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Abstract. ABSOLUT v1.0 is an adaptive algorithm that uses correlations between time-aggregated weather data and crop

yields for yield prediction. At its core, locally (i.e. district-) specific multiple linear regressions are used to predict the annual

crop yield based on four weather aggregates and a linear trend in time. In contrast to other statistical yield prediction methods,

the input weather features are not predefined or based on a limited number of observed correlations but they are exhaustively

tested for maximum explanatory power across all of their possible combinations in all districts of the modelling domain.5

Principal weather variables (such as temperature, precipitation, or sunshine duration) are aggregated over two to six consecutive

months from the 12 months preceding the harvest. This gives 45 potential input features per original weather variable. In a first

step, this zoo of possible input features is subset to those very probably holding explanatory power for observed yields. The

second, computationally demanding step is making out-of-sample predictions for all districts with all possible combinations

of the remaining features. Step three selects the seven combinations of four different weather features that have the highest10

explanatory power averaged over the districts. Finally, the district-specific best performing regression among these seven is

used for district predictions, and the results can be spatially aggregated. To evaluate the new approach, ABSOLUT v1.0 is

applied to predict the yields of ten major crops at the district level in Germany based on two decades of yield and weather

data from about 300 districts. When aggregated to the national level, the predictions explain 70–90 % of the observed variance

between years depending on crop type and time frame considered. District-level performance maps for winter wheat and silage15

maize show areas with >40 % variance explanation covering about two thirds of the country.

1 Introduction

Weather-based crop yield predicitons have a long history; correlations between weather variables and agricultural yields had

already been studied in the first quarter of the 20th century (Meinardus, 1901; Hooker, 1907; Fisher, 1924), and estimating20

regional yields by multiple linear regressions from time-aggregated weather data has been around for decades. The entirety

of crop and landscape specific weather effects is however hardly captured by the existing models. The ABSOLUT algorithm
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presented in this article attempts to minimize this gap by finding and adapting the most informative correlations between

weather variables and yields, finally aiming for reliable extrapolations in climate change scenario assessments.

At its core, the ABSOLUT algorithm applies a multiple linear regression of the form25

y(t) = β0 +β1t+β2w1,t +β3w2,t +β4w3,t +β5w4,t + ε (1)

for each spatial subunit (“district”) of the target domain. Herein y(t) is the yield, i. e. the harvested mass per area in dt ha−1, of a

certain crop in the year t; the βi are regression parameters; thewj,t are aggregated weather variables with specific time windows

associated to t (for instance the precipitation sum of December, January, and February preceding the harvest in summer), these

are henceforth called “weather features” to avoid confusion with weather variables like temperature or precipitation in general;30

and ε is the estimation error to minimize. This is finally demonstrated here for Germany and its district-level administrative

subunits (Kreise).

But what is so special about a couple of linear regressions with six coefficients that justifies calling the approach a new

algorithm and naming it ABSOLUT? The challenge of weather-based yield regressions is hardly in demonstrating the gen-

eral approach; it usually works and explains a significant part of the observed yield variations. Numerous studies have just35

demonstrated that for different crops in different locations around the world (e. g. Ceglar et al., 2016; Nemoto et al., 2016;

Schauberger et al., 2017b). It’s the details which matter and finally decide to what extent the unavoidable prediction errors can

be reduced; relevant questions include but are not limited to the following:

1. Shall a linear trend over time be assumed or not?

2. Shall absolute yields or interannual variations be estimated?40

3. Which are the most relevant meteorological variables?

4. Should the input be augmented with non-meteorological data?

5. Shall input variables be transformed before they are used?

6. How many input variables should be used?

7. What are the optimal time windows for their aggregation?45

8. Is it better to fit regression models separately for each subunit or to make panel models sharing the same parameters for

groups of subunits?

9. Are there other options to make the estimations more robust?

From these questions alone it should be obvious that even the decision to resort to simple linear regression models leaves

the modeller with further decisions galore, frequently too easily taken based on personal beliefs but in fact defining the true50

challenge of research and development with this class of models:
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Questions 1 and 2 are rather decisive if the method is to be used for evaluating the impact of long-term climate shifts. Gornott

and Wechsung (2016) elegantly circumvented dealing with long-term yield trends by estimating year-on-year yield differences

from the respective year-on-year changes in weather variables, thus implicitly assuming a linear trend component through the

intercept in the regression equations. The approach chosen here – estimating absolut values and an explicit linear trend for55

weather-independent long-term yield changes – makes isolating purely climate change induced yield trends easier in scenario

studies by freezing the time variable in the scenario estimations. Given the stagnations after several decades of technological

progress with ever increasing yields reported many times for different crops and world regions (e. g. Chen, 2018; Schauberger

et al., 2018; Mehrabi and Ramankutty, 2019) the assumption of a linear time trend might be oversimplistic (cf. the stochastic

trend separation by Agnolucci and De Lipsis, 2020) and eventually be replaced by a better approach.60

Questions 3, and 6 about the selection of predictor variables define the focus of this contribution. The “oldschool approach”

still taken by many researchers is largely an expert choice. It might have been guided by selective correlation analyses for pre-

selected candidate variables (González-Fernández et al., 2020; Ji et al., 2019), stepwise regression (Kern et al., 2018; Salehnia

et al., 2020), or consideration of crop growth stages for suitable time windows (question 7 Butts-Wilmsmeyer et al., 2019;

Zhang et al., 2017). In some cases the selection effort is critically flattened, even if continental climate impact assesments are65

at stake: Moore and Lobell (2014, 2015) used temperature and precipitation averages of the growing season as sole meteoro-

logical basis for that purpose. If non-meteorological predictor variables were to be considered (question 4) the specific data

availability, e. g. from a certain remote sensing product, often determines the input variables. Reluctance to ponder on suitable

input variables however paves the way to machine learning. As an example, Gómez et al. (2019) had potato yields automati-

cally fitted to 54 spectral bands and indices of Sentinel 2 satellite images by a bunch of methods (including generalized linear70

model, quantile regression, support vector machines, and neural networks). While a massive, automated search for the best

predictor features and methodology evades modeller subjectivity, explanations for a certain system behaviour can hardly be

given, and an eventual gain in predictive performance remains uncertain.

By no means the method presented here – “Assessing Best-predictive Sets fOr multiple Linear regressions throUgh exhaus-

tive Testing” (ABSOLUT) – can be claimed to be the last word on the subject; it also contains a number of arbitrary settings,75

however it systematically optimizes the often disregarded input variable selection process while maintaining the principal ap-

proach of multivariate linear regressions. The approach can be counted as a kind of brute force machine learning and as such

it seems to be pioneering the field of crop yield prediction: Among the 362 crop forecasting studies published in the years

2004–2019 that were evaluated by Schauberger et al. (2020) there are 258 utilizing regression, and a few dozen additionally or

alternatively implementing established machine learning approaches, mostly automated neural networks (28 cases) followed by80

random forests (12). This study should therefore serve as proof of concept proposing another building block for more accurate

predictions in similar setups, e. g. with panel (question 8) or nonlinear regression models.
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2 Materials

2.1 General requirements

2.1.1 Hard- and software85

As ABSOLUT builds on exhaustive searches for optimal feature combinations in linear regressions, parallel execution of the

code on a cluster computer using several dozen cores is advisable. A state-of-the-art single PC or notebook would probably

need 2–3 days for the Germany example given all CPU cores (usually four) are hooked up.

The R software (https://www.r-project.org/) is required in version 3.5.1 or newer, and the following R packages must be in-

stalled to run the code as provided (version numbers indicate the versions actually used by the author): leaps (v.3.0, exhaustive90

search for regression subset selection) and doMPI (v.0.2.2, for parallel computing via MPI). If the hardware does not support

MPI, the foreach package (v.1.4.4, automatically loaded by doMPI) can alternatively be combined with doParallel.

Finally, the ncdf4 package (v.1.16.1) can be useful for preprocessing gridded weather data in NetCDF-format within R, it

however requires a NetCDF system library.

Further recommendations for preprocessing and output visualization are the open source programs GDAL (v.3.0.4, https:95

//gdal.org/index.html), GRASS GIS (v.7.8.3, https://grass.osgeo.org/), and GMT (Generic Mapping Tools, v.6.0.0, https://www.

generic-mapping-tools.org/).

2.1.2 Input data

Any ABSOLUT application needs a domain divided into many spatial subunits, henceforth called districts, for which there

are individual crop yield time series and monthly weather data available. Longer yield time series are also required, and a100

minimum requirement can be set to automatically exclude counties lacking enough data points from the calculation. Large

numbers of districts (ideally more than 100) and years with yield data (preferably more than 20) are required for the selection

of valid regression feature combinations (cf. sections 3.1.2 and 3.3).

Monthly weather data are needed for each district and should spatially correspond to the agricultural areas within the them.

The weather data should start at least one year before the yield records start and end not earlier than with the growing season105

of the final year covered by the yield data, otherwise not all yield information can be considered. In detail, the modeller

fixes the last calendar month whose weather data are to be considered for the growing seasons, and the model will evaluate

weather–yield correlations in the twelve-month periods ending with this month. For example, if there are yield data for the

years 1996–2015 and this “cut-off month” is set to May, the weather data must cover the period from June 1995 to May 2015

to utilize the complete yield data.110

As it is not necessary to include the very end of the growing season (the actual harvest dates shift between years anyway),

a timely cut-off and weather data reaching far enough into the current year can be used for pre-harvest yield forecasts (cf.

Schauberger et al., 2017b, regarding the effects of shortened weather input). Eventual additional input of seasonal weather

forecasts or climate scenario data may serve as basis for extended forward guidance or climate change impact studies.
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The actual input files and directories to be provided (green elements in Fig. 1) consist of:115

– absolutcontrol.dat, a short control file containing human-readable, UTF-8 encoded text to be edited before

program execution.

– yield-indat.csv, a CSV file with the lines holding unique district–year combinations and the associated yield

observations from a number of different crops. It does not matter if cities without crop yield data are missing from this

list, and the program can also deal with data gaps (single missing numbers indicated by NA-strings).120

– Another CSV file named crop-areas.csv after its contents, the per-district crop areas for the same crop species.

– A directory (here called DistrictWeather) filled with the monthly weather data for the agricultural areas of all

district level units. For each unit there is an ASCII file whose name contains the district ID. In each of these the months

correspond to lines with the meteorological variables in columns.

The file absolutcontrol.dat is the “user interface”. By editing it the user can set the paths to weather data directories,125

weather variables to be considered (a subset of the variables given in the district weather files), the crop species to be modelled,

time limits for optionally excluding recent years from the input, the last month of weather data to be considered before harvest

(cut-off), and the minimum requirement of years of historic yield data per district.

2.2 Specifics of the example application

The spatial basis of the example are Germany’s 401 district-level subdivisions (including the city states of Hamburg and Berlin130

as single units) as they existed on 1st January 2018. The time frame was principally determined by the crop data covering the

years 1999–2019, yield predictions for 2020 were however possible through more recent weather data.

2.2.1 Germany as test bed for agricultural modelling

According to the online database of the Federal Statistical Office of Germany (https://www-genesis.destatis.de, last access

December 2020) an area of 117 630 km2 was used as cropland in 2016, 32.9 % of the total country area of 357 578 km2. With135

annual production rates of approximately 20–25 million tons of winter wheat and 80–100 million tons of silage maize Germany

ranks among the top staple crop producers of the European Union. The croplands are dispersed across all parts of Germany

only seriously intermitted by mountainous areas and urban agglomerations. Regional yield time series are therefore abundantly

available, for some crops from even more than 300 of the 401 districhts.

The moderate climate allows autumn sowing for many cultures, nowadays average January temperatures range above 0°C140

in most parts of the country, and snow accumulation is usually limited to the higher elevated regions (> 500 m amsl). Typical

summer temperature averages are just below 20°C, and early heat periods can be harmful for cereals. A gradient of continen-

tality is associated with more pronounced temperature extremes in the eastern and southern parts of the country, but elevation

is more important for the local climate, especially for precipitation: The national long-term average of 789 mm year−1 (DWD

2020) is geographically differentiated between the lower parts of Eastern Germany receiving less than 600 mm year−1 and145
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coastal and higher elevated regions in the west where 1000 mm year−1 and more are not an exception. Extreme rainfall events

and hailstorms can affect agriculture in all parts of the country but have been observed more frequently in the south.

The most important factor for different cropping conditions is however a highly differentiated soil landscape: region-specific

orogenetic and erosive processes including a number of glacial formations in Northern Germany and near the Alps provided

the full spectrum of substrates from clays to sands and peat soils (cf. European Soil Bureau Network, 2005; Richter et al.,150

2007; Hennings, 2013). The challenging variety of regional cropping conditions and a decent availability of weather and yield

observations qualify Germany as test environment for any kind of weather-related crop yield modelling.

2.2.2 Primary data from external sources

The district geometries were taken from the official 1 : 1 million digital map of administrative areas, status 1st January 2018,

provided by the Federal Agency for Cartography and Geodesy (https://daten.gdz.bkg.bund.de/produkte/vg/vg1000_ebenen_155

0101/2018/vg1000_01-01.lamgw.shape.ebenen.zip, last access in August 2020).

Crop yield data were provided by the Statistical Offices of Germany through regional statistics table 41241-01-03-4 Erträge

ausgewählter landwirtschaftlicher Feldfrüchte (yields of selected crops) accessible via https://www.regionalstatistik.de. A

download made in May 2020 contained national, state, and district level data for ten crop species in the harvest years 1999–2019.

Additionally, table 41141-02-02-4 Anbau auf dem Ackerland . . . nach Fruchtarten (crop growing areas . . . by crop type) was160

obtained to use the areas reported for 2016 as weighting factors in aggregating the estimated district yields to state and national

averages.

Monthly weather data were provided by the German Weather Service (DWD) through their CDC OpenData portal. Point

of departure were the 1-km grid products available via http://opendata.dwd.de/climate_environment/CDC/grids_germany/

monthly/. Last access was in September 2020 to complete continuous time series from January 1991 to August 2020.165

The spatial distribution of agricultural areas within the districts has to be taken into account for determining the locally

relevant weather conditions, especially for districts including both an agricultural lowland and a mountainous part (Conradt

et al., 2016). The 2012 CORINE Land Cover data were used for this purpose, namely the 100-m raster product at version v20

(release date 1 May 2019) obtained from the Copernicus Land Monitoring Service via https://land.copernicus.eu/pan-european/

corine-land-cover/clc-2012?tab=download.170

2.2.3 Preprocessing and actual input data

A special preprocessing action was required due to a history of district reorganisations (major ones took place in Eastern

Germany in 2007, 2008, and 2011). For some federal states the original yield table contained data still based on historical

district geometries while pre-reorganisation data from other states had already been resampled to the current geometries. A

spatial homogenisation adjusted everything to the 2018 administrative geometries. Special care was taken where old districts175

merged into new ones differed in their agricultural area shares or the delineation of new districts was only partly based on

former boundaries.
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Spatial resampling of weather data to the agricultural areas within the districts is a preprocessing effort usually required

for any application of ABSOLUT. One possibility would have been interpolating weather station data to area centroids (cf.

Conradt et al., 2016), but here weighted averages of the DWD grid cells overlapping the croplands were used. First, 401 binary180

raster maps (one per district) were made with cell values of one indicating cropland (CLC code 211 = non-irrigated arable land)

located within the district and zero elsewhere. These maps were then resampled by averaging the cell values to the coarser 1-km

grid of the DWD weather data in another map projection. For that operation the gdalwarp utility of GDAL was used with the

-r average switch. The output grids were interpreted by an R script as weight matrices for resampling the gridded weather

data. This worked for practically all districts, even cities with small shares of agriculture. Only five districts in the vicinity of185

the Alps, the city of Suhl, and the forest-dominated mountainous domain of Siegen-Wittgenstein contained less than 1 km2

assigned to CLC land use code 211. Class 231 (pastures) was used instead in these cases assuming a uniform interspersal with

patches of cropland in the real landscape.

As these preprocessing steps are not part of the algoritm as such a directory with district weather data, the two CSV files,

and a preconfigured absolutcontrol.dat are readily provided along the program code (Conradt, 2021b). It should be190

noted that it is not necessary to reproduce the very weather variables present in the example input to run the model; the

example application resorts to mean air temperature (tav), precipitation (pr), and sunshine duration (sund) as selected in

absolutcontrol.dat while any alternative combination of monthly variables would be technically possible.

3 Methods

The R code of ABSOLUT consists of five programs that have to be run in their naming order: from 100_absolut.R to195

500_absolut.R in steps of hundreds (Conradt, 2021a). The sectional workflow, delineated in Fig. 1, is partly owing to

different stages of code development and was kept to allow for checks into the intermediate output/input files. The following

subsections describe the purposes and main features of these programs; for implementation details the source code should be

examined as such.

3.1 Program 100 – “the prospector”200

Program 100 is principally blunt exhaustive input variable testing for obtaining the “best” multiple linear regressions. Although

the results are far from optimal and cannot be used for predictive purposes directly (see section 4.1.1 with Fig. 3) it contributes

to narrowing the search window for regressions of higher predictive capability.

3.1.1 Initialization, preparation of weather input features

It starts with loading the libraries and reading a control file named absolutcontrol.dat whose contents are transferred205

into a couple of control variables. This information includes paths to a directory of input weather data (one file per district)

and an empty one for time-aggregated weather variables to be derived and used in the regressions. The names of the original

weather input files are registered, and the yield data in yield-indat.csv is read into memory. The official yield table may
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Start

Crop-specific

setup

absolutcontrol.dat

yield-indat.csv

crop-areas.csv

Monthly

weather data

Selection of

weather features

Program 100

absolut-100-output.dat absolut-100-presel.dat

absolut-100-r2map.csv

Map output

(requires postprocessing)

absolut-400-mapdata.csv

Map output

(requires postprocessing)

Time series plots (PDF)

Program 200

absolut-200-output.dat

Program 300

absolut-300-districtmodels.dat

Program 400

absolut-400-output.dat

Program 500

absolut-500-aggregation.dat

End

Figure 1. Flowchart of the ABSOLUT programs (yellow boxes) with input, intermediate, and output data. Coloured in green are the inputs

which have to be provided to run the programs, any other data will be calculated. Principal outputs are tinted in red.

hold data for different crop species but only one of these selected via the control file is to be considered; modelling several

species requires several runs of the full program sequence.210

The program loops over all districts for which both climate and yield data are present. Districts are identified through five-

digit IDs, a case-specific setting that might need readjustment for other established key formats. The number of considered

districts will usually be further reduced by the minimum requirement of yield data for the currently selected crop. Setting this

minimum too low will include unreliable regressions while a high setting will unneccessarily throw out a lot of otherwise

useful districts; it usually requires balancing between these downsides based on the actual data availability: Longer time series215

allow for higher thresholds.

The “last month of weather data to be considered” to be set in the control file should be a calender month towards the end of

the average growing season of the crop to be considered. Within each 12-months period ending in this month time aggregates

of the chosen weather variables are calculated for periods of two to six months, these are called weather features. Using

all possible start months this means 11 different two-month features per variable, ten three-month features, nine four-month220

features and so on, in total 45 features per weather variable, each with one value per year. To exclude single-month features or
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aggregations over more than six months was a somehow arbitrary (and possibly sub-optimal) design decision taken for limiting

the number of features.

The weather features are named by combining the meteorological variable acronym with two-digit numbers of the start and

end months, thus pr1203 accordingly identifies precipitation in the four months from December to March. For each district225

considered a file with a wide table of all weather features is stored in the designated directory.

3.1.2 Naïve exhaustive search and feature selection

For each district all possible combinations of three different weather features chosen from the pool generated in the previous

step are used as input to multiple linear regressions targeting the available yield data. The three best-fitting feature combinations

(determined by Pearson’s r) are found by exhaustive search. In addition, out-of-sample predictions are evaluated: Yield data of230

single years are subsequently removed from the input and the search for the best regressions is repeated based on the remaining

weather–yield time series. Again, the best-performing feature combinations are recorded inclusive their yield predictions for

the years with censored observations.

The output from this excersize is collected in two files: absolut-100-output.dat containing virtually everything

including the weather aggregates and the coefficients of determination for both the full data regressions (R2) and the out-of-235

sample predictions (R2
val), and absolut-100-r2map containing part of the results conveniently formatted for GIS import

and mapping.

As already mentioned, the best-fitting feature combinations found here cannot be directly used for reliable yield predictions,

because the per-district information is not sufficient to both select a valid combination of regressors and at the same time

estimate their coefficients; the textbook calculation of degrees of freedom and standard error only applies if there is no extra240

freedom in choosing the regressors. This is why the exhaustive search for optimal regressions could be called naïve in the first

place.

The better purpose of program 100 is however to subset the pool of all possible regression features to those very probably

containing predictive power, and this is based on counting the number of occurrences of weather features among the “winning”

combinations. So why exactly three features? Why always the three best-fitting regressions on the complete time series?245

Once more, these are somewhat subjective choices. It is assumed that the preferred features will be similarly preferred for

any multiple regression with 3–5 input features while regressions with only one or two features would suppress potential

combination effects and unnecessarily limit the number of samples.

Accordingly all weather features used in the best-fitting regressions are sorted along their frequencies of use, and a relevance

cutoff is determined based on binomial probabilities – features need to have been selected more often then they would have250

occurred by pure chance with 99.9 % probability; the number of features above this threshold is henceforth denoted q. Details

of the calculation are explained for the case study example (see section 4.1.1). Another small output file listing the q features,

absolut-100-preselection.dat, is produced. Finally the district files containing the wide tables of weather features

are rewritten, now constrained to these features as only those will be used in the remaining working steps.
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3.2 Program 200 – “the workhorse”255

Program 200 effects the highest computational burden, using parallelisation (as implemented for MPI or via the doParallel

package) is stongly recommended. Again, complete sets of possible input feature combinations are investigated for their pre-

dictive power in multiple linear regressions, but in contrast to program 100

– there are now four weather features in addition to the time feature (calendar years) selected as input variables,

– these are chosen from the preselected set of significant features as identified in program 100,260

– only predictions for single years whose yield data are censored from the regression equations (leave-one-out) are calcu-

lated, and

– the leaps package is skipped in favour of an explicit loop over the possible input variable combinations,

because here not only a selection of probably informative features is demanded but an evaluation of the predictive skills of the

multiple linear regressions a couple of which will be finally used in the model. Therefore the regressions applied here follow265

the template of Eq. (1) in section 1 with four weather features. Fixing the number of weather features to d= 4 might not always

be the best choice (see section 4.3), thus future versions of ABSOLUT will probably offer more flexibility.

The output of program 200 is a big table, its lines correspond to all possible input feature combinations, so their number is
(
q

d

)
=A (2)

with q indicating the number of preselected weather features as provided by program 100. The first column contains the line270

numbers, and the columns of the table body correspond to the districts which could be considered according to data availability,

their IDs are listed in an additional header line. The table body is filled with the Pearson correlations (r values) between reported

yields and the out-of-sample yield predictions from the regressions (applications of all feature combinations to all districts). A

former development version had the table filled with squared correlations, but these “R2 values” erroneously indicate predictive

power when there are in fact stronger negative correlations.275

3.3 Program 300 – “the gold pan”

The logically following task addressed by this program is determining the optimal regression model for each spatial subunit.

