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Anonymous Referee #1 
 
General comments 
 
The overall quality of the preprint is good, and the described developments of the S2P3-R 
model are suitable for publication in this journal. The manuscript describes novel model 
updates and evaluations of the model both globally and regionally. The information and data 
provided will allow others to assess if the model may be appropriate for their use. 
 
We thank the reviewer for taking the time to undertake this review and for their constructive 
comments. We are pleased to see the reviewer supports publication of the manuscript in 
GMD. 
 
Specific comments 
 
No comparison is made of regional biogeochemical performance compared to a long 
reanalysis such as the Copernicus Marine Service 
NORTHWESTSHELF_REANALYSIS_BIO_004_011 product. This seems like a missed 
opportunity given the spatial coverage compared to satellite data. 
 
We thank the reviewer for the suggestion that we take a look at the North West Shelf 
biogeochemical reanalysis available through the Copernicus Marine Service. The suggested 
product is a NEMO-ERSEM reanalysis which assimilates Chlorophyll from the ESA CCI 
Ocean colour product already used in this manuscript. The product that the reviewer 
recommends is state-of-the-art and very exciting, but it is the author’s opinion that ocean 
biogeochemical reanalysis products have not yet reached a level of maturity where we can 
use them as surrogates for observations in the same was as we are beginning to for physical 
atmospheric and ocean variables. This opinion is supported by limited agreement between 
the NEMO-ERSEM reanalysis data and in-situ chlorophyll observations, see figure 6 in 



(Ciavatta et al., 2018). We have therefore stuck to evaluating the North West European Shelf 
biogeochemistry against satellite and in-situ observations. 
 
 
Suggested minor revisions 
 
Comparisons to satellite data state data was limited to “case 2 water, i.e. water ≥ 70m water 
depth (Jackson et al., 2019)”. Whether this is meant to be “case 1 water” or “≤ 70” isn’t clear 
as the reference “Jackson et al 2019” does not seem to be available. I would suggest a 
clarification of satellite data selection criteria. 
 
Thank you for highlighting the mistake in the manuscript. This should have read “case 1 
waters”. 
 
We are sorry that that the reviewer was unable to access the Jackson et al., 2019 reference. 
The link was to a user guide for the satellite product and as such unfortunately did not have a 
DOI. In the revised manuscript we have moved away from this reference to a peer reviewed 
article (Sathyendranath et al., 2019), and clarified the water depth selection criteria as 
follows: 
 
“Comparison is made between the S2P3R v2.0 simulation of chlorophyll and annually 
averaged European Space Agency Climate Change Initiative (ESA CCI) long term satellite 
chlorophyll data (Sathyendranath et al., 2020). The ESA CCI long term satellite chlorophyll 
product is focused on case-1 waters (Sathyendranath et al., 2019). The comparison presented 
here is therefore restricted to water depths ≥ 70m a compromise which allows us to exclude 
the most coastally influenced waters while maintaining moderate spatial coverage.” 
 
The data variability in Figure 9A and 9B (and to a lesser extent Figure 18) is difficult to 
distinguish with a grey background. I would suggest the use of a white background for plots 
with viridis colourmap, such as in Figure 7. These global plots would also benefit from being 
larger, single viridis and blue-white-red colour bars could be positioned either side. 
 
Thank you for this suggestion. The grey background was employed to emphasise the data 
when using a blue-white-red colour palette, but you are absolutely right, it is not good to use 
it where we have employed the viridis colour palette. Experimenting with different colour 
backgrounds and different perceptually uniform sequential colour palettes we have settled on 
a very light grey background and the viridis colour palette. A completely white background 
presented too little contrast with the yellow data points. The same approach has been applied 
to figure 18.  
 
Figure 13 would benefit from enlargement and using a log scale may be more appropriate. 
 
We agree that the use of a log scale makes the comparison more straightforward and have 
changed this. We have also moved the panels close together to allow the figure to be 
enlarged. 
 
Extending this suggestion, we have taken both of these points on board to improve figures 14, 
18 and 19 as well. 
 



Specifically, to improve the readability of figure 14 we have split it across two columns, 
allowing the height of the figure to be increased. We have also narrowed the x-axis range to 
display just the years where both model data and observational data are present. Figure 19 
has been treated in the same way for consistency. Note that we have also modified the 
normalisation so that instead of subtracting the minimum value then dividing by the standard 
deviation, we are subtracting the median then dividing by the standard deviation. This 
approach minimises the impact of extreme points. 
 
