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Abstract. Remote sensing observations in the mid-infrared spectral region (4 – 15µm) play a key role in monitoring the com-

position of the Earth’s atmosphere. Mid-infrared spectral measurements from satellite, aircraft, balloon and ground-based

instruments provide information on pressure and temperature, trace gases as well as aerosols and clouds. As state-of-the-art

instruments deliver a vast amount of data on a global scale, their analysis, however, may require advanced methods and high-

performance computing capacities for data processing. A large amount of computing time is usually spent on evaluating the5

radiative transfer equation. Line-by-line calculations of infrared radiative transfer are considered to be most accurate, but they

are also most time-consuming. Here, we discuss the emissivity growth approximation (EGA), which can accelerate infrared

radiative transfer calculations by several orders of magnitude compared with line-by-line calculations. As future satellite mis-

sions will likely depend on Exascale computing systems to process their observational data in due time, we think that the

utilization of graphical processing units (GPUs) for the radiative transfer calculations and satellite retrievals is a logical next10

step in further accelerating and improving the efficiency of data processing. Focusing on the EGA method, we first discuss

the implementation of infrared radiative transfer calculations on GPU-based computing systems in detail. Second, we dis-

cuss distinct features of our implementation of the EGA method, in particular regarding the memory needs, performance, and

scalability on state-of-the-art GPU systems. As we found our implementation to perform about an order of magnitude more

energy-efficient on GPU-accelerated architectures compared to CPU, we conclude that our approach provides various future15

opportunities for this high-throughput problem.
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1 Introduction

Mid-infrared radiative transfer, covering the spectral range from 4 to 15µm of wavelength, is of fundamental importance for

various fields of atmospheric research and climate science. Here, in the longwave part of the electromagnetic spectrum, the

Earth’s energy budget is balanced by thermally radiating back to space the energy received via shortwave solar radiation in20

the ultraviolet, visible, and near infrared spectral regions (Trenberth et al., 2009; Wild et al., 2013). Furthermore, a wealth of

trace gases has distinct rotational-vibrational emission wavebands in the mid-infrared spectral region. Infrared spectral mea-

surements are therefore utilized by many remote sensing instruments to measure atmospheric state parameters, like pressure,

temperature, the concentrations of water vapor, ozone, various other trace gases, as well as cloud and aerosol particles (Thies

and Bendix, 2011; Yang et al., 2013; Menzel et al., 2018).25

Today, mid-infrared radiance measurements provided by satellite instruments are often assimilated directly for global fore-

casting, climate reanalyses, or air quality monitoring by national and international weather services and research centers. For

example, observations by the fleet of Infrared Atmospheric Sounding Interferometer (IASI) instruments (Blumstein et al.,

2004) from the European polar orbiting MetOp satellites have become a backbone in numerical weather prediction (Collard

and McNally, 2009) as well as monitoring the atmospheric composition (Clerbaux et al., 2009). New space-borne missions uti-30

lizing the wealth of information from hyperspectral mid-infrared observations will be launched beyond 2020, e. g., IASI-New

Generation (IASI-NG, Crevoisier et al., 2014), the InfraRed Sounder (IRS) on the Meteosat Third Generation (MTG) geosta-

tionary satellites, the European Space Agency’s new FORUM mission (ESA, 2019), or the Geosynchronous Interferometric

Infrared Sounder (GIIRS) aboard the Chinese geostationary weather satellite FY-4 series (Yang et al., 2017).

The vast amount of remote sensing observations from next-generation satellite sensors poses a big data challenge for numeri-35

cal weather prediction and Earth system science. Fast and accurate radiative transfer models (RTMs) for the Earth’s atmosphere

are a key component for the analysis of these observations. For example, the Radiative Transfer for TOVS (RTTOV) model

(Saunders et al., 1999, 2018) is a fast radiative transfer model for passive visible, infrared, and microwave downward-viewing

satellite radiometers, spectrometers, and interferometers. In RTTOV, the layer optical depth for a specific gas and channel

is parameterized in terms of predictors such as layer mean temperature, absorber amount, pressure, and viewing angle. The40

regression approach for the layer optical depths in RTTOV allows for particularly fast evaluation of the radiative transfer equa-

tion. Another example for rapid and accurate numerical modeling of band transmittances in radiative transfer is the optimal

spectral sampling (OSS) method (Moncet et al., 2008). OSS extends the exponential sum fitting of transmittances technique

in that channel-average radiative transfer is obtained from a weighted sum of monochromatic calculations. OSS is well suited

for remote sensing applications and radiance data assimilation in numerical weather prediction and a candidate for operational45

processing of future satellite missions.

However, many traditional RTMs suffer from large computational costs, typically requiring high performance computing

resources to process multi-year satellite missions. In this study, we focus on the porting and optimization of radiative transfer

calculations for the mid-infrared spectral region to graphics processing units (GPUs). GPUs bear a high potential for acceler-

ating atmospheric radiative transfer calculations. For instance, Mielikainen et al. (2011) developed a fast GPU-based radiative50
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transfer model for the Infrared Atmospheric Sounder (IASI) instruments aboard the European MetOp satellites. The model of

Mielikainen et al. (2011) estimates band transmittances for individual IASI channels with a regression approach (McMillin

and Fleming, 1976; Fleming and McMillin, 1977; McMillin et al., 1979). It was developed to run on a low-cost personal

supercomputer with 4 NVIDIA Tesla C1060 GPUs with a total of 960 cores, delivering near 4 TFlop/s theoretical peak perfor-

mance. On that system, the study found that 3600 full IASI spectra (8461 channels) can be calculated per second. More recently,55

Mielikainen et al. (2016) examined the feasibility of using GPUs to accelerate the rapid radiative transfer model (RRTM) short-

wave module for large numbers of atmospheric profiles. The study of Mielikainen et al. (2016) found that NVIDIA’s Tesla K40

GPU card can provide a speedup factor of more than 200 compared to its single-threaded Fortran counterpart running on Intel

Xeon E5-2603 CPU.

An alternative approach to perform atmospheric infrared radiative transfer calculations on field-programmable gate arrays60

(FPGAs) was proposed by Kohlert and Schreier (2011). Starting point for their study were radiative transfer calculations based

on the line-by-line approach. In this approach the transmittance is determined by evaluating the temperature- and pressure-

dependent line intensities and line shapes of all relevant molecular absorption lines. However, in the infrared, this may require

to evaluate hundreds to thousands of absorption lines in a given spectral region. Kohlert and Schreier (2011) ported this most

intensive part of the line-by-line calculations to FPGAs. Performance tests showed that the computation time for 950 absorption65

lines on 16000 spectral grid points was about 0.46 s on their test system. This is several orders of magnitude slower than both

the regression and the EGA approach, but it needs to be kept in mind that the line-by-line methods generally provides the most

accurate results.

In this study, we will discuss porting and performance analyses of radiative transfer calculations based on the emissivity

growth approximation (EGA) method as implemented in the Juelich Rapid Spectral Simulation Code (JURASSIC) to GPUs.70

The EGA method as introduced by Weinreb and Neuendorffer (1973), Gordley and Russell (1981) and Marshall et al. (1994)

has been successfully applied for the analysis of various satellite experiments over the past 30 years. This includes, for in-

stance, the Cryogenic Limb Array Etalon Spectrometer (CLAES) (Gille et al., 1996), the Cryogenic Infrared Spectrometers

and Telescopes for the Atmosphere (CRISTA) (Offermann et al., 1999; Riese et al., 1999), the Halogen Occultation Exper-

iment (HALOE) (Gordley et al., 1996), the High Resolution Dynamics Limb Sounder (HIRDLS) (Francis et al., 2006), the75

Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) (Mertens et al., 2001; Remsberg et al., 2008),

the Stratospheric Aerosol and Gas Experiment (SAGE-III) (Chiou et al., 2003), and the Solar Occultation for Ice Experiment

(SOFIE) (Rong et al., 2010) satellite instruments.

The JURASSIC model was first described by Hoffmann et al. (2005) and Hoffmann et al. (2008), discussing the retrieval of

chlorofluorocarbon concentrations from Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) observations80

aboard ESA’s Envisat. Hoffmann et al. (2009), Weigel et al. (2010), and Ungermann et al. (2012) applied JURASSIC for trace

gas retrievals from infrared limb observations of the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere -

New Frontiers (CRISTA-NF) aircraft instrument. Hoffmann and Alexander (2009), Meyer and Hoffmann (2014), and Meyer

et al. (2018) extended JURASSIC for nadir observations and applied the model for retrievals of stratospheric temperature from

Atmospheric InfraRed Sounder (AIRS) observations aboard NASA’s Aqua satellite. Hoffmann et al. (2014) and Hoffmann85
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et al. (2016) used the model to analyze AIRS observations of volcanic aerosols. Preusse et al. (2009) and Ungermann et al.

(2010a) applied JURASSIC for tomographic retrievals of stratospheric temperature from high-resolution limb observations.

Ungermann et al. (2010b) and Ungermann et al. (2011) extended JURASSIC for tomographic retrievals of high-resolution

aircraft observations of the Global Limb Imager of the Atmosphere (GLORIA) instrument. Griessbach et al. (2013, 2014, 2016)

extended JURASSIC to allow for simulations of scattering of infrared radiation on aerosol and cloud particles.90

The GPU-enabled version of the JURASSIC radiative transfer model described here is referred to as JURASSIC-GPU. The

first version of JURASSIC-GPU was developed and introduced by Baumeister et al. (2017). This paper introduces version

2.0 of the JURASSIC-GPU model, which has been significantly revised and optimized for more recent GPU cards, namely

NVIDIA’s A100 Tensor-Core GPUs as utilized in the Jülich Wizard for European Leadership Science (JUWELS) booster

module at the Jülich Supercomputing Centre (JSC), Germany. Whereas version 1.0 of JURASSIC-GPU was considered to be95

a proof of concept, we consider the version 2.0 of JURASSIC-GPU described here to be ready for production runs on the

JUWELS booster module.

In Sect. 2, we provide a comprehensive description of the algorithms implemented in the JURASSIC radiative transfer

model, which has not been presented in the literature so far. In particular, we describe the ray tracing algorithm, the differences

between monochromatic radiative transfer and the band-transmittance approximation, the use of emissivity look-up tables, the100

emissivity growth approximation (EGA), and the radiance integration along the line-of-sight. In Sect. 3, we discuss the porting

of JURASSIC to GPUs, including a summary of the algorithmic changes and improvements, as well as detailed performance

analyses with comparisons between CPU and GPU calculations using the JURASSIC-GPU model. Section 4 provides the

summary, conclusions, and an outlook.

2 JURASSIC model description105

2.1 Definition of atmospheric state and ray tracing

The first step in numerical modeling of infrared radiative transfer is the definition of the atmospheric state. In JURASSIC, the

atmosphere is assumed to be homogeneously stratified and field quantities such as pressure pi, temperature Ti, volume mixing

ratios qj,i (with trace gas index j), and aerosol extinction coefficients kl,i (with spectral window index l) are specified in the

form of vertical profiles on levels i= 1, . . . ,n. Linear interpolation is applied to log(pi), Ti, qj,i, and kl,i to determine the110

atmospheric state in between the given height levels.

For coordinate transformations between spherical and Cartesian coordinates, JURASSIC assumes the Earth to be spherical

with a fixed mean radius Re of 6367.421 km. The mean radius given here is considered in other radiative transfer models (e. g.,

Dudhia, 2017). It approximates the local radius of curvature with an accuracy of ±0.17%. Tests for the limb geometry showed

corresponding differences in simulated radiances in the range of ±0.2% for tropospheric and ±0.1% for stratospheric tangent115

heights. The nadir geometry is not affected by applying the fixed mean radius of curvature.

Once the atmospheric state is defined, the ray paths through the atmosphere need be calculated. Here it needs to be considered

that refraction in the Earth’s atmosphere leads to bending of the ray paths towards the Earth’s surface. In case of the limb

4



sounding geometry, this effect causes real tangent heights in the troposphere to be lowered up to several hundred meters below

geometrically calculated tangent heights that have been calculated without refraction being considered.120

The positions along a single ray path r(s) are calculated numerically by means of the Eikonal equation (Born and Wolf,

1999),

d

ds

(
n
dr

ds

)
=∇n. (1)

Here, s is the spatial coordinate along the ray path with the origin s= 0 being located at the position of the observing instru-

ment. The refractive index n depends on wavelength λ, pressure p, temperature T and water vapor partial pressure e (Ciddor,125

1996),

n= 1+

(
Ng

p

p0

T0

T
− e

T

11.27K
hPa

)
× 10−6. (2)

In Eq. (2), Ng indicates the refractivity of dry air for standard conditions (p0 = 1013.25hPa and T0 = 273.15K),

Ng = 287.6155+4.8866
µm2

λ2
+0.068

µm4

λ4
. (3)

In the mid-infrared spectral region (4− 15µm), the variations with wavelength are typically negligible (deviations in Ng130

with respect to λ are less than 0.1 %). A comparison of the terms in Eq. (2) for different climatological conditions showed that

water vapor in this wavelength range also has no substantial influence on refraction (variations in n− 1 smaller 0.5 %). For

these reasons, JURASSIC applies a simplified equation to calculate the refractivity,

n≈ 1+7.753× 10−5 p

T

K
hPa

. (4)

In JURASSIC, the Eikonal equation (1) is solved numerically in Cartesian coordinates by means of an iterative scheme135

described by Hase and Höpfner (1999),

ri+1 = ri +0.5ds(et,i + et,i+1), (5)

et,i+1 =
et,in(ri)+ ds∇n(ri +0.5dset,i)

|et,in(ri)+ ds∇n(ri +0.5dset,i)|
. (6)

The determination of the ray path starts at the location r0 of the instrument. By specifying a second position in the atmosphere,

referred to as the view point, the initial tangent vector et,0 is defined. For instance, in the limb geometry, the geometrical140

tangent point can be selected as the view point, but this is not mandatory. With this rather general approach for ray-tracing, any

observation geometry (limb, nadir, zenith, or occultation) for instruments located inside or outside of the atmosphere can be

defined.

The step size ds along the ray path is the most important control parameter regarding the speed and accuracy of the radiative

transfer calculations. Over a large range of choices of ds, the mean computation time t for the determination of the ray paths145

and the subsequent calculation of the radiative transfer is proportional to the reciprocal of the step size, t∼ 1/ds. If the step

size is selected too small, the calculation of the radiative transfer takes too much computing time. At larger step sizes, the
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positions of the points along the ray path may still be determined quite well, but the inhomogeneity of the atmosphere along

the ray paths is only insufficiently sampled. The extent of these errors depends on the individual atmospheric conditions. In

JURASSIC, the default maximum step size along a ray path is 10 km, which is suitable for the limb geometry. To make the150

method suitable also for the nadir geometry, an additional constraint is imposed, which will reduce individual step sizes to

ensure that the vertical component of the steps will not become larger than 500 m by default.

For the limb sounding geometry, it is of particular interest to know the actual real tangent height of the ray paths when taking

into account refraction. For this purpose, JURASSIC applies a parabolic interpolation based on the three points of the ray path

closest to Earth surface to enable a more accurate determination of the tangent point. The error of the tangent heights estimated155

by the parabolic interpolation method was found to be 1 – 2 orders of magnitude below the accuracy by which this quantity can

typically be measured.

2.2 Monochromatic radiative transfer

The propagation of monochromatic radiance I along a ray path through the atmosphere is calculated from the radiative transfer

equation (Chandrasekhar, 1960)160

I(ν,x) = I(ν,0)τ(ν,0,x)+

x∫
0

J(ν,x′)
d

dx′ τ(ν,x
′,x)dx′. (7)

Here, ν denotes the wavenumber, x is the position along the ray path, I(ν,0) is the radiation entering the ray path at the starting

point, I(ν,x) is the radiation exiting at the other end, τ(ν,x′,x) is the transmission along the path from x′ to x and J(ν,x′) is

the source function, which describes both, the thermal emissions of the emitters along the path and the scattering of radiation

into the path. Note that at this point we changed from the local coordinate s used for ray-tracing to the local coordinate x for165

the radiative transfer calculations, which is running in the opposite direction.

