in Sect. 2.1, the

control variables should be designed according to the MOSAIC aerosol scheme. A total

of 32 model variables represent the mass concentrations of eight species in the four bins

within MOSAIC. If these model variables are directly taken as control variables, the

resulting increments directly correspond to the model variables and can be added to the275

background to produce an analysis without intermediate conversions. However, such a

number of control variables, much more than those in meteorological DA, will cause a

heavy burden on computational and memory resources and even lead to computational

non-convergence when the cost function is iteratively minimized. Therefore, a reduction

in the model variables is essential for a stable and efficient assimilation system, meaning280

that the model variables should be lumped into fewer control variables in the DA process.

The control variables generally depend on the available observations to be assimilated.

For example, when assimilating routine aerosol measurements, such as the total mass

concentrations of PM2.5, and PM10, the lumped control variables represent the total mass
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concentrations of different aerosol species without the size information included. For285

instance, the four model variables for sulfate so4_a01, so4_a02, so4_a03, and so4_a04

were reduced to two control variables: one was the sum of so4_a01, so4_a02, and

so4_a03 and the other was so4_a04 itself (Wang et al., 2020). However, for aerosol

optical properties, the size information must be reserved within the control variables

because aerosol particles with different size distributions have significantly different290

light extinctions. Nevertheless, some species have similar optical characteristics,

including density and complex refractive indices, such as sulfate (SO42−), nitrate (NO3−),

and ammonium salt (NH4+) (Barnard et al., 2010). Thus, we lumped these species so that

the species treated by the assimilation system were reduced to black carbon, organic

carbon, the summation of sulfate, nitrate, and ammonium salt, the summation of295

chlorides and sodium salts, which are quite rare inland, and other unclassified inorganics,

and these five species were denoted by EC, OC, SSN, CN, and OIN, respectively (You,

2017), the size information of which was retained using the same four bins as in Sect. 2.1.

Consequently, there are a total of 20 control variables, named after EC1, EC2, EC3, EC4,

OC1, OC2, OC3, OC4, SSN1, SSN2, SSN3, SSN4, CN1, CN2, CN3, CN4, OIN1, OIN2,300

OIN3, and OIN4, where the numbers 1, 2, 3, and 4 represent the four size sections,

respectively. These control variables can easily be obtained from the model variables and

represent the mass concentrations of the five aerosol species within the four bins. It

should be noted that the direct result of assimilating is to generate the increments of 20

control variables above here, and the increments of lumped variables should be305

distributed into individual model variable within MOSAIC. For instance, the increment

of SSN1 is equal to the summation of that of the model variables so4_a01, no3_a01, and

nh4_a01. For simplicity, the distribution ratio was determined using the mass
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concentration background error STD for each model variable. When the increment of

each model variable is obtained, directly adding that to its background value will produce310

an aerosol analysis.

2.4 Observation operator and its adjoint

The observation operator transforms the control variables into an equivalent of each

observed quantity at the observation locations. Thus, a comparison between the

simulations and observations can be performed, on which the resulting increments315

depend. A nonlinear operator based on the Mie scattering theory was employed to

directly assimilate aerosol optical properties. Specifically, the 20 control variables

described in Sect. 2.3 are used to compute optical parameters, such as aerosol extinction

coefficient at every model grid point, and then both horizontal and vertical interpolations

of the simulations from the model grid to observation locations are performed. This320

approach ensures that the simulated and observed quantities are comparable to each other.

The process of the forward observation operator is to compute aerosol optical properties

through the control variables, as shown in Fig. 2, based on the work of Wang et al. (2014)

and Barnard et al. (2010).

Although computing aerosol optical properties with WRF-Chem outputs involves many325

aerosol variables, as shown in Fig. 2, for simplicity, only mass concentrations measured

routinely were set as the control variables. The forward operator is composed of several

steps as follows. First, it is assumed that aerosol chemical species are internally mixed

along with water in each bin. Given the densities of five assimilated species as well as

water, individual volume is easily obtained so that the mean wet radius ri assigned to330

each bin can be computed by dividing the total volume by the number concentration Ni,
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assuming that the particles are spherical, where the subscript i denotes the size bin. The

particle size parameter is of significant importance to optical properties and is

determined by x=2πri/ , where  is the incident wavelength. Each species is associated

with a complex index of refraction, and while these indices depend on , they vary little335

in the short-wave range where aerosols are remotely measured. The indices at a

wavelength of 550 nm were therefore used to compute the averaged refractive index mi

for each size bin by means of volume averaging for simplicity, which was reduced from

the optical properties (OP) module in WRF-Chem that employs the RRTMG scheme to

compute a set of refractive indices in the range of both long and short waves. It is worth340

noting that the incident wavelength  is set as an input parameter according to aerosol

retrievals so that the size parameter can be accurately computed. Second, when the mean

wet radius ri and complex refractive index mi are given, optical efficiencies such as

extinction efficiency Qext and scattering efficiency Qsca can be obtained through Mie

calculations, and this step is greatly crucial to the whole forward operator. Because Mie345

calculation involves the operations of a complex variable, it is very difficult to establish

the computing codes and their adjoint codes. Fortunately, some Mie calculation modules

have been successfully developed by previous researchers and have been widely applied

in related studies. Among these modules, the routines provided by Wiscombe (1979)

behave perfectly in terms of computational stability and efficiency, so we can obtain350

optical efficiencies at each grid point of three dimension by repeatedly calling it within a

loop. This approach ensures that optical efficiencies are accurately calculated; however,

this requires more computation time owing to complex nonlinear operations of Mie

scattering, and developing its adjoint is faced with great challenges and difficulties,

which will have an adverse impact on operational use. The methodology described by355
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Ghan et al. (2001) was used to efficiently calculate optical efficiencies by the OP module

in WRF-Chem (Fast et al., 2006). It employs a Chebychev polynomial expansion to fit

extinction efficiency, absorption efficiency, scattering efficiency, asymmetry factor, and

backscattering efficiency, based on a sample generated from Mie calculations; for

example, Qext can be given by360

���� = exp �=1
� ����(�)� , (7)

where � = (2log�� − log���� − log����)/(log���� − log����) , a logarithm of the wet

radius ri , and both rmax and rmin are known parameters. Ti(s) is the Chebychev polynomial

of order i, and M is the number of terms in the expansion. The coefficients Ai depend on

the averaged refractive index for the size bin in question, and they are found using365

bilinear interpolation over a set of stored coefficients. Once Ai is obtained, Qext is easily

computed using Eq. (7). This method is fast and results in maximum errors of just a few

percent. More details regarding this methodology can be found in Fast et al. (2006).

Similarly, optical efficiencies are determined by the wet radius ri and refractive index mi

as well as the wavelength  more efficiently than the Mie calculation, which also reduces370

the difficulties of developing the DA system. Hence, we directly transported the OP

module to construct the forward observation operator. To perform efficiently, some

routine codes unnecessary for the assimilation system were removed so that the forward

codes were dramatically reduced compared to the OP module, which is convenient for

establishing the TL and adjoint codes. Finally, optical properties are determined by375

summation across all four size bins. For example, the extinction coefficient is given by:

���� = �=1
4���� �����

2����(��,� ��, �), (8)
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and AOT is the column integration of bext over the vertical layers. Obviously, the optical

properties simulated by the forward operator are distributed over the three-dimensional

grid points. To directly compare the observations, spatial interpolation is needed.380

As mentioned in Sect. 2.2, the TL and AD operators are used to compute the cost

function and its derivative with respect to the control variables, respectively. Source-

code transformation based on the chain rule is usually used to construct TL and adjoint

codes, which is an augmentation of forward operator codes that have been already

established and tested. Adjoint coding involves strict rules (Zou et al., 1997; Giering and385

Kaminski, 1998) and is also a heavy task if completed manually. The TL and adjoint

codes were generated using the automatic differentiation tool TAPENADE V.3.15

(Hascoët and Pascual, 2013), which is available at http://www-

tapenade.inria.fr:8080/tapenade/index.jsp. If a source program and its independent input

variables and dependent output variables are given, the tool can generate the TL and390

adjoint programs, easing the burden of hand coding. The generated TL and adjoint codes

were examined to ensure that they were correct prior to real application, and they passed

TL/AD sensitivity test; for more details on how to check the TL and adjoint codes, please

refer to Zou et al. (1997). Manual interventions are required when these generated codes

are incorporated into the DA system, especially in the case of variable calculations on395

three-dimensional grid points. In addition, because the optical parameters are computed

independently at each point, the forward, TL, and adjoint codes are properly organized in

a parallel mode to further reduce the computation time.

With the increase in aerosol observations, the simultaneous assimilation of aerosol

observations from various platforms has become a trend, in particular combined400

assimilation of various optical properties has made great progress in recent year
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(Escribano et al., 2017; Chen et al., 2019; Tsikerdekis et al., 2021). This can be achieved

by adding the summation associated with the corresponding observation items to the

second term in the cost function described by Eq. (1). For this purpose, the system was

developed to assimilate as many aerosol measurements as possible so that it has more405

potential for aerosol analysis and forecasting. In contrast to aerosol optical properties,

assimilating mass concentrations is elementary and easily performed using only a simple

linear operator. The system developed here can assimilate optical properties, including

extinction coefficient, backscattering coefficient, AOT, and even total attenuated

backscattering coefficient (Sekiyama et al., 2010), and mass concentrations, including410

total PM2.5 or PM10 mass and individual chemical species mass, simultaneously or

separately, with a rational introduction of desired observational data, making it possible

for further study.

3 Data and methods

Two comparative experiments were performed to assess the performance of assimilating415

aerosol optical properties, which have the same model configurations described in Sect.

2.1, and the spin-up time was 24 h. The only difference between them is in the initial

aerosol field. One is the reference experiment without any observations assimilated,

simply taking the previous 24-h aerosol forecasts as an initialization, referred to as

Control, while the other takes the aerosol analysis after assimilating satellite-derived420

AOT as an initialization to simulate their subsequent variations, referred to as

Assimilation. Both experiments employed the final (FNL) Operational Global Analysis

data at a resolution of 1°×1° and 6 h interval from the National Centers for

Environmental Prediction (NCEP) (National Centers for Environmental
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Prediction/National Weather Service/NOAA/U.S. Department of Commerce, 2000) to425

generate the initial and lateral boundary conditions of the meteorological fields. The

2017 Multi-resolution Emission Inventory for China (MEIC) collated by Tsinghua

University (Zheng et al., 2018) was used for simulation. The experiment period started

on November 23 and ended November 29, 2018, lasting one week, with a cycle of 24 h,

during which an aerosol episode occurred in North China and considerable observational430

data were available.

The Himawari-8 AOT product was selected for assimilation by this system because it has

a much higher temporal coverage than that of polar-orbiting satellites, which is

promising for aerosol DA, and has also been successfully assimilated using other

methods (Sekiyama et al., 2016; Yumimoto et al., 2016; Dai et al., 2019). The Himawari-435

8 level 2 AOT is retrieved at 500 nm with a 10-minute observation interval as well as a

0.05° spatial resolution, however the data is noticeably noisy. The level 3 AOT,

including AOT_Pure and AOT_Merged, an improved hourly product, is an optimal

estimation of AOT at a certain time rather than an estimate of the average state over an

hour. AOT_Pure is a subset of level 2 AOT with strict quality control of cloud440

contamination, and AOT_Merged is the spatial and temporal optimum interpolation of

AOT_Pure within an hour (Kikuchi et al., 2018). In this study, we focused on

assimilating the latest version of the Himawari-8 level 3 AOT_Merged at 500 nm, which

contains as many AOT retrievals as possible with a horizontal resolution of 0.05°×0.05°.

The original AOT data is commonly thinned before directly assimilating to avoid445

seriously overestimated increments caused by the much higher spatial resolution of AOT

data than that of the model (Yumimoto et al., 2016; Dai et al., 2019; Ha et al., 2020).

Similar to Ha et al. (2020), we thinned the original AOT data over the D01 mesh (27 km)
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and D02 mesh (9 km), respectively, using the mean value of all the data points in one

grid cell. A case of thinned AOTs retrieved at 0300 UTC on November 25, 2018, in D02450

is shown in Fig. 3a, the number of the data is 13100 with a maximum value of 1.801. The

AOT observations represent a heavy aerosol pollution episode that occurred in North

China, yet there is a lack of aerosol information in some heavily polluted regions due to

cloud contamination, meaning that optical retrievals alone are not sufficient to

thoroughly study aerosols. The Himawari-8 AOT is retrieved in the visible and near-455

infrared bands, so the observation coverage differs with time of day. Nevertheless, the

observations at 0300 UTC can nearly cover the whole of China, except some western

areas. Hence, we chose the 0300 UTC rather than 0000 UTC, as used in usual

experiments, as the initial time to perform a 24-h prediction of aerosols for the purpose

of research.460

To evaluate the performance of Himawari-8 AOT assimilation, three common statistical

metrics, including the correlation coefficient (CORR), root mean squared error (RMSE),

and mean bias (BIAS), were utilized (Boylan and Russell, 2006). It should be noted that

compared with observations is the WRF-Chem D02 simulation, the results given below

were computed using D02 outputs. First, we investigated the effects of AOT assimilation465

on AOT simulations using assimilated Himawari-8 AOTs and independent observations,

including MODIS AOT and AERONET AOT observations. Second, we investigated the

effects of assimilating AOTs on PM2.5 analysis and forecasting using hourly surface mass

concentration observations (Fig. 1b) released by the China National Environmental

Monitoring Centre (CNEMC). For instance, the PM2.5 mass concentration observed at470

0300 UTC on November 25, 2018, in D02 is shown in Fig. 3b, indicating a severe
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pollution zone in North China, which is largely consistent with the spatial representation

of Himawari-8 AOTs.

4 Statistics of background error covariance

Background error covariance is an important issue in data assimilation, which not only475

specifies the spread of observation information in the background field, namely the way

in which the observations affect the background values, but also determines the relative

weight of observational and background information across the analysis field. In practice,

however, the error covariance B-matrix is too large for a multi-variable aerosol DA to be

calculated numerically. For instance, the number of D02 grid points used here is in the480

order of 106, in addition to 20 state variables, the number of elements in B is, therefore,

107×107. This size will result in difficulty for computing and storing B, therefore a

simplification of B is required. Following the studies of Bannister (2008) and Li et al.

(2013), the B-matrix was reduced to background error STD D, horizontal correlation

matrix, and vertical correlation matrix, which can be computed separately. These three485

submatrices have dramatically fewer dimensions than B, so they become

computationally treatable. Because the forecast error is unknown, most studies use model

outputs to statistically estimate error covariance via modeling or parameterization, such

as the NMC method (Parrish and Derber, 1992), which has been regularly used to

calculate background error covariance for traditional meteorological fields such as490

temperature and wind and is also appropriate for aerosol mass concentrations (Benedetti

and Fisher, 2007; Liu et al., 2011; Li et al., 2013). This study also utilizes the NMC

method to calculate background error STDs, horizontal correlation, and vertical

correlation based on differences between 48 h and 24 h forecasts valid at the same time
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(i.e., 0000 UTC) within a period of one month (November 2018). Because each aerosol495

state variable has a different background error covariance from others, which has been

demonstrated by error statistics (see below), there is a need to estimate the error

covariance for each variable to achieve better assimilation performance.

The error STD D-matrix of each variable is diagonal and was directly estimated as a

domain average at every model level using WRF-Chem D01 and D02 outputs,500

respectively, and its vertical distribution (only for D02) is shown in Fig. 4. These STDs

differ among aerosol variables. In terms of values, SSN2, SSN3, OIN2, and OIN4 have

larger error STDs than the others, with SSN2 having the largest value. The background

error STDs are related to the aerosol species mass concentration. In general, variables

with higher mass concentrations tend to have larger error STDs. For example, the505

simulation domain is far from the sea, and sea salt aerosols are very rare. As a result, no

matter which size bin, the species CN has a significantly low error STDs below 0.05 μg

m3, which is much lower than the other variables. These error STDs display a relatively

rapid decrease with height apart from SNN2 and SNN3, but diminishing rates vary

among aerosol variables. The fine structures of the error STD vertical distribution are510

related to the boundary layer heights. There is a noticeable increase in the SNN2 and

SNN3 error STDs at the boundary layer height (approximately 1000 m).

The horizontal correlation matrix determines the propagation of observation information

from the observation site to the surrounding area in the horizontal direction. Similar to Li

et al. (2013), we assumed that different aerosol variables are not correlated; therefore,515

only auto-correlations of one variable at different distances were taken into consideration.

For further simplification, we assumed that horizontal correlations are isotropic (Kahnert

et al., 2008), which means that horizontal correlations are just a function of distance and
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have nothing to do with direction. Consequently, the horizontal correlation can be fitted

using a one-dimensional Gaussian function. The correlation between two arbitrary points520

x1 and x2 can be expressed as c(x1, x2)=exp[(x1x2)2/2Lv2], where Lv is the only unknown

parameter, and is the horizontal correlation length scale of each state variable. The

correlation increases as the distance decreases, especially when the distance decreases to

zero, it obtains a maximum of 1. Thus, Lv is defined as the distance at which the

correlation decreases to e  1/2 and can be calculated via model outputs. This distance525

averaged over the model domain was used as an estimate of Lv. The introduction of Lv
reduces the relatively complex two-dimensional correlation matrix to a parameter that is

able to completely describe the structure of horizontal correlation, undoubtedly

simplifying the computing and storage of the horizontal correlation matrix. The

estimated Lv in D02 for individual aerosol state variable is given in Table 1. The530

estimated correlation length scales are significantly different among the distinct species.

Thus, out of all aerosol variables, SSN3 has the largest scale at 47 km, indicating that the

influence of SSN3 observations could spread farther than other variables and has a

larger-domain improvement across the background field. In contrast, CN3 has the

smallest scale (12.8 km) and spreads the least based on observational information.535

Overall, species SSN have relatively larger correlation length scales among species of

the same size section, except for in the fourth bin. Additionally, the same aerosol species

in different size sections have distinctly different error correlation length scales; for

example, OIN3 has a larger scale than OIN2. Such differences among the correlation

length scales indicate the need to use multi-species concentrations within the four size540

bins as control variables.
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Background error vertical correlation plays an important role in the vertical spread of

aerosol observation information. On the one hand, it has more complicated structures

instead of isotropy compared to the horizontal correlation because of the discontinuity-

like transition of the vertical distributions between the boundary layer and the free545

atmosphere above, and such structures are difficult to represent using an analytic

function. On the other hand, the vertical correlation, which is the nz×nz (here, nz is equal

to 40) matrix, is much smaller than the horizontal correlation matrix. As a result, the

vertical correlation was directly estimated using model outputs. Because the vertical

correlation of every variable is similar, the computed vertical correlations only for550

control variables in the third size bin are shown in Fig. 5. A salient and common feature

of these vertical correlations is that they decrease with height and have strong relation to

the boundary layer heights, which means that aerosols are mainly stacked in the

boundary layer and tend to accumulate closer to the ground. At the same time, consistent

with the horizontal correlations, vertical correlations differ among aerosol variables.555

SSN3 has a relatively large vertical scale, whereas CN3 has a relatively small vertical

scale, which is consistent with the horizontal features.

5 Results

5.1 Effects on AOT simulations

AOT is of great value for studying aerosol activities, which can be simulated by the560

forward operator within the DA system. In general, assimilating AOT certainly improves

its analysis according to the basic principle of the 3DVAR algorithm, unless it is not

successfully assimilated. It is noted that the wavelength variable necessary for computing
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AOTs described in Sect. 2.4 was set to be 500 nm, the wavelength at which the

Himawari-8 AOTs are retrieved. A comparison between the simulated AOTs in the565

background field and analysis is usually employed to demonstrate the positive effects of

assimilation. For illustration, the simulated AOTs as well as the so-called AOT

increments at an initialization of 0300 UTC on November 25, 2018, are shown in Fig. 6.

The increments, which are differences between the analysis and the background field,

can be considered as the changes generated by assimilation, including magnitude and570

range, and these increments are spatially consistent with the observations, which means

that the observations have an important effect on the assimilation results. Obviously, the

simulated AOTs in the background field are dramatically underestimated (Fig. 6a)

compared with the observed Himawari-8 AOTs (Fig. 3a), while the analysis brings the

AOTs closer to the observations, which is indicated by the prominently positive575

increments (Fig. 6c). At the same time, assimilation also decreases the AOTs over other

regions, with negative increments marked in blue. The background field is generally

unable to describe the real pollution, especially in the case of heavy pollution; however,

the analysis after assimilation can provide a relatively accurate pollution situation (Fig.

6b).580

The distributions shown in Fig. 6 express the effects of assimilating AOT on its analysis.

To quantitatively evaluate the effects, the three metrics described above, CORR, RMSE,

and BIAS, were computed through all the data pairs between the simulated and observed

AOTs after spatial interpolation from regular grid points to the corresponding

observational locations. The higher scores of the metrics CORR, RMSE, and BIAS585

would demonstrate the better assimilation performance and vice versa. Besides, the

assimilated Himawari-8 AOTs were used to compute the metrics, and another
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independent observation MODIS AOT was employed to fully evaluate the effects of

assimilation on the analysis. The Terra MODIS level 2 AOT data (MOD04_L2) were

used for validation in this study. As this polar-orbiting satellite passes over the equator at590

10:30 local time, we collected all the data between 0000 UTC and 0600 UTC, rather than

at a given time, to obtain more observations, matching the simulated values at the initial

time (i.e., 0300 UTC). It is worth mentioning that MODIS AOT is retrieved at 550 nm

and the simulated AOT is at 500 nm, which will pose some but not largely significant

effects on the evaluation. The experiment lasted consecutively for a week in a cycle of 24595

h, which contained seven initializations, so we gathered the simulated AOTs at all the

initializations to achieve a general evaluation result. The comparisons between the

observed and simulated AOTs are presented using scatter plots, as shown in Fig. 7,

where Fig. 7a represents the comparison with Himawari-8, and Fig. 7b shows a

comparison with MODIS. The comparison with Himawari-8 AOTs reveals that the600

analyses have a better performance as CORR increases from 0.524 to 0.868, RMSE

decreases from 0.280 to 0.147, and BIAS is reduced by about 77 percent after

assimilation. Similar results are found in the comparison with the MODIS AOTs. Red

points are distributed denser and more parallel to the 1:1 line than the blue points,

indicating that the analyses are closer to the observations. All three metrics demonstrated605

positive effects from assimilation on the analysis. Usually AOT at higher wavelength

(550 nm) is smaller than AOT at lower wavelength (500 nm), so the bias would be even

more negative if comparing AOT simulations with MODIS AOT for both Control and

Analysis, which is demonstrated by the indicator BIAS in Fig. 7. For instance, BIAS is -

0.031 when comparing with Himawari-8 AOT, while BIAS is -0.140 against MODIS610
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AOT after assimilation. In summary, the assimilation system can successfully introduce

AOT observations into the model to generate a more accurate initial field.

Similar to other studies (Dai et al., 2019; Ha et al., 2020), an independent validation of

the simulated hourly AOTs from both the Control and Assimilation experiments was

conducted through a comparison with AERONET observations to further investigate the615

effects of assimilation on forecasting. There are a total of six AERONET sites in D02:

Beijing, Beijing-CAMS, Beijing_PKU, Beijing_RADI, XiangHe, and XuZhou-CUMT,

which are marked with red triangles in Fig. 1b. The sites can provide various AOT

retrievals at different wavelengths, and those at 500 nm were selected for validation. In

this study, we used level 2.0 and 1.5 (if level 2.0 data are not available) AERONET620

AOTs, which are cloud screened (Smirnov et al., 2000) and used them to evaluate

satellite observations. Fig. 8 depicts the time series of the simulated AOTs and

observations at six AERONET sites from November 23 to 30, 2018. Compared with

observations, the Control experiment dramatically underestimated AOTs at all sites,

while the Assimilation experiment significantly enlarged AOTs so that they became625

closer to the observations. This indicates that assimilation significantly improves AOT

simulation. As can be seen, the assimilation benefits vary with sites; for instance,

assimilation improves the AOT simulation at XuZhou-CUMT less than that at other sites

(Fig. 8f), as well as the forecasting time; for example, the assimilation benefits for

analyses can reach 24 h in the case of November 25, while they last less than 24 h in the630

case of November 24. The available observations largely account for this variation. A

high pollution event took place on 26 November in North China so that AOTs over 1.6

were measured in Beijing (Fig. 8b), which can also be demonstrated by ground-level

PM2.5 observations (not shown here), but there is few Himawari-8 observations for the
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event to be assimilated due to cloud contamination. As a result, the Assimilation635

experiment had the same performance as the Control experiment, which is unable to

describe the high pollution event. It has been concluded that the introduction of AOT

observations by assimilation is beneficial to capture heavy pollution levels (Rubin et al.,

2017).

5.2 Effects on PM2.5 simulations640

PM2.5 mass concentrations draw large attention from both the public and researchers.

They can be directly modelled using WRF-Chem and are conventionally measured at

ambient air quality monitoring stations. As the DA system was developed based on the

MOSAIC scheme, it should hopefully improve aerosol analyses and subsequent forecasts,

especially for PM2.5. North China is located in D02 and is known for its high levels of air645

pollution; therefore, WRF-Chem D02 outputs were directly employed to investigate the

effects of assimilating Himawari-8 AOTs on regional PM2.5 forecasts.

As described in Sect. 2.3, the assimilation process will produce the increments of 20

control variables. Of course, we can analyse every increment to assess the effects of

AOT assimilation on the corresponding aerosol species simulations. Because there is a650

lack of observations for aerosol species at each size section, the total increment of PM2.5

is analysed instead, which is simply a summation of increments over five assimilated

species in the first, second, and third size bins. For illustration, Fig. 9 only shows the

simulated surface PM2.5 concentrations in the background field and corresponding

analyses at an initialization of 0300 UTC on November 25, 2018, as well as the655

increments. The Control experiment underestimated PM2.5 concentrations in North China

compared with the observed values (Fig. 3b). For example, the PM2.5 concentrations in
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Tianjin marked by the small black triangle in Fig. 9 reached more than 200 μg m3 while

the simulated values in the background field were less than 150 μg m 3 (Fig. 9a). The

evidently positive increments generated by assimilation enlarge PM2.5 analyses (Fig. 9c),660

making them closer to the observations, and the analyses are therefore able to describe

heavy pollution. At the same time, negative increments decrease overestimation in some

places. The PM2.5 increments are spatially consistent with AOT observations (Fig. 3a),

which means that aerosol optical properties have been transformed into mass

concentrations using the observation operator and then incorporated into the model. The665

analyses are superior to the background field in terms of pollution magnitude; however,

the heavy pollution band in North China was simulated further to the east compared with

the observations. This might be ascribed to model deficiency in the representation of

three-dimensional aerosol species. Since AOT is an atmospheric column measurement, it

naturally includes the information of aerosol vertical distributions. Consequently, AOT670

assimilation can improve aerosol vertical distributions as well. A vertical cross-section of

PM2.5 at 0300 UTC on 25 November 2018 is shown in Fig. 10, this cross-section is

through Tianjin. Similar to surface PM2.5, suspended PM2.5 mass concentrations in the

upper air are also enlarged with a wide range from the ground to about 1 km by

significantly positive increments generated by assimilation (Fig. 10c). In spite of no675

observational PM2.5 profiles to compare, the vertical distribution in analyses is believed

to be closer to the real in terms of the ground PM2.5 level (Fig. 10b). It should be noted

that the vertical increments are determined by the background error vertical correlation.

In a summary, AOT assimilation is certainly helpful to improve the three-dimensional

descriptions of PM2.5.680
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Assimilation directly aims to improve aerosol analyses. As shown in Fig. 11, the data

dots between simulated and observed PM2.5 concentrations were also analysed according

to the three metrics. From Fig. 11, red points, standing for analyses, do not have a

significantly better performance than their blue counterparts for the Control experiment,

yet the metrics demonstrate the slight positive effects of AOT assimilation on aerosol685

analyses, increasing CORR from 0.485 to 0.530, decreasing RMSE from 60.66 μg m3 to

56.40 μg m3, and reducing BIAS by 4.97 μg m3. This improvement is less significant

than that of directly assimilating PM2.5 concentrations (Wang et al., 2020), however, the

use of PM2.5 concentrations to evaluate the effects of AOT assimilation is not objective

and comprehensive because there is a discrepancy between PM2.5 and AOT observations.690

For example, no assimilation benefits in some highly polluted areas are generated

because of the lack of AOT retrievals, so the PM2.5 observations cannot reflect the

benefits from AOT assimilation. Besides, AOT is an atmospheric column measurement

while PM2.5 is a surface measurement. Therefore, if you have an aerosol plume which is

not close to the surface, AOT can be increased by increasing the aerosol concentration of695

that plume while PM2.5 can remain almost unaffected by that change.

To investigate the effects of AOT assimilation on PM2.5 forecasts, time series of three

metrics regarding the forecast range (i.e., 24 h) were computed using hourly WRF-Chem

D02 outputs and observations. As shown in Fig. 12, in terms of both CORR and RMSE,

the Assimilation experiment performed better than the Control experiment, indicating700

that the benefits for analyses from AOT assimilation can last up to 24 h. It is noted that

the assimilation benefits vary with integration time, decreasing in a fluctuating manner.

The computed BIAS indicates that AOT assimilation improves PM2.5 forecasts within 24

h, but can vary for certain times. As discussed above, assimilation significantly enlarges
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the simulated PM2.5 concentrations, but an overcorrection, namely, the simulated values705

surpass observations, occurs approximately 7-8 h from the initial time (Fig. 12c), which

may be ascribed to the dramatically noisy AOT retrievals, as well as an imperfection of

the observation operator for aerosol optical properties.

The time series of the simulated PM2.5 concentrations and observations during the entire

experimental period are shown in Fig. 13, which are hourly averaged over 683 stations in710

D02. The blue line denotes the Control experiment, while the red line denotes the

Assimilation experiment, and the observations are represented using the black line.

Overall, the mean PM2.5 concentrations simulated by the Assimilation experiment were

closer to the observations than the Control experiment, which is beneficial for describing

the real heavy pollution in North China. Statistically, the CORR, RMSE, and BIAS715

between the black curve and blue curve were 0.645, 20.74 μg m3, and 16.25 μg m3

while CORR, RMSE, and BIAS between the black curve and the red curve were 0.732,

15.12 μg m  3, and  9.81 μg m  3, respectively, which means that the Assimilation

experiment had a better performance in PM2.5 forecasts than the Control experiment.

These metrics indicate that AOT assimilation improves regional PM2.5 forecasts,720

especially in the case of heavy pollution.

6 Summary and discussions

A 3DVAR DA system was independently developed to directly assimilate aerosol optical

properties. This system was built based on the framework of Li et al. (2013) and

developed for the MOSAIC scheme within WRF-Chem, a sophisticated aerosol model,725

rather than the GOCART scheme employed by CRTM. MOSAIC divides aerosol
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particles into eight species that are described in four size bins so that there are 32 mass

concentration model variables. For computational efficiency, the 32 model variables

were lumped into 20 aerosol state variables, which are representative of the mass

concentrations of five assimilated species within the four size bins. An optical module730

was added to assimilate aerosol optical properties, which consisted of the forward

observation operator and its TL and AD codes. We properly reduced the OP module

(Fast et al., 2006) in WRF-Chem to establish the forward operator, then the TL and AD

codes were generated using an automatic differentiation tool and tested to ensure that

they were correct. The system can assimilate aerosol optical properties such as extinction735

coefficient profile, AOT, and mass concentrations, simultaneously or separately, and

these should be applied for further studies in the future.

Himawari-8 AOTs were assimilated to validate the system and investigate the effects of

assimilation on both AOT and PM2.5 simulations. A heavy air pollution event occurred in

North China from November 23 to 29, 2018; therefore, this period was chosen for the740

simulation experiment. Two comparative experiments with a spin-up time of 24 h were

performed, continuously lasting for a week with a cycle of 24 h. The Control experiment

took the previous 24 h aerosol forecasts as an initialization, while the Assimilation

experiment employed analyses after assimilating Himawari-8 AOTs to initialize the

simulations. WRF-Chem D02 outputs were compared with the assimilated AOTs,745

independent MODIS AOTs, AERONET AOT observations, and surface PM2.5 mass

concentration observations, respectively.

Background error statistics, including SDs, horizontal correlation length scales, and

vertical correlations of 20 control variables, were estimated using monthly WRF-Chem

outputs based on the NMC method, which are also necessary for the assimilation process.750
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Our results showed that background error statistics distinctly vary among these control

variables, which also illustrates the necessity of building a multi-variable aerosol DA

system.

Assimilation significantly improves AOT analyses and forecasts. In general, the Control

experiment without assimilation seriously underestimated AOTs compared with the755

observed values. The analyses perform better in terms of the statistical metrics CORR,

RMSE, and BIAS in comparison with both assimilated and independent AOTs than the

background field. The analyses closer to observations improve AOT simulations, which

is of great value in the study of AOT distribution during high pollution events. The

improvement in AOT simulations indicates that the system successfully assimilated AOT760

observations into the model to form an accurate initial field.

Subject to the basic formulation, the DA process directly aims to improve aerosol

analyses. In terms of statistical metrics, assimilating Himawari-8 AOTs improves PM2.5

analyses, but not significantly, in D02 and the assimilation benefits can last more than 24

h. Assimilation significantly enlarges the underestimated PM2.5 concentrations to be765

closer to the real distribution in North China during heavy pollution. The averaged

surface PM2.5 concentrations over D02 were better simulated during the whole pollution

period after assimilation compared with corresponding observations, which means that

AOT assimilation improves regional PM2.5 simulations.

In this study, the observation errors of AOT retrievals were simply set as a constant.770

However, they should be determined by the retrieval uncertainty, or should be variable at

least. Additionally, different thinning schemes for AOT retrievals may have different

results. Consequently, these questions should be studied further. As more aerosol optical

property observations become available, combined assimilation of optical properties and
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routine observations, such as aerosol extinction profiles and mass concentrations, has775

become popular. As described above, the system developed in this study has great

potential for assimilating various observations. Assimilating AOTs here is a preliminary

study, and combined assimilation studies should be performed in the future.
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Table 1. Horizontal correlation length scales for individual aerosol state variable

variable EC1 OC1 SSN1 CN1 OIN1

LV (km) 29.2 30.2 31.6 20.9 26.5

variable EC2 OC2 SSN2 CN2 OIN2

LV (km) 36.4 38.4 43.3 20.3 32.7

variable EC3 OC3 SSN3 CN3 OIN3

LV (km) 41.0 42.5 47.0 12.8 37.4

variable EC4 OC4 SSN4 CN4 OIN4

LV (km) 37.3 38.0 35.0 14.6 25.5
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Figure 1. Configuration of the two-level nested domain used in this study (a), the monitoring stations in Domain 2 (D02) (b), and a

zoomed-in map for AERONET sites in Beijing area (c), including Beijing, Beijing-CAMS, Beijing_PKU, Beijing_RADI, XiangHe.

There are a total of 683 surface ambient air quality monitoring stations represented by little blue circles, which are mainly located in

urban areas, as well as 6 AERONET sites represented by red triangles in D02. All the maps are plotted with NCAR Command

Language Version 6.6.2.
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Figure 2. Diagram describing the forward observation operator used to transform aerosol mass concentrations to optical parameters.

Qext and Qsca are extinction and scattering efficiencies respectively, which are functions of the size parameter and complex

refractive index.
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1100

Figure 3. Observations of the thinned Himawari-8 AOTs (a) and surface PM2.5 mass concentration (b) in D02 at 0300 UTC on 25

November 2018.

1105

1110

1115



48

Figure 4. Vertical profiles of background error STDs in mass concentration for aerosol control variables EC1, EC2, EC3, EC4, OC1,

OC2, OC3, OC4, SNN1, SNN2, SNN3, SNN4, CN1, CN2, CN3, CN4, OIN1, OIN2, OIN3, OIN4 in data assimilation process, which

were calculated using WRF-Chem D02 forecasts for one month, i.e., November 2018.
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Figure 5. Vertical auto-correlations of background errors for aerosol state variables within the third size bin, that is, EC3, OC3,

SSN3, CN3, OIN3. These statistics are directly estimated by the NMC method using WRF-Chem D02 outputs. Both axes are

logarithmic and the contour interval is 0.1.

1140



50

Figure 6. Spatial distributions of simulated AOTs in the background field (a) and analysis (b), and the increments (c), which are

differences between the analysis and the background field. For illustration, distributions in D02 at a model initialization of 0300 UTC

on 25 November 2018 are given, which are similar to other results during the experiment period (i.e., from 23 to 29 November 2018).
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Figure 7. Scatter plots of the simulated AOTs collocated in D02 versus (a) the observed Himawari-8 AOTs and (b) Terra MODIS

AOTs. These data were a set of all initializations from 23 to 29 November 2018, blue points are the Control experiment while red

points are the Assimilation experiment. The solid line is the 1:1 line where simulated values are equal to observed values, and the

dashed lines correspond to 1:2 and 2:1.
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Figure 8. Time series of the simulated AOTs collocated in D02 and AERONET AOT observations at (a) Beijing, (b) Beijing-CAMS,

(c) Beijing_PKU, (d) Beijing_RADI, (e) XiangHe, and (f) XuZhou-CUMT during the whole forecasting period. Both simulated AOTs

and observed AOTs are at 500 nm. The brown line is the Control experiment while the light blue line is the Assimilation experiment,

and the AERONET observations are represented by black dots, which are only available under clear-sky conditions.
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Figure 9. Spatial distribution of surface PM2.5 concentrations simulated at an initialization of 0300 UTC on 25 November 2018 in (a)

the Control experiment and (b) the Assimilation experiment as well as (c) the increment that is the difference between (b) and (a).

These quantities are in unit of μg m-3 and collocated in D02.

1185

Figure 10. Vertical cross-section of PM2.5 in the background field (a) and analysis (b) as well as the increment (c) in D02 at 0300 UTC

on 25 November 2018.
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1200

Figure 11. Scatter plots of the simulated PM2.5 concentrations in the Control experiment and corresponding analyses in the

Assimilation experiment versus the observations. Like Figure 7, these data are also collocated in D02 and a set of all initializations.

Blue points stand for the Control experiment while red points stand for the Assimilation experiment.
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1210

Figure 12. Statistical metrics (a) CORR, (b) RMSE, and (c) BIAS for surface PM2.5 forecast performances in D02 regarding the

forecast range, which are computed as an average over 7 analysis steps. Likewise, the blue line is the Control experiment and the red

one is the Assimilation experiment.
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1235

Figure 13. Time series of surface PM2.5 simulated by the Control experiment (blue) and the Assimilation experiment (red) as well as

corresponding observations (black), as averages over 683 stations in D02. The simulations are representative of hourly 0-23 h

forecasts in D02 from 0300 UTC every day during the whole forecasting period using WRF-Chem.
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