Technical corrections 
 
Page 12 Line 21: suggest replacing “other” with “apart from” 
 
This typo has been amended, thank you. 
 
Page 29 line 41: This reference doesn’t appear to be available from the url provided. 
 
We are sorry that the link to the Jackson et al., 2019 reference did not work. As mentioned 
above, this is a user guide for the satellite product and as such unfortunately does not have a 
DOI. We have revised the point we make to allow us to use the published article 
Sathyendranath et al., 2019, copied below. 
 
Sathyendranath, S. et al. (2019) ‘An ocean-colour time series for use in climate studies: The 
experience of the ocean-colour climate change initiative (OC-CCI)’, Sensors (Switzerland). 
doi: 10.3390/s19194285. 
 
  



Response to Anonymous Referee #2 
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Anonymous Referee #2 
 
General comments 
 
The paper presents an upgrade to a previously published modelling system. Addressing 
forcing issues that allow the system to be run over larger areas and longer times. I believe this 
to be a sufficiently large advance in modelling science to merit publication. The methods are 
clear and well presented. The protocols appear to be well documented with the supplied code 
(though I have not tested them). 
 
The document presents an honest accounting for the strengths and weaknesses of the 
modelling system. In places this is a little too sweeping, or lacking the detail that would 
permit the reader to make scientific inferences from the results. E.g. to what extent does the 
exhibited skill over the Patagonian or North West European Shelf imply that later fluxes are 
not important. But that is not the aim of the paper. 
 
The results support the concluding remarks, except that I would more strongly state the 
possible value of this tool in education (perhaps to undergraduates?). I also think that the 
value to policy groups of this “cheap” model is perhaps slightly dangerous if the output are 
not in some way corroborated with existing data from higher-expense simulations. After all 
this paper, at length, highlights the gains in efficiency do come with a loss in skill. 
 
We thank the reviewer for their time spent undertaking the review and providing these 
valuable comments. We are pleased to see that they support publication of this work. 
 
We have broadened the justification text within the revised manuscript to encompass these 
two excellent points. The text that originally read “The accessibility of S2P3-R v2.0 places it 
within reach of an array of coastal managers and policy makers” Has been extended to read 
“The accessibility of S2P3-R v2.0 places it within reach of an array of coastal managers and 
policy makers, allowing it to be run routinely once set up and evaluated for a region under 
expert guidance. The computational efficiency and relative scientific simplicity of the tool 
make it ideally suited to educational applications.” 
 
The mention of use by managers and policy makers in the conclusion text has been caveated 
with the phrase ‘use after careful evaluation’. 
 
Specific comments 
 



p9. Fig 3 [4] caption: line 6: Without parenthetic commas, the “therefore” comes in the 
wrong place. E.g. This might be clearer: 
 
“Where this is positive there is a net heat flux into the ocean. So, assuming the system is 
approximately at steady state, advection of heat is therefore out of this area.” 
 
Thank you for the suggestion, this change has been made, noting that the caption referred to 
is that of figure 4. 
 
p9 line 15: should read “… more prevalent at low M2 tidal amplitudes…” 
 
M2 is dominant in the North West European Shelf, in most places. But K1 can be relatively 
large in other regions, like the South China Sea 
 
This is an important clarification, thank you. The change has be made. 
 
p10. Line 2. Unpack this line. Is it the case? Does Figure 5 [6] exhibit smaller model biases 
in the summer? Confirm what you think my eyes are telling me. 
 
Thank you for questioning this. For clarification, the figure referenced in that line is figure 6, 
so we have assumed that the question refers this figure. On reflection we should have been 
explicit about what we mean by mid-latitudes. We are considering these to be the regions 30-
60 degrees N/S and specify this in the revised manuscript, along with adding latitude labels 
to the figure. Because the eye can easily be drawn to the tropical areas highlighted in blue off 
northern Australia and Indonesia, we now explicitly mention the key mid-latitude regions 
which do show such biases and place these in context. In summary, we see little seasonality 
in the bias in much of the mid-latitudes (e.g. North West European Shelf and Patagonian 
Shelf), stronger summer than winter bias in the South China Sea and Bering Sea, and only 
smaller summer than winter biases in the Scotian and Southern Brazilian shelves. 
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Abstract. The marine impacts of climate change on our societies will be largely felt through coastal waters and 