In case of local thermodynamic equilibrium and if scattering of radiation can be neglected, the source function corresponds

to the Planck function,

B(ν,T ) =
2hc2ν3

exp[hcν/(kBT )]− 1
, (8)

with the Planck constant h, the speed of light c, the Boltzmann constant kB, and temperature T . Deviations from the local170

thermodynamic equilibrium usually occur only above the stratopause (López-Puertas and Taylor, 2002). Scattering effects can

be neglected in the mid-infrared spectral range for clear air conditions, meaning that any significant concentrations of clouds

or aerosol particles are absent (Höpfner and Emde, 2005; Griessbach et al., 2013).

The transmissivity of the atmosphere is determined by specific molecular rotational-vibrational wavebands of the trace gases

and by a series of continuum processes. For molecular emitters, the transmissivity along the ray path is related to the absorption175

coefficients κi and particle densities ρi according to

τ(ν,x′,x) = exp

− x∫
x′

∑
i

κi(ν,x
′′)ρi(x

′′)dx′′

 , (9)
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where i refers to the trace gas index. The absorption coefficients can be calculated by summation over many spectral lines,

κi(ν,x
′′) =

∑
j

ki,j [T (x
′′)]fi,j [ν,p(x

′′),T (x′′)], (10)

where j is the line index. The parameters for determining the line intensity ki,j and shape function fi,j for a given pressure180

p and temperature T along the line-of-sight can be obtained from spectroscopic databases. The HITRAN (High Resolution

Transmission) database (Rothman et al., 2009, 2013) is used in the present work. The HITRAN database contains the parame-

ters for millions of spectral lines of more than 40 trace gases as well as directly measured infrared absorption cross sections of

more complex molecules (e. g., chlorofluorocarbons).

Some species are significantly affected by line mixing, where the interaction or overlap of spectral lines can no longer185

be described by simple addition (Strow, 1988). Line mixing will not further be discussed here in detail, but it was taken into

account for CO2 in our calculations. Some emitters cause a continuum-like emission background (Lafferty et al., 1996; Thibault

et al., 1997; Mlawer et al., 2012), which we considered for CO2, H2O, N2, and O2. Furthermore, continuum emissions are

caused by aerosol and cloud particles. In JURASSIC, the influence of aerosols and clouds on the transmission can be described

by direct specification of extinction coefficients k. The extinction coefficients indicate the attenuation of radiance per path190

length and are linked to the transmission according to

τ(ν,x′,x) = exp

− x∫
x′

k(ν,x′′)dx′′

 . (11)

2.3 Band transmittance approximation

Satellite instruments measure radiance spectra at a given spectral resolution. The mean radiance Ī measured by an instrument

in a given spectral channel is obtained by spectral integration of the monochromatic radiance spectrum,195

Ī =

ν1∫
ν0

f(ν)

∞∫
0

B[ν,T (s)]
d

ds
ε(ν,s,0)dsdν, (12)

where we replaced the transmission τ by the emissivity ε,

ε(ν,s,0) = 1− τ(ν,s,0). (13)

which is more suitable for numerical evaluation considering possible loss of accuracy in the representation of τ compared to ε

under optically thin conditions. The filter function f(ν) indicates the normalized spectral response with respect to wavenumber200

ν for the instrument channel being considered. For simplicity, we focus on the case of limb sounding, where the origin of the

ray paths is in cold space and the source term I(s→∞)≈ 0 can be omitted.

The most accurate method for calculating the monochromatic emissivity ε is the line-by-line evaluation as discussed in

Sect. 2.2. However, the line-by-line method is computationally most demanding because, depending on the spectral range,

tens of thousands of molecular emission lines may need to be considered. For each line, the line intensity and shape function205
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must be determined depending on pressure and temperature. One option to accelerate the radiative transfer calculations is an

approximate solution described by Gordley and Russell (1981) and Marshall et al. (1994). A slightly modified formulation of

Rodgers (2000) has been used here,

Ī ≈
∞∫
0

B̄[T (s)]
d

ds
ε̄(s,0)ds, (14)

ε̄(s,0) =

ν1∫
ν0

f(ν)ε(ν,s,0)dν, (15)210

B̄(T ) =

ν1∫
ν0

f(ν)B(ν,T )dν. (16)

Instead of detailed monochromatic calculations of the radiance, emissivity, and Planck function, this approximation uses only

the spectral averages (indicated by bars) within the spectral range defined by the filter function. Accordingly, the method

is referred to as the band transmittance approximation. This method can become computationally very fast if the spectrally

averaged emissivities are determined by means of a band model or, as is the case for JURASSIC, by using a set of look-up215

tables that have been precalculated by means of a line-by-line model.

Equations (14) to (16) provide only an approximate solution of the radiation transfer, as the spectral correlations of the

emissivity and its derivative along the ray path with the Planck function are neglected. The corresponding error is given by

∆I =

∞∫
0

ν1∫
ν0

f(ν)[B(ν,T )− B̄(T )]
d

ds
ds[ε(ν,s,0)− ε̄(s,0)]dν ds. (17)

The error due to neglecting these correlations can be significantly reduced by using more sophisticated methods for determin-220

ing the spectral mean emissivities along the path, in particular by means of the emissivity growth approximation (EGA) as

described in Sect. 2.6.

Another error of the band transmittance approximation results from the fact that the spectral correlations of different emitters

are neglected. From Eq. (9) it can be seen that the monochromatic total transmission of several emitters results multiplicatively

from their individual transmissions. As the total monochromatic emissivity is calculated from225

ε(ν) = 1− τ(ν) = 1−
∏
i

τi(ν) = 1−
∏
i

[1− εi(ν)], (18)

the spectral mean emissivity is given by

ε̄= 1−
∏
i

(1− ε̄i)+∆ε. (19)

The residual ∆ε comprises the spectral correlations between all the emitters. For example, for a pair of two emitters, the

residual is given by230

∆ε=

ν1∫
ν0

f(ν)[ε1(ν)− ε̄1][ε2(ν)− ε̄2]dν. (20)
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Such correlation terms are neglected in the JURASSIC model. The associated errors remain small if at least one of the emitters

has a relatively constant spectral response. The approximation ∆ε≈ 0 is therefore referred to as the continuum approximation.

In practice, the errors of the continuum approximation also remain small if a sufficiently large spectral range with many

spectral lines is considered. Some studies proposed to reduce the uncertainties associated with the continuum approximation235

by tabulating two-gas overlap terms (Marshall et al., 1994) or by introducing correction factors (Francis et al., 2006). These

options might be interesting to further improve the accuracy of the approximated radiative transfer calculations, in particular

for hyperspectral sounders measuring radiance in narrow spectral channels, but they have not been implemented in JURASSIC,

so far. It is recommended that the errors associated with the band transmittance and continuum approximations are assessed by

means of comparisons with line-by-line calculations for any specific case.240

2.4 Numerical integration along the line-of-sight

For the numerical integration of the approximated radiative transfer equation, Eq. (14), the ray path is first divided into seg-

ments. The segments are defined by the data points along the ray path as provided by the raytracing algorithm. For each seg-

ment, homogeneous atmospheric conditions are assumed. Pressure, temperature, trace gas volume mixing ratios, and aerosol

extinction coefficients of each segment are calculated by applying the trapezoidal rule on neighboring data points along the245

ray path. The spectral mean emissivity and the value of the Planck function of each segment are calculated from segment pres-

sure, temperature, trace gas volume mixing ratios, and aerosol extinction coefficients, respectively. The approximated radiative

transfer equation, Eq. (14), is then solved by an iterative scheme,

Ik+1 = Ik + ε̄k+1B̄k+1τ̄
∗
k , (21)

τ̄∗k = (1− ε̄k)τ̄
∗
k−1, (22)250

τ∗0 = 1, I0 = 0. (23)

The principle of this scheme is illustrated in Fig. 1. Assuming that the ray path already consists of k segments that produce

the radiance Ik at the location of the instrument, adding another segment with index k+1, an additional radiance contribution

ε̄k+1B̄k+1 will incident on the path of k segments. On the way to the instrument, the incident radiation is partially absorbed,

whereby the absorption is determined by the total transmission τ̄∗k of the k segments along the path. By adding the (k+1)-th255

segment, the instrument receives an additional radiance contribution ε̄k+1B̄k+1τ̄
∗
k . The path transmission τ̄∗k is calculated by

multiplying the transmissions τ̄k = 1− ε̄k of the individual segments.

It is essential to note that although the numerical integration scheme in Eq. (21) follows the Beer-Lambert law, the spectral

mean segment emissivities ε̄k are determined by means of the EGA method (Sect. 2.6) in our model. The spectral mean

emissivities from the EGA method along the path are different from and should not be confused with spectral mean emissivities260

that follow from treating the individual segments along the ray path as independent homogeneous gas cells.
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ε̄1B̄1 Ī1 = ε̄1B̄1

ε̄2B̄2 Ī2 = ε̄2B̄2(1 − ε̄1)

ε̄3B̄3 Ī3 = ε̄3B̄3(1 − ε̄2)(1 − ε̄1)

...
... Ītot = Ī1 + Ī2 + Ī3 + . . .

Figure 1. Integration of radiance along a ray path. Contributions ε̄iB̄i to the total radiance Ītot originate in every segment i of the ray path

through the atmosphere. The radiance contributions are partly absorbed due to the transmittance τ̄1,i−1 = (1−ε̄1)×(1−ε̄2)×·· ·×(1−ε̄i−1)

along the path. The observer is located on the right side in this sketch.

2.5 Use of emissivity look-up tables

The full advantage in terms of speed of the approximated radiative transfer calculations can be obtained by using look-up

tables of spectrally averaged emissivities, which have been prepared for JURASSIC by means of line-by-line calculations. In

subsequent radiative transfer calculations, the spectral emissivities are determined by means of simple and fast interpolation265

from the look-up tables. For the calculation of the emissivity look-up tables, any conventional radiative transfer model can

be used, which allows calculating the transmission of a homogeneous gas cell depending on pressure p, temperature T , and

emitter column density u=
∫
q p/(kBT )ds. For the calculations shown here, the MIPAS Reference Forward Model (RFM)

(Dudhia, 2017) has been used to generate the emissivity look-up tables. The data need to be tabulated in units of hectopascals,

Kelvins, and molecules per square centimeter for p, T , and u, respectively.270

The pressure, temperature, and column density values in the emissivity look-up tables need to cover the full range of

atmospheric conditions. If the coverage or the sampling of the tables is too low, this could significantly worsen the ac-

curacy of the radiative transfer calculations. We calculated the look-up tables for pressure levels pi = p0 exp(−zi/7km)

with zi = 0,2,4, . . . ,80km for the pressure level index i ∈ [0,40]. For each pressure level, a range of temperatures ∆Tj =

−70,−65, . . . ,+70K with the temperature index j ∈ [0,28] around the mid-latitude climatological mean temperature Ti has275

been selected. For each (pi,Ti +∆Tj) combination, the column densities ui,j,k of the respective emitter are chosen so that

the mean emissivity ε̄(pi,Ti,j ,ui,j,k) covers the range [10−6,0.9999] with the column density index k ∈ [0,299] and that an

increase of 12.2% occurs between the column density grid points.

Since even a single forward calculation for a remote sensing observation may require thousands of interpolations on the

emissivity look-up tables, this process must be implemented to be most efficient. Direct index calculation is applied for regu-280

larly gridded data (temperature) and the bisection method (Press et al., 2002) is applied for irregularly gridded data (pressure,

column density and emissivities) in order to identify the interpolation nodes. There is potential to also exploit the regular struc-
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Figure 2. Log-log plot of spectral mean emissivity curves for carbon dioxide (CO2) at 669 cm−1 and for a 1 cm−1 boxcar spectral response

function. The curves have been calculated for different pressure levels (see color coding) and temperature values (not highlighted). Small

dots along the emissivity curves illustrate the dense sampling of the look-up table data.

ture of the column density grid in future versions. Interpolation itself is linear in pressure, temperature, and column density.

Other interpolation schemes (e. g., second order polynomials, cubic splines, single or double logarithmic interpolations) may

better represent the actual shape of the emissivity curves with a smaller number of grid points, but were rejected after testing285

due to the significantly increased computational effort for interpolation. For example, the numerical effort to calculate the log-

arithm or exponential function values in the double logarithmic interpolation is much larger than the numerical effort for linear

interpolation, which only requires a single division and a single multiplication. We found that the increased numerical effort

of higher-order interpolation methods cannot be compensated for by the fact that fewer grid points are required to provide

accurate representation of the emissivity look-up tables.290

As an example, Fig. 2 shows the emissivity look-up table for the 15 micron carbon dioxide Q branch at 669 cm−1 as used

for some radiative transfer calculations in this study. The emissivity curves shown here have been calculated with the RFM

line-by-line model. The monochromatic absorption spectra provided by the RFM for a fixed pressure p and temperature T have

been convoluted with a boxcar spectral response function with a width of 1 cm−1 to obtain the spectral mean emissivities. In

the weak line limit, for small column densities u, the spectral mean emissivity ε̄ scales linearly with u. In the strong line limit,295

when the line centers get saturated, absorption is controlled by the line wings and ε̄ scales with the square root of u. For large

u, the emissivity curves will completely saturate, ε̄→ 1.
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2.6 Emissivity growth approximation

Spectral mean emissivities of an inhomogeneous atmospheric path can be obtained from the look-up tables in different ways. In

JURASSIC, the EGA method (Weinreb and Neuendorffer, 1973; Gordley and Russell, 1981) is applied. For simplicity, only the300

determination of emissivity in the case of a single emitter is described here. In the case of multiple emitters, the determination

proceeds analogously, followed by the determination of total emissivity according to Eq. (19). Within the EGA method, the

spectral mean emissivity is interpolated from the look-up tables according to the following scheme:

1. For a given ray path of k segments, to which a segment k+1 is to be added, we first determine an effective column

density u∗ so that ε̄(pk+1,Tk+1,u
∗) = ε̄∗k, where ε̄∗k denotes the total emissivity of the path of k segments. To determine305

u∗, an inverse interpolation needs to be performed on the emissivity look-up tables.

2. The emissivity of the extended path of k+1 segments is determined from ε̄∗k+1 = ε̄(pk+1,Tk+1,u
∗ +uk+1). Direct

interpolation from the emissivity look-up tables is applied in this case. The emissivity of the (k+1)-th segment is given

by ε̄k+1 = 1− (1− ε̄∗k+1)/(1− ε̄∗k)≈ ε̄∗k+1 − ε̄∗k.

The basic assumption of the EGA method is that the total emissivity of k ray path segments can be transferred to the emissivity310

curve ε̄(pk+1,Tk+1,u) of the currently considered segment k+1 at pressure pk+1 and temperature Tk+1 of the extended path,

and that the emissivity growth due to the additional column density uk+1 of the segment k+1 can be calculated by following

this emissivity curve, starting from the pseudo column amount u∗.

The principle of the EGA method is further illustrated in Fig. 3 for the first two segments of a ray path. To determine the emis-

sivity ε̄1 of the first segment, we need to follow the emissivity curve ε̄(p1,T1,u) so that ε̄1 = ε̄(p1,T1,u1). If a second segment315

is added, the real emissivity would follow the emissivity curve ε̄∗(p1,T1,u1,p2,T2,u), so that ε̄∗2 = ε̄(p1,T1,u1,p2,T2,u2).

However, only an emissivity model for homogeneous paths is available from the look-up tables. Therefore, the emissivity curve

ε̄(p2,T2,u) is used to determine ε̄∗2. The difficulty is to determine the ideal starting point u∗ on ε̄(p2,T2,u). This starting point is

characterized by the fact that the detailed spectral shape of the emissivity ε(p1,T1,u1,ν) corresponds to that at ε(p2,T2,u
∗,ν).

The solution ε̄∗2 = ε̄(p2,T2,u
∗+u2) would then be exact. However, such a point usually does not exist. Within the framework320

of the EGA method, one assumes that the best starting point on ε̄(p2,T2,u) is the one where at least the spectrally averaged

emissivity is the same, i. e., u∗ is determined so that ε̄(p2,T2,u
∗) = ε̄1.

3 Infrared radiative transfer calculations on GPUs

3.1 Implementation details of JURASSIC-GPU

3.1.1 Usage of the CUDA programming model325

JURASSIC is written in the C programming language and makes use of only a few library dependencies. In particular, the GNU

Scientific Library (GSL) is used for linear algebra in the retrieval code provided along with JURASSIC. In order to connect the
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ε̄
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Figure 3. Illustration of the EGA method. For the first segment of a ray path, the EGA method will apply the emissivity curve ε̄(p1,T1,u)

to determine the spectral mean segment emissivity. For the second segment, the EGA method will locate the pseudo column amount u∗ on

ε̄(p2,T2,u) and calculate the emissivity of the extended path based on the total column amount u∗ +u2. This approach will be followed

along the entire path.

GPU implementation of JURASSIC seamlessly to the reference implementation (Hoffmann, 2015), we restructured only those

parts of JURASSIC that perform intensive compute operations, i. e., the EGA method and also the ray tracer. While the EGA

calculations are typically most compute intensive, the ray tracing kernel has also been ported to the GPU mostly for reasons of330

data locality, so the ray path data can reside in GPU memory and does not require CPU-to-GPU data transfers before starting

the radiative transport calculation along the ray paths.

For the GPU programming, we selected the Compute Unified Device Architecture (CUDA) programming model, which

addresses exclusively NVIDIA graphical processors. CUDA is a dialect of C/C++ and the user has to write compute kernels in

a specific CUDA syntax:335

__global__ void clear_array_kernel(double a[]) {

a[blockIdx.x*blockDim.x + threadIdx.x] = 0;

}

__host__ int clear_array(double a[], size_t n) {340

<<< n/64, 64 >>> clear_array_kernel(a);
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return n%64;

}

This minimal example already shows some of the most important features of the CUDA programming model. There are

kernels with the attribute __global__ which can be executed on the GPU. Kernels need to be launched by regular CPU345

functions which we call driver functions. All regular CPU functions inside the source files translated with the host C compiler

need to be marked as __host__. The CUDA kernel launch consists of two parts. The left part in between triple chevrons

(<<< ... >>>) indicates the launch configuration, i. e., we specify the number of CUDA blocks and the number of CUDA

threads per block (here 64). The terminology might be misleading as CUDA threads are not like CPU threads (POSIX threads

or OpenMP threads). Rather, one should think about CUDA threads as lanes of a vector unit. We will use the term lanes here350

instead of CUDA threads. CUDA blocks, however, exhibit some similarity to CPU threads.

Inside our example CUDA kernel clear_array_kernel, we access inbuilt variables: threadIdx.x and blockIdx.x

are the lane and block index, respectively, and blockDim.x will have the value 64 here due to the selected launch configura-

tion of 64 lanes per block.
The example so far assigns zero to the values of array a[] but behaves only correctly if n is a multiple of 64. In order to355

produce code that performs correctly for any launch configuration and without too complicated checks for corner cases, we
make use of a technique called grid stride loops (Harris, 2013):

__global__ void clear_array_kernel(double a[], int n) {

for(int i = blockIdx.x*blockDim.x + threadIdx.x; i < n;

i += gridDim.x*blockDim.x)360

a[i] = 0;

}

The inbuilt variable gridDim.x will assume the value n/64. Now any launch configuration <<< g, b >>> with g≥ 1

and 1≤ b ≤ 1024 will lead to correct execution. This is particularly helpful when tuning for performance as we can freely

vary the number of lanes per block b and also the number of blocks g.365

3.1.2 CPU versus GPU memory

Graphical processors are equipped with their own memory, typically based on a slightly different memory technology compared

to standard CPU memory (SDRAM versus DRAM). Therefore, pointers to be dereferenced in a CUDA kernel need to reside

in GPU memory, i. e., need to be allocated with cudaMalloc. The returned allocations reside in GPU memory and can only

be accessed by the GPU. Before we can use the arrays on the CPU (e. g., for output) we have to manually copy-transfer these370

GPU memory regions into CPU memory of the same size. Likewise, data may have to be copied from CPU memory to GPU

memory, before it can be used on the GPU. These data transfers between CPU and GPU memory are typically costly and

should be avoided as far as possible.

In the unified memory model (supported by all modern NVIDIA GPUs) cudaMallocManaged returns allocations where

memory transfers are hidden from the user, i. e., the coding complexity of having a CPU pointer and a GPU pointer and keeping375

the array content in sync is taken care of by the hardware. Our GPU implementation of JURASSIC uses unified memory for
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the look-up tables. For the observation geometry and atmosphere data (inputs) and the resulting radiances (results), JURASSIC

makes use of GPU-only memory and performs explicit memory transfers to and from GPU-memory.

3.1.3 Single source code policy

For production codes, one might accept the extra burden of maintaining a separate GPU version of an application code. How-380

ever, despite being considered ready for production, JURASSIC remains to be a research code under continuous development,

i. e., it should be possible to add new developments without too large programming efforts at any time. Therefore, a single

source policy has been pursued as much as possible. Having a single source also provides that practical advantage to compile

and link a CPU and a GPU version inside the same executable.

Retaining a single source is a driving force for directives-based GPU programming models such as OpenACC, where CPU385

codes are converted to GPU codes by code annotations, comparable to OpenMP pragmas for CPUs. On the one hand, in order

to harvest the best performance and to acquire maximum control over the hardware, CUDA kernels are considered mandatory.

On the other hand, the coding complexity outlined above (kernels, drivers, launch parameters, grid stride loops, GPU pointers,

memory transfers) should remain hidden to some extent for some developers of the code, which may be domain scientists or

students that are not familiar with all peculiarities of GPU programming. This poses a challenge for enforcing a single source390

policy.

For these reasons, the GPU-enabled version of JURASSIC is structured as follows: all functionality related to ray trac-

ing and radiative transfer that should run on both, CPU and GPU, is defined in inline functions in a common header file

jr_common.h. This header is included into the two architecture-specific implementations CPUdrivers.c and GPUdrivers.cu.

The implementation CPUdrivers.c contains the forward model to compute the radiative transfer based on the EGA method395

using OpenMP-parallelism over ray paths and instrument channels. The implementation GPUdrivers.cu is a CUDA source

file with CUDA kernels and corresponding drivers, which offers the same functionality as its CPU counterpart. Inside the

CUDA kernels, the same functions are defined in jr_common.h as inside the loop bodies of CPUdrivers.c, see Fig. 4.

With this approach, the user can decide at runtime whether to run the CPU or the GPU version of the model.

3.1.4 Code restructuring for improved performance400

Using profile-guided analysis of execution runs of the JURASSIC reference code (Hoffmann, 2015), we identified that the most

critical component in radiative transfer calculations using the EGA method is the forward and backward interpolation between

column densities u and mean emissivities ε̄ of the look-up tables. The emissivities ε̄ are functions of pressure p, temperature

T , and in particular they are monotonically rising functions of u. Furthermore, ε̄ and u carry an index for the specific trace gas

and an index g for the detector channel referred to by its wavenumber ν. Therefore, interpolations on the emissivity look-up405

tables are conducted on 5-dimensional arrays of ε̄ and u.

The look-up tables are densely sampled so that linear interpolation for all continuous quantities (p, T , u) can be assumed to

be sufficiently accurate. Column densities u are sampled on a logarithmic grid with increments of 12.2%. The starting value

of the grid can differ depending on g, ν, p, and T . The emissivity curves for individual (p,T ) combinations feature up to 300
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jr common.h

CPUdrivers.c GPUdrivers.cu

formod.c

include include

formod CPU formod GPU

Figure 4. Common source code approach for CPUs and GPUs. The complete functionality of the JURASSIC forward model is provided via

a joint header file included by both, the specific CPU and GPU drivers.

data points, i. e., a range of up to 15 orders of magnitude in u is covered. However, for a given u in order to interpolate between410

ε̄i = ε̄(ui) and ε̄i+1 = ε̄(ui+1) the index i needs to be found such that ui ≤ u < ui+1 on the logarithmic grid. A classical

bisection algorithm as implemented in the reference code of JURASSIC converges fast, but leads to a quasi-random memory

access pattern in the look-up tables.

Depending on the number of emitters and detector channels, the total memory consumption of the look-up tables can become

quite large. A typical configuration of sampling points leads to 3 MiB per gas and per instrument channel. Random memory415

accesses onto these memory sizes usually leads to an inefficient usage of the memory caches attached to the CPUs and GPUs.

The idea of caches is to reduce the memory access latency and potentially also the required bandwidth towards the main

memory. A cache miss leads to a request for a cache line from the main memory, typically related to an access latency at least

an order of magnitude larger than a read from cache. If the memory access pattern of an application shows a predominant data

access structure, a large step towards compute and energy efficiency is to restructure the data layout such that cache misses are420

avoided as much as possible. Throughput-oriented architectures like GPUs work optimally when sufficiently many independent

tasks are kept in flight such that the device memory access latencies can be hidden behind computations on different tasks.

Random access to memory for reading a single float variable (4 bytes) may become particularly inefficient as always entire

cache lines (32 bytes) are fetched from memory, i. e., only 12.5% of the available memory bandwidth is actually exploited. For

exploiting the available bandwidth towards the memory optimally, we aimed to find a data layout that maximizes the use of a425

cache line.

The current JURASSIC reference implementation (Hoffmann, 2015) uses the following array-ordering to store the emissivity

loop-up tables,

ε̄g,ν(p,T,u)−→ float eps[ig][inu][ip][iT][iu]. (24)
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On GPUs, branch divergence is an important source of inefficiency. Therefore, the mapping of parallel tasks onto lanes (CUDA430

threads) and CUDA blocks has been chosen to avoid divergent execution as much as possible. For the computation of the EGA

kernels, lanes are mapped to the different detector channels ν and blocks are used to expose the parallelism over ray paths.

Branch divergence may happen here only if a ray path gets optically thick in a given channel. However, this can be treated by

masking the update to the transmittance τ on the corresponding lane.

Furthermore, coalesced loads are critical to exploit the available GPU memory bandwidth. Although it seems counter-435

intuitive, the GPU version of JURASSIC therefore features a restructured data layout for the loop-up tables,

ε̄g,ν(p,T,u)−→ float eps[ig][ip][iT][iu][inu]. (25)

Compared to the data layout in Eq. (24), the index inu has moved to the right. For each memory access to the look-up tables,

we find that the four indices ig, ip, iT and often also iu are the same. Hence, vectorization over channels ν leads to a

majority of coalesced loads and the best possible exploitation of the GPU memory bandwidth. Optimal performance has been440

found running with at least 32 channels (or even a multiple of that) as in this case, entire CUDA warps (groups of 32 lanes)

launch four coalesced load requests of 32 bytes each (Baumeister et al., 2017).

3.1.5 GPU register tuning

On CPUs, simultaneous multithreading, also known as hyper-threading, is achieved by assigning more than one thread to a core

and by time-sharing of the execution time. This means that CPU threads can execute for a while until the operating system tells445

them to halt. Then, the thread context is stored and the context of the next thread to execute is loaded. GPUs can operate in the

same manner, however, storing and loading of the context can become a bottleneck as this means extra memory accesses. The

best operating mode for GPUs is reached if the entire state of all blocks in flight can be kept inside the register file. Only then,

context switches come at no extra cost. Consequently, GPU registers are a limited resource which we should monitor when

tuning performance critical kernels. The CUDA compiler can report the register usage and spill loads/stores of each CUDA450

kernel.

Figure 5 shows the data flow between kernels and sub-kernels for the complete forward model. Relevant data volumes are

given as labels to the connector arrows in Fig. 5. As GPU kernels should not become too large in terms of register usage, an

important implementation architecture choice is how to group sub-kernels into kernels. If two sub-kernels are grouped into

the same GPU kernel, the data flow does not lead to stores to and consequent loads from GPU memory. This saves additional455

memory bandwidth and increases the potential maximum performance. The difficulty, however, is to balance between large

kernels which require many registers and, hence, reduce the number of blocks in flight and small kernels, which may cause

additional memory traffic. We found that grouping the kernels EGA, Planck, continua and integ into a single, relatively

large fusion_kernel delivers the best performance for nadir simulations (Baumeister et al., 2017). The fusion_kernel

approach avoids additional memory traffic indicated by six connector arrows with 40 KiB per ray each.460

In the reference code of the forward model, the computation of continuum emissions requires many registers. The exact

number of registers depends on the combination of trace gases yielding continuum emissions in the given spectral range. A gas
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Figure 5. Data flow graph for the most important sub-kernels in JURASSIC. Data items are shown as ovals independent of whether they

are stored in memory or exist only as intermediate results. Sub-kernels are depicted as rectangles. The arrow labels indicate the data sizes in

units of kibibytes. The example refers to a nadir use case considering a single trace gas (CO2) and 32 instrument channels. Figure adapted

from Baumeister et al. (2017).

continuum is considered relevant if any of the detector channels of the radiative transfer calculations falls into its predefined

wavenumber window. JURASSIC implements the CO2, H2O, N2 and O2 continua, hence, there are 16 combinations of con-

tinuum emissions to be considered. In the spirit of multi-versioning, we use the C-preprocessor to generate all 16 combinations465

of the continua-function at compile time and jump to the optimal version with a switch-statement at runtime.

Table 1 shows the GPU register requirements of fusion_kernel. The maximal occupancy, i. e., the number of blocks or

warps in flight, is limited by the total number of registers of the GPU’s streaming multiprocessor (SM) divided by the register

count of the kernel to execute. For example, the NVIDIA Tesla V100 GPU features 65,536 registers in each of its 80 SMs

(NVIDIA, 2017). This defines a minimal degree of parallelism of 1760 – 2160 ray paths (with 32 channels) in order to keep the470

GPU busy. Smaller register counts allow for a larger degree of parallelism and, potentially, a higher throughput.

3.2 Verification and performance analysis

3.2.1 Description of test case and environment

In the following sections, we discuss the verification and performance analysis of the JURASSIC-GPU code. All performance

results reported here were obtained on the Jülich Wizard for European Leadership Science (JUWELS) supercomputing system475

at the Jülich Supercomputing Centre, Germany (Krause, 2019). The JUWELS GPU nodes comprise a Dual Intel Xeon Gold

6148 CPU and four NVIDIA Tesla V100 GPUs (NVIDIA, 2017) of which one was used for benchmarking. A PCIe gen3

16x interface connects CPUs and GPUs. The CUDA runtime and compiler version are 10.1.105 while GCC version 8.3.0 was

employed to compile the CPU code.

In the study of Baumeister et al. (2017), we analyzed the performance of the GPU implementation of JURASSIC for nadir480

applications. Here, we selected the limb geometry as a test case (c. f., Fig. 6). While in the nadir geometry ray paths typically
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Table 1. Register counts for the 16 possible combinations of switching on or off the CO2, H2O, N2 and O2 continua in the GPU

fusion_kernel as reported by the NVIDIA compiler (nvcc v11.0.221) when compiling for an sm_70 architecture such as NVIDIA

V100.

CO2 H2O N2 O2 Number of

Registers

0 0 0 0 77

0 0 0 1 82

0 0 1 0 84

0 0 1 1 84

0 1 0 0 87

0 1 0 1 92

0 1 1 0 94

0 1 1 1 94

1 0 0 0 78

1 0 0 1 82

1 0 1 0 84

1 0 1 1 84

1 1 0 0 87

1 1 0 1 92

1 1 1 0 94

1 1 1 1 94

comprise 160 path segments (assuming an upper height of the atmosphere at 80km and default vertical sampling step size of

500 m), the limb geometry produces up to about 400 segments per ray path. Ray paths passing only through the stratosphere

feature less segments than ray paths passing by close to the surface. Tropospheric ray paths are also subject to stronger refractive

effects, bending them towards the Earth’s surface. In the limb test case considered here, the number of segments along the ray485

paths varies between 122 and 393.

In this assessment, we aim for a rather extensive coverage of the mid-infrared spectral range. By means of line-by-line

calculations with RFM, we prepared emissivity look-up tables for 27 trace gases with 1 cm−1 spectral resolution for the

range from 650 to 2450cm−1. Vertical profiles of pressure, temperature, and trace gas volume mixing ratios for mid-latitude

atmospheric conditions were obtained from the climatological data set of Remedios et al. (2007).490

In order to verify the model, we continuously compared GPU and CPU calculations during the development and optimization

of JURASSIC-GPU. For the test case presented in this study, it was found that the GPU and CPU calculations are not providing

bit-identical results. However, the relative differences between the calculated radiances from the GPU and CPU code remain
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Figure 6. Nadir (top) and limb observation geometry (bottom) of satellite instruments.

very small (≤ 10−5), which is orders of magnitudes smaller than typical accuracies of the EGA method itself (∼ 1%) and

considered suitable for most practical applications.495

3.2.2 Performance signatures of emissivity look-up tables

It needs to be considered that many trace gases cover only limited wavebands throughout the mid-infrared spectrum (Fig. 7).

In terms of the EGA calculations, typically between 7 and 18 look-up tables can be considered as being active throughout the

spectrum (Fig. 8). The effect of the continuum emissions of CO2 and H2O has been considered over the entire spectral range.

The N2 continuum was considered from 2120 to 2605 cm−1 and the O2 continuum was considered from 1360 to 1805cm−1.500

Figure 9 shows that the GPU runtime scales linearly with the number of active look-up tables per channel. Here, we compare

the GPU runtime to the number of active look-up tables averaged over a set of 32 channels that were processed together. For

reference, we included also the actual number of active look-up tables for each single wavenumber as shown in Fig. 8. One can

see the effect of the rolling average over 32 channels is smoothing out the steps.

In order to quantify the correlation between the GPU runtime and the average number of active look-up tables, the data are505

presented as a scatter plot in Fig. 10. The scatter plot demonstrates mostly linear scaling between the number of active look-up

tables and the GPU runtime. A linear fit provides a quantitative measure of the GPU runtime with respect to the number of

tables. The best fit to the data had a slope of 12.5µs/table/ray and an offset of 16.7µs/ray. While we would have expected that
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Figure 7. Reference spectra for mid-latitude atmospheric conditions at 650 to 2450cm−1 and tangent heights from 5 to 50 km. Shown are

(a) total radiances considering the contributions of up to 27 trace gases as well as (b-f) atmospheres composed of only a single emitter.

the calculations scale linearly with the number of active channels or trace gases considered in the EGA method, the offset can

be largely attributed to the ray-tracing calculation, which need to be conducted once per ray, independent of the number of510

channels that are being considered.
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Figure 8. Spectral coverage of 24 selected gases between 650 and 2450cm−1. In addition to these gases, CO2, H2O and NH3 are considered

over the entire spectrum. The total number of active gases varies between 6 and 18 as shown by the stair-type line.

3.2.3 The effect of cold caches

The average number of active look-up tables in the wavenumber interval from 650 to 2450cm−1 is 12.77. A subset of 32

channels from 1122 to 1153cm−1 matches this mean value well (with 409/32 = 12.78) and has, therefore, been selected for a

more thorough scaling analysis. The performance model generated in the previous section (16.4µs + 11.3µs per look-up table)515

predicts a GPU runtime of approximately 161µs/ray or a corresponding performance of 6.2×103 rays/s for this case while the

actual measured timing, 2.5s for 16,896 ray paths, accounts for a performance of 6.76× 103 rays/s. This deviation is within

the variance of the simple linear model.

As pointed out in Sect. 3.1.2, the emissivity look-up tables are allocated in the unified memory of the CPU and the GPU.

The tables are first filled in by the CPU loading the corresponding data files from disk. Subsequently, the data are transferred520

from CPU to GPU memory, when the look-up tables are accessed on the GPU. The GPU memory can be considered as some

sort of cache in this context. For the GPU runtime measurements of the previous section, the actual computations have been

repeated many times. The first iteration was considered as a warm-up cycle and its timings are discarded. The performance

model is therefore based on warm cache data only, i. e., there was already a copy of the EGA look-up tables being present in

the GPU memory.525
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Figure 9. GPU runtime per ray as a function of wavenumber. Bundles of 32 wavenumbers from 650 to 2449cm−1 in steps of 8cm−1 have

been benchmarked with up to 27 gases in the limb case. The averaged number of active look-up tables acts as a rolling average over 32

adjacent wavenumbers.

In order to understand the effect of cold caches, we repeated the measurements, but we were looking particularly onto the first

timing result. With cold caches, the slope of the linear model for the runtime increased from 11.3 to 12.5µs per table and per

ray, which predicts a GPU runtime of approximately 176µs/ray or correspondingly 5.7×103 rays/s for our test case. The offset

only increased from 16.4 to 16.7µs/ray. The actual measured timing, 2.74 s, accounts for a performance of 6.17× 103 rays/s.

This is a notable reduction of the performance from warm to cold caches.530

From this, we can deduce the runtime increase due to memory page misses in the GPU memory. Table 2 shows that the

model and direct measurements agree well in estimating an increased runtime of 0.25 s due to the cold cache. This increase

of time, however, is much larger than the bare data transfer time of about 75 ms, which results from data volume of 1.2 GiB

of the tables divided by the nominal bandwidth of 16 GiB/s of the CPU-GPU interconnect. Besides the bare transfer time, the

increase in runtime is largely due to contributions from latencies, as every page fault is treated one-by-one. In the best case,535

some improvements due to overlapping of data accesses and computations on different blocks might be expected, a major

strength of high-throughput devices like GPUs. However, this effect does not seem to come into play in this test case.
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Figure 10. Linear scaling model to estimate GPU runtime: The GPU runtime per ray can be modelled as a linear function of the number of

active look-up tables. For each ray, a V100 GPU processing 32 channels needs approximately 16.4µs + 11.3µs per active gas table. On the

newer A100 GPU, a slope of 8.1µs/table is found (not shown).

Table 2. GPU runtime measured and modelled for 16,896 limb ray paths with 12.78 of 27 look-up tables active. In the unified memory

model, data is transferred into GPU memory on demand so a performance penalty is observed at first access (referred to as cold cache).

Case 1122 to 1153 cm−1 Model with 12.78 tables

t (s) P (ray paths/s) t (s) P (ray paths/s)

Cache cold 2.74 6,170 2.98 5,670

Cache warm 2.50 6,760 2.72 6,210

Difference 0.24 -8.8 % 0.26 -8.7 %

3.2.4 Workload scaling

In this section, we investigate the scaling behavior of the GPU runtime with respect to the number of ray paths and the number

of instrument channels. The GPU runtime results regarding the scaling with respect to the number of ray paths in Fig. 11540

show two regimes: In the regime of small workloads (fewer than 1000 ray paths), overhead times of the order of 0.1 to 0.2
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Figure 11. Scaling of the GPU runtime in the limb case. The left subplot shows the runtime as function of the number of ray paths for 1, 2,

4, 8, 16 and 32 channels. The right subplot shows the same data in a different projection: The different black lines refer to 26, 27, . . . , 216

ray paths from lowest to highest.

seconds become visible. For 32 channels and numbers of ray paths larger than 2000, the minimum amount of ray parallelism

(c. f., Sect. 3.1.5), a linear behavior with a performance of up to 7.33× 103 rays/s can be found. This is even about 8% higher

than the best performance found earlier for 17× 103 rays. We have to mention here that we reduced the maximum size of

emissivity look-up tables for this scaling analysis from 27 to 13 to host only the active gases.545

The right subplot of Fig. 11 shows the scaling behavior with respect to the number of instrument channels. When using

fewer than 32 channels, we can observe that the runtime is much higher than what we could expect from a linear function. This

is strongly related to the GPU warp size of 32 lanes (also known as CUDA threads). For block sizes fewer than 32, branch

divergence leads to inefficiencies and, hence, longer runtimes.

During earlier tuning efforts of the JURASSIC GPU version, much investigation was spent on radiative transfer calculations550

for the 4.3 and 15 micron wavebands of CO2 and the nadir observation geometry (Baumeister et al., 2017). In that case, only

look-up tables for CO2 have been considered. In the nadir geometry, the total number of segments along the ray path is 160 for

all ray paths and the best performance reported was 133× 103 rays/s running on one NVIDIA Tesla P100 GPU.

The performance data for the limb case shown in Fig. 11 nominally translate into a maximum performance of 7.33×
103 rays/s. However, the limb ray paths are longer (253.2 versus 160 segments) and we work with 13 rather than a single look-555

up table. Accounting for that, the performance in terms of ray paths per second for the limb case on the V100 GPUs is about
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Figure 12. Scaling of the CPU runtime with respect to the numbers of ray paths. See caption of Fig. 11 for more detailed explanations. Mind

the different scales.

11% higher than that of the nadir case on the P100 GPUs. The technology update from P100 to V100 increased the nominal

GPU memory bandwidth by 25% (NVIDIA, 2016, 2017) but the nadir case using only CO2 tables may also benefit stronger

from caches compared to the limb case, where the 13 different look-up tables account for a total size of 1.2 GiB.

3.2.5 CPU versus GPU performance comparison560

The code restructuring described above and by Baumeister et al. (2017) has been focused onto GPU performance, therefore,

direct comparisons between tuned GPU and untuned CPU versions may be taken with a caveat. Nevertheless, we repeated the

scaling analysis of the previous section for the CPU and for the reference version (Hoffmann, 2015) (abbreviated as REF) in

order to find a rough figure of merit.

The best performance results for the CPU version are achieved when running large workloads with 32 channels on two565

OpenMP threads per core. We find that the runtime is close to proportional to the number of ray paths over the entire range

from 64 to 65k ray paths, see Fig. 12. Overhead times are negligible here. The right subplot indicates that running with

32 channels takes about twice the time of 16 channels. However, when we come to smaller channel numbers, overheads

and inefficiencies become visible. In terms of overhead the channel-independent ray tracing needs to be mentioned here.

Furthermore, inefficiencies in the EGA method appear as we cannot exploit the full width of the CPU vectorization (SIMD)570

with 1 or 2 channels.
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Figure 13. Scaling of the (REF) reference implementation runtime with the number of ray paths and channels. In contrast to Fig. 12, only up

to 4k ray paths have been benchmarked and the linear slope extrapolates to 65k for 8 channels (black dot) since that configuration reached

the best efficiency.

The benchmarks of the reference version (REF) have been restricted to workloads of up to 4096 ray paths, as the code has

not been optimized to handle larger workloads. However, Fig. 13 reflects its performance signature well enough. The runtime

is proportional to the number of ray paths over the full range, i. e., no relevant overhead times are visible in the left subplot. The

right subplot shows that the configurations with 16 and 32 channels take more than 2× and 4× the runtime, respectively, c. f.,575

right subplot of Fig. 13. The black dot indicates the most efficient use case with 8 channels running on one OpenMP thread per

core. One would choose these settings for a production calculation. The linear fit with 3.765 ms/ray also refers to the case of

eight channels, so it must be scaled by 32/8 before comparing to CPU version results.

We extracted the best performance from GPU, CPU, and REF implementations and summarized them in Table 3. In order

to serve for a direct comparison, the values for time-to-solution and energy-to-solution have been normalized to the same580

workload of 4× 65k limb ray paths on 32 channels. As reported by peers about other code acceleration projects with GPUs,

we can observe that the CPU version benefits from the rewriting efforts: Comparing the runtime of the CPU to that of the

reference implementation shows a 14× faster time-to-solution and, equivalently, as both run on the CPU only, a 14× better

energy-to-solution assuming that the CPU power intake is in first order approximation independent of the workload.

A direct comparison of GPU runtimes to CPU runtimes is in most cases hardly meaningful as we need a CPU to operate a585

GPU. Therefore, we tried to estimate the power consumption of the compute node with and without GPUs active. We assume
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Table 3. Time-to-solution and estimated energy-to-solution comparison between GPU version, CPU version and the reference implementa-

tion (Hoffmann, 2015).

Version Processor Runtime (s) Energy (kJ)

REF Intel Xeon Gold 6148 3950 1975

CPU Intel Xeon Gold 6148 282 141

GPU NVIDIA Tesla V100 9 15

GPU NVIDIA Tesla A100 6 11

a thermal design power (TDP) envelope of 300 W for each of the four V100 GPUs (NVIDIA, 2017) and a TDP of 150 W

for each socket of the Intel Xeon Gold 6148 CPU. Furthermore, the compute nodes are equipped with 192 GiB CPU memory

such that we estimate the dual node to take 500 W without GPUs in operation and about 1.7 kW running a GPU accelerated

application. Although these considerations do not include power for cooling, these energy-to-solution estimates allow forming590

meaningful energy efficiency ratios.

From Table 3, it becomes obvious that the GPU version is about 9× more energy efficient than its CPU counterpart. Com-

paring to the reference version, the GPU version exhibits a more than 130× better energy efficiency. However, this should be

taken with a caveat as no particular CPU tuning has been undertaken. Nevertheless, we can roughly assign the improvement

by the factor 14 as the result of the rewriting and the factor 9 as result of the GPU acceleration.595

4 Conclusions

High performance computing using graphics processing units (GPUs) is an essential tool for advancing computational science.

Numerical modeling of infrared radiative transfer on GPUs can achieve considerably higher throughput compared to standard

CPUs. In this study, we found that this applies also for the case of the emissivity growth approximation (EGA), which allows

us to effectively estimate band-averaged radiances and transmittances for a given state of the atmosphere, avoiding expensive600

line-by-line calculations.

In order to enable the GPU acceleration, including raytracing and the EGA method, a major redesign of the radiative transfer

model JURASSIC has been necessary. Besides the goal of maximizing the GPU’s throughput, the code base has been trans-

formed to offer both a GPU and a CPU version of the forward model, whereby the number of duplicate source code lines has

been minimized facilitating better code maintenance.605

The GPU version of JURASSIC has been tuned to deliver outstanding performance for the nadir geometry in earlier work.

In the nadir case, only CO2 was considered as an emitter. In this work, we focused onto performance analyses for the limb

geometry. Here, up to 18 gases contributed to the simulated radiance in a given mid-infrared spectral region, leading to a much

larger number of emissivity look-up tables that needs to be considered in the EGA method. Our scaling tests showed that the
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GPU runtime is composed of rather constant offset due to raytracing and a linearly scaling contribution due to the number of610

look-up tables being considered in the EGA calculations.

In order to find a figure of merit to evaluate the application porting and restructuring efforts for JURASSIC, we tried to

assess the performance ratio of GPUs over CPUs. In terms of energy-to-solution, we found the GPU version to be about nine

times more energy efficient than its CPU counterpart. The CPU version, in turn, is about 14 times faster than the reference

implementation from which the porting project started.615

Although there are further ideas for performance tuning and code optimization, including the idea to implement analytic

Jacobians for data assimilation and retrieval applications, the given achievements in terms of improved CPU performance and

utilization of GPUs are considered an important step forward in order to prepare the JURASSIC radiative transfer model for

large-scale data processing of upcoming satellite instruments.
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