
Dear Editor and Reviewers: 

 

Thank you very much for your professional and insightful comments concerning our manuscript 

“ENSO-ASC 1.0.0: ENSO Deep Learning Forecast Model with a Multivariate Air–Sea Coupler” 

(ID: gmd-2021-213). Those comments are all very valuable and helpful for revising and improving 

our manuscript, we have made extensive revisions and corrections according to the nice suggestions. 

The point-by-point major responses are as following for three reviewers respectively. 

Besides the detailed revisions according to the comments from two reviewers, we also carefully edit 

and modify our manuscript. A track changes version of the manuscript is also attached, highlighting 

all the changes made in response to the reviewers’ comments. 

 

 

The Reply on Referee #1 

 

Comment 1: 260: There's an 𝐼𝑛 in this formula but was not explained ahead. This is supposed to 

be an identity matrix, right? Please introduce it clearly. 

 

Response: Thank you for spotting our crucial neglects in calculation description. We have updated 

the corresponding statements at line 273 as the blue text below: 

 

“In practical implementation mathematically, we use graph Laplacian matrix 𝐿 to normalize 

the energy flow of original adjacency matrix 𝐴 as Eq. (11), where 𝑰𝒏 is an identity matrix with 

the order 𝒏 × 𝒏. L can be considered as the directions in which the excess unstable energy will 

propagate to other variables when the entire system is perturbed (such as external wind forcing).” 

 

Comment 2: Figure17-Figure20: The data seems to be standardized and should be mentioned on 

the figure. 

 

Response: Thank you so much for your professional attitude and helping us find a mistake. 

Figure17-Figure20 are used to display the SST and wind anomalies patterns of the model results 

and observations, which are obtained by subtracting the corresponding climatology (climate mean 

state). However, we made a mistake. For example, for the SST anomalies patterns in July, we should 

subtract the climatology of SST in July, but we subtract the average of the climatology of SST in 

the whole year. By the way, the climatology in July is the average of the data in July of the recent 

30 years. So, Figure17-Figure20 in the previous manuscript is wrong shown as Figure1-Figure4. 

The corrected Figure17-Figure20 in manuscript are shown as Figure5-Figure 8, which have 

been updated at line 700, 720, 725, and 740 in the latest manuscript. We also supplement the related 

statements at line 695 as the blue text below: 

 

“Therefore, we make long-term forecasts and majorly trace the evolutions of SST and wind (u-

wind and v-wind). Note that all of the following patterns describe the evolutions of SST and 

wind anomalies by subtracting the climatology (climate mean state) of that month (the recent 

30-year monthly averaged SST and wind) from the forecasted SST and wind patterns.” 



 

 
Figure 1: The growth phase of SST anomalies in 2015/2016 super Niño event from 2015.4 to 2015.6. a-c are 

the forecast results of the ENSO-ASC and d-f are real-world observations. 

 
Figure 2: The peak phase of SST anomalies in 2015/2016 super Niño event from 2015.9 to 2016.2. a-f are the 

forecast results of the ENSO-ASC and g-l are real-world observations. 



 
Figure 3: The same with Fig. 17 but for the growth phase of SST anomalies of 2017 weak La Niña event from 

2017.9 to 2017.11. 

 
Figure 4: The same with Fig. 17 but for the neural SST evolution in 2020.1 to 2020.3. 

 

 

Figure 5: The growth phase of SST anomalies in 2015/2016 super Niño event from 2015.4 to 2015.6. a-c are 

the forecast results of the ENSO-ASC and d-f are real-world observations. 



 

Figure 6: The peak phase of SST anomalies in 2015/2016 super Niño event from 2015.9 to 2016.2. a-f are the 

forecast results of the ENSO-ASC and g-l are real-world observations. 

 

Figure 7: The same with Fig. 1 but for the growth phase of SST anomalies of 2017 weak La Niña event from 

2017.9 to 2017.11. 



 

Figure 8: The same with Fig. 1 but for the neural SST evolution in 2020.1 to 2020.3. 

 

 

Comment 3: A suggestion: In this paper, it is found that the best effect is to set the input sequence 

length as 3. This may be due to selecting the predictors with short memory (vapor, cloud). If 

predictors with long memory (such as heat content) are added, it may be more effective to set the 

length longer. Although Table 3 shows the prediction effect of the model with increased heat content 

data, the input sequence length is the same. This may be taken into consideration in a future study 

using global data. 

 

Response: We thank the reviewer for this valuable insight very much. As the reviewer said, from 

our experiments in Section 4.3.1 (Influence of the input sequence length), we found that the suitable 

input sequence length for the ENSO-ASC is 3 months according to the trade-off between the time-

/resource-consuming and forecast skill when using 6 predictors (SST, u-wind, v-wind, rain, cloud, 

and vapor), in which 5 variables are related to the atmospheric processes with short memories. In 

the Section 4.4.1 (Contributions of different predictors to the forecast skill), when we add heat 

content with long memory into the model, it is indeed necessary to re-investigate the optimal input 

sequence length by experiments in this manuscript. In fact, in continuous studies following this 

manuscript, the input length should be at least 6 months with 7 input variables (SST, u-wind, v-

wind, rain, cloud, vapor and heat content) using globe data. While with the equatorial Pacific data 

and the input sequence length varying from 3 to 9 months, the change of forecast skill of ENSO-

ASC is not much significant. Because the input region mainly covering the equatorial Pacific and 

most of the variables are with short memories in this manuscript, the input sequence length is still 

set as 3 despite adding heat content data into the model shown in Table 3. Let's look forward to our 

next manuscript following this manuscript. 

 

The related statements have been additionally supplemented in the Section 4.4.2 (Contributions 

of different predictors to the forecast skill) at line 544 as the blue text below: 

 

“The superiority of our proposed model derives from the graph formalization, and the special 

multivariate coupler can effectively express the processes of synergies between multi-physical variables. 

From another perspective, the improvement of the forecast skill is not only benefited from graph 

formalization, but also due to the utilization of multiple variables highly related to ENSO compared to 



using limited variable to predict ENSO as previous works. For ENSO forecast, SST is definitely the most 

critical predictor. Besides SST, other variables have different contributions to the forecast results. 

Therefore, we design an ablation experiment by removing one of predictors from our proposed model 

and detect the reduction of forecast skill (Table 3 above). At the meanwhile, we also add one extra 

predictor (from surface air temperature, surface pressure and ocean heat content respectively) 

into our proposed model to investigate the improvement of forecast skill (Table 3 below). Here, 

the input sequence length is still set to 3. 

Table 1: Model performance when one existing variable removed or one extra variable added 

Removed 

variable 

12-month 15-month 18-month 

SSIM / PSNR SSIM / PSNR SSIM / PSNR 

- 92.65 / 22.05 90.31 / 20.97 87.53 / 18.17 

RAIN 91.46 / 21.34 88.74 / 18.32 85.86 / 17.35 

CLOUD 91.53 / 21.65 88.81 / 18.54 85.93 / 16.16 

VAPOR 91.52 / 21.65 88.82 / 18.53 85.92 / 16.16 

UWIND 90.08 / 20.93 87.03 / 17.81 83.72 / 13.58 

VWIND 91.47 / 21.62 88.65 / 18.42 85.31 / 15.07 

Added variable 
12-month 15-month 18-month 

SSIM / PSNR SSIM / PSNR SSIM / PSNR 

Surface 

Pressure 
92.74 / 22.13 90.33 / 20.99 87.64 / 17.26 

Surface Air 

Temperature 
92.75 / 22.15 90.40 / 21.07 87.71 / 17.25 

upper ocean 

heat content 
92.98 / 22.14 90.45 / 21.10 87.79 / 17.34 

Table 3 (above) shows that when a variable is removed from the input of the deep learning model, 

the ENSO forecast skill will be reduced. More specifically, when the zonal weed speed (UWIND) is 

removed, the reduction is the largest. From the perspective of ENSO physical mechanism, zonal wind 

anomalies (ZWA) always play a necessary role and are even considered as the co-trigger or driver of 

ENSO events. As an atmospheric variable, ZWA often gives a direct feedback on oceanic varieties with 

a shorter response time than oceanic memory. ENSO-ASC uses historical 3-month multivariate data to 

predict ENSO evolution, which is a quite short sequence length. Under such sequence length, wind speed 

(including u-wind and v-wind) has a relatively high correlation with SST. In addition, RAIN is another 

variable that slightly affects the forecast. This is because the precipitation process has a straightforward 

contact with the sea surface, and the energy transfer is easier. 

Table 3 (below) indicates that the model performance improves a little when adding surface air 

temperature/surface pressure/ocean heat content into the multivariate coupler. This is because that the 

multivariate graph with existing variables in the ENSO-ASC can almost describe a relatively complete 

energy loop in Walker circulation, so the effects of the extra added variables to the ENSO forecasts are 

not obvious. It is worth noting that the input sequence length should be longer when feeding 

the ocean heat content into the multivariate coupler, because this predictor is with long 

memory. However, as the input sequence length varies from 3 to 9 months, the forecast skills 

of ENSO-ASC have not changed much actually. This is mainly because that the global spatial 

teleconnections and temporal lagged correlations by Walker Circulation and ocean waves 



(such as Kelvin and Rossby Waves) (Exarchou et al., 2021 and Dommenget et al., 2006) are 

not caught in the model, the input region of which mainly covers the equatorial Pacific. In 

addition, the model contains only one long memory predictor besides SST.  

In the subsequent experiments, the model will use the chosen 6 variables (SST, u-wind, v-wind, rain, 

cloud, and vapor) and the input sequence length is set to 3.” 

 

The related statements are also additionally supplemented in the Section 5 (Discussions and 

conclusions) at the line 826 as the blue text below: 

 

“The extensive experiments demonstrate that the ENSO forecast model with a multivariate air-

sea coupler (ENSO-ASC) is a powerful tool for analysis of ENSO-related complex mechanisms. 

Meteorological research does not only pursue skilful models and accurate forecasts, but requires a 

comprehensive understanding of the potential dynamical mechanisms. In the future, we will 

extend our model to more global physical variables with informative vertical layers, such as 

the thermocline depth, and the ocean temperature heat content, to explore the global spatial 

remote teleconnections, temporal lagged correlations, and the optimal precursor etc.” 

 

The related references are shown as following and also added into the manuscript: 

 

References 

Dommenget, D., Semenov, V., and Latif, M.: Impacts of the tropical Indian and Atlantic Oceans on 

ENSO, Geophysical research letters, 33,2006. 

Exarchou, E., Ortega, P., Rodríguez-Fonseca, B., Losada, T., Polo, I., and Prodhomme, C.: Impact 

of equatorial Atlantic variability on ENSO predictive skill, Nature communications, 12, 1–8, 

2021. 

 

 

The Reply on Referee #2 

 

Comment 1: In the ablation experiment, “The calculation of this variable contains SST, so the effect 

of the extra introduction of upper ocean heat content will be weakened” is at L533. I have a 

suggestion: if using upper ocean heat content to take place the SST in the model, how will the 

ENSO-ASC perform? 

 

Response: Thank you so much for your professional attitude and insightful suggestion. This is 

indeed a valuable question for investigating the effects of different predictors on an ENSO deep 

learning forecast model. The upper ocean heat content is a very concerned variable, which can 

reflect the vertical and horizontal propagations of ocean waves and help interpret the dynamical 

mechanisms of ENSO. Therefore, as the comment says, we supplement a control experiments to 

investigate the model performance by replacing SST with upper ocean heat content in the model 

input. 

We conduct the comparison by two modified ENSO-ASCs with the same output of SST + u-

wind, v-wind, rain, cloud, and vapor, while with the different input. One is upper ocean heat content 



+ u-wind, v-wind, rain, cloud, and vapor (EXAM), the other is SST + u-wind, v-wind, rain, cloud, 

and vapor (CTRL). We find that the forecast skill of EXAM is slightly lower than that of CTRL 

(depicted as Table 4). The upper ocean heat content is the average of the oceanic temperature from 

sea surface to upper 300m, which is crucial to represent the deeper sea temperature beyond sea 

surface. However, our model is designed to forecast SST. We think that using the upper ocean heat 

content as a predictor for our model inevitably introduces more noise, which extracts the features 

of oceanic temperature not only from sea surface but also from deeper ocean. Actually, according 

to our extensive experiments, we find it is a positive determination that the model should select the 

physical variable we want to forecast as one of predictors. 

 

We have also supplemented the related statements from the start of line 569 as the blue text 

below: 

“Among the three extra added physical variables, the upper ocean heat content is a very 

concerned variable, which can reflect the vertical and horizontal propagations of ocean waves and 

help interpret the dynamical mechanisms. Therefore, we conduct the comparison via two modified 

ENSO-ASCs with the same output of SST + u-wind, v-wind, rain, cloud, and vapor, while with the 

different input. One uses upper ocean heat content + u-wind, v-wind, rain, cloud, and vapor, marked 

as EXAM, another uses SST + u-wind, v-wind, rain, cloud, and vapor, marked as CTRL. The results 

are shown in Table 4. 

Table 2: Model performance comparison when using upper ocean heat content to replace SST in the input 

Model paradigm 
12-month 15-month 18-month 

SSIM / PSNR SSIM / PSNR SSIM / PSNR 

CTRL: SST + others → 

SST + others 
92.65 / 22.05 90.31 / 20.97 87.53 / 18.17 

EXAM: upper ocean heat content + others → 

SST + others 
90.96 / 20.87 88.45 / 18.23 84.76 / 14.90 

Note: Model paradigm represents the input and the output for the ENSO-ASC, where → means “forecast”. “Others” is five 

variables, including u-wind, v-wind, rain, cloud, and vapor. The first row is the control experiment, which is the same with the 

result in Table 3, and the second row is the examined experiment, which only replaces SST by upper ocean heat content in the 

model input. 

The forecast skill of EXAM is slightly lower than CTRL. The upper ocean heat content is the 

average of the oceanic temperature from sea surface to upper 300m. When using it as a predictor to 

forecast SST, our model will extract the features of oceanic temperature not only from sea surface 

but also from deeper ocean, which inevitably introduces more noise. This may be a reason for the 

above result. Therefore, we still use SST instead of the upper ocean heat content as the key predictor 

which would bring higher forecast skill.” 

 

Comment 2: The initial letter of the sentence should be uppercase and some mistakes are found at 

line 103 and line 222. 

 

Response: Thanks for your comment. We have read through the full text and corrected all 

misspelling and grammatical errors, including Line 107 and Line 208 as mentioned in the comment 

at this revised version.  



 

Comment 3: L374, “N40°-S40°, E160°-W90°”, should be expressed as the region of 40°N-40°S, 

160°E-90°W. 

 

Response: Thanks for your comment. We have corrected the related text in the Line 396. In addition, 

we also modify the statements in the legend of Figure1 as the following blue text: 

 

“Figure 1: Most concerned regions in ENSO events. The blue rectangle covers the Niño3 

region (𝟓° N-𝟓° S, 𝟏𝟓𝟎° W-𝟗𝟎° W), and the green rectangle covers the Niño4 region (𝟓° N-𝟓° S, 

𝟏𝟔𝟎°E-𝟏𝟓𝟎°W).” 

 

Comment 4: In Figure 6, the text looks too small. 

 

Response: Thank you for your reminding, and it is really a good suggestion to improve the whole 

quality of our manuscript. We have enlarged the font size and image size of Figure6. In addition, we 

also check and enlarge the size of other figures in our manuscript to make them more clearly. 

 

The Reply to Chief Editor 

 

Comment 1: In your work, it is of the utmost importance that you publish the input sub-datasets 

used for ENSO-ASC and the output data. Therefore, please, post your data in one of the appropriate 

repositories. 

 

Response: Thank you for spotting our crucial neglects in the datasets used for ENSO-ASC. We 

have created a repository to store the data we used, including the training/validation dataset and the 

model output examples, and updated the corresponding statements at line 846 (Data availability) 

as the blue text below: 

 

“Thanks to NOAA/CIRES, Remote Sensing System, and China Meteorological Administration 

for providing the historical geoscience data and analysis tools. (https://rda.ucar.edu/, 

http://www.remss.com/, https://cmdp.ncc-cma.net, last access: 8 Jul 2021). The related 

training/validation datasets can be also accessed at https://doi.org/10.5281/zenodo.5179867” 

 

Comment 2: In the README file of the model, you mention several versions of python or CUDA 

necessary for your work. This is precisely the kind of information that you must mention in the 

manuscript and the Code Availability section. 

 

Response: Thank you so much for your professional comments. We have updated the corresponding 

statements at line 841 (Code availability) as the blue text below: 

 

“The source code of the ENSO-ASC is available in the Git repository: 

https://github.com/BrunoQin/ENSO-ASC (last access: 14 August 2021), which is implemented 

by Python 3.6 (or 3.7) and CUDA 11.0. The present version of ENSO-ASC 1.0.0 is available at 

https://github.com/BrunoQin/ENSO-ASC


https://doi.org/10.5281/zenodo.5081793.” 

 

Comment 3: There is no license listed in the Zenodo repository. For ENSO-ASC (it reads other), 

but in the uploaded material, there is not a License file. If you do not include a license, the code 

continues to be your property and cannot be used by others. Therefore, when uploading the model's 

code to Zenodo, you could want to choose a free software/open-source (FLOSS) license. We 

recommend the GPLv3. You only need to include the file 'https://www.gnu.org/licenses/gpl-3.0.txt' 

as LICENSE.txt with your code. Also, you can choose other options that Zenodo provides: GPLv2, 

Apache License, MIT License, etc. 

 

Response: We thank the reviewer for this valuable comment. We have updated our model repository 

and supplement the GPLv3 license into the latest repository as the comment said. 

 

Comment 4: In the files of the model, it reads several times "Linux". The correct way of naming it 

is "GNU/Linux"; Linux is only the kernel of the operative system 

 

Response: Thank you for pointing out our mistake very much. We have also replaced the related 

"Linux" to "GNU/Linux" in the “README.md” file in our model repository. 

 

 

Thank you again for your positive comments and valuable suggestions to improve the quality of our 

manuscript. 

 

On behalf of all the co-authors, best regards, 

Bo Qin 

 