shelf seas. These impacts involve sectors as diverse as tourism, fisheries and energy production.  Projections of 

future marine climate change come from global models. Modelling at the global scale is required to capture the 

feedbacks and large-scale transport of physical properties such as heat, which occur within the climate system, 

but global models currently cannot provide detail in the shelf-seas. Version 2 of the regional implementation of 

the Shelf Sea Physics and Primary Production (S2P3-R v2.0) model bridges the gap between global projections 

and local shelf-sea impacts. S2P3-R v2.0 is a highly simplified coastal shelf model, computationally efficient 

enough to be run across the shelf seas of the whole globe. Despite the simplified nature of the model, it can display 

regional skill comparable to state-of-the-art models, and at the scale of the global (excluding high-latitudes) shelf-

seas can explain >50% of the interannual SST variability in ~60% of grid cells, and >80% of interannual 

variability in ~20% of grid cells. The model can be run at any resolution for which the input data can be supplied, 

without expert technical knowledge, and using a modest off-the-shelf computer. The accessibility of S2P3-R v2.0 

places it within reach of an array of coastal managers and policy makers, allowing it to be run routinely once set 

up and evaluated for a region under expert guidance. The computational efficiency and relative scientific 

simplicity of the tool make it ideally suited to educational applications. S2P3-R v2.0 is set up to be driven directly 

with output from reanalysis products or daily atmospheric output from climate models such as those which 

contribute to the 6th phase of the Climate Model Intercomparison Project, making it a valuable tool for semi-

dynamical downscaling of climate projections. The updates introduced into version 2.0 of this model are primarily 

focused around the ability to geographical relocate the model, model usability and speed, but also scientific 

improvements. The value of this model comes from its computational efficiency, which necessitates simplicity. 

This simplicity leads to several limitations, which are discussed in the context of evaluation at regional and global 

scales. 

 

1. Introduction 

 

The world’s coastal oceans are under increasing pressure from human activity (Doney, 2010). These shallow, 

relatively accessible waters are where humans interact most with the ocean, and where marine biological activity 



and diversity are often at their most intense (Mora et al., 2013; Bowen et al., 2016). Global Circulation and Earth 

System Model projections contain neither the spatial resolution nor processes required to simulate shelf seas (Holt 

et al., 2009). These models have been found to contain little to no skill at simulating patterns of surface 

temperature warming at spatial scales lower than 1000km (Kwiatkowski et al., 2014). While at regional scales 

shelf-sea models are providing extremely valuable information over short time horizons (e.g. Steven et al., 2019), 

the state-of-the-art in shelf-sea climate projections is either to downscale global models over small regions using 

complex 3D shelf sea models (e.g. Tinker and Howes, 2020) at considerable computational expense, or downscale 

large-scale projections statistically (e.g. Donner et al., 2005; Van Hooidonk et al., 2016). S2P3-R v2.0 aims to 

bridge the gap between high-complexity small scale projections, and large-scale statistical projections which 

ignore local processes and dynamics. 

 

The underlying physical-biological model used in S2P3-R is the Shelf Sea Physics and Primary Production (S2P3) 

model (Simpson and Sharples, 2012). S2P3 makes the common assumption that in many regions variability on 

the shelf is dominated by atmospheric and tidal processes rather than by communication with the open ocean (e.g. 

Song et al., 2011; van der Molen, Ruardij and Greenwood, 2017), and consequently, represents the ocean at a 

location as a 1D column of water. The physical and biological components of S2P3 are discussed below, but are 

described in further detail in Simpson and Sharples (2012), Sharples et al. (2006), Sharples (2008) and summarised 

in Marsh et al., (2015). S2P3-R v1.0 (Marsh, Hickman and Sharples, 2015) placed S2P3 into a spatial framework 

by representing the shelf sea as a 2D array of neighbouring independent 1D columns of water. S2P3-R v2.0 

addresses several the limitations in S2P3-R v1.0, which prevented it from being used effectively to downscale 

large-scale reanalyses or climate projections. 

 

2. Overview of the underlying 1D model, S2P3 

 

S2P3-R v2.0 is the 2nd generation of regional-model development building on the 1D shelf sea model S2P3 

(Sharples et al., 2006). The physical component of S2P3 simulates vertical profiles of temperature, turbulence 

and currents in response to tidal and wