
Author responses to the Interactive discussion on ”An explicit

GPU-based material point method solver for elastoplastic problems

(ep2-3De v1.0)” in the Geoscientific Model Development (GMD)

Journal

Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, Yury Podladchikov

August 28, 2021

The referee comments appear in black, whereas our responses appear in blue and the changes made in
the revised manuscript appear in red.

1 Reviewer #1

The authors implemented an explicit GPU-based solver within the material point method framework and
tested using two- and three-dimensional problems. Results seem to agree with the expected values validating
this MPM - GPU architecture. I would like to suggest the publication of this work. Nonetheless, some minor
points should be addressed first.

We would like to acknowledge the reviewer for the time spent on the revision of our work.

Comment # 1 The authors mentioned that this GPU architecture speeds up information transfer between
nodes and material points. As stated, this is one of the most computationally expensive operations in MPM.
Nevertheless, finding material points new location after the mesh returns to its original position is another
process that is computationally expensive (in many cases more expensive than information transfer between
nodes and material points). I would like to know if the GPU architecture proposed also improves this step.
If yes, the author could indicate it in the paper. If not, it would be interesting if the author discusses the
possibility of combining some techniques (e.g. Pruijn N.S. 2016) together with GPU’s to improve MPM
computations.

Pruijn N.S. 2016. The improvement of the material point method by increasing efficiency and accuracy.
TU Delft Master Thesis.

Reply # 1 The reviewer points out the computationally expansive operation of finding material point’s
new locations after the mesh has been reset at the end of a time step. We used a regular background mesh
(as opposed to triangular mesh or non-constant element size), therefore, it is straightforward to find material
point’s new location. To find in which element e a material point p is located, we use the following equation

e = (floor((zp − zmin)/∆z) + nel,z × floor((xp − xmin)/∆x)) + nel,x × nel,zfloor((yp − ymin)/∆y), (1)

where nel,x and nel,z are the number of elements along x− and z−directions, xmin, ymin and zmin are the
minimum x, y, and z coordinate of nodes. However, this is far less trivial when irregular background mesh is
used and such equation can not be used any more. Such concern is out of the scope of our contribution since
our implementation only consider a regular background mesh. This concern also explain why we selected a
regular background mesh.

We looked at the reference suggested by the reviewer. From an overlook of the mentioned research work,
we think a GPU-based implementation of the brute force method is possible, but this would require deeper

1



investigations. This could be the subject of future studies. We strongly think such method could benefit
from the computational power of GPUs.

Change # 1 -

Comment # 2 The authors include a damping value D in the simulations. This value is not well validated.
It seems that several simulations were needed to find it, giving the idea that D is not related to the material
properties and geometry and is more of an artificial way to reach the desirable results. The authors should
elaborate better on the reasons for using this specific damping value.

Reply # 2 It is true that the damping value is not well validated. From a broader perspective and to
our knowledge, no studies thoroughly investigated and quantified the influence of damping. However, the
common range between 0.05 and 0.15 is usually selected by researchers (e.g., Wang et al., 2016b; Wang et al.,
2016a) for dynamic analysis. This range was found sufficient to damp out dynamic oscillations while not
producing spurious plastic yielding or an over-damped system, as mentioned in Wang et al., 2016a. As such,
we decided to use a damping value of D = 0.1, since reasonable propagations were obtained and no spurious
plastic yielding were noticed.

As raised by the reviewer, we will elaborate better on the reasons of this specific value and will clarify
accordingly the lack of validation of this damping value within the main body of the text. We will also
mention the need for future studies addressing this concern.

Change # 2 -

Comment # 3 In line 32, the authors mentioned that ”The background mesh can be reset”. As far as I
know, the background mesh must be reset. I recommend changing the verb ”can” for a better one.

Reply # 3 We agree with the reviewer. We will change the verb in the revised manuscript.

Change # 3 L.32 The background mesh is reset

Comment # 4 I am wondering if the variables in line 75 are the same as in equations 2 and 3 since
different punctuations were used (e.g. Å� and û).

Reply # 4 We recognize here that this is a mathematical typo. Variables in line 75 are the same as in
Eqs. 2 and 3. We will fix this in the revised version of the manuscript.

Change # 4 (L.75) û→ ū and τ̂ → τ̄

Comment # 5 Finally, I recommend reading the paper again to correct some typos detected..

Reply # 5 We acknowledge the reviewer’s recommendation and we will read the manuscript again to
correct remaining typos

Change # 5 -

2



Reply # 6 We additionally extended the original single GPU code and implemented a multi-GPU version
using the message passing interface standard. We provide the new section below, which then will be included
(with some simplifications) into the manuscripts during the revision stage.

The Multi-GPU Code Implementation

Introduction

One of the major limitation of ep2-3De v1.0 is the on-chip memory. We demonstrated that an imple-
mentation of the material point framework quickly reaches the hardware limit of GPUs, even on modern
architectures. It is then essential to overcome this limit in order to resolve larger computational domain
with a greater amount of material points.

Here, we address this concern by implementing a distributed memory parallelisation using the message
passing interface (MPI) standard. However, we limit our implementation efforts by considering 1) a one-
dimensional GPU topology, 2) no computation/communication overlaps, and 3) only mesh-related quantities
are shared amongst GPUs, i.e., the material points are not transferred between GPUs during a simulation.
We also selected a non-adaptative time step to avoid the collection of the material point’s velocities located
in different GPUs at the beginning of each calculation cycle.

Available computational resources

The multi-GPU simulations are performed on the supercomputer Octopus running on a CentOS with the
latest CUDA version v11. The multi-GPU simulations are run on the two different systems. The first one is
an Nvidia DGX-1 - like node hosting 8 Nvidia Tesla V100 Nvlink (32 GB) GPUs, 2 Intel Xeon Silver 4112
(2.6 GHz) CPUs. The second one is composed of 32 nodes, each featuring 4 Nvidia GeForce GTX Titan X
Maxwell (12 GB) GPUs, 2 Intel XEON E5-2620V3 4112 (2.4 GHz) CPUs. To summarize the computational
resources in use, Table 1 presents the main characteristics of the GPUs used in this study.

Table 1: List of the graphical processing units (GPUs) used for multi-GPU simulations.

GPU Architecture On-chip memory [GB]
8×V100 Volta 8×32

128×GTX Titan X Maxwell 128×12

Model 2a

To avoid frequent material point’s transfers amongst the GPUs, we consider an overlap of 8 elements between
neighbouring meshes, i.e., 9 nodes. This results in a one-dimensional GPU topology, for which both material
points and meshes are distributed along the y−direction of the global computational domain (see Figs. 1 & 2).
Arranging GPUs along this direction allows to overcome the need to transfer material points amongst GPUs,
provided that the material point’s displacement is not greater than the buffer zone, i.e., the element overlap.
The evaluation of the multi-GPU implementation is based on the Model 2a, with slight modifications, i.e.,
the number of element along the y-direction is largely increased. The size of the physical domain lz × lx× ly
is, at most, 12 m × 64 m × (64×2048) m.

Model 2a: multi-GPU performances

We consider two distributed computing systems for parallel GPU computation, using up to 8 Tesla V100
(Volta architecture) or 128 Geforce GTX Titan X (Maxwell architecture). All numerical simulations are
performed using a single-arithmetic precision (i.e., np = 4 bytes). This allows to increase the maximum
number of material points and mesh dimensions. In addition, our GPU implementation relies on the usage
of the built-in function atomicAdd(). It does not support the double-precision floating-point format FP64
for GPUs with compute capabilities lower than 6.0, i.e., the Maxwell architecture amongst others.

3



lx = 64 m

l z
=
1
2

m

nel,x = 80

l y
=
n
×

l x
m

n el
,y
=
n
×

n el
,x

θ = π/4

0.15× lz

n
el
,z
=
2
0

Figure 1: Geometry for the earth slump. For the multi-GPU implementation, the number of element along
the y−direction can be largely increased, i.e., n = 2048.

Figure 2: Domain partition of the material points amongst 8 GPUs. Combined with an overlap of 8 elements
along the y-direction, material points can moderately move while still residing within the same GPU during
the whole simulation.

Note that, unlike the Tesla V100, the Geforce GTX Titan X only delivers an effective memory throughput
of MTPeff ≈ 100 GBs−1. This corresponds to 38 % of its hardware limit. This was already reported by Räss
et al., 2019; Alkhimenkov et al., 2021 and, it could be attributed to its older Maxwell architecture (Gao
et al., 2018). This performance drop is even more severe, mainly due to the use of built-in functions like
atomicAdd().

Computing system: up to 8 Tesla V100

We first performed parallel simulations with a moderate number of GPUs, i.e., up to 8 Tesla V100 NVlink
(32 GB). The respective wall-clock times are reported in Fig. 3. We report a wall-clock time of ≈ 110 s for
nmp ≈ 108. For the same amount of material points, we report a roughly weak scaling between the number
of GPUs and the wall-clock time. If nmp is increased by a factor 2, 4 or 8, the wall-clock time is roughly
similar to the baseline, i.e., nGPU = 1.

Such weak scaling is more obvious when inspecting the MTPeff measured (see Fig. 4), i.e., the total sum
of MTPeff across all the GPUs. Based on the memory throughput of 1 GPU, an estimation of a perfect
weak scaling is possible. For 8 GPUs, it should correspond to MTPeff = 4824 GBs−1, whereas we report
MTPeff = 4538 GBs−1. This gives a parallel efficiency of ≈ 94% and, an effective speed-up of 7.5×. Similar
observations are made for nGPU = 2 and nGPU = 4.

Computing system: up to 128 Geforce GTX Titan X

We investigate a parallel GPU computing using up to 128 Geforce GTX Titan X. This allows to address
even larger geometries, as showed in Fig 5 where a geometry of nearly nmp ≈ 8 ·108 is resolved in less than 8

4



Figure 3: Wall-clock time for 1, 2, 4 and 8 Tesla V100 GPUs.

Figure 4: Sum across the GPUs involved of the MTPeff . We roughly report a weak scaling between the
number of GPUs and the overall effective memory throughput.

minutes. The first observation is that, for parallel computing up to 64 GPUs, the wall-clock time evolution
is smooth. For 128 GPUs, the wall-clock time is chaotic for fewer material points whereas it stabilizes as
the number of material points increases. We suspect the absence of computation/communication overlaps
to be the main reason of this erratic behaviour. The communication between many GPUs requires careful
synchronization between GPUs which can be hidden under computation/communication overlap. The total
size of the overlap is constant, regardless of the y−dimension. As the number of material points increases,
the time spent on computation becomes larger compared to the time spent on exchanges between GPUs and
the wall-clock time stabilizes.

Figure 5: Wall-clock time reported for up to 128 Geforce GTX Titan X GPUs and up to nmp ≈ 8 · 108.

Another observation is the effective memory throughput (see Fig. 6). When considering a perfect weak
scaling, one should measure an effective memory throughput MTPeff = 12800 GBs−1 for 128 GPUs whereas
we report only MTPeff = 10953 GBs−1. This gives a parallel efficiency of ≈ 85% and, an effective speed-up
of ≈ 110×. When using less GPUs, the parallel efficiency is higher, i.e., 98 % for 8 GPUs.

5



Figure 6: MTPeff sum across the GPUs involved.

Discussion

Even tough the simplifications made alleviate the on-chip memory limitation, the type of problem, which can
be addressed, is reduced. As an example, investigating high-resolution three-dimensional granular collapses is
not possible under the assumptions made, because of small displacement required along the y−direction. This
is incompatible with three-dimensional granular collapses. Hence, this motivates future deeper investigations
toward a more versatile multi-GPU implementation. In addition, we report a slight drop of the parallel
efficiency, as the number of GPUs increases. Future works should be directed toward a parallel strategy that
hides communication latency, as proposed in Räss et al., 2019; Räss et al., 2020; Alkhimenkov et al., 2021.

However, such multi-GPU implementation is particularly well-suited to resolve highly-detailed three-
dimensional shear-banding. We also reported decent wall-clock times (less than 8 minutes) for simulations
with nearly a billion material points. One could argue that limiting the material point method to small
displacement is a non-sense. Essentially, finite element codes are better suited for small strain analysis.
However, this gives interesting insights on a multi-GPU implementation of the material point framework on
a GPU supercomputer.

References

Alkhimenkov, Y., L. Räss, L. Khakimova, B. Quintal, and Y. Podladchikov (2021). “Resolving wave prop-
agation in anisotropic poroelastic media using graphical processing units (GPUs)”. In: Journal of Geo-
physical Research: Solid Earth n/a.n/a. e2020JB021175 2020JB021175, e2020JB021175. doi: https:

//doi.org/10.1029/2020JB021175.
Gao, M., X. Wang, K. Wu, A. Pradhana, E. Sifakis, C. Yuksel, and C. Jiang (Dec. 2018). “GPU Optimization

of Material Point Methods”. In: ACM Trans. Graph. 37.6. doi: 10.1145/3272127.3275044.
Räss, L, T. Duretz, and Y. Podladchikov (2019). “Resolving hydromechanical coupling in two and three

dimensions: spontaneous channelling of porous fluids owing to decompaction weakening”. In: Geophysical
Journal International 218.3, pp. 1591–1616.

Räss, L., A. Licul, F. Herman, Y. Y. Podladchikov, and J. Suckale (2020). “Modelling thermomechanical ice
deformation using an implicit pseudo-transient method (FastICE v1. 0) based on graphical processing
units (GPUs)”. In: Geoscientific Model Development 13.3, pp. 955–976.

Wang, B., P. J. Vardon, and M. A. Hicks (2016a). “Investigation of retrogressive and progressive slope
failure mechanisms using the material point method”. In: Computers and Geotechnics 78, pp. 88–98.
doi: https://doi.org/10.1016/j.compgeo.2016.04.016.

Wang, B., P. J. Vardon, M. A. Hicks, and Z. Chen (2016b). “Development of an implicit material point
method for geotechnical applications”. In: Computers and Geotechnics 71, pp. 159–167. doi: https:
//doi.org/10.1016/j.compgeo.2015.08.008.

6