Simply choosing the feature combinations producing the highest correlations per district (“local heroes”) would however be

misleading because there is not enough validating information in a single yield time series; any feature combination needs to

be cross-validated by above-average performances in many districts.280

The solution currently implemented is a compromise between resorting to a single “generalist” combination with the best

average performance and a zoo of isolated regressions: The seven on-average best-performing combinations are determined

globally, and in each district the locally best-performing regression out of these is implemented.

There are in fact a number of alternative selection methods implemented in the code, however deactivated in the distributed

version. Among the tested methods whose results are reported for the example application (Tables 2 and 3) are:285
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Significantly elevated r: Inclusion of any combination with a significant shift towards higher-than-average r. This is deter-

mined by a rank-based approach; combinations which are significantly overrepresented in a the upper halves, thirds,

quarters, and so on (down to five per cent) of the district rankings are globally selected. This may yield several thousand

“allowed” feature combinations.

Optimal rank sum of seven: Out of the combinations validated in the previous approach seven are chosen such that the rank290

sum of their best per-district correlations is minimized.

Global and local heroes: The 42 globally best performing combinations with the highest average r values are merged with

those working exceptionally well in smaller subsets of the districts (down to 5 % of the districts). The idea behind is to

account for special conditions in certain landscapes.

Best global: Finally the set of combinations is simply confined to a certain number of global top performers, this is what is295

currently implemented for a number of seven.

Whatever confinement is used, the general principle is always subsetting the A possible combinations to a subset of C

“allowed” combinations. As for each district the locally best-performing feature combination belonging to this subset is used,

only c combinaions will be finally used, and it holds A> C ≥ c. And C = 7 of the example appication is chosen somewhat

arbitrarily – why not use the 3, 21, or 42 best combinations? Or an alltogether different selection approach?300

3.4 Programs 400 and 500 – “crucible and mould”

What remains is fitting the selected regression equations to the complete time series of observed yield data and predicting the

yields of the current harvest season using recent weather data or calculating yield scenarios from climate scenario data. This

is done by program 400. Leave-one-out estimations for observed yields are also repeated, because the complete results for all

possible feature combinations are not recorded by program 200.305

Program 500 reads the yield predictions on district level and the observed yields of the past plus the file crop-areas.csv

containing the crop areas per district. Currently static areas according to the agricultural survey of a certain year are applied,

changes of cropping intensities over time might be considered in future versions. This information is used to aggregate the

district yield predictions through weighted averaging to predictions for the full modelling domain – the actual implementaion

makes intermediate aggregations for federal states and derives national level predictions in a subsequent aggregation step.310

Among the outputs are time series plots of observations and predictions for the spatial aggregations, Fig. 2 shows an example.

4 Application to Germany: setup, results and discussion

The district-level administrative regions of Germany are identified by a five-digit key (Regionalschlüssel, “regional key”,

abbreviated RS) which was adopted for the application, e. g. in the file names for weather variables and features. Three principal

weather variables were selected: average temperature, precipitation, and sunshine duration. The minimum of yield data per315
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Figure 2. Average winter wheat yields in Germany according to the official statistics (black) and their predictions (green) with confidence

intervals. For the year 2020 the official value is not yet available.

district had been set to 17 because the example dataset was limited to 21 years (1999–2019) and a higher requirement would

have excluded many districts with incomplete observations.

The principal test crop was winter wheat, the last month for weather input before each year’s harvest (typically in July or

August) was set to June. For the secondary test crop silage maize the weather input season was set to end by August; maize

harvest may occur late in the year but growth stagnates in autumn.320

4.1 Observations along the workflow for winter wheat

4.1.1 Running program 100

With the three weather variables 3 · 45 = 135 weather features were generated (cf. section 3.1.1). This meant
(
135
3

)
= 400995

different regressions per district to test which required a couple minutes using 24 CPUs in parallel.

Figure 3 shows maps of the goodness-of-fit for winter wheat, visualizations of the CSV output of program 100. There is325

a stark difference between the performances of the chosen regression models depending on wether they are applied to the

same data that was used for selecting them or if the observed yield value of any single year to predict is censored from the

input (out-of-sample validation). The average R2 values are 0.784 and 0.124, respectively; this exemplifies that the regressions

selected in this step cannot be immediately used for predictions.

Which weather features do however appear significantly often in these regressions so that the subsequent assessment can330

be confined to them? What is their number, q? The algorithm requires that the number of occurrences exceed a frequency
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Figure 3. Spatial distributions of coefficients of determination for “optimal” winter wheat yield regressions (based on year and three weather

aggregates) across Germany for the years 1999–2019. (a) Fitted to the entire observational data. (b) Squared Pearson correlations between

predictions and observations; predictions made without the actual observed value used in parameter estimation (leave-one-out validation).

expected by pure chance with 99.9 % confidence. If there were pure noise in the data, each of the 135 features originally

provided would turn up with a constant probability of p= 3
135 = 1

45 per regression sample. With a finite number of samples their

frequencies follow a binomial distribution. In the winter wheat case there were n= 20892 samples, thus the expectation value

for any weather feature in the noninformative case would be E(x) = np= 464.267 occurrences with an expected standard335

deviation of E(σ) =
√
np(1− p) = 21.306. The number of occurrences not to be exceeded in 99.9 % of the cases would

be P999(n,p) = 531; consequently 37 weather features called more frequently in the winter wheat case were selected, their

frequencies are shown in Fig. 4

The average temperature towards the end of the growing season (temperature aggregates for May and June and March to

June) stick out clearly; this is in full agreement to the often described temperature sensitivity of wheat during and after anthesis340

(Akter and Islam, 2017; Farooq et al., 2011; Schauberger et al., 2017a). Consequently more than half of the aggregates shown in

Fig. 4 are temperature averages while less than one third are precipitation depths and only five of them are sunshine durations.
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Figure 4. The 37 weather features used most frequently in the regression equations optimally describing observed winter wheat yields in the

district-level administrative units of Germany. Their names consist of variable abbreviations (tas = temperature, pr = precipitation, and sund

= sunshine duration) and two-digit numbers of the start nd end months of their time aggregation. The length of the bars (Frequency) indicates

the number of the best-fit regressions containing the respective variable, the colours correspond to the meteorological variables.
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Table 1. Combinations of input weather aggregates performing best across all districts and the average Pearson correlation of their out-of-

sample predictions in the winter wheat example for Germany. Output of program 300.

Input weather aggregates r̄

tas0506 sund0506 tas1202 tas0710 0.479

sund0506 tas0104 tas0306 pr1103 0.472

tas0710 pr1102 tas0104 tas0306 0.468

sund0506 tas0204 tas0710 tas0306 0.463

tas0102 tas0506 sund0506 tas0710 0.463

sund0506 tas1102 tas0306 tas1204 0.461

tas0506 sund0506 tas1202 pr0103 0.458

4.1.2 Running programs 200 and 300

In the winter wheat example the big output table of program 200 has A=
(
37
4

)
= 66045 numbered lines (below a header) for

all possible input variable combinations, and 325 columns representing the districts for which enough yield data were available.345

Negative correlation coefficients could be found in no less than 28 % of the table cells. The negative extreme in the example is

a near perfect anticorrelation of rmin =−0.964.

Given the number of approximately 20 out-of-sample regression estimates behind every correlation coefficient, the compu-

tational demand is significant. The winter wheat example took about 2 hours using 112 CPU cores in parallel.

The repeated estimation of parameters for the q = 37 weather features (in varying combinations) per district is still rather350

noisy given only approximately 20 data points from each observed yield time series. Consequently 304 different combinations

make up the best-performing regressions in the 325 districts of the winter wheat case, and despite an average correlation of

r̄ = 0.788 they perform better than the regressions from the initial “naïve” search (Fig. 3b) but still very poorly when used for

predictions outside the training period.

The input feature combinations leading to the highest average correlations over all spatial subunits as determined by pro-355

gram 300 are shown in Table 1. The individual district rankings among these finally decide which one is applied where (and

if all of them are used at all – like in this example with C = c= 7. For winter wheat 13 different weather features are finally

included, and the average correlation of the so determined district models is r̄ = 0.597.

4.1.3 Running programs 400 and 500

Program 400 – utilizing the district-specific regressions determined in the previous step for the quasi-out-of-sample yield360

estimations and target-year predictions – runs within seconds through all districts. Their spatial time-series aggregation towards

Germany’s national winter wheat yields, computed by program 500, is shown in Fig. 2.
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Figure 2 includes the R2
val and root mean square error (RMSE) for the predictions: 0.795 and 2.39 dt ha−1, respectively. The

RMSE is used as basis for the 95 % confidence interval indicated by the green error bars. Assuming a normal distribution of

the residuals, the interval should be ±1.96 RMSE, but here a factor of 2.00 was used to account for the fact that all data have365

been used to determine the weather aggregate combinations in the regressions so that not a pure out-of-sample approach had

been applied despite the regression parameters being estimted without the observed values in the target years. The rough and

rather intutitive confidence correction serves the needs of this example framework but should eventually be refined.

4.2 How restrictive should the final selection be?

Tables 2 and 3 show the results for winter wheat and silage maize, both for the target years 2018 and 2019 whose yield370

predictions could already be compared to the final results of the official statistics. Only the yield observations preceding the

target years were used for feature and regression selections, thus the predictions of the target years are truely out-of-sample

while the leave-one-out predictions of the preceding years are only quasi out-of-sample. It must however be noted that both

target years (chosen just because they were at the end of the observation time series) accidentally coincide with a historic

drought over Germany; the linear extrapolations from smaller weather and yield fluctuations of the past are challenged by375

higher-than-average error levels.

The prognostic overconfidence from smaller residuals in the past can be traced in the RMSE columns: The more restrictive

the selection of weather aggregate combinations, i. e. the smaller c, the larger the average prediction error along the time

series of national yields RMSEg. While this can be expected – less combinations mean less flexibility in fitting the real-world

behaviour – RMSEp, the averaged prediction errors for the federal state yields in the target year generally reaches its minimum380

if only few regression alternatives are used. This rule is violated in the 2018 silage maize case (Table 3), and RMSEp shows

also minima for the least restrictive “significantly elevated r” method, but it is clear that the lower RMSEg values connected to

flexible regressor choices systematically overestimate their predictive performance.

The seven best globally performing combinations have been defined as standard approach despite the suboptimal results of

this method in the 2018 silage maize case. This can be justified by comparably low errors in the true out-of-sample cases and385

a relative parsimony of different feature combinations. Parsimony of different weather aggregates included adds to the latter,

because the seven combinations of the best global approach require only about 13 different weather features while the seven

combinations of the optimal rank sum approach regularly contain 20 or more.

However, this currently adopted standard might be revised in the future, cf. the minimal errors achieved for the target year

forecasts of winter wheat yields using more than 200 district-specific combinations in the “significantly elevated r” approach390

(Table 2). The solution chosen here might not be optimal but is a viable selector for demonstrating the power of the exhaustive

search approach.
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Table 2. Prediction performances for different approaches in the global preselection of weather aggregate combinations – Winter wheat

from 1999 to 2018 and 2019. The number of preselected combinations is C while c is the number of different combinations finally used.

The performance indicators R2
val and RMSEg refer to the time series of national quasi out-of-sample predictions while RMSEp is the true

out-of-sample RMSE for the federal states and Germany in the respective final year.

Winter wheat 2018 Winter wheat 2019

Preselection approach C c R2
val RMSEg RMSEp C c R2

val RMSEg RMSEp

Significantly elevated r 7656 293 0.924 1.58 7.61 13216 291 0.873 1.88 5.89

Optimal rank sum of seven 7656 7 0.842 2.18 7.74 13216 7 0.784 2.43 6.19

Global and local heroes 109 94 0.882 1.88 7.88 97 83 0.837 2.12 6.43

Best global: Top 96 96 85 0.886 1.85 8.30 96 82 0.831 2.16 6.74

Best global: Top 42 42 40 0.872 1.96 7.98 42 40 0.819 2.23 6.87

Best global: Top 21 21 21 0.835 2.20 8.05 21 21 0.820 2.23 6.64

Best global: Top 7 7 7 0.807 2.38 7.70 7 7 0.800 2.35 6.54

Best global: Top 3 3 3 0.784 2.51 8.02 3 3 0.710 2.85 6.75

Best global: Number 1 1 1 0.701 2.93 8.33 1 1 0.665 3.10 7.30

Table 3. Prediction performances for different approaches in the global preselection of weather aggregate combinations – Silage maize from

1999 to 2018 and 2019. Column headings as in Table 2.

Silage maize 2018 Silage maize 2019

Preselection approach C c R2
val RMSEg RMSEp C c R2

val RMSEg RMSEp

Significantly elevated r 8056 277 0.921 10.23 49.68 7579 278 0.935 9.12 43.12

Optimal rank sum of seven 8056 7 0.857 13.52 56.84 7579 7 0.916 10.32 38.47

Global and local heroes 123 95 0.899 11.44 50.09 138 97 0.922 9.87 41.30

Best global: Top 96 96 80 0.903 11.23 46.35 96 79 0.920 9.99 36.95

Best global: Top 42 42 41 0.888 11.99 49.53 42 41 0.917 10.16 36.05

Best global: Top 21 21 20 0.889 11.93 50.43 21 21 0.909 10.64 37.78

Best global: Top 7 7 7 0.831 14.48 61.15 7 7 0.908 10.68 34.11

Best global: Top 3 3 3 0.743 17.68 66.76 3 3 0.900 11.14 32.90

Best global: Number 1 1 1 0.656 20.44 76.58 1 1 0.896 11.34 33.01
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Table 4. Dependence of quasi out-of-sample prediction fidelity on the number d of input weather features. A is the number of possible

feature combinations, r̄ the average correlation of the finally applied combinations, and R2
g and RMSEg are coefficient of determination and

root mean square error for the time series of spatially aggregated (national) yields.

Crop d A r̄ R2
g RMSEg

Winter wheat

2 666 0.489 0.593 3.38

3 7770 0.583 0.800 2.37

4 66045 0.597 0.795 2.39

5 435897 0.591 0.798 2.38

Silage maize

2 496 0.634 0.864 13.13

3 4960 0.639 0.882 12.10

4 35960 0.659 0.910 10.55

5 201376 0.664 0.914 10.32

Winter rape

2 231 0.644 0.640 2.59

3 1540 0.656 0.646 2.58

4 7315 0.650 0.646 2.59

5 26334 0.664 0.721 2.30

4.3 The number of climate aggregate features

To fix the number of climate aggregate input features to d= 4 had been a fundamental design decision. Table 4 shows the

goodness-of-fit metrics for two to five climate input variables for winter wheat, silage maize, and winter rape; now the complete395

available input data (with the observed yields up to and including the year 2019) are used.

For winter wheat, three weather aggregates would have been sufficient, three show higher performance than two in all three

indicators – the average correlation of predicted district yields with local observations r̄, the coefficient of determination for

the time series of national yield averages R2
g , and the national forecast error level RMSEg. With four or five input weather

aggregates the results deteriorate slightly.400

The silage maize results support four weather inputs. Although there are monotonous performance improvements for each

additional weather aggreagate regressor, the advance with going from four to five is too small to justify the additional compu-

tational burden. Winter rape yield estimations show a somehow opposite behaviour: While there is practically no performance

change from two to four regressors, introducing a fifth one causes an upward jump. Here it probably plays a role that, as only

22 weather aggregates are preselected, even five variables mean just 26 334 different combinations, much fewer than there are405

for wheat and maize with four variables.

As using four weather input variables hardly spoils the predictive power in cases where two or three weather inputs would

suffice but clearly enhances the performance for silage maize while five variables often afford extreme computational demand
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– for winter wheat it took 112 CPU cores running 14 hours – four weather aggregates were set as standard. Making the number

of weather inputs flexible remains an option worth considering for future model versions, though.410

4.4 Selection of principal weather variables

As already mentioned above, mean air temperature, precipitation, and sunshine duration had been chosen as meteorological

input. Other variables have not been systematically investigated for their predictive potential due to a number of reasons.

Temperature and precipitation are fundamental climatological variables definitely governing plant growth, they should always

be considered. Aggregates of daily maximum or minimum temperatures are considerable alternatives for mean temperature,415

but combinations of different temperature “flavours” should be avoided because of strong multicollinearity. Experimenting

with temperature differences (diurnal temperature variations) would also be an option, but these are correlated with radiation.

Sunshine duration, chosen as proxy for photosynthetic active radiation, could also have been replaced by direct radiation

measurements or cloud coverage, another proxy. Tests using global radiation instead of sunshine duration showed however

gradual performance losses which may be related to differences in data acquisition: There are only few stations recording420

radiation directly compared to those recording sunshine duration. Sunshine duration was preferred for another reason, too –

the respective monthly DWD grid product becomes regularly available shortly after the turn of the month while the radiation

product takes several days longer to be released. Wind was also tested occasionally but crop yields seem to be rather insensitive

to it, the devastating effects of regional gales and local tornadoes hit too erratic to be captured by multi-month wind averages.

Data availability will generally determine the decision which variables to select. Climate scenario data may e. g. lack sun-425

shine duration and provide downwelling short radiation instead. Among the DWD data, evapotranspiration and especially soil

wetness, estimated by the AMBAV model (Löpmeier, 2014; Friesland and Löpmeier, 2007), seem very promising for yield

forecasting. They were deliberately cold-shouldered here as the general applicability of ABSOLUT with purely meteorological

regressors should be demonstrated.

4.5 Regional performance430

Using district regressions provides not only a basis for aggregate results but can also help identify spatial patterns despite the

higher noise in single district results. In contrast to major agricultural zones of the world like the North China Plain or the

US corn belt Germany is characterized by a high diversity of soil landscapes forming a distinct pattern of high and low yield

regions (Hennings, 2013; Kruse, 2016). Hence it makes a difference whether the ability to predict spatial yield patterns is

measured by absolute values or relative changes which is also demonstrated in the following.435

The silage maize harvest forecast for the drought year 2018 was chosen due to extreme yield losses observed in Eastern

Germany. For 2019 yield changes of winter wheat, the most frequently grown crop in Germany, are presented. Unless stated

otherwise, quoted figures in this section refer to all of Germany.
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Table 5. Statistical properties of 242 unweighted silage maize district yields predicted for 2018 and their observed counterparts according to

the official statistics (observation).

Prediction Observation

dt ha−1 dt ha−1

Mean 406.4 372.8

Std devn 90.0 96.2

Maximum 765.4 612.2

Q3 465.2 433.2

Median 418.0 374.3

Q1 354.5 305.3

Minimum 95.0 124.8

Pearson’s r 0.630

4.5.1 Silage maize 2018 on district level

Silage maize became increasingly popular as fodder and energy crop over the last decades and is now grown on approximately440

two million hectares. An average yield of 441.3 dt ha−1 was observed in the six pre-drought years 2012–2017 (DESTATIS).

The lowest yield levels are regularly observed in the federal state of Brandenburg where sandy soils are abundant, 340.3 dt ha−1

during the pre-drought period, while the most fertile regions like the Lower Rhine Bay landscape usually report yields above

550 dt ha−1. In 2018 the regional variation expanded because the drought hit hardest in Saxony-Anhalt and the south of Bran-

denburg where district yields dropped below 200 dt ha−1 and many farmers were even confronted with complete failure.445

Table 5 summarizes the district yield predictions and the officially reported statistics for the same districts; except for a

certain upward bias and an overestimated range the distribution of predictions looks convincingly similar to what had been

observed. The pairwise correlation between predicted and observed district yields is however not very high and partly owing

to the soil fertility pattern. Moving from absolute yields to relative changes (departures from the average district yields of the

years 2012–2017) spoils the picture even more: The correlation coefficient drops to 0.404 (n= 223; some districts excluded450

due to yield data gaps in the pre-drought period) indicating a mere 16.3 % of explained variance.

Despite this high noise level, the maps of the predicted and observed relative yield changes in districts shown in Fig. 5 (a)

and (b) show a general similarity of spatial patterns. There are regional misses along the coast to the Baltic Sea and in some

western and south-eastern parts of the country, but the center of gravity of the strongest yield losses could correctly be located.

Panel (c) of Fig. 5 gives an impression of the regional distribution of prediction power through absolute RMSE values455

calculated from the complete record of out-of-sample prediction errors. In general, the method works fine in Northern Germany

and some parts of the south, but has some issues in western to central areas. The actual 2018 errors (d) were much larger in
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Table 6. Statistical properties of 280 unweighted winter wheat district yields predicted for 2019 and their observed counterparts according

to the official statistics (observation).

Prediction Observation

dt ha−1 dt ha−1

Mean 78.93 74.03

Std devn 10.60 11.95

Maximum 100.69 103.80

Q3 86.51 82.85

Median 80.14 75.85

Q1 73.17 66.45

Minimum 32.16 39.00

Pearson’s r 0.809

many districts including those with comparably small RMSEs. It may be assumed that the training period (1999–2017) did not

contain enough reference drought years; in fact only 2003 might have been comparable to some extent.

4.5.2 Winter wheat 2019 on district level460

Winter wheat is Germany’s most frequently grown crop covering approximately three million hectares of the agricultural areas.

The national yield average of the years 2012–2017 was 79.5 dt ha−1 (DESTATIS).

The distributions of predicted and observed district yields for the year 2019, shown in Table 6, match reasonably well and

there was also a certain general overprediction as with silage maize for 2018. The correlation between predicted and observed

district yields is however a little higher, for the relative changes to the 2012–2017 yields Pearson’s r reaches 0.518 (n= 253)465

which means 26.8 % of the variance being explained.

The spatial distributions of predicted and reported changes shown in maps (a) and (b) of Fig. 6 are also rather similar,

except that the magnitude of observed yield losses was not captured by the prediction. On the other hand, the situation in the

coastal and western parts matches the predictions quite well contrasting the poor performance for the 2018 silage maize. In

the south-east the results suffer from slight overestimations, but a local gradient towards the southern boundary is generally470

matched.

4.5.3 Error compensation in spatial aggregates

By aggregating district results to regional averages some noise is filtered out by mutual error compensation and error lev-

els diminish. The 2018 silage maize predictions for 242 districts expose an unweighted root-mean-square error (RMSE) of

88.2 dt ha−1, their unweighted mean absolute error (MAE) is 71.3 dt ha−1. The 13 state yield predictions, weighted aggregates475
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Figure 5. Spatial characteristics of the silage maize yield prediction for the drought year 2018. (a) Predicted yield changes compared to the

average district yields of the years 2012–2017. (b) Observed changes according to the official statistics. (c) Root-mean-square errors (RMSE)

of the out-of-sample district yield predictions for the years 1999–2017. (d) Absolute values of prediction errors for 2018. Panels (a) and (b)

show relative deviations in percent (upper scale), (c) and (d) refer to absolute deviations in dt ha−1 (lower scale).
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Figure 6. Spatial characteristics of the winter wheat yield prediction for the year 2019. (a) Predicted yield changes compared to the average

district yields of the years 2012–2017. (b) Observed changes according to the official statistics. (c) Root-mean-square errors (RMSE) of the

out-of-sample district yield predictions for the years 1999–2018. (d) Absolute values of prediction errors for 2019. Panels (a) and (b) show

relative deviations in percent (upper scale), (c) and (d) refer to absolute deviations in dt ha−1 (lower scale).
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of the district results computed with program 500, have unweighted RMSE and MAE values of 62.0 dt ha−1 and 56.9 dt ha−1,

respectively. The national yield prediction, a weighted aggregate of the state aggregates, missed the official figure by 48.8

dt ha−1.

In the case of the 2019 winter wheat predictions RMSE and MAE of district results (n= 280) are at 8.6 and 6.6 dt ha−1,

respectively; the state level RMSE and MAE are at 6.6 and 5.1 dt ha−1, respectively; and the national aggregate prediction480

missed the official national yield by 5.7 dt ha−1. The 2018 and 2019 predictions were generally too optimistic, thus for other

years without general biases better error reductions can be expected from spatial aggregations.

Predictions from linear regressions are usually associated with confidence intervals calculated from the standard errors

and correlations of the parameter estimations. Hence it should theoretically be possible to spatially aggregate these estimates

as well and accordingly give dynamic confidence intervals for state and national predictions of individual years. However, the485

covariances between the district errors would have to be known for the uncertainty propagation calculation, and this is currently

unachievable. The estimated error levels of district predictions hardly correspond to the errors actually observed in single years.

Each year exposes a general bias, and in addition to that the district prediction errors are locally correlated.

At the moment, the confidence intervals given for district and aggregate predictions on different levels (cf. the green bars

in Fig. 2) are therefore based on the RMSE of the out-of-sample errors of past year predictions for the given prediction unit.490

Under certain conditions (extreme weather) errors do however exceed the expected level by far, often concentrated in regional

clusters as shown in Fig. 5 (d). The spatial correlation of errors should eventually be further investigated.

4.6 Comparison to existing prediction approaches

4.6.1 Official in-season yield estimations

There are at least two institutions regularly publishing crop yield forecasts or estimates: the German Federal Statistical495

Office (Statistisches Bundesamt, DESTATIS) and the Joint Research Centre (JRC) of the European Comission with their

MARS (Monitoring Agricultural ResourceS) activity. The DESTATIS reports with national and federal states’ estimates

are based on extensive field monitoring, on-site observations during growth and harvest by farmers and travelling experts.

Current issues are regularly published through their webpage (https://www.destatis.de/DE/Themen/Branchen-Unternehmen/

Landwirtschaft-Forstwirtschaft-Fischerei/Feldfruechte-Gruenland/_inhalt.html, last access in October 2020). The MARS fore-500

casts utilize a number of sources and predictors but seem to largely rely on remote sensing. National aggregate predictions of

MARS are released via monthly bulletins offered at https://ec.europa.eu/jrc/en/mars/bulletins (last access in October 2020).

Yield predictions for crops harvested in June or July (cereals or rape) can usually be computed in the beginning of July

as soon as the monthly weather data for June are available. For silage maize or sugar beets the August weather data should

be completed. Both conditions were constantly observed for the examples presented. Hence the preliminary national crop505

yield estimations of DESTATIS, regularly published in the beginning of August and at the end of September, are used for

comparison. (Only the winter barley estimates are released in between and DESTATIS does not provide early indications at

all for sugar beet yields.) For MARS, the annual issues 7 (typically released at the end of July) and 9 (typically released in
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Table 7. National average yields for various crops: comparison of official statistics (released in the year after harvest) and near-harvest

predictions of ABSOLUT and two other sources. The winter wheat figures given for MARS have been obtained by adding 0.6 dt ha−1 to their

original soft wheat prediction.

Year Yield ABSOLUT DESTATIS MARS

Date Predn Error Date Predn Error Date Predn Error

dt ha−1 dt ha−1 dt ha−1 dt ha−1 dt ha−1 dt ha−1 dt ha−1

Winter wheat

2020 02 Jul 85.1 03 Aug 71.9 27 Jul 76.0

2019 74.5 ex post 80.2 +5.7 02 Aug 73.0 −1.5 22 Jul 77.1 +2.6

2018 67.7 ex post 70.2 +2.5 02 Aug 66.4 −1.3 23 Jul 71.6 +3.9

Winter barley

2020 04 Jul 77.2 28 Aug 67.5 27 Jul 68.8

2019 72.2 ex post 71.6 −0.4 29 Aug 72.1 −0.1 22 Jul 71.3 −0.9

2018 60.6 ex post 52.5 −8.1 24 Aug 60.8 +0.2 23 Jul 63.5 +2.9

Rye

2020 05 Jul 55.8 03 Aug 51.7 27 Jul 52.5

2019 50.9 ex post 51.1 +0.6 02 Aug 51.7 +0.8 22 Jul 52.8 +1.9

2018 42.1 ex post 42.3 +0.2 02 Aug 42.7 +0.6 23 Jul 44.6 +2.5

Rape

2020 04 Jul 40.1 03 Aug 32.8 27 Jul 32.7

2019 33.1 ex post 35.5 +2.4 02 Aug 33.8 +0.7 22 Jul 34.7 +1.6

2018 30.0 ex post 29.5 −0.5 02 Aug 28.8 −1.2 23 Jul 30.0 ±0.0

Silage maize

2020 07 Sep 434.9 24 Sep 410.3 14 Sep 400.0

2019 390.0 ex post 399.2 +9.2 25 Sep 383.7 −6.3 16 Sep 394.0 +4.0

2018 352.9 ex post 401.7 +48.8 26 Sep 342.7 −10.2 17 Sep 361.0 +8.1

mid-September) are the seasonal counterparts to compare with. Table 7 presents the comparisons for five crops in the years

2018–2020; the reader may fill the blanks with the 2020 yields and prediction errors when the final official figures are available510

(expected for February 2021).

Considering the fact that the ABSOLUT results can be obtained 2–4 weeks in advance to those of the other sources the

quality of its predictions of national yield averages are in the same league with DESTATIS and MARS. There were considerable

overpredictions for winter wheat and silage maize, but rye results could be anticipated remarkably exact. Winter barley figures
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are very closely matched by DESTATIS, but they do not separate winter and summer barley before end of August when the515

field surveys already converge towards their official final result.

4.6.2 Weather input of Gornott and Wechsung (2016)

Experiments with district-based crop yield prediction in Germany through multiple regression using weather aggregates had

already been presented by Gornott and Wechsung (2016). In contrast to the algorithm presented here only year-on-year (YoY)

changes were considered saving the explicit estimation of an underlying linear trend. The study investigated different options520

to couple the coefficients of the district models (paneling), an approach further pursued with cluster analysis (Conradt et al.,

2016). The nearest equivalent to ABSOLUT are therefore the independent district regressions of Gornott and Wechsung (2016),

called there “separate time series models” (STSMs), and the most fundamental difference is that all STSMs used the same set

of input variables – predefined per crop – while ABSOLUT searches for some optimal combinations.

How powerful are the predefined input variables in terms of prediction accuracy compared to the combinations drawn525

by ABSOLUT? To answer this question, the district regressions were charged with the weather variables originally used by

Gornott and Wechsung (2016), the base trend estimation for absolute yield outputs was however left untouched to avoid side

effects from the other methodological differences. The weather variables uniformly used in the STSMs were

– For winter wheat: potential evapotranspiration from November to April and from May to July, temperature normalized

radiation from May to July, and precipitation from November to April and from May to July;530

– For silage maize: potential evapotranspiration from May to July and from August to October, temperature normalized

radiation from May to July, and precipitation from May to july and from August to October.

The potential evapotranspiration had been calculated daily according to Haude (1955), cf. Schrödter (1985). The same holds

for the temperature normalized radiation which is solar radiation in J cm−2 divided by the average air temperature in °C elevated

by 20 to avoid negative denominators. All weather data were taken from meteorological stations with each district using the535

data of the one closest to its centre, only in case of multiple stations located within the same district their measurements were

averaged (Gornott and Wechsung, 2016).

To exclude these peculiar differences in weather data processing from the comparison all weather data are now consistently

taken from the monthly DWD grids and preprocessed for the districts as described above in Sect. 2.2. Potential evapotran-

spiration is consequently calculated by AMBAV (Löpmeier, 2014; Friesland and Löpmeier, 2007), very probably closer to540

reality than with Haude’s formula. Only temperature normalized radiation is not originally computed on daily basis but using

the monthly grids of global radiation and average temperature. The original Gornott and Wechsung (2016) approach used also

fertilizer price and acreage of the target crop among their input variables which are simply omitted here.

The time series for national predictions of winter wheat in Germany calculated from the five predefined weather aggregates

is shown in Fig. 7. Compared to the result of the ABSOLUT algorithm in Fig. 2 the lacking accuracy is evident; the share of ex-545

plained variance dropped from 79.5 % to 20.2 %. Figure 8 maps the spatial distribution of the out-of-sample prediction accuracy

26

https://doi.org/10.5194/gmd-2021-21
Preprint. Discussion started: 15 March 2021
c© Author(s) 2021. CC BY 4.0 License.



●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

● ●

●

●

2000 2005 2010 2015 2020

40

60

80

100

120
Y

ie
ld

  
in

  
d

t/
h

a
Germany
Winter.wheat

●

●

●

●
●

●

●

●
●

●

●
●

● ●
● ● ● ●

●

●
●

●
−

−

−

−
−

−
−

− −
−

− − − − − − − − −
−

−

−

−
−

−

−
−

−
−

− −
−

− − − − − − − − −
−

−

−

R²val: 0.202 RMSE: 4.78 dt/ha

Average yield 2012−2017:  79.4 dt/ha
Forecast for 2020:  85.0 dt/ha ±9.6

(+7.0% ±11.3)

Figure 7. Average winter wheat yields in Germany according to the official statistics (black) and their predictions (green) calculated from

the five weather aggregates used by Gornott and Wechsung (2016)

for both approaches. Practically everywhere the five input variables give only poor results, and the pattern of higher accuracies

especially in Northern Germany observed by Gornott and Wechsung (2016) and Conradt et al. (2016) is not preserved.

Regarding the loss of accuracy compared to the previous studies Fig. 7 might give a hint: While the predictions are more or

less correlated to the observations until the year 2009, the ups and downs observed thereafter are not captured any more. The550

previous studies used yield data of the years 1992–2010 while the time interval used here is 1999–2020. Hence it might be that

the once effective weather predictors have lost their explaining power about the year 2010.

Figure 9 shows the respective maps for silage maize simulated until 2019. At least here the spatial pattern produced by

the five variables approach resembles the results of the former studies. The coefficient of determination for the nationally

aggregated out-of-sample time series reaches at least 40.3 % while Gornott and Wechsung (2016) reported 50 % for their555

prediction of interannual changes. This is however clearly below the 90.8 % obtained with ABSOLUT.

5 Conclusions and outlook

Among many studies investigating the correlations between weather variables and agricultural yields and using these for yield

prediction this one utilizes ordinary multiple linear regressions but massive parallelized computations for a systematic search

of the most relevant input aggregates among tens of thousands of possible combinations. Test bed are about 300 district-level560

administrative areas in Germany for which there are comprehensive high resolution weather data and individual yield statistics

for ten different crops.
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Figure 8. Shares of variance explained by out-of-sample estimations of winter wheat yields on district level: (a) based on the five weather ag-

gregates used by Gornott and Wechsung (2016) and (b) based on seven combinations of four weather aggregates selected through ABSOLUT.

The model run of (a) corresponds to the national time series in Fig. 7 and panel (b) to Fig. 2 respectively.

The first lesson learned was that the excessive testing and optimization of regressor combinations consumes degrees of

freedom, thus predictive power, just like the estimation of many coefficients within the multiple regressions. As the time frame

of example applications was relatively short (20–22 years from 1999 to 2018, 2019, or 2020) the solution was to not rely on565

the top-performing combination of each district but to require significant above-average performances in many districts for a

specific combination of weather aggregates to qualify as predictor. While this approach always requires many spatial subunits

with respectively distributed training data the performance of the predictions clearly exceeded the results of precursor studies

(Gornott and Wechsung, 2016; Conradt et al., 2016). The prediction performance achieved by the latter could be reconstructed

with more recent data to some extent for silage maize but hardly at all for winter wheat – probably the formerly observed570

correlations between weather and wheat yield detoriate under climate change and become replaced by others (to which the

ABSOLUT algorithm will automatically adopt).

There are two critical spots of the present 1.0 version of the algorithm which are at the same time the biggest opportunities

for improvements with future revisions: The first one is the assumption of a linear base trend of yields independently estimated
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Figure 9. Shares of variance explained by out-of-sample estimations of silage maize yields on district level: (a) based on the five weather ag-

gregates used by Gornott and Wechsung (2016) and (b) based on seven combinations of four weather aggregates selected through ABSOLUT.

The target year of this simulation was 2019.

for each spatial subunit. This allows straightforward prediction of absolute yields instead of relative changes, but as recent575

observations do not support the assumption of a smooth long-term development any linear estimation basis will cause prediction

biases especially if a long history of training data is applied (which is principally advantageous).

The other issue is the final selection of independent regressor variables, i.e. weather aggregates, for each spatial subunit.

The variants tested in Sect. 4.1.2 are probably just building blocks for a more intelligent way to select the most reliable combi-

nations. The general challenge is about finding the optimum balance between the multiple, spatially distributed confirmations580

of predictive power and the flexibility needed to adopt to smaller regions demanding alternative combinations for more exact

predictions. The assumption of the correlation of weather aggregates to yields changing over time has been confirmed by other

studies (Trnka et al., 2016; Ceglar et al., 2020) which calls for additional flexibility in handling long-term time series (a luxury

problem).

A third, less critical opportunity for improvement has been identified in Sect. 4.5.3: An adaptive estimation of confidence585

intervals for the spatial aggregates of yield predictions and for individual years. Some results suggest that standard errors of
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district predictions are hardly connected to actual prediciton errors for state and national yield aggregates. An obviously high

spatial correlation of subunit errors calls for further investigation.

Nevertheless it could be demonstrated that the ABSOLUT algorithm, already in its present stage of development, is capable

of explaining 70–90 % of the national yield variations of major crops in Germany solely based on weather variables, a much590

higher share than usually assigned to weather signals alone: Global studies assessing the relative impact of weather factors on

crop yield variations (Frieler et al., 2017; Schauberger et al., 2017b) give typical ranges of 50–60 % for wheat and maize yields

of main producer countries, for wheat in the United States even as low as 30–40 %. A careful assessment separating the impacts

of farm management and weather effects on wheat yield variations across Germany (Albers et al., 2017) found average shares

of only 43 % of the variations caused by the weather and 49 % owing to management. These numbers are however averaged595

from single farm samples and should not directly be compared to the ABSOLUT results; individual farm management effects

are probably just cancelling out in the national averages of district yields. Considering also non-meteorological drivers is

generally advisable in developing countries where factors like irrigation status, fertilizer price and general farming conditions

are much more decisive (Assefa et al., 2020).

National aggregate yields of staple crops in Europe may however depend more on weather than previously assumed (cf.600

Agnolucci and De Lipsis, 2020). Related questions about the impact of climate change on food security consequently underline

the need for further research into this field.

Code and data availability. The model code, consisting of five R programs, is publicly available at https://doi.org/10.5281/zenodo.4468609

(Conradt, 2021a). The input data needed for the example application to Germany consist of crop yields and cropping areas in administra-

tive regions, district-level monthly weather data, and a control file. They are publicly available at https://doi.org/10.5281/zenodo.4468691605

(Conradt, 2021b).
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