
An explicit GPU-based material point method solver for
elastoplastic problems (ep2-3De v1.0)
Emmanuel Wyser1,2, Yury Alkhimenkov1,2,3, Michel Jaboyedoff1,2, and Yury Y. Podladchikov1,2,3

1Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland
2Swiss Geocomputing Center, University of Lausanne, 1015 Lausanne, Switzerland
3Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, 119991, Russia

Correspondence: Emmanuel Wyser (manuwyser@gmail.com)

Abstract.

We propose an explicit GPU-based solver within the material point method (MPM) framework using graphics processing

units (GPUs) to resolve elastoplastic problems under two- and three-dimensional configurations (i.e., granular collapses and

slumping mechanics). Modern GPU architectures, including Ampere, Turing and Volta, provide a computational framework

that is well suited to the locality of the material point method in view of high-performance computing. For intense and nonlocal5

computational aspects (i.e., the back-and-forth mapping between the nodes of the background mesh and the material points),

we use straightforward atomic operations (the scattering paradigm). We select the generalized interpolation material point

method (GIMPM) to resolve the cell-crossing error, which typically arises in the original MPM, because of the C0 continuity

of the linear basis function. We validate our GPU-based in-house solver by comparing numerical results for granular collapses

with the available experimental data sets. Good agreement is found between the numerical results and experimental results10

for the free surface and failure surface. We further evaluate the performance of our GPU-based implementation for the three-

dimensional elastoplastic slumping mechanics problem. We report i) a maximum performance gain of x200 between a CPU-

and a single GPU-based implementation, provided that ii) the hardware limit (i.e., the peak memory bandwidth) of the device

is reached. Furthermore, our multi-GPU implementation can resolve models with nearly a billion material points. We finally

showcase an application to slumping mechanics and demonstrate the importance of a three-dimensional configuration coupled15

with heterogeneous properties to resolve complex material behavior.

1 Introduction

Graphics processing units, or GPUs, have revolutionized the entire field of high-performance computing (HPC) in the last

decade. GPUs are many-core processors that were originally developed by the gaming industry in the mid-1990s to acceler-

ate graphics and video rendering. Currently, GPUs are widely employed hardware accelerators used in various applications,20

including artificial intelligence (AI) and machine learning. GPUs are also increasingly used for high-performance scientific

computing (see Dong et al. 2015b; Omlin et al. 2018; Räss et al. 2018; Zhang et al. 2021; Alkhimenkov et al. 2021). The

majority of the scientific algorithms on many-core (e.g., GPU) hardware accelerators are memory-bounded, meaning that data

transferring (reading and writing) limits the performance of a solver. This is in contrast to the recent compute-bounded algo-

1

rithms, where arithmetic floating point calculations are the main limiting factor in solver performance. This GPU supercom-25

puting breakthrough requires re-engineering existing scientific codes or developing new algorithmic structures to efficiently

take advantage of the intrinsic low-level parallelism of GPUs.

The material point method (MPM) was first proposed by Sulsky et al. (1994) and was further advanced by the generalized

interpolation material point method (GIMPM) by Bardenhagen and Kober (2004). It can be think of as a finite element method

(FEM) in which a) integration points (i.e., material points) move and b) convey state variables, e.g., stress and strain compo-30

nents. The continuum is discretized by material points. The nodal momentum equations are solved on a background mesh and

nodal basis functions provide a mapping framework between the mesh and the material points to transfer either the updated

nodal solution or material point properties. The background mesh is reset and actually never deforms. It has been widely used

for large deformation geomechanical problems such as retrogressive failure, coupled hydromechanical landslides or granular

collapses (Tran and Sołowski, 2019; Bandara and Soga, 2015; Dunatunga and Kamrin, 2015).35

From a computational point a view, it is critical for MPM to be able to simulate large-scale problems in both two- and

three-dimensional configurations. From this perspective, a few researchers have exploited parallel computing using a single

or multiple GPU strategy (Dong et al., 2015a; Dong and Grabe, 2018) to efficiently implement an explicit GIMPM for two-

dimensional configurations. More recently, some researchers in the graphics community presented a similar implementation

(Gao et al., 2018; Hu et al., 2019; Wang et al., 2020) for three-dimensional configurations. One of the most computationally40

expensive operations in MPM is mapping between material points and their associated nodes, which is supported by basis

functions. When implementing a GPU, the two most common approaches are gathering and scattering. The former gathers

the material point’s state variables (i.e., mass, velocity component or stresses) to the nodes, whereas the latter scatters (i.e.,

distributes) the material point’s state variables to their associated nodes. This leads to write conflicts, as several threads are

writing into the same memory location at the same time. Gao et al. (2018) demonstrated the superiority of scattering over45

gathering, provided that the write conflicts are handled without atomic operations. Gao et al. (2018) proposed parallel scattering

that results in a performance of an order of magnitude higher than that of a naive atomic implementation. Recently, Wang et al.

(2020) proposed an Array of Structures of Arrays (AoSoA) as an efficient layout. It is largely responsible for CPU or GPU

performances, as it dictates the memory access pattern by ensuring coalesced memory accesses (Wang et al., 2020).

We propose an explicit GIMPM implementation in a three-dimensional configuration on a single and multiple GPUs (ep2-50

3De v1.0), taking advantage of the efficient vectorized algorithmic structure of the MPM solver proposed by Wyser et al.

(2020a). Our GPU-based solver relies on built-in functions of atomic operations for the mapping between material points and

their associated nodes (i.e., scattering). For large-scale simulations, the main hardware limit is the GPU on-chip memory, which

was well documented by Dong and Grabe (2018). To resolve the GPU on-chip memory limitation, we rely on a distributed

memory parallelization using the message passing interface (MPI) standard. The multi-GPU implementation can resolve mod-55

els with nearly a billion material points. The GPU solver ep2-3De v1.01 combines MATLAB for pre- and postprocessing

1The routines of the ep2-3De v1.0 solver are available for download from GitHub at: https://github.com/ewyser/ep2-3De (last access: October 26, 2021).

The routines archive (v1.0) (Wyser et al., 2021) is available from a permanent DOI repository (Zenodo) at https://doi.org/10.5281/zenodo.5600373 (last access:

October 26, 2021).

2

https://github.com/ewyser/ep2-3De
https://doi.org/10.5281/zenodo.5600373

activities with the massive power of the most recent GPU architectures available (Ampere, Turing and Tesla architectures).

This approach allows the user to easily set the problem’s geometry and initialize the material points as well as their state vari-

ables. Everything needed is then passed to the GPU, which further performs the computations. We propose a formal framework

to evaluate the performance of our GPU-based implementation based on the metric for memory-bounded codes, i.e., the effec-60

tive memory throughput (Omlin, 2017). Since the memory wall has been reached, the memory bandwidth becomes the limiting

factor for performance. In addition, it is an easily comparable metric. Similarly, we also report the average number of iterations

per second for the same reason: it indicates a relative performance, and it does not depend on material properties (e.g., bulk

or shear moduli). We also implement the solver ep2-3De v1.0 under a single-CPU architecture to provide a reference baseline

for the performance evaluation of the GPU-based implementation. For the validation of our solver, we simulate the granular65

collapse problem in a three-dimensional configuration and compare the result against the well-known experimental results of

Bui et al. (2008).

2 Numerical implementation

In this section, we briefly describe the governing equations implemented in the MPM solver. We use a linear elastoplastic

rheology. Large deformations are carried out via a rate-dependent formulation with the Jaumann stress rate.70

2.1 Governing equations

The conservation of linear momentum is given by (using the Einstein summation convention)

ρ
∂vk
∂t

=
∂σkl
∂xl

+ ρgk, (1)

where σkl is the Cauchy stress tensor, vk = ∂uk/∂t is the velocity, uk is the displacement, gk is the body force, and k, l = 1..3.

The conservation of angular momentum is given by σkl = σlk. Dirichlet and Neumann boundary conditions are75

uk = ūk on ∂Ωu, (2)

σklnl = τ̄k on ∂Ωτ , (3)

where ūk and τ̄k are prescribed displacements, and nk is a unit normal vector pointing outward from the boundary ∂Ω of the

domain Ω. Following the standard FEM procedure, we use the updated Lagrangian framework; thus, the weak form of Eq. 1

is written in the current spatial configuration. The weak form of Eq. 1 can be obtained by multiplying it with a test function ϕ80

and then applying integration by parts and divergence theorem, leading to∫
Ω

ϕρakdΩ =

∫
Ω

ϕρgkdΩ−
∫
Ω

∂ϕ

∂xl
σkldΩ+

∫
∂Ωτ

ϕτ̄kdS, (4)

where ∂vk/∂t= ak is the acceleration, ϕ is any test function that vanishes on ∂Ωu, and τ̄k is the external traction applied on

the boundary ∂Ω, k = 1..3. However, in our MPM implementation, tractions on the boundary are not used. Eq. 4 can be solved

3

using a finite element approach leading to the following compact form:85

[Mijaj]k =
[
f exti − f inti

]
k
, (5)

where Mij =
∑np

p=1mpϕi(xp)ϕj(xp) is the consistent mass matrix with ϕi(xp) being the basis function between node i and

material point p. This work adopts a lumped mass matrix, i.e., mi ≡Mii =
∑np

p=1mpϕi(xp), to avoid an expensive matrix

inversion (Sulsky et al., 1994; Bardenhagen and Kober, 2004; González Acosta et al., 2020). The external f extk,n and internal

f intk,n forces at node n are then defined by90

f extk,n =

np∑
p=1

mpϕn(xp)gk, (6)

f intk,n =

np∑
p=1

vp
∂ϕn
∂xl

(xp)σkl,p, (7)

where mp is the material point’s mass, vp is the material point’s volume and σkl,p is the material point’s Cauchy stress tensor.

Solving Eq. 5 for the acceleration ak,n, the updated velocity is obtained via a forward-Euler scheme,

vt+∆t
k,n = vtk,n+∆tak,n, (8)95

where the velocity is given by vtk,n =m−1
n

∑np

p=1ϕn(xp)mpvk,p and vk,p is the material point’s velocity. Boundary conditions

are enforced on the boundary nodes. The material point velocity vk,p and coordinates xk,p are defined by mapping (i.e., an

interpolation) between the updated solution on the mesh and the material points, i.e.,

vt+∆t
k,p = vtk,p+∆t

nn∑
n=1

ϕn(xp)ak,n, (9)

xt+∆t
k,p = xtk,p+∆t

nn∑
n=1

ϕn(xp)v
t+∆t
k,n , (10)100

where nn is the number of associated nodes n to a material point p. The remaining tasks are i) to update the material point

volume and ii) to solve for the constitutive stress-strain relationship.

2.2 Rate formulation

The large deformation framework necessitates a suitable stress-strain formulation. Some studies prefer the finite deformation

framework and employ a linear relationship between Kirchhoff stresses and logarithmic strains (Charlton et al., 2017; Gaume105

et al., 2018; Coombs et al., 2020). In the present work, we adopt a rate-dependent framework by applying the Jaumann rate

(e.g., Huang et al. 2015; Wang et al. 2016c, b; Bandara et al. 2016), which yields an objective stress rate measure.

The Jaumann rate of the Cauchy stress is given by

Dσij
Dt

= Cijkl
1

2

(
∂vl
∂xk

+
∂vk
∂xl

)
, (11)

4

where Cijkl is the 4th rank tangent stiffness tensor. Thus, the Jaumann stress derivative may be written as110

Dσij
Dt

=
Dσij
Dt

−σikω̇jk −σjkω̇ik, (12)

where ωij = (∂ivj − ∂jvi)/2 is the vorticity tensor, Dσij/Dt corresponds to the material derivative

Dσij
Dt

=
∂σij
∂t

+ vk
∂σij
∂xk

. (13)

By rearranging the Jaumann stress derivative in Eq. 12, we obtain

∂σij
∂t

=
Dσij
Dt

+

σR
ij︷ ︸︸ ︷

σikω̇jk +σjkω̇ik, (14)115

where σR
ij represents the rotation of the Cauchy stress tensor, which satisfies the stress objectivity for the rate-dependent

formulation.

Let us expand σR
ij in Eq. 14 using identities σij = σji, ω̇ij =−ω̇ji and ω̇kk = 0. The Cauchy stress tensor is written using the

so-called Voigt notation (as a vector σ = {σxx,σyy,σzz,σxy,σyz,σxz}). After expanding, collecting and rearranging terms,

the objective stress terms σR
ij for a three-dimensional configuration are120

σR
xx = 2(σxyω̇xy +σxzω̇xz), (15)

σR
yy =−2(σxyω̇xy −σyzω̇yz), (16)

σR
zz =−2(σxzω̇xz +σyzω̇yz), (17)

σR
xy = ω̇xy(σyy −σxx)+σyzω̇xz +σxzω̇yz, (18)

σR
yz = ω̇yz(σzz −σyy)−σxyω̇xz −σxzω̇xy, (19)125

σR
xz = ω̇xz(σzz −σxx)+σyzω̇xy −σxyω̇yz, (20)

and, for a two-dimensional configuration assuming plane strain conditions, Eqs. 15, 16 and 18 reduce to

σR
xx = 2σxyω̇xy, (21)

σR
yy =−2σxyω̇xy, (22)

σR
xy = ω̇xy(σyy −σxx). (23)130

2.3 Elastoplastic deformation

A nonassociated Drucker-Prager model (D-P model) with a tension cutoff is used in this study, similar to Huang et al. (2015);

Liu et al. (2020); Nguyen et al. (2020); Zuo et al. (2020), because of its straightforward implementation within explicit nu-

merical solvers. The D-P model has been established as an approximation of the Mohr-Couloumb (M-C) model (Krabbenhoft

et al., 2012; Alejano and Bobet, 2012), i.e., a conical yield surface that approximates the M-C yield surface in the principal135

stress space. The former can be adjusted by parameters, so it passes either through the outer or inner edges of the M-C yield

surface (Jiang and Xie, 2011; De Borst et al., 2012).

5

σm

τ

f

f t
= 0

h = 0

Figure 1. Drucker-Prager yield surface in the (σm-τ) space. The yield surface is made of a shear line segment (in red) and a tensile line

segment (in blue).

The D-P yield function f (see Fig. 1) is typically defined in terms of invariants; The first invariant of the Cauchy stress

tensor I1 = σkk, and the second invariant J2 = 1
2τijτji of its deviatoric part τij , where the deviatoric part of the Cauchy stress

is τij = σij + δijp with the pressure p=− 1
3σkk. The D-P yield surface is made of two surfaces (i.e., representing shear and140

tensile yield criteria), delimited by

fs(σm, τ) = τ + qϕσm− kϕ, (24)

f t(σm) = σm−σt, (25)

where τ =
√
J2 is the effective shear stress, σm =−p is the mean stress, qϕ and kϕ are the material parameters defined by

ϕ as the internal friction angle, σt is the tensile strength and c is the cohesion. Cohesion varies with the accumulated plastic145

strain ϵ̄p when considering a strain softening material, i.e., c= f(ϵ̄p). These two surfaces define two plastic regions (see Fig. 1)

corresponding to either the shear or tensile failure mode. We use a nonassociated plastic flow law for shear and tensile failures;

thus, the plastic potential function g is written as

gs(σm, τ) = τ + qψσm, (26)

gt(σm) = σm, (27)150

where qψ is a material parameter estimated with the dilation angle ψ.

The line segment h(σm, τ) = 0 represents the diagonal line between fs(σm, τ) = 0 and f t(σm, τ) = 0 in the (σm, τ) plane,

i.e., h is the boundary between shear and tensile failure modes. The function h(σm, τ) is given by

h(σm, τ) = τ − τP −αP (σm−σt), (28)

6

with the constants τP = kϕ− qϕσt and αP = (1− q2ϕ)1/2− q2ϕ. We consider an inner adjustment of the D-P yield surface with155

respect to the M-C yield surface (de Souza Neto et al., 2011), and the model parameter used in Eqs. 24 & 26 are given by

qϕ =
6sinϕ√

3(3+ sinϕ)
, (29)

qψ =
6sinψ√

3(3+ sinψ)
, (30)

kϕ =
6ccosϕ√
3(3+ sinϕ)

. (31)

In the following, we briefly detail the return mapping strategy used to return the trial Cauchy stress σtrij (i.e., assuming160

pure elastic deformation only) onto the yield surfaces considering ψ = 0. A complete description of such return mapping can

be found in Huang et al. (2015). Shear failure is declared when i) fs(σtrm, τ
tr)> 0 and σtrm < σt or if ii) h(σtr, τ tr)> 0 and

σtrm ≥ σt. The corrected Cauchy stress tensor now reads

σt+∆t
ij = τ trij

(
kϕ− qϕσ

tr

τ tr

)
+σtrδij , (32)

with δ the Kronecker tensor. Tensile failure is declared when h(σtr, τ tr)≤ 0 and σtrm ≥ σt. The corrected Cauchy stress tensor165

reads as

σt+∆t
ij = σtrij +(σt−σtrm)δij . (33)

3 GIMPM implementation under a GPU architecture

We propose an explicit generalized interpolation material point method (GIMPM) implementation (Dong and Grabe, 2018;

Wang et al., 2020) in a three-dimensional configuration on a GPU, taking advantage of the efficient vectorized algorithmic170

structure (Wyser et al., 2020a, b). We select explicit GIMPM implementation, which is valid for a variety of problems compared

to other latest variants (Wang et al., 2019; Coombs et al., 2020), i.e., CPDI or CPDI2q. Additionally, we use a double-mapping

approach (MUSL, see Nairn 2003; Buzzi et al. 2008), which consists of updating the stress at the end of the time step. We

implement the following domain-update methods: a) no update of the material point domain, further labelled uGIMPM, and b)

a domain update controlled by the determinant of the deformation gradient, i.e., det(Fij), further labelled cpGIMPM. These175

domain-update methods are commonly used in the literature (Baumgarten and Kamrin, 2019; Tran and Sołowski, 2019). The

limitation of the two methods is that they are not ideally suited for specific tests: simple stretching and compression modes

(Coombs et al., 2020).

3.1 Implementation on a graphical processing unit (GPU)

Graphical processing units (GPUs) are many-core processors originally designed to refresh screen pixels (e.g., for computer180

games) independently. A schematic representation of the main architecture differences between a CPU and a GPU is depicted

in Fig. 2. On the GPU chip, most of the physical space is dedicated to arithmetic logical units, whereas on a CPU, most of

7

the physical space is dedicated to chip host scheduling and control microsystems. GPUs feature many more cores, a lower

thread-scheduling cost and a higher memory bandwidth than CPUs. The programming model is based on a parallel principle

called single instruction - multiple data (or SIMD), i.e., every single instruction is executed on different data. GPUs feature185

a hierarchical structure. The lowest computational unit is the thread. Threads are organized into blocks of threads, the whole

constituting a hierarchical grid of blocks of threads. A GPU typically launches thousands of threads, which execute the same

instruction in parallel, thus achieving massive parallelism. Additionally, the most recent GPUs offer a high throughput (close

to a TB per second peak memory throughput).

Currently, most of the algorithms are memory-bounded, meaning that memory transfers limit the performance, in contrast190

to computer-bounded algorithms, where floating point (arithmetic) operations limit the performance. Thus, for an efficient

implementation of an algorithm, one must consider a) limiting the memory transfers to the bare minimum and b) avoiding

complex data structures (Räss et al., 2019a) to benefit from the high throughput capabilities of GPUs. The ability of a GPU

is particularly well suited to efficiently execute a large number of local operations in parallel, i.e., single instruction, multiple

data (SIMD) programming. In the case of a GIMPM implementation, this includes the calculation of shape functions and the195

update of various quantities at the material point level (i.e., stresses, domain lengths, material point volumes, etc.). Below, we

present key aspects of our GPU-based implementation using the Computed Unified Device Architecture (CUDA C) language

of the Nvidia Corporation, which is a syntax extension of the C programming language.

Figure 2. Schematic chip representation for both the central processing unit (CPU) and the graphical processing unit (GPU) architecture

(Nvidia, 2007). The latter is made of thousands of arithmetic logical units (ALUs). The CPU architecture is primarily dedicated to controlling

units and cache memory, and the physical space allowed for ALUs is considerably reduced compared to a GPU architecture.

3.2 The multi-GPU code implementation

One of the major limitation of a single GPU implementation is the on-chip memory. It is then essential to overcome this200

limit in order to resolve larger computational domain with a greater amount of material points. We address this concern by

implementing a distributed memory parallelisation using the message passing interface (MPI) standard. However, we limit our

implementation efforts by considering 1) a one-dimensional GPU topology, 2) no computation/communication overlaps, and

3) only mesh-related quantities are shared amongst GPUs, i.e., the material points are not transferred between GPUs during

a simulation. We also selected a non-adaptive time step to avoid the collection of the material point’s velocities located in205

different GPUs at the beginning of each calculation cycle.

8

3.2.1 Algorithm workflow

In our implementation, MATLAB acts as an architect (see Fig. 3). It 1) defines the problem geometry (i.e., the background

mesh, material point locations and related quantities, etc.), which can be tedious to initialize in a CUDA C environment. It also

calls an external MATLAB script, which compiles the necessary source codes, i.e., gpu.cu or cpu.cu. It further 2) calls210

either a CUDA C or plain C executable, i.e., gpu.exe or cpu.exe, within a Windows OS to solve for the numerical problem

and finally 3) imports the results of calculations for further postprocessing tasks.

main.m

meSetup.mmpSetup.m

postprocessing

Preprocessor

Solution

Postprocessor

gpu.exe cpu.exe

I/O

I/O

compile.m

gpu_main.cu

cpu_main.cu

stdlib.h

cuda.h

macro.h

cpu_functions.h

gpu_kernels.h

Figure 3. Multifunctional workflow: 1) usage of MATLAB for data initialization, compilation and postprocessing activities and 2) system

calls to a performant compiled language such as C (CPU-based) and CUDA C (GPU-based) for heavy calculations. Here, I/O stands for

input/output, and the colouring (red or green) specifies which one is active, i.e., I/O means data only are transferred to the GPU (or CPU)

for further calculation activities.

This is a powerful combination between a high-level language such as MATLAB and a performant low-level language such

as CUDA C or plain C. It is also easy to invoke system commands directly via MATLAB, i.e., to compile source codes and/or

run executables using the built-in command system('...'). We focus on OS-free scripting in MATLAB using a built-in215

command (i.e., isunix or ispc) to ensure that it performs well under all operating system (OS) architectures. In addition,

such a workflow can be easily extended to other high-level languages such as Python.

3.2.2 Kernels and launch configuration

We briefly describe our GPU-based implementation (gpu_main.cu) while focusing mainly on the computational aspects of

the implementation. Implementation of an explicit GIMPM solver into the CUDA C language requires dispatching computa-220

tional activities into several kernels, i.e., similar to classic functions for a serial implementation in the C language. Each kernel

is operated by the GPU only, and kernel launch configuration parameters must be defined for its proper execution. Among

them, one must define the number of active threads per block (i.e., the block size) and the number of blocks (i.e., the grid size).

A typical kernel is executed N times in parallel by N distinct threads organized into blocks of threads, i.e., a grid of blocks

9

of threads. The principal hardware limitation is the total number of threads within a block: it cannot exceed 1024 threads per225

block. One must ensure that the maximal size of a block is lower than or equal to this limit.

The computational activities are handled by multiple GPU kernels; 11 kernels are successively launched over a computational

cycle. An overall description is given in Fig. 4. A while loop is used to perform the computational cycles, and an MPM step

is solved at every cycle. nIO (i.e., the number of accesses to the GPU global memory) is reported in Fig. 4 for each kernel and

is estimated by a careful examination of relevant operations within the kernels. Note that all calculations are performed on the230

GPU, except the calculation of the adaptive time step, which is serially executed by the CPU.

In our GPU-based implementation, we define two distinct types of kernel launch parameters: 1) those used for mapping be-

tween material points and background nodes (i.e., accumulations and projections between material points with their associated

nodes and back and forth) and 2) those used for local calculation at the material point or node level (i.e., update of material

point stresses or the solution to the momentum balance equations on the Eulerian background mesh). We use regular back-235

ground mesh because it is straightforward to find the material point’s location. However, computing a material point’s location

using an irregular background mesh is more complicated.

while t ≤ tend

Function : getdt(∗) cpu_functions.h

g
p
u
_
m
a
i
n
.
c
u

nIO = 8nno + 2nel

nIO = nmp(7nn + 6)

nIO = nmp(11 + 12nn)

nIO = 18nno

nIO = 3nmp(3 + nn)

nIO = nmp(4nn + 3)

nIO = 3nmp(3 + 6nn)

nIO = 21nmp

nIO = 14nmp

nIO = 13nmp

nIO �= cst

Kernel 1 : initD(∗)

Kernel 2 : basisD(∗)

Kernel 3 : accumD(∗)

Kernel 4 : solveD(∗)

Kernel 5 : projectD(∗)

Kernel 6 : DMD(∗)

Kernel 7 : getdFD(∗)

Kernel 8 : elastD(∗)

Kernel 9 : plastD(∗)

Kernel 10: volLockD1(∗)

Kernel 11: volLockD2(∗)
g
p
u
_
k
e
r
n
e
l
s
.
h

Figure 4. Specific workflow for the source code running of the GPU, tend is a user-defined time that controls the total time of the simulation,

and the operator ∗ stands for the pointer object, as in the C language. It should be noted that a vast majority of operations within kernels are

performed on pointers.

3.2.3 Adaptative time step

An adaptive time step is implemented. For three-dimensional configurations, the maximum elastic wave speed of the material

(Anderson, 1987; Zhang et al., 2017) reads as240

(cx, cy, cz) = cel+

(
max
p

(|vx,p|),max
p

(|vy,p|),max
p

(|vz,p|)
)
, (34)

where cel = ((K +4G/3)/ρ)
1
2 is the elastic wave speed of the material, K and G are the bulk and shear moduli, respectively,

ρ is the material density, and vx,p, vy,p and vz,p are the material point velocity components. The time step ∆t is then restricted

10

by the CFL condition,

∆t= αmin

(
∆x

cx
,
∆y

cy
,
∆z

cz

)
, (35)245

where α ∈ [0;1] is the time step multiplier, and ∆x,∆y, and ∆z are the background mesh resolutions.

This requires evaluation of the maximum velocity of all material points at the beginning of each calculation cycle. We

choose to sequentially find the maximum velocity using the CPU instead of a parallel implementation on the GPU. This results

in systematic memory transfers between the GPU global memory and the random access memory (RAM) of the CPU. However,

we report a low performance loss due to these transfers, i.e., a maximal loss of 2-5 % in performance, which is acceptable.250

3.2.4 Back-and-forth mapping between material points and their associated nodes

The GPU-based algorithm relies heavily on the use of arrays p2e and e2n (Wyser et al., 2020a). Elements are numbered

with an increasing index. Associated nodes are also numbered in a similar manner. The array e2n of dimension nel×nn,

where nel is the total number of nodes and nn is the number of nodes associated with an element e, describes the topological

relation between the elements and the nodes of the mesh. Similarly, the array p2e describes the topological relation between255

the material points and the element in which they are located. These two arrays provide an intuitive definition of the relations

between i) the material points and the nodes they are associated with (i.e., p2n) and ii) the element and their nodes (i.e., e2n).

Then, it is a computationally straightforward process to identify which nodes n are associated with a material point p, which is

occupying an element e.

The GPU-based implementation relies on the built-in function atomicAdd() in CUDA C. It performs atomic operations,260

which avoid the data race of multiple threads, from the same or different blocks to update the same memory location. Atomic

operations are extensively used to calculate internal and external force contributions (Eqs. 6 & 7), as well as the lumped mass

matrix, and to update the material point’s properties such as velocities and coordinates (Eqs. 9 & 10). Dong et al. (2015a);

Wang et al. (2020) reported (for older GPU architectures such as Pascal or Kepler) that atomic scattering can be significantly

slower compared to an optimized parallel implementation. However, atomic operations are a) intuitive to both understand and265

implement, and b) they avoid a complex data layout, such as recently proposed in Wang et al. (2020). The use of built-in atomic

operations considerably reduces programming efforts.

3.2.5 Treatment of volumetric locking for low-order elements

When low-order elements are used in a GIMP formulation, volumetric locking arises and results in spurious oscillations of

the stress field (Jassim et al., 2013; Coombs et al., 2018; González Acosta et al., 2019; González Acosta et al., 2021). We270

implement a simple procedure to mitigate volumetric locking when considering near-incompressible behaviour for ischoric

plastic flows. Cuomo et al. (2019); Lei et al. (2020) introduced an element-based averaging method, following Mast et al.

(2012). Selected material point properties are reconstructed based on an average value calculated at the element’s centre at the

end of a time step. However, we propose averaging only the volumetric part of the stress tensor, i.e., the pressure p=− 1
3σkk,

while its deviatoric part τij = σij − pδij remains unchanged. We believe our approach is conceptually similar to the B-bar275

11

technique (Hughes, 1980; Bisht et al., 2021). This results in the following:

pe =

∑
p∈e vppp∑
p∈e vp

, (36)

where vp is the material point’s volume. This gives a constant distribution of the pressure field over an element because of

its zero-order reconstruction (Lei et al., 2020). The Cauchy stress tensor σij,p of a material point p occupying an element e is

corrected as280

σij,p = τij,p+ δij(pe)p, (37)

where δij is the Kronecker delta and (pe)p is the averaged pressure within an element e and assigned to a material point p.

3.3 Available computational resources

The CPU- and GPU-based simulations are performed on a modern workstation running on a Windows 10 operating system

with the latest CUDA version v11.2. The CPU is an Intel Core i9-10900K with 10 physical cores of base clock speed (or285

frequency) of 3.70 GHz, which can rise up to a maximum clock speed of 5.30 GHz, supported with 64 GB DDR4 RAM. It

hosts a consumer electronics Nvidia RTX 3090 GPU (the latest Ampere architecture) with 82 streaming multiprocessors (SM

units) with a base frequency of 1.40 GHz. This results in 10490 CUDA cores that are supported with an on-chip memory of 24

GB GDDR6 (i.e., the GPU global memory). Other GPUs installed on older desktops are also used to compare their respective

GPU performances, i.e., an RTX 2080 ti (workstation) and a GTX 1650 (laptop), both running on a Windows 10 operating290

system. Additional simulations were also ran on a workstation equipped with the latest Nvidia A100 GPU at the Lomonosov

Moscow State University.

Furthermore, GPU-based simulations are also performed on the Octopus GPU supercomputer at the Swiss Geocomputing

Centre, University of Lausanne, Switzerland. In particular, the GPU-based simulations are run on the Volta node, hosting an

Nvidia Tesla V100 (Volta architecture) 16 GB, supported by an Intel(R) Xeon(R) E5-2620 v2 (Haswell) @ 2.1 GHz CPU.295

The latest CUDA version installed is v11.0, and the supercomputer Octopus is operated under a CentOS 6.9. environment. To

summarize the computational resources in use, Table 2 presents the main characteristics of the GPUs used in this study.

The multi-GPU simulations are run on the two different systems. The first one is an Nvidia DGX-1 - like node hosting 8

Nvidia Tesla V100 Nvlink (32 GB) GPUs, 2 Intel Xeon Silver 4112 (2.6 GHz) CPUs. The second one is composed of 32 nodes,

each featuring 4 Nvidia GeForce GTX Titan X Maxwell (12 GB) GPUs, 2 Intel XEON E5-2620V3 4112 (2.4 GHz) CPUs. To300

summarize the computational resources in use, Table 2 presents the main characteristics of the GPUs used in this study.

3.4 Measuring computational performance on a GPU

Omlin (2017); Räss et al. (2019a, b); Alkhimenkov et al. (2021) demonstrated that a pertinent metric to quantify the perfor-

mance of memory-bounded algorithms is the effective memory throughput, i.e., MTPeff in GB·s−1. It quantifies the efficiency

of data transfers between the global memory (i.e., the on-chip memory of the GPU) and the arithmetic logical units (ALUs) of305

12

Table 1. List of the graphical processing units (GPUs) used throughout this study. We also report the peak memory throughput, i.e., MTPpeak,

measured thanks to the routine bandwidthTest.cu provided by Nvidia alongside with the CUDA toolkit. When compared with the

effective memory throughput MTPeff, one can estimate the possible gain of an additional optimization of the algorithm. This is particularly

useful when estimating the level of optimization of a GPU-based implementation.

GPU Architecture SM count On-chip memory [GB] MTPpeak [GB·s−1]

A100 Ampere 108 40 1127.1

RTX 3090 Ampere 82 24 774.1

RTX 2080 ti Turing 68 11 513.1

GTX 1650 Turing 14 4 168.7

V100 Volta 80 16 732.6

Table 2. List of the graphical processing units (GPUs) used for multi-GPU simulations.

GPU Architecture On-chip memory [GB]

8×V100 Volta 8×32

128×GTX Titan X Maxwell 128×12

the GPU. To determine the effective memory throughput, one must estimates (or quantifies) the overall set of memory opera-

tions (read-and-write or read only), i.e., nIO, which are needed to resolve a given problem. Consequently, we carefully estimate

the minimum number of memory operations while considering a GIMPM-based implementation. This results in the following

effective memory throughput:

MTPeff =
niter ×nIO ×np
10243 × tGPU

[GB · s−1], (38)310

where np is the arithmetic precision (i.e., single-precision floating-point format FP32 or double-precision floating-point format

FP64) and tGPU is the wall-clock time in seconds to complete the niter iterations to solve for the numerical problem. For

three-dimensional problems, we estimate the minimal number of memory operations for an explicit GIMP implementation as

nIO = 2nmp(43+22nn)+ 26nno+2nel, (39)

where nmp is the number of material points, nn is the number of associated nodes for an element (i.e., nn = 16 in 2D and315

nn = 64 in 3D), nno is the number of nodes, and nel is the number of elements. Additionally, we also report the count of

calculation cycles per second of the GPU, i.e., it·s−1 as well as the wall-clock time. These two metrics give an intuitive sense

of the time-to-solution, which is convenient for potential application purposes.

4 Results

In this section, we present two numerical models using the solver ep2-3De v1.0, namely,320

13

1. Model 1, the granular collapse, which serves as

(a) a validation benchmark against the results of the widely-accepted experiment of Bui et al. (2008) under a three-

dimensional configuration

(b) a demonstration of the influence of the mesh resolution on plastic strain localization under a plane strain configu-

ration325

2. Model 2, the three-dimensional earth slump (Varnes, 1958, 1978), which serves as

(a) an evaluation of the relative performances of a single and multi GPU- and CPU-based implementations of the

solver ep2-3De v1.0 considering a variety of recent GPU architectures

(b) a showcase of a potential application of the solver ep2-3De v1.0 for an elastoplastic problem considering different

isotropic peak cohesion fields (homogeneous and heterogeneous)330

4.1 Model 1

4.1.1 Settings for Models 1a & 1b

We investigate the granular collapse of an aluminium-bar assemblage (Bui et al., 2008) under three-dimensional or plane

strain configurations. The geometry of the problem is shown in Fig. 5, and its variables are summarized in Table 3 for both

three-dimensional and plane strain configurations. Note that for Model 1a, we use the same number of elements along the335

x−direction nel,x = 80 as in Huang et al. (2015). As a direct comparison for Model 1b under a plane strain configuration,

Huang et al. (2015) used nel = 15360, ∆x=∆z = 2.5 mm and nmp = 25600.

lx = 200 mm

ly = lx/10 mm

l z
=
lx
/2

m
m

nel,x

nel,y = nel,y/10

n
el
,z
=
n
el
,x
/2

Figure 5. Initial configuration for the granular collapse numerical model. The blue surrounding frame depicts the computational domain,

i.e., the background Eulerian mesh, and the red volume is the granular material, which is discretized by 8 material points. The total number

of background elements nel depends on the number of elements in the x− direction nel,x used to discretize the granular material.

We consider a noncohesive granular material of density ρ= 2650 kg·m−3, with a bulk modulusK = 0.7 MPa and a Poisson’s

ratio ν = 0.3, as in Huang et al. (2015). The cohesion is c= 0 Pa, the internal friction angle is ϕ= 19.8◦ with a dilatancy angle

ψ = 0 according to Bui et al. (2008). However, the density and stiffness properties have negligible effects on the granular flow340

14

dynamics, as reported by Nguyen et al. (2020). We introduce local damping D (see Wang et al. 2016b) to resolve numerical

results that are compatible with the experimental results of Bui et al. (2008). We find that D = 0.025 results in the most

compatible dynamics. The reasons for the introduction of local damping can be found in Appendix C. Fully fixed boundary

conditions (i.e., no slip) are enforced at the bottom and rollers on the sidewalls. The total simulation time is 1.0 s, considering

a the time step multiplier α= 0.5.345

Table 3. Parameters used in Models 1 a & b for the granular collapse. nel,i is the number of elements to discretize the granular material along

the i-th direction, nel and nno are the total number of elements and nodes of the background mesh, npe is the number of material points per

element and nmp is the total number of material points. Note that the mesh resolution is ∆x=∆y =∆z = 2.5 mm.

Experiment nel,x nel,y nel,z nel nno npe nmp ∆x [mm]

1a 80 20 40 342144 365625 8 512000 2.5

1b 640 - 240 833300 836190 4 819200 0.3

4.1.2 Model 1a: the three-dimensional granular collapse

To validate the numerical implementation under a GPU architecture, we first compare it against the well-known granular

collapse experiments initially performed by Bui et al. (2008). Here, we present and compare numerical results without focusing

on the performance of the GPU-based implementation. All the simulations are performed on a consumer electronics RTX 3090

GPU with double-arithmetic precision (i.e., np = 8 bytes).350

Figure 6. Final geometry of the granular collapse for three-dimensional configuration of our GPU-based explicit GIMPM implementation

ep3De v1.0. The green region (i.e., the intact region) is defined by the L2-norm of the material point displacement up = ||up||2 ≤ 0.5 mm,

whereas the red region (i.e., the deformed region) is defined by up = ||up||2 > 0.5 mm. The experiment of Bui et al. (2008) is indicated by

the blue dashed line (i.e., the free surface) and the blue dotted line (i.e., the failure surface).

The results from the numerical simulation under a three-dimensional configuration are shown in Fig. 6. A direct and visual

comparison demonstrates excellent agreement between the numerical solver and the experiments of Bui et al. (2008). We

15

observe a slightly lower run-out distance, but the overall geometry of both the failure surface and the free surface is very close

to the experimental data. We also report an angle of repose of ≈ 13◦. This value is also consistent with the value reported by

Bui et al. (2008), i.e., 14◦. The good agreement between the numerical results and the experimental work of Bui et al. (2008)355

demonstrates that the solver ep2-3De v1.0 is suitable to simulate large deformation elastoplastic problems such as granular

collapses.

Figure 7. Equivalent plastic strain ϵpeqv for the final configuration of the granular collapse. The principal feature of a granular collapse can be

observed, i.e., a backward propagation of plastic deformation along a principal failure surface.

The equivalent accumulated plastic strain ϵpeqv is shown in Fig. 7. We observe a coherent deformation of the granular material

with a large shear zone that propagates backward from the base of the material to the top of the granular material. The mobilized

granular material flows along a principal failure surface. However, the overall deformation pattern is rather coarse, i.e., fine360

structures or local shear bands are not yet observed, even though slight deformation heterogeneities can be observed. This

coarse behaviour of shear banding is also consistent with previous studies (see Huang et al. 2015; Chalk et al. 2020; Zhang

et al. 2021). This is mainly due to the background mesh resolution used in the numerical simulation. We further investigate

shear banding using a higher background mesh resolution under a plane strain configuration in Model 1b.

4.1.3 Model 1b: the plane strain granular collapse365

We investigate granular collapse under a plane strain configuration, as this allows an increase in the number of elements,

resulting in an even finer background mesh (see Table 3). For Model 1a, the numerical solution is in agreement with the

experimental work of Bui et al. (2008) regarding either the free surface or the failure surface (see Fig. 8). This demonstrates

that both the three-dimensional and plane strain configurations are in agreement with each other. However, we observe a lower

run-out for the granular collapse under a plane strain configuration.370

An interesting feature of granular collapse is the equivalent accumulated plastic strain (see Figs. 9 and 10 a) and b)). The

GPU-based implementation allows to increase both the background mesh resolution and the total number of material points.

This results in finer plastic strain localizations, as demonstrated in Fig. 10 a) by the various shear bands and their complex

16

Figure 8. Final geometry of the granular collapse for the plane-strain configuration for our GPU-based explicit GIMPM implementation

ep2De v1.0. The numerical solution and the experimental results are in good agreement. Some differences are more pronounced when

compared with the numerical results obtained under a three-dimensional configuration.

interactions during collapse. Such detailed shear bands are almost impossible to obtain at lower resolutions, which demonstrates

the importance of a GPU-based implementation to overcome the hardware limitation of a CPU-based implementation, i.e.,375

mainly longer wall-clock times.

Furthermore, Figs. 10 a) and b) demonstrate the influence of the mesh resolution over shear banding: the finer the background

mesh, the thiner the shear bands. This is significant since it shows that the dynamics of shallower granular avalanches appears

more complex for higher resolutions.

Figure 9. Equivalent plastic strain ϵpeqv for the final configuration of the granular collapse. The dashed red rectangle denotes the location of

the zoomed-in region in Fig. 10 (a). One can observe more complex plastic strain localizations compared to the numerical results obtained

in Fig. 7 for a three-dimensional configuration with a coarser background mesh resolution.

17

Figure 10. (a) ϵpeqv for the zoomed-in area in Fig. 9. A shallow granular flow clearly appears, as suggested by the higher values of ϵpeqv.

This supports evidence of shallower granular avalanches during collapses. Deeper structures, which result in lower accumulated plastic

strains, probably highlight slower deformation modes along well-defined and persistent shear bands. (b) ϵpeqv for a coarser background mesh

resolution, which demonstrates the influence of the mesh resolution over shear bands.

4.2 Model 2380

4.2.1 Settings for Models 2a & 2b

Here, we select a cohesive elastoplastic isotropic material (i.e., a homogeneous or heterogeneous peak cohesion field) with no

dilatancy behaviour. It is modelled with a pressure-sensitive Drucker-Prager model with linear strain-softening behaviour. It is

well known that the numerical solutions (as in FEM) are mesh-dependent when considering the strain-softening behaviour of

the material. We did not implement techniques to address this issue, but the use of nonlocal plasticity (Galavi and Schweiger,385

2010; Burghardt et al., 2012) or viscoplastic formulations (Duretz et al., 2019) are possible ways to address this specific task.

lx = 64 m

l z
=
1
2

m

nel,x = 80

l y
=
n
×

l x
m

n el
,y
=
n
×

n el
,x

θ = π/4

0.15× lz

n
el
,z
=
2
0

Figure 11. Geometry for the earth slump. The number of elements in the y-direction nel,y and the width of the problem ly are variable. This

allows us to increase (or decrease) the number of both elements and material points without decreasing the mesh resolution. The parameter

n controls the dimension of the domain and the number of elements along the y−direction. The wall-clock time depends only on the total

number of elements, nodes and material points and is not influenced by the mesh resolution.

We have chosen an arbitrary geometry (see Fig. 11 and Table 5), which represents an idealized three-dimensional setting, to

observe elastoplastic slumps (i.e., earth slumps according to the original classification proposed by Varnes 1958, 1978), which

are now classified as rotational slides in the recent update of the Varnes classification proposed by Hungr et al. (2014). The

geometrical setting differs from the one typically used in the literature, as in Zhang et al. (2021). However, it promotes the390

18

compression of the toe, which is an expected feature we want to reproduce. The size of the physical domain lz × lx× ly is, at

most, 12 m × 64 m × 1024 m for Model 2a, whereas it is 12 m × 64 m × 16 m for Model 2b.

We assume this setting features the principal first-order characteristics of a typical rotational earth slump (Varnes, 1958, 1978),

i.e., a complex zone of scarps (minor and major) delimiting a crown-like structure, followed by a transition (or depletion) zone

in which the material flows homogeneously along internal shear zones due to severe plastic strain localizations and, finally, a395

compression (or accumulation) zone resulting in complex thrusting at the toe of the slump. Because of the nature of the bound-

ary condition at the bottom of the material (i.e., free-slip), an additional horizontal sliding component is introduced within

the rotational part of the displacement. This results in stronger deformations, which we want to highlight. However, the bot-

tom boundary condition influences the shear band propagation and the overall behaviour by introducing a stronger horizontal

component in the motion.400

Table 4. Material properties shared by both Models 2a & 2b.

Parameter Symbol Value Unit

Density ρ 2700 kg·m−3

Poisson’s ratio ν 0.3 -

Elastic modulus E 1 MPa

Softening modulus H 50 kPa

Friction angles ϕ / ϕweak 20 / 7.5 ◦

We select material properties (i.e., bulk and shear moduli K and G, friction angle ϕ and peak and residual cohesions cpeak

and cres) that result in severe deformation processes and strain localizations. The material properties are presented in Table

4. They are close to the values commonly used in the literature (Wang et al., 2016b, a; Bandara et al., 2016; Zhang et al.,

2021). To increase deformations even more, we also introduce a weak layer of thickness 0.3× lz m at the base of the material

with a lower friction angle ϕweak. A time step multiplier α= 0.5 is selected, i.e., ∆tmin = 1.56 · 10−2 s is obtained over the405

whole simulation according to the CFL condition for both Models 2a & 2b. As in Zhang et al. (2021), elastic loading dynamic

relaxation is applied for a period of t= 8 s (i.e., Models 2a & 2b), and the elastoplastic behaviour is activated for an additional

7 s, resulting in a total simulation time t= 15 s (i.e., Model 2b only).

Table 5. Geometrical and material properties for Models 2a & 2b. The correlation length vector is λ= (λx,λy,λz) = (2.5,2.5,2.5) m for

both Gaussian and exponential isotropic covariance functions. The grid spacing is always constant in Models 2a & 2b, i.e., ∆z =∆y =

∆x= 0.8 m

Model nel,y [-] nmp [-] ∆x [m] c̄peak [kPa] σ [kPa]

2a ∈ [1;1280] ≤ 3.2 · 106 0.8 20 0

2b 20 ≈ 105 0.8 20 0 / 5

19

Gaussian random fields (see Appendix B) are used to initialize the peak cohesion field cpeak, which is parametrized by an

average cohesion c̄peak and its standard deviation σ (see Table 5) along with the residual cohesion cres = cpeak/4. This allows410

us to account for heterogeneities within the material, which lead to complex and heterogeneous displacement fields. We first

perform preliminary simulations with a constant cohesion field and notice a homogenous solution of the displacement field

along the y−direction. Using Gaussian fields allows us to mitigate this homogeneity.

Free-slip boundary conditions are applied on the sides and the bottom of the computational domain; only the normal compo-

nent to the boundary is constrained, while the two others are free. Finally, and as suggested in Wang et al. (2016b) for landslide415

applications, we introduce local damping, i.e., D = 0.1.

4.2.2 Model 2a: single GPU performances

Here, we investigate the computational performances of the solver ep2-3De v1.0 under a three-dimensional configuration on a

variety of GPUs with recent architectures: Ampere, Turing and Volta. Furthermore, we restrict our performance analysis only

for the elastic loading phase (i.e., 8 s of simulation) because it is more complex to determine the exact number of material420

points that are yielding during each computational cycle (see Fig. 4) and to infer the exact effective memory throughput.

All the numerical simulations are performed on the computational resources and GPU hardware presented in Table 2 under

double-arithmetic precision (i.e., np = 8 bytes in Eq. 38). As a reference baseline, we use the performance obtained for a

CPU-based single-threaded implementation of ep2-3De v1.0 on an i9-10900K CPU (e.g., latest Intel CPU chip). However, this

is not representative of a highly optimized multithreaded implementation under a CPU architecture.425

Figure 12. a) Effective memory throughput MTPeff of the solver ep2-3De v1.0 for double-arithmetic precision. One can see the on-chip

memory limit, as both the RTX 2080 ti and V100 cannot resolve the same number of material points as the RTX 3090. b) GPU on-chip

memory load increases with the number of material points nmp, which demonstrates, as expected, one of the GPU’s hardware limits.

We report the effective memory throughput MTPeff of the solver ep2-3De v1.0 on various GPUs and CPUs (see Fig. 12). An

increase in the effective memory throughput is observed as the number of material points increases. All GPUs reach a maximum

effective throughput, but the Tesla V100 scores a maximum effective throughput of ≈ 650 GB·s−1. This corresponds to 88 %

of its peak throughput (for the GPU’s hardware limit, see Table 2). We report a similar observation for the RTX 2080 ti,

MTPeff ≈ 320 GB·s−1 corresponding to 62 % of its hardware limit. RTX 3090 and GTX 1650 reach MTPeff ≈ 405 GB·s−1430

20

and MTPeff ≈ 75 GB·s−1, respectively, which correspond to 52 % and 44 % of their respective hardware limits. Finally, we

report a memory throughput of at least MTPeff ≈ 5 GB·s−1 for the i9-10900K CPU (10 % of its hardware limit).

The overall results suggest, as in Räss et al. (2019b), that most recent GPUs, such as the data-centre Tesla V100 (Volta), offer

significant performances compared to entry-level consumer electronics GPUs, such as the GTX 1650. In terms of absolute

performance, the more recent the GPU is, the higher its performance. A demonstration is given by the absolute effective435

throughput between the RTX 2080 ti and the RTX 3090: The latter achieves an additional 20 % throughput compared to the

former. We highly suspect the hardware itself to be the main reason for this. We further investigate the performances of the

most recent data-centre GPU, i.e., the A100 (Ampere architecture), with its predecessor the V100 (Tesla architecture). The

A100 reaches ≈ 1100 GB·s−1, which yields a performance gain of 1.6× with respect to the Tesla V100. When compared to

the maximum effective memory throughput in Table 2, this correspond to 97 % of the hardware limit.440

Figure 13. a) Wall-clock time reported for various computing architectures (GPUs and CPU). The differences in the maximal number of

material points nmp are due to the on-chip memory limit. A significant difference in terms of wall-clock time is observed between the CPU

and GPUs, even for the low-entry consumer electronic GTX 1650, i.e., a performance gain of ≈ 10×. b) Performance gains of GPUs relative

to the CPU, i.e., 1× as a baseline. We add the CPU and the GTX 1650 wall-clock time for an easier comparison.

Finally, we report the wall-clock time for various computing architectures (see Fig. 13a). As expected by the maximum

effective memory throughput, A100 delivers the fastest solution, regardless of the number of material points nmp. The A100

GPU resolves a geometry of nmp ≈ 3.2 · 106 in less than a minute (29 seconds), whereas the i9-10900K CPU resolves the

same problem in more than an hour (5949 seconds). This corresponds to a 200× performance gain (123× performance gain

for the V100, see Fig. 13b) compared to the CPU-based implementation of ep2-3De v1.0. The RTX 2080 ti and the RTX445

3090 reach a 60× and 77× performance gain, respectively. However, the entry-level GTX 1650 is only ten times faster than

i9-10900 K. As already shown in Fig. 12a, these performance gains are only expected when the different GPUs reach their

maximum effective memory throughput. In terms of runtime, the performance gain (Fig. 13b) is in agreement with the memory

throughputs reported in Fig. 12a.

21

4.2.3 Model 2a: multi-GPU performances450

To avoid frequent material point’s transfers amongst the GPUs, we consider an overlap of 8 elements between neighbouring

meshes, i.e., 9 nodes. This results in a one-dimensional GPU topology, for which both material points and meshes are distributed

along the y−direction of the global computational domain (see Figs. 11 & 14). Arranging GPUs along this direction allows

to overcome the need to transfer material points amongst GPUs, provided that the material point’s displacement is not greater

than the buffer zone, i.e., the element overlap. The evaluation of the multi-GPU implementation is based on the Model 2a, with455

slight modifications, i.e., the number of element along the y-direction is largely increased. The size of the physical domain

lz × lx× ly is, at most, 12 m × 64 m × (64×2048) m.

Figure 14. Domain partition of the material points amongst 8 GPUs. Combined with an overlap of 8 elements along the y-direction, material

points can moderately move while still residing within the same GPU during the whole simulation.

We consider two distributed computing systems for parallel GPU computation, using up to 8 Tesla V100 (Volta architecture)

or 128 Geforce GTX Titan X (Maxwell architecture). All numerical simulations are performed using a single-arithmetic pre-

cision (i.e., np = 4 bytes). This allows to increase the maximum number of material points and mesh dimensions. In addition,460

our GPU implementation relies on the usage of the built-in function atomicAdd(). It does not support the double-precision

floating-point format FP64 for GPUs with compute capabilities lower than 6.0, i.e., the Maxwell architecture amongst others.

Note that, unlike the Tesla V100, the Geforce GTX Titan X only delivers an effective memory throughput of MTPeff ≈ 100

GBs−1. This corresponds to 38 % of its hardware limit. This was already reported by Räss et al. (2019); Alkhimenkov et al.

(2021) and, it could be attributed to its older Maxwell architecture (Gao et al., 2018). This performance drop is even more465

severe, mainly due to the use of built-in functions like atomicAdd().

We first performed parallel simulations with a moderate number of GPUs, up to 8 Tesla V100 NVlink (32 GB). The respec-

tive wall-clock times are reported in Fig. 15. We report a wall-clock time of ≈ 110 s for nmp ≈ 108. If nmp is increased by a

22

factor 2, 4 or 8, the wall-clock time is roughly similar to the baseline, i.e., nGPU = 1. The effective memory throughput MTPeff

is shown in Figure 16 (the total sum of MTPeff across all the GPUs). Based on the memory throughput of 1 GPU, an estimation470

of a perfect weak scaling is possible. For 8 GPUs, an ideal weak scaling corresponds to MTPeff = 4824 GBs−1, whereas we re-

port MTPeff = 4538 GBs−1. This gives a parallel efficiency of ≈ 94% and, an effective speed-up of 7.5×. Similar observations

are made for nGPU = 2 and nGPU = 4.

Figure 15. Wall-clock time for 1, 2, 4 and 8 Tesla V100 GPUs.

Figure 16. Sum across the GPUs involved of the MTPeff . We roughly report a weak scaling between the number of GPUs and the overall

effective memory throughput.

We investigate a parallel GPU computing using up to 128 Geforce GTX Titan X. This allows to address even larger geome-

tries, as showed in Figure 17 where the geometry of nearly nmp ≈ 9.75·108 is resolved in less than 8 minutes. For parallel com-475

puting up to 64 GPUs, the wall-clock time evolution is smooth. For 128 GPUs, the wall-clock time is chaotic for fewer material

points whereas it stabilizes as the number of material points increases. We suspect the absence of computation/communication

overlaps to be the main reason of this erratic behaviour. The communication between many GPUs requires careful synchroniza-

tion between GPUs which can be hidden under computation/communication overlap (Räss et al., 2019; Alkhimenkov et al.,

2021). The total size of the overlap is constant, regardless of the y−dimension. As the number of material points increases, the480

time spent on computation becomes larger compared to the time spent on exchanges between GPUs and the wall-clock time

stabilizes. The effective memory throughput MTPeff is shown in Figure 18. An ideal weak scaling corresponds to the effective

23

memory throughput MTPeff = 12800 GBs−1 for 128 GPUs, whereas we report only MTPeff = 11326 GBs−1. This gives a

parallel efficiency of ≈ 90% and, an effective speed-up of ≈ 113×.

Figure 17. Wall-clock time reported for up to 128 Geforce GTX Titan X GPUs and up to nmp ≈ 9.75 · 108.

Figure 18. MTPeff sum across the GPUs involved.

4.3 Model 2b: homogeneous and heterogeneous slumps485

As a final experiment, we show the results of the ep2-3De v1.0 solver for a slump with homogeneous or heterogeneous cohesion

fields. In this numerical model, we only show the displacement field at the end of the numerical simulation at t= 15 s. The

interested reader is referred to Appendix D for an overview of the temporal evolution of the equivalent plastic strain ϵeqv for

the slump under the three settings of the peak cohesion field. All the numerical simulations are run on a laptop equipped with

GTX 1650; tGPU ≈ 30 s with the settings presented in Table 5. In the following, we present the main results for the three peak490

cohesion fields, and we discuss the main characteristics obtained for typical slumping mechanics.

4.3.1 Homogeneous peak cohesion field

The homogeneous solution gives preliminarily interesting results (see Fig. 19). The first-order characteristics of a slump can

be observed, even though their magnitude is relatively fair compared to the real slump. The most striking feature is the devel-

24

opment of one major shear zone, along which the material flows (i.e., depletion) towards the toe of the slump, resulting in a495

compression zone (i.e., thrusting and folding deformations). The crown-like structure develops linearly along the y−direction

and is highly localized at the surface of the slump (at x≈ 20 m in Fig. 19). However, the material flows homogeneously along

the x−direction (see the vertical profile in Fig. 19), as shown by the displacement field. The lateral variation of the displace-

ment field (along the y−direction) is almost nonexistent, which is mainly due to the spatial homogeneity of the peak cohesion

field.

Figure 19. Displacement field obtained after t= 15 s for a homogeneous peak cohesion field. One can see an overall homogenous dis-

placement field with some of the first-order characteristics of a slump, i.e., a rotational displacement with a compression zone at the toe, a

transition zone delimited by one principal shear zone and a major scarp at the top of the material.

500

4.3.2 Isotropic Gaussian covariance

Considering heterogeneities with a Gaussian covariance function for the cohesion field, the displacement field starts to resolve

a differential behaviour (see Fig. 20). Higher and/or weaker values of the peak cohesion field yield lower and/or greater dis-

placements. This is obvious, especially in the transition zone where this differential is observable. In addition, the compression

zone also starts to resolve spatial variations due to weaker and stronger cohesion values.505

A striking difference is the shear zone itself (see Fig. D2): the shear zone exhibits a more complex spatial pattern, whereas

only one major shear zone is observed in Fig. D2. Retrogressive shear banding appears during the time evolution of the

slump, which suggests the development of a secondary shear zone within the slump. Moreover, the crown-like structure is now

curved and not linear along the y−direction. Its spatial extent is more important and is not as localized as in the homogeneous

case. Nevertheless, a more complex arrangement of major and minor scarps within the crown-like structure has not yet been510

observed. Such a structure is more evident if one observes the accumulated equivalent plastic strain ϵpeqv in Fig. D2 in Appendix

D.

25

Figure 20. Displacement field obtained after t= 15 s for a heterogeneous peak cohesion field with a Gaussian covariance function.

The high magnitude of the displacement field in the areas x ∈ [20;40] m and y ≥ 8 m is due to a weaker zone in the peak

cohesion field (see Fig. D2). This shows a strong influence of the heterogeneous peak cohesion field on the final displacement

field. A lower shear strength of the material yields faster strain-softening behaviour, promoting a faster response of shear515

banding.

4.3.3 Isotropic exponential covariance

Shear banding activities become even more complex when an exponential covariance function is used, relative to Fig. 19 and

even with Fig. 20 to some extent. The spatial distribution of the peak cohesion (see Fig. D3) resolves finer heterogeneities with

a smaller length scale compared to when Gaussian covariance is used. Principal differences are observed at the top and toe520

of the slump, where the crown-like structure turns into a complex zone made of minor and major scarps (see Fig. 21). The

displacement field becomes highly heterogeneous, particularly at the toe and the top of the slump. However, it is also more

homogeneous when compared with Fig. 20, particularly in x ∈ [25;35]. The difference is evident between Figs. 22 & 20 at this

particular location.

The difference between the Gaussian and exponential covariance of the peak cohesion suggests the following. Heterogeneous525

displacement fields could be influenced by larger and/or coarser fluctuations of the shear strength within the material. By

extrapolation, this could imply that the magnitude of the heterogeneity might be related to the fluctuation scales of the peak

cohesion field. Locally rather homogeneous fluctuations of the peak cohesion (i.e., Gaussian covariance) seem to promote

an increasingly heterogeneous displacement field at the surface. The characteristic length scale of spatial fluctuations could

have important implications for highly heterogeneous displacements within landslides. The same assumption could hold for530

understanding the more complex crown-like structure of slumps (see Fig. D3)

26

Figure 21. Heterogeneous cohesion field with an exponential covariance function: time evolution of the equivalent plastic strain ϵpeqv. Similar

to Fig. D2, heterogeneous behaviour is observed. However, the exponential covariance function results in an even more complex pattern of

strain localization, i.e., minor and major scarps develop at the top. The crown-like structure of the slump becomes even more heterogeneous.

27

Figure 22. Displacement field obtained after t= 15 s for a heterogeneous peak cohesion field with an exponential covariance function.

5 Discussion

5.1 GIMPM suitability

We investigated granular collapses in both three-dimensional and plane strain configurations. Our numerical results demon-

strated the suitability of GIMPM to correctly reproduce experimental granular collapses. They also demonstrated that the535

results did not significantly differ between these two spatial configurations and that both approaches give similar numerical

solutions.

5.2 Collapse limitation

For Model 1a, the principal hardware limit is the on-chip memory of the GPU. Even though RTX3090 is supported by 24

GB DDR4, it is physically impossible to achieve the resolution used for plane strain granular collapse. This would require540

more than 24 GB of on-chip memory. Model 1b demonstrated the importance of the background mesh resolution over strain

localization. Using a higher numerical resolution (i.e., finer background mesh) allows full resolution plastic strain localization.

Similarly, future additional development efforts towards MPI implementation could resolve highly detailed three-dimensional

granular collapse simulations in the future. This will definitely benefit future studies on complex strain localization.

The wall-clock time for Model 1b is tGPU = 1470.5 s (25 min), and the number of iterations per second is 85.5 it·s−1 for545

nmp = 819200. As a preliminary example, the same numerical model was performed by Wyser et al. (2020a), who reported

19.98 it·s−1 for nmp = 12800. Proportionally, this corresponds to a performance gain factor of 275 for the GPU-based imple-

mentation (ep2-3De v1.0) over the MATLAB-based implementation (fMPMM-solver v1.1) (Wyser et al., 2020a).

28

5.3 Performance

The performance analysis we carried out in Model 2a demonstrated that even though the algorithm heavily relies on atomic550

operations to accumulate material point quantities on the nodes, the effective memory throughput reaches 88 % at most (for

Tesla V100). We expected a much lower throughput due to the use of these atomic operations, since they are likely known

to undermine the computational performances of an implementation under previous GPU architectures (e.g., Kepler) (Dong

et al., 2015a; Dong and Grabe, 2018; Gao et al., 2018). Our actual understanding (at least for a GPU-based implementation

of GIMPM) is that the latest GPU architecture (Ampere and Turing) is now efficient when dealing with atomic operations555

and that the need to use a complex data layout for scattering is not as important as before. Furthermore, we identify the

memory throughput as the main bottleneck: an additional 12 % performance improvement on the V100 before reaching the

hardware limit of the memory bandwidth. The A100 shows that the solver reaches the hardware limit with an effective memory

throughput which is very close (i.e., 97 %) to the actual maximum memory throughput. Similarly, the true limiting factor of

the single GPU implementation is the hardware limit of the GPU on-chip memory.560

The multi-GPU implementation resolves the on-chip memory limitation problem. Our multi-GPU implementation is partic-

ularly well-suited to resolve highly-detailed three-dimensional shear-banding. We also reported decent wall-clock times (less

than 8 minutes) for simulations with nearly a billion material points. However, investigating high-resolution three-dimensional

granular collapses is not possible under the assumptions made, because of small displacement required along the y−direction.

This is incompatible with three-dimensional granular collapses. Hence, this motivates future deeper investigations toward a565

more versatile multi-GPU implementation. In addition, we report a slight drop of the parallel efficiency, as the number of

GPUs increases. Future works should be directed toward a parallel strategy that hides communication latency, as proposed in

Räss et al. (2019, 2020); Alkhimenkov et al. (2021). This will allow us to achieve an optimal parallel efficiency of 95-98 % of

the weak scaling tests involving up to 128 GPUs.

5.4 Slumping mechanics570

We show the application of the GIMPM solver ep2-3De v1.0 for slumping mechanics. We have presented various slump results

and demonstrated the significant influence of heterogeneities within the peak cohesion field over the displacement field or the

equivalent plastic strain. However, we have arbitrarily selected values that resulted in severe deformations of the material, which

we wanted to highlight to demonstrate the potential of the solver. Further efforts should now be oriented towards numerical

models that are closer to real and well-documented cases, such as in Tran and Sołowski (2019); Ying et al. (2021). Despite575

the simplifications we made, we have reported three-dimensional simulations that resolve all the first-order characteristics of

slumps, including complex major and minor scarps, different shear zones of various activities and a complex arrangement

within the compression zone. The use of three-dimensional GIMPM implementation under a GPU architecture will highly

benefit future studies in the field, allowing faster and detailed numerical simulations of heterogeneous and complex strain

localization problems.580

29

5.5 Local damping coefficient

Due to our explicit formulation, a damping relaxation term should be introduced to mitigate dynamic wave propagations (Wang

et al., 2016c). In this work, we selected damping values that were either commonly accepted (e.g., D = 0.1 for slumps) or that

were better resolving experimental results (e.g., D = 0.025 for granular collapses). Future investigations should specifically

address the influence of damping terms on the material’s behavior.585

5.6 Code portability

Our numerical models showed the efficient computing capabilities of modern GPUs under the latest Nvidia GPU architectures.

An important concern is the code portability. CUDA C is only applicable for Nvidia’s GPUs and is not yet compatible with

other corporation’s GPUs, such as AMD (ATI Technologies). As such, an extension of the ep2-3De v1.0 solver towards an

OpenCL-based implementation would ensure better code portability in the future.590

6 Conclusions

We developed ep2-3De v1.0, an explicit GPU-based implementation of the generalized interpolation material point method that

exploits the capabilities of the most recent GPU architectures (Ampere, Turing and Volta). We achieved fast execution times

on a single GPU with a scattering approach that relies on extensive usage of atomic operations. We report, at most, an effective

memory bandwidth of 88 % relative to the maximal hardware capabilities of the GPUs. We achieve, at most, a performance gain595

of 200× on a single GPU compared to a single-threaded CPU-based implementation of the solver. On entry-level customer

electronics GPUs, we report a performance gain of ≈ 10×. Our multi-GPU implementation permits to resolve geometries

with almost a billion material points and demonstrates fast execution times. We achieve a parallel efficiency of ≈ 94% on

weak scaling tests for 8 GPUs and ≈ 90% for 128 GPUs. We also report that the memory bandwidth is the main limiting

performance factor. We validated our solver against the well-known experimental results of the granular collapse problem600

in a three-dimensional configuration. We show applications of the solver to model slumping mechanics in three-dimensional

configurations considering different material heterogeneities.

Code availability. The solver ep2-3De v1.0 developed in this study is licenced under the GPLv3 free software licence. The solver ep2-3De

v1.02 archive (v1.0) is available from a permanent DOI repository (Zenodo) at: https://doi.org/10.5281/zenodo.5600373 (Wyser et al., 2021).

2The latest version of the code is available for download from GitHub at: https://github.com/ewyser/ep2-3De (last access: October 26, 2021).

30

https://doi.org/10.5281/zenodo.5600373
https://github.com/ewyser/ep2-3De

Appendix A: GIMPM basis functions and derivatives605

One of the most important problems of any sMPM formulation is the cell-crossing instability (or error, see Steffen et al. 2008;

Wilson et al. 2021). As material points move through the mesh, they cross element boundaries. The discontinuous gradient due

to theC0 continuity of the basis functions results in spurious oscillations of the stress field and internal forces (González Acosta

et al., 2020, 2019; Bardenhagen and Kober, 2004) when material points cross element boundaries.

To solve for this instability, Bardenhagen and Kober (2004) introduced the generalized interpolation material point method610

(GIMPM). Whereas the material point is treated as a point in sMPM, Bardenhagen and Kober (2004) assigned a spatial extent

or a domain to the material point. Alternative basis functions are constructed, i.e., to consider the material point domain, as

follows:

ϕnp ≡ ϕn(xp) =
1

vp

∫
Ωp⊂Ω

χp(x)Nn(x)dΩ, (A1)

where vp is the material point volume, Ωp denotes the material point domain, χp(x) is the particle characteristic function,615

Nn(x) is the basis function (or shape function) for the mapping between the material point p and its associated nodes n, and

x= xp−xn are the local coordinates between node n and material point p.

The particle characteristic function must satisfy the partition of unity property, i.e.,
∑
pχp(x) = 1 (Bardenhagen and Kober,

2004). The simplest particle characteristic function is given by the hat function, i.e.,

χp(x) =

1, if x⊂ Ωp,

0 otherwise.
(A2)620

The GIMPM basis functions and derivatives are constructed analytically (Coombs et al., 2020; Charlton et al., 2017) in

one dimension from a convolution of the standard finite element basis functions and the material point characteristic function

(Steffen et al., 2008), i.e.,

ϕn(xp) =



1− (4x2 + l2p)/(4hlp) if |x|< lp/2

1− |x|/h if lp/2≤ |x|< h− lp/2

(h+ lp/2− |x|)2 /(2hlp) if h− lp/2≤ |x|< h+ lp/2

0 otherwise ,

(A3)

where lp is the length of the material point domain, h is the mesh resolution, and x= xp−xn, where xp is the coordinate of625

a material point and xn is the coordinate of its associated node n. The two-dimensional basis function of a node n with its

material point p is constructed as

ϕnp ≡ ϕn(xp) = ϕn(xp)ϕn(yp), (A4)

for which the gradient is defined as

∇ϕnp ≡∇ϕn(xp) = (∂xϕn(xp)ϕn(yp),ϕn(xp)∂yϕn(yp)). (A5)630

31

Appendix B: Gaussian random cohesion fields

In Earth Sciences, random fields (Christakos, 1992) are numerically generated predictions of a geophysical property (i.e.,

rock- or soil-related properties) with probabilistic spatial variability. These predictions are based on i) an assumed probability

density function, i.e., characterized by a mean value µ with a standard deviation σ, and ii) an assumed spatial correlation

function, characterised by fluctuation scales in a vector format, i.e., λ= (λx,λy,λz). In regard to numerical modelling, the635

principal requirement is that both small and large scales are simultaneously resolved over the computational mesh to ensure

physically meaningful solutions.

Recently, Räss et al. (2019b) presented an efficient implementation based on a spectral representation of Gaussian random

fields for geophysical applications using either Gaussian or exponential covariance functions. The numerical codes, named

GRFS, were made available by Räss et al. (2019b) in both native MATLAB and CUDA C languages 3. However, a sufficiently640

large number of harmonics should be used to obtain convergent Gaussian random fields, as stated in Räss et al. (2019b).

Similar to the random material point method (RMPM, see Wang et al. 2016a; Liu et al. 2019; Remmerswaal et al. 2021)

initially proposed by Fenton and Vanmarcke (1990) to generate RFs for a finite element mesh (RFEM), we combined this

approach with the codes proposed by Räss et al. (2019b) to generate an isotropic peak cohesion field to demonstrate its

influence on the mechanical behaviour.645

Appendix C: Volumetric locking and damping corrections

In Huang et al. (2015), no volumetric locking mitigation strategy was introduced, even though tough low-order elements were

used. This should promote volumetric locking and an overall stiffer response of the granular material. In addition, Huang et al.

(2015) used the standard (or original) material point method (instead of the generalized interpolation material point method),

which is well known to introduce spurious oscillations of internal forces (González Acosta et al., 2020).650

When implementing the proposed volumetric locking mitigation strategy, we observed a) larger deformations of the granular

material with a stronger vertical compaction (i.e., stronger vertical displacement) and b) slightly longer run-out distances when

compared to the experimental data. The softer mechanical response of the granular material had to be compensated somehow,

which can be achieved by the introduction of a small local damping parameter.

We reproduced the numerical setting used in Huang et al. (2015) with the same mesh resolution, i.e., ∆x=∆y = 2.5 mm,655

and a similar number of material points nmp = 28800 with an initial number of material points per initially filled element

npe = 9. The material parameters used for this preliminary investigation are presented in §4.1.1.

Figure C1 a) & b) shows the major differences between either a locking-free or a locking-prone solution and the experimental

results. As mentioned before, a slightly longer run-out distance is obtained for the locking-free solution. As a result, the

numerical prediction given by the locking-free solution of the free surface is underestimated. However, the most noticeable660

difference is the failure surface. Whereas the failure surface predicted by the locking-prone solution fits with the experiment of

3The routines GRFS are available at https://bitbucket.org/lraess/grfs/src/master/

32

https://bitbucket.org/lraess/grfs/src/master/

Bui et al. (2008), it diverges for a locking-free solution. In particular, the onset of the failure surface at the top of the material

is underestimated by the locking-free solution compared to the experimental results. This is due to the softer response of

the granular material when volumetric locking is mitigated, which promotes greater vertical compaction and stronger run-out

distance at the same time.

Figure C1. a) Numerical solution without any volumetric locking strategy and b) numerical solution with the proposed volumetric locking

strategy. For both cases, no damping is introduced.

665

Even though the introduction of local damping better resolves the experimental results, one can argue that the locking-free

solution without the introduction of local damping still agrees with the experiment of Bui et al. (2008). The overall response of

the numerical granular collapse is still very close to the actual physical experiment, and the differences between the numerical

and experimental results can still be considered acceptable.

We further present additional three-dimensional results for Model 2b for a homogeneous cohesion field (see Figs. C2 and670

C3). Three-dimensional simulations of cohesive material better illustrate the influence of volumetric locking. Figure C3 demon-

strates that a significantly smoother pressure field is resolved with the proposed method.

In addition, the pressure field is certainly smoothed, but it does not significantly differs from the original pressure field (in

locations where locking is minimum). Volumetric locking is particularly highlighted within shear bands due to isochoric plastic

flows, resulting in significant stress oscillations.675

33

Figure C2. Non-smooth pressure field due to volumetric locking. The typical check-board pattern of volumetric locking can be observed

where the material has yielded, i.e., the shear band.

Figure C3. Smoother pressure field when volumetric locking is mitigated with the proposed solution.

Appendix D: Heterogeneities for the peak cohesion field

34

Figure D1. Homogeneous cohesion field: time evolution of the equivalent plastic strain ϵpeqv. Its evolution is rather homogeneous, and the

overall plastic behaviour is free of any heterogeneities. Some of the first-order characteristics are observed, i.e., a principal shear zone and a

compression zone at the toe of the slump.

35

Figure D2. Heterogeneous cohesion field with a Gaussian covariance function: time evolution of the equivalent plastic strain ϵpeqv. Unlike

Fig. D1, heterogeneous behaviour is observed, i.e., the appearance of a second shear zone highlights a more complex deformation pattern.

Moreover, a crown-like structure starts to develop at the top of the material, where an initial weak zone is located.

36

Figure D3. Heterogeneous cohesion field with an exponential covariance function: time evolution of the equivalent plastic strain ϵpeqv. Similar

to Fig. D2, heterogeneous behaviour is observed. However, the exponential covariance function results in an even more complex pattern of

strain localization, i.e., minor and major scarps develop at the top. The crown-like structure of the slump becomes even more heterogeneous.

37

Author contributions. EW and YA wrote the original manuscript and developed the first version the ep2-3De v1.0 solver. MJ and YP

supervised the early stages of the study and provided guidance. All authors have reviewed and approved the final version of the paper.

Competing interests. The authors declare that they have no conflicts of interest.

Acknowledgements. Yury Alkhimenkov gratefully acknowledges support from the Swiss National Science Foundation (grant no. 172691).680

Yury Alkhimenkov and Yury Y. Podladchikov gratefully acknowledge support from the Russian Ministry of Science and Higher Education

(project No. 075-15-2019-1890).

38

References

Alejano, L. R. and Bobet, A.: Drucker–Prager Criterion, Rock Mechanics and Rock Engineering, 45, 995–999,

https://doi.org/10.1007/s00603-012-0278-2, https://doi.org/10.1007/s00603-012-0278-2, 2012.685

Alkhimenkov, Y., Räss, L., Khakimova, L., Quintal, B., and Podladchikov, Y.: Resolving wave propagation in anisotropic poroelastic media

using graphical processing units (GPUs), Journal of Geophysical Research: Solid Earth, p. e2020JB021175, 2021.

Anderson, C. E.: An overview of the theory of hydrocodes, International Journal of Impact Engineering, 5, 33–59,

https://doi.org/https://doi.org/10.1016/0734-743X(87)90029-7, https://www.sciencedirect.com/science/article/pii/0734743X87900297,

hypervelocity Impact Proceedings of the 1986 Symposium, 1987.690

Bandara, S. and Soga, K.: Coupling of soil deformation and pore fluid flow using material point method, Computers and

Geotechnics, 63, 199–214, https://doi.org/https://doi.org/10.1016/j.compgeo.2014.09.009, https://www.sciencedirect.com/science/article/

pii/S0266352X14001839, 2015.

Bandara, S., Ferrari, A., and Laloui, L.: Modelling landslides in unsaturated slopes subjected to rainfall infiltration us-

ing material point method, International Journal for Numerical and Analytical Methods in Geomechanics, 40, 1358–1380,695

https://doi.org/https://doi.org/10.1002/nag.2499, https://onlinelibrary.wiley.com/doi/abs/10.1002/nag.2499, 2016.

Bardenhagen, S. G. and Kober, E. M.: The Generalized Interpolation Material Point Method, Computer Modeling in Engineering & Sciences,

5, 477–496, https://doi.org/10.3970/cmes.2004.005.477, http://www.techscience.com/CMES/v5n6/33378, 2004.

Baumgarten, A. S. and Kamrin, K.: A general fluid–sediment mixture model and constitutive theory validated in many flow regimes, Journal

of Fluid Mechanics, 861, 721–764, https://doi.org/10.1017/jfm.2018.914, 2019.700

Bisht, V., Salgado, R., and Prezzi, M.: Simulating penetration problems in incompressible materials using the material point method, Com-

puters and Geotechnics, 133, 103 593, https://doi.org/https://doi.org/10.1016/j.compgeo.2020.103593, https://www.sciencedirect.com/

science/article/pii/S0266352X20301567, 2021.

Bui, H. H., Fukagawa, R., Sako, K., and Ohno, S.: Lagrangian meshfree particles method (SPH) for large deformation and failure flows of

geomaterial using elastic–plastic soil constitutive model, International Journal for Numerical and Analytical Methods in Geomechanics,705

32, 1537–1570, https://doi.org/https://doi.org/10.1002/nag.688, https://onlinelibrary.wiley.com/doi/abs/10.1002/nag.688, 2008.

Burghardt, J., Brannon, R., and Guilkey, J.: A nonlocal plasticity formulation for the material point method, Computer Methods in Applied

Mechanics and Engineering, 225-228, 55–64, https://doi.org/https://doi.org/10.1016/j.cma.2012.03.007, https://www.sciencedirect.com/

science/article/pii/S0045782512000837, 2012.

Buzzi, O., Pedroso, D. M., and Giacomini, A.: Caveats on the Implementation of the Generalized Material Point Method, Computer Modeling710

in Engineering & Sciences, 31, 85–106, https://doi.org/10.3970/cmes.2008.031.085, http://www.techscience.com/CMES/v31n2/25167,

2008.

Chalk, C. M., Pastor, M., Peakall, J., Borman, D. J., Sleigh, P. A., Murphy, W., and Fuentes, R.: Stress-Particle Smoothed Particle

Hydrodynamics: An application to the failure and post-failure behaviour of slopes, Computer Methods in Applied Mechanics and

Engineering, 366, 113 034, https://doi.org/https://doi.org/10.1016/j.cma.2020.113034, https://www.sciencedirect.com/science/article/pii/715

S0045782520302188, 2020.

Charlton, T. J., Coombs, W. M., and Augarde, C. E.: iGIMP: An implicit generalised interpolation material point method for large deforma-

tions, Computers & Structures, 190, 108–125, https://doi.org/https://doi.org/10.1016/j.compstruc.2017.05.004, https://www.sciencedirect.

com/science/article/pii/S0045794917303395, 2017.

39

https://doi.org/10.1007/s00603-012-0278-2
https://doi.org/10.1007/s00603-012-0278-2
https://doi.org/https://doi.org/10.1016/0734-743X(87)90029-7
https://www.sciencedirect.com/science/article/pii/0734743X87900297
https://doi.org/https://doi.org/10.1016/j.compgeo.2014.09.009
https://www.sciencedirect.com/science/article/pii/S0266352X14001839
https://www.sciencedirect.com/science/article/pii/S0266352X14001839
https://www.sciencedirect.com/science/article/pii/S0266352X14001839
https://doi.org/https://doi.org/10.1002/nag.2499
https://onlinelibrary.wiley.com/doi/abs/10.1002/nag.2499
https://doi.org/10.3970/cmes.2004.005.477
http://www.techscience.com/CMES/v5n6/33378
https://doi.org/10.1017/jfm.2018.914
https://doi.org/https://doi.org/10.1016/j.compgeo.2020.103593
https://www.sciencedirect.com/science/article/pii/S0266352X20301567
https://www.sciencedirect.com/science/article/pii/S0266352X20301567
https://www.sciencedirect.com/science/article/pii/S0266352X20301567
https://doi.org/https://doi.org/10.1002/nag.688
https://onlinelibrary.wiley.com/doi/abs/10.1002/nag.688
https://doi.org/https://doi.org/10.1016/j.cma.2012.03.007
https://www.sciencedirect.com/science/article/pii/S0045782512000837
https://www.sciencedirect.com/science/article/pii/S0045782512000837
https://www.sciencedirect.com/science/article/pii/S0045782512000837
https://doi.org/10.3970/cmes.2008.031.085
http://www.techscience.com/CMES/v31n2/25167
https://doi.org/https://doi.org/10.1016/j.cma.2020.113034
https://www.sciencedirect.com/science/article/pii/S0045782520302188
https://www.sciencedirect.com/science/article/pii/S0045782520302188
https://www.sciencedirect.com/science/article/pii/S0045782520302188
https://doi.org/https://doi.org/10.1016/j.compstruc.2017.05.004
https://www.sciencedirect.com/science/article/pii/S0045794917303395
https://www.sciencedirect.com/science/article/pii/S0045794917303395
https://www.sciencedirect.com/science/article/pii/S0045794917303395

Christakos, G.: 2 - The Spatial Random Field Model, in: Random Field Models in Earth Sciences, edited by Christakos, G., pp. 21–106,720

Academic Press, Boston, https://doi.org/https://doi.org/10.1016/B978-0-12-174230-0.50007-X, https://www.sciencedirect.com/science/

article/pii/B978012174230050007X, 1992.

Coombs, W. M., Charlton, T. J., Cortis, M., and Augarde, C. E.: Overcoming volumetric locking in material point methods, Com-

puter Methods in Applied Mechanics and Engineering, 333, 1–21, https://doi.org/https://doi.org/10.1016/j.cma.2018.01.010, https://www.

sciencedirect.com/science/article/pii/S0045782518300124, 2018.725

Coombs, W. M., Augarde, C. E., Brennan, A. J., Brown, M. J., Charlton, T. J., Knappett, J. A., Motlagh, Y. G., and Wang, L.: On Lagrangian

mechanics and the implicit material point method for large deformation elasto-plasticity, Computer Methods in Applied Mechanics and

Engineering, 358, 112 622, https://doi.org/https://doi.org/10.1016/j.cma.2019.112622, https://www.sciencedirect.com/science/article/pii/

S0045782519305043, 2020.

Cuomo, S., Ghasemi, P., Martinelli, M., and Calvello, M.: Simulation of Liquefaction and Retrogressive Slope Failure in Loose Coarse-730

Grained Material, International Journal of Geomechanics, 19, 04019 116, https://doi.org/10.1061/(ASCE)GM.1943-5622.0001500, https:

//ascelibrary.org/doi/abs/10.1061/%28ASCE%29GM.1943-5622.0001500, 2019.

De Borst, R., Crisfield, M. A., Remmers, J. J. C., and Verhoosel, C. V.: Nonlinear finite element analysis of solids and structures, John Wiley

& Sons, 2012.

de Souza Neto, E. A., Peric, D., and Owen, D. R. J.: Computational methods for plasticity: theory and applications, John Wiley & Sons,735

2011.

Dong, Y. and Grabe, J.: Large scale parallelisation of the material point method with multiple GPUs, Computers and Geotech-

nics, 101, 149–158, https://doi.org/https://doi.org/10.1016/j.compgeo.2018.04.001, https://www.sciencedirect.com/science/article/pii/

S0266352X18300892, 2018.

Dong, Y., Wang, D., and Randolph, M. F.: A GPU parallel computing strategy for the material point method, Computers and740

Geotechnics, 66, 31–38, https://doi.org/https://doi.org/10.1016/j.compgeo.2015.01.009, https://www.sciencedirect.com/science/article/

pii/S0266352X15000117, 2015a.

Dong, Y., Wang, D., and Randolph, M. F.: A GPU parallel computing strategy for the material point method, Computers and

Geotechnics, 66, 31–38, https://doi.org/https://doi.org/10.1016/j.compgeo.2015.01.009, https://www.sciencedirect.com/science/article/

pii/S0266352X15000117, 2015b.745

Dunatunga, S. and Kamrin, K.: Continuum modelling and simulation of granular flows through their many phases, Journal of Fluid Mechan-

ics, 779, 483–513, https://doi.org/10.1017/jfm.2015.383, 2015.

Duretz, T., de Borst, R., and Le Pourhiet, L.: Finite Thickness of Shear Bands in Frictional Viscoplasticity and Implications for Litho-

sphere Dynamics, Geochemistry, Geophysics, Geosystems, 20, 5598–5616, https://doi.org/https://doi.org/10.1029/2019GC008531, https:

//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008531, 2019.750

Fenton, G. A. and Vanmarcke, E. H.: Simulation of Random Fields via Local Average Subdivision, Journal of Engineering Mechan-

ics, 116, 1733–1749, https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1733), https://ascelibrary.org/doi/abs/10.1061/%28ASCE%

290733-9399%281990%29116%3A8%281733%29, 1990.

Galavi, V. and Schweiger, H. F.: Nonlocal Multilaminate Model for Strain Softening Analysis, International Journal of Ge-

omechanics, 10, 30–44, https://doi.org/10.1061/(ASCE)1532-3641(2010)10:1(30), https://ascelibrary.org/doi/abs/10.1061/%28ASCE%755

291532-3641%282010%2910%3A1%2830%29, 2010.

40

https://doi.org/https://doi.org/10.1016/B978-0-12-174230-0.50007-X
https://www.sciencedirect.com/science/article/pii/B978012174230050007X
https://www.sciencedirect.com/science/article/pii/B978012174230050007X
https://www.sciencedirect.com/science/article/pii/B978012174230050007X
https://doi.org/https://doi.org/10.1016/j.cma.2018.01.010
https://www.sciencedirect.com/science/article/pii/S0045782518300124
https://www.sciencedirect.com/science/article/pii/S0045782518300124
https://www.sciencedirect.com/science/article/pii/S0045782518300124
https://doi.org/https://doi.org/10.1016/j.cma.2019.112622
https://www.sciencedirect.com/science/article/pii/S0045782519305043
https://www.sciencedirect.com/science/article/pii/S0045782519305043
https://www.sciencedirect.com/science/article/pii/S0045782519305043
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001500
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GM.1943-5622.0001500
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GM.1943-5622.0001500
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GM.1943-5622.0001500
https://doi.org/https://doi.org/10.1016/j.compgeo.2018.04.001
https://www.sciencedirect.com/science/article/pii/S0266352X18300892
https://www.sciencedirect.com/science/article/pii/S0266352X18300892
https://www.sciencedirect.com/science/article/pii/S0266352X18300892
https://doi.org/https://doi.org/10.1016/j.compgeo.2015.01.009
https://www.sciencedirect.com/science/article/pii/S0266352X15000117
https://www.sciencedirect.com/science/article/pii/S0266352X15000117
https://www.sciencedirect.com/science/article/pii/S0266352X15000117
https://doi.org/https://doi.org/10.1016/j.compgeo.2015.01.009
https://www.sciencedirect.com/science/article/pii/S0266352X15000117
https://www.sciencedirect.com/science/article/pii/S0266352X15000117
https://www.sciencedirect.com/science/article/pii/S0266352X15000117
https://doi.org/10.1017/jfm.2015.383
https://doi.org/https://doi.org/10.1029/2019GC008531
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008531
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008531
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008531
https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1733)
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281990%29116%3A8%281733%29
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281990%29116%3A8%281733%29
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281990%29116%3A8%281733%29
https://doi.org/10.1061/(ASCE)1532-3641(2010)10:1(30)
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%291532-3641%282010%2910%3A1%2830%29
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%291532-3641%282010%2910%3A1%2830%29
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%291532-3641%282010%2910%3A1%2830%29

Gao, M., Wang, X., Wu, K., Pradhana, A., Sifakis, E., Yuksel, C., and Jiang, C.: GPU Optimization of Material Point Methods, ACM Trans.

Graph., 37, https://doi.org/10.1145/3272127.3275044, https://doi.org/10.1145/3272127.3275044, 2018.

Gaume, J., Gast, T., Teran, J., van Herwijnen, A., and Jiang, C.: Dynamic anticrack propagation in snow, Nature Communications, 9, 3047,

https://doi.org/10.1038/s41467-018-05181-w, https://doi.org/10.1038/s41467-018-05181-w, 2018.760

González Acosta, J. L., Zheng, X., Vardon, P. J., Hicks, M. A., and Pisano, F.: On stress oscillation in MPM simulations involving one or

two phases, in: Proceedings of the Second International Conference on the Material Point Method for Modelling Soil-Water-Structure

Interaction, 2019.

González Acosta, J. L., Vardon, P. J., Remmerswaal, G., and Hicks, M. A.: An investigation of stress inaccuracies and proposed solution in

the material point method, Computational Mechanics, 65, 555–581, https://doi.org/10.1007/s00466-019-01783-3, https://doi.org/10.1007/765

s00466-019-01783-3, 2020.

González Acosta, J. L., Vardon, P. J., and Hicks, M. A.: Development of an implicit contact technique for the material point method, Com-

puters and Geotechnics, 130, 103 859, https://doi.org/https://doi.org/10.1016/j.compgeo.2020.103859, https://www.sciencedirect.com/

science/article/pii/S0266352X20304225, 2021.

Hu, Y., Li, T.-M., Anderson, L., Ragan-Kelley, J., and Durand, F.: Taichi: A Language for High-Performance Computation on Spatially Sparse770

Data Structures, ACM Trans. Graph., 38, https://doi.org/10.1145/3355089.3356506, https://doi.org/10.1145/3355089.3356506, 2019.

Huang, P., Li, S.-l., Guo, H., and Hao, Z.-m.: Large deformation failure analysis of the soil slope based on the material point method, Com-

putational Geosciences, 19, 951–963, https://doi.org/10.1007/s10596-015-9512-9, https://doi.org/10.1007/s10596-015-9512-9, 2015.

Hughes, T. J. R.: Generalization of selective integration procedures to anisotropic and nonlinear media, International Journal for Numerical

Methods in Engineering, 15, 1413–1418, https://doi.org/https://doi.org/10.1002/nme.1620150914, https://onlinelibrary.wiley.com/doi/abs/775

10.1002/nme.1620150914, 1980.

Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of landslide types, an update, Landslides, 11, 167–194,

https://doi.org/10.1007/s10346-013-0436-y, https://doi.org/10.1007/s10346-013-0436-y, 2014.

Jassim, I., Stolle, D., and Vermeer, P.: Two-phase dynamic analysis by material point method, International Journal for Numerical and

Analytical Methods in Geomechanics, 37, 2502–2522, https://doi.org/https://doi.org/10.1002/nag.2146, https://onlinelibrary.wiley.com/780

doi/abs/10.1002/nag.2146, 2013.

Jiang, H. and Xie, Y.: A note on the Mohr–Coulomb and Drucker–Prager strength criteria, Mechanics Research Communica-

tions, 38, 309–314, https://doi.org/https://doi.org/10.1016/j.mechrescom.2011.04.001, https://www.sciencedirect.com/science/article/pii/

S009364131100067X, 2011.

Krabbenhoft, K., Karim, M. R., Lyamin, A. V., and Sloan, S. W.: Associated computational plasticity schemes for nonassociated frictional785

materials, International Journal for Numerical Methods in Engineering, 90, 1089–1117, https://doi.org/https://doi.org/10.1002/nme.3358,

https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.3358, 2012.

Lei, X., He, S., and Wu, L.: Stabilized generalized interpolation material point method for coupled hydro-mechanical problems, Computa-

tional Particle Mechanics, https://doi.org/10.1007/s40571-020-00365-y, https://doi.org/10.1007/s40571-020-00365-y, 2020.

Liu, X., Wang, Y., and Li, D.-Q.: Investigation of slope failure mode evolution during large deformation in spatially790

variable soils by random limit equilibrium and material point methods, Computers and Geotechnics, 111, 301–312,

https://doi.org/https://doi.org/10.1016/j.compgeo.2019.03.022, https://www.sciencedirect.com/science/article/pii/S0266352X19300977,

2019.

41

https://doi.org/10.1145/3272127.3275044
https://doi.org/10.1145/3272127.3275044
https://doi.org/10.1038/s41467-018-05181-w
https://doi.org/10.1038/s41467-018-05181-w
https://doi.org/10.1007/s00466-019-01783-3
https://doi.org/10.1007/s00466-019-01783-3
https://doi.org/10.1007/s00466-019-01783-3
https://doi.org/10.1007/s00466-019-01783-3
https://doi.org/https://doi.org/10.1016/j.compgeo.2020.103859
https://www.sciencedirect.com/science/article/pii/S0266352X20304225
https://www.sciencedirect.com/science/article/pii/S0266352X20304225
https://www.sciencedirect.com/science/article/pii/S0266352X20304225
https://doi.org/10.1145/3355089.3356506
https://doi.org/10.1145/3355089.3356506
https://doi.org/10.1007/s10596-015-9512-9
https://doi.org/10.1007/s10596-015-9512-9
https://doi.org/https://doi.org/10.1002/nme.1620150914
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620150914
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620150914
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620150914
https://doi.org/10.1007/s10346-013-0436-y
https://doi.org/10.1007/s10346-013-0436-y
https://doi.org/https://doi.org/10.1002/nag.2146
https://onlinelibrary.wiley.com/doi/abs/10.1002/nag.2146
https://onlinelibrary.wiley.com/doi/abs/10.1002/nag.2146
https://onlinelibrary.wiley.com/doi/abs/10.1002/nag.2146
https://doi.org/https://doi.org/10.1016/j.mechrescom.2011.04.001
https://www.sciencedirect.com/science/article/pii/S009364131100067X
https://www.sciencedirect.com/science/article/pii/S009364131100067X
https://www.sciencedirect.com/science/article/pii/S009364131100067X
https://doi.org/https://doi.org/10.1002/nme.3358
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.3358
https://doi.org/10.1007/s40571-020-00365-y
https://doi.org/10.1007/s40571-020-00365-y
https://doi.org/https://doi.org/10.1016/j.compgeo.2019.03.022
https://www.sciencedirect.com/science/article/pii/S0266352X19300977

Liu, X., Wang, Y., and Li, D.-Q.: Numerical simulation of the 1995 rainfall-induced Fei Tsui Road landslide in Hong Kong: new insights

from hydro-mechanically coupled material point method, Landslides, 17, 2755–2775, https://doi.org/10.1007/s10346-020-01442-2, https:795

//doi.org/10.1007/s10346-020-01442-2, 2020.

Mast, C. M., Mackenzie-Helnwein, P., Arduino, P., Miller, G. R., and Shin, W.: Mitigating kinematic locking in the material point method,

Journal of Computational Physics, 231, 5351–5373, https://doi.org/https://doi.org/10.1016/j.jcp.2012.04.032, https://www.sciencedirect.

com/science/article/pii/S0021999112002148, 2012.

Nairn, J. A.: Material Point Method Calculations with Explicit Cracks, Computer Modeling in Engineering & Sciences, 4, 649–664,800

https://doi.org/10.3970/cmes.2003.004.649, http://www.techscience.com/CMES/v4n6/33290, 2003.

Nguyen, N. H. T., Bui, H. H., and Nguyen, G. D.: Effects of material properties on the mobility of granular flow, Granular Matter, 22, 59,

https://doi.org/10.1007/s10035-020-01024-y, https://doi.org/10.1007/s10035-020-01024-y, 2020.

Nvidia: CUDA Programming Guide Version 1.0, http://developer.download.nvidia.com/compute/cuda/1.0/NVIDIA_CUDA_Programming_

Guide_1.0.pdf, 2007.805

Omlin, S.: Development of massively parallel near peak performance solvers for three-dimensional geodynamic modelling, Ph.D. thesis,

2017.

Omlin, S., Räss, L., and Podladchikov, Y. Y.: Simulation of three-dimensional viscoelastic deformation coupled to porous fluid flow,

Tectonophysics, 746, 695–701, https://doi.org/https://doi.org/10.1016/j.tecto.2017.08.012, https://www.sciencedirect.com/science/article/

pii/S0040195117303311, understanding geological processes through modelling - A Memorial Volume honouring Evgenii Burov, 2018.810

Räss, L., Simon, N. S. C., and Podladchikov, Y. Y.: Spontaneous formation of fluid escape pipes from subsurface reservoirs, Scientific

Reports, 8, 11 116, https://doi.org/10.1038/s41598-018-29485-5, https://doi.org/10.1038/s41598-018-29485-5, 2018.

Räss, L., Duretz, T., and Podladchikov, Y.: Resolving hydromechanical coupling in two and three dimensions: spontaneous channelling of

porous fluids owing to decompaction weakening, Geophysical Journal International, 218, 1591–1616, 2019.

Räss, L., Licul, A., Herman, F., Podladchikov, Y. Y., and Suckale, J.: Modelling thermomechanical ice deformation using an implicit pseudo-815

transient method (FastICE v1. 0) based on graphical processing units (GPUs), Geoscientific Model Development, 13, 955–976, 2020.

Remmerswaal, G., Vardon, P. J., and Hicks, M. A.: Evaluating residual dyke resistance using the Random Material Point Method, Computers

and Geotechnics, 133, 104 034, https://doi.org/https://doi.org/10.1016/j.compgeo.2021.104034, https://www.sciencedirect.com/science/

article/pii/S0266352X21000379, 2021.

Räss, L., Duretz, T., and Podladchikov, Y. Y.: Resolving hydromechanical coupling in two and three dimensions: spontaneous channelling of820

porous fluids owing to decompaction weakening, Geophysical Journal International, 218, 1591–1616, https://doi.org/10.1093/gji/ggz239,

https://doi.org/10.1093/gji/ggz239, 2019a.

Räss, L., Kolyukhin, D., and Minakov, A.: Efficient parallel random field generator for large 3-D geophysical problems, Computers &

Geosciences, 131, 158–169, https://doi.org/https://doi.org/10.1016/j.cageo.2019.06.007, https://www.sciencedirect.com/science/article/

pii/S0098300418309944, 2019b.825

Steffen, M., Kirby, R. M., and Berzins, M.: Analysis and reduction of quadrature errors in the material point method (MPM), International

Journal for Numerical Methods in Engineering, 76, 922–948, https://doi.org/https://doi.org/10.1002/nme.2360, https://onlinelibrary.wiley.

com/doi/abs/10.1002/nme.2360, 2008.

Sulsky, D., Chen, Z., and Schreyer, H. L.: A particle method for history-dependent materials, Computer Methods in Applied Mechanics

and Engineering, 118, 179–196, https://doi.org/https://doi.org/10.1016/0045-7825(94)90112-0, https://www.sciencedirect.com/science/830

article/pii/0045782594901120, 1994.

42

https://doi.org/10.1007/s10346-020-01442-2
https://doi.org/10.1007/s10346-020-01442-2
https://doi.org/10.1007/s10346-020-01442-2
https://doi.org/10.1007/s10346-020-01442-2
https://doi.org/https://doi.org/10.1016/j.jcp.2012.04.032
https://www.sciencedirect.com/science/article/pii/S0021999112002148
https://www.sciencedirect.com/science/article/pii/S0021999112002148
https://www.sciencedirect.com/science/article/pii/S0021999112002148
https://doi.org/10.3970/cmes.2003.004.649
http://www.techscience.com/CMES/v4n6/33290
https://doi.org/10.1007/s10035-020-01024-y
https://doi.org/10.1007/s10035-020-01024-y
http://developer.download.nvidia.com/compute/cuda/1.0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://developer.download.nvidia.com/compute/cuda/1.0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
http://developer.download.nvidia.com/compute/cuda/1.0/NVIDIA_CUDA_Programming_Guide_1.0.pdf
https://doi.org/https://doi.org/10.1016/j.tecto.2017.08.012
https://www.sciencedirect.com/science/article/pii/S0040195117303311
https://www.sciencedirect.com/science/article/pii/S0040195117303311
https://www.sciencedirect.com/science/article/pii/S0040195117303311
https://doi.org/10.1038/s41598-018-29485-5
https://doi.org/10.1038/s41598-018-29485-5
https://doi.org/https://doi.org/10.1016/j.compgeo.2021.104034
https://www.sciencedirect.com/science/article/pii/S0266352X21000379
https://www.sciencedirect.com/science/article/pii/S0266352X21000379
https://www.sciencedirect.com/science/article/pii/S0266352X21000379
https://doi.org/10.1093/gji/ggz239
https://doi.org/10.1093/gji/ggz239
https://doi.org/https://doi.org/10.1016/j.cageo.2019.06.007
https://www.sciencedirect.com/science/article/pii/S0098300418309944
https://www.sciencedirect.com/science/article/pii/S0098300418309944
https://www.sciencedirect.com/science/article/pii/S0098300418309944
https://doi.org/https://doi.org/10.1002/nme.2360
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2360
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2360
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2360
https://doi.org/https://doi.org/10.1016/0045-7825(94)90112-0
https://www.sciencedirect.com/science/article/pii/0045782594901120
https://www.sciencedirect.com/science/article/pii/0045782594901120
https://www.sciencedirect.com/science/article/pii/0045782594901120

Tran, Q.-A. and Sołowski, W.: Generalized Interpolation Material Point Method modelling of large deformation problems includ-

ing strain-rate effects – Application to penetration and progressive failure problems, Computers and Geotechnics, 106, 249–265,

https://doi.org/https://doi.org/10.1016/j.compgeo.2018.10.020, https://www.sciencedirect.com/science/article/pii/S0266352X18302738,

2019.835

Varnes, D. J.: Landslide types and processes, Landslides and engineering practice, 24, 20–47, 1958.

Varnes, D. J.: Slope movement types and processes, in: Special Report 176: Landslides: Analysis and Control, edited by Schuster, R. L. and

Krizek, R. J., pp. 11–33, Transportation and Road Research Board, National Academy of Science, Washington D.C., 1978.

Wang, B., Hicks, M. A., and Vardon, P. J.: Slope failure analysis using the random material point method, Géotechnique Letters, 6, 113–118,

https://doi.org/10.1680/jgele.16.00019, https://doi.org/10.1680/jgele.16.00019, 2016a.840

Wang, B., Vardon, P. J., and Hicks, M. A.: Investigation of retrogressive and progressive slope failure mechanisms using the mate-

rial point method, Computers and Geotechnics, 78, 88–98, https://doi.org/https://doi.org/10.1016/j.compgeo.2016.04.016, https://www.

sciencedirect.com/science/article/pii/S0266352X16300891, 2016b.

Wang, B., Vardon, P. J., Hicks, M. A., and Chen, Z.: Development of an implicit material point method for geotechnical applications,

Computers and Geotechnics, 71, 159–167, https://doi.org/https://doi.org/10.1016/j.compgeo.2015.08.008, https://www.sciencedirect.com/845

science/article/pii/S0266352X15001858, 2016c.

Wang, L., Coombs, W. M., Augarde, C. E., Cortis, M., Charlton, T. J., Brown, M. J., Knappett, J., Brennan, A., Davidson, C., Richards, D.,

and Blake, A.: On the use of domain-based material point methods for problems involving large distortion, Computer Methods in Applied

Mechanics and Engineering, 355, 1003–1025, https://doi.org/https://doi.org/10.1016/j.cma.2019.07.011, https://www.sciencedirect.com/

science/article/pii/S0045782519304074, 2019.850

Wang, X., Qiu, Y., Slattery, S. R., Fang, Y., Li, M., Zhu, S.-C., Zhu, Y., Tang, M., Manocha, D., and Jiang, C.: A Massively Parallel and

Scalable Multi-GPU Material Point Method, ACM Trans. Graph., 39, https://doi.org/10.1145/3386569.3392442, https://doi.org/10.1145/

3386569.3392442, 2020.

Wilson, P., Wüchner, R., and Fernando, D.: Distillation of the material point method cell crossing error leading to a novel quadrature-based C0

remedy, International Journal for Numerical Methods in Engineering, 122, 1513–1537, https://doi.org/https://doi.org/10.1002/nme.6588,855

https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6588, 2021.

Wyser, E., Alkhimenkov, Y., Jaboyedoff, M., and Podladchikov, Y. Y.: A fast and efficient MATLAB-based MPM solver: fMPMM-solver

v1.1, Geoscientific Model Development, 13, 6265–6284, https://doi.org/10.5194/gmd-13-6265-2020, https://gmd.copernicus.org/articles/

13/6265/2020/, 2020a.

Wyser, E., Alkhimenkov, Y., Jaboyedoff, M., and Podladchikov, Y. Y.: fMPMM-solver, https://doi.org/10.5281/zenodo.4068585, https://doi.860

org/10.5281/zenodo.4068585, 2020b.

Wyser, E., Alkhimenkov, Y., Jaboyedoff, M., and Podladchikov, Y. Y.: ep2-3De v1.0, https://doi.org/10.5281/zenodo.5600373, https://doi.

org/10.5281/zenodo.5600373, 2021.

Ying, C., Zhang, K., Wang, Z.-N., Siddiqua, S., Makeen, G. M. H., and Wang, L.: Analysis of the run-out processes of the Xinlu Village land-

slide using the generalized interpolation material point method, Landslides, 18, 1519–1529, https://doi.org/10.1007/s10346-020-01581-6,865

https://doi.org/10.1007/s10346-020-01581-6, 2021.

Zhang, F., Zhang, X., Sze, K. Y., Lian, Y., and Liu, Y.: Incompressible material point method for free surface flow, Journal of Computa-

tional Physics, 330, 92–110, https://doi.org/https://doi.org/10.1016/j.jcp.2016.10.064, https://www.sciencedirect.com/science/article/pii/

S0021999116305721, 2017.

43

https://doi.org/https://doi.org/10.1016/j.compgeo.2018.10.020
https://www.sciencedirect.com/science/article/pii/S0266352X18302738
https://doi.org/10.1680/jgele.16.00019
https://doi.org/10.1680/jgele.16.00019
https://doi.org/https://doi.org/10.1016/j.compgeo.2016.04.016
https://www.sciencedirect.com/science/article/pii/S0266352X16300891
https://www.sciencedirect.com/science/article/pii/S0266352X16300891
https://www.sciencedirect.com/science/article/pii/S0266352X16300891
https://doi.org/https://doi.org/10.1016/j.compgeo.2015.08.008
https://www.sciencedirect.com/science/article/pii/S0266352X15001858
https://www.sciencedirect.com/science/article/pii/S0266352X15001858
https://www.sciencedirect.com/science/article/pii/S0266352X15001858
https://doi.org/https://doi.org/10.1016/j.cma.2019.07.011
https://www.sciencedirect.com/science/article/pii/S0045782519304074
https://www.sciencedirect.com/science/article/pii/S0045782519304074
https://www.sciencedirect.com/science/article/pii/S0045782519304074
https://doi.org/10.1145/3386569.3392442
https://doi.org/10.1145/3386569.3392442
https://doi.org/10.1145/3386569.3392442
https://doi.org/10.1145/3386569.3392442
https://doi.org/https://doi.org/10.1002/nme.6588
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6588
https://doi.org/10.5194/gmd-13-6265-2020
https://gmd.copernicus.org/articles/13/6265/2020/
https://gmd.copernicus.org/articles/13/6265/2020/
https://gmd.copernicus.org/articles/13/6265/2020/
https://doi.org/10.5281/zenodo.4068585
https://doi.org/10.5281/zenodo.4068585
https://doi.org/10.5281/zenodo.4068585
https://doi.org/10.5281/zenodo.4068585
https://doi.org/10.5281/zenodo.5600373
https://doi.org/10.5281/zenodo.5600373
https://doi.org/10.5281/zenodo.5600373
https://doi.org/10.5281/zenodo.5600373
https://doi.org/10.1007/s10346-020-01581-6
https://doi.org/10.1007/s10346-020-01581-6
https://doi.org/https://doi.org/10.1016/j.jcp.2016.10.064
https://www.sciencedirect.com/science/article/pii/S0021999116305721
https://www.sciencedirect.com/science/article/pii/S0021999116305721
https://www.sciencedirect.com/science/article/pii/S0021999116305721

Zhang, W., hao Zhong, Z., Peng, C., hai Yuan, W., and Wu, W.: GPU-accelerated smoothed particle finite element method for large deforma-870

tion analysis in geomechanics, Computers and Geotechnics, 129, 103 856, https://doi.org/https://doi.org/10.1016/j.compgeo.2020.103856,

https://www.sciencedirect.com/science/article/pii/S0266352X20304195, 2021.

Zuo, Z., Gong, S., and Xie, G.: Numerical simulation of granular mixing in a rotary drum using a generalized interpolation material point

method, Asia-Pacific Journal of Chemical Engineering, 15, e2426, https://doi.org/https://doi.org/10.1002/apj.2426, https://onlinelibrary.

wiley.com/doi/abs/10.1002/apj.2426, e2426 APJ-19-0407.R1, 2020.875

44

https://doi.org/https://doi.org/10.1016/j.compgeo.2020.103856
https://www.sciencedirect.com/science/article/pii/S0266352X20304195
https://doi.org/https://doi.org/10.1002/apj.2426
https://onlinelibrary.wiley.com/doi/abs/10.1002/apj.2426
https://onlinelibrary.wiley.com/doi/abs/10.1002/apj.2426
https://onlinelibrary.wiley.com/doi/abs/10.1002/apj.2426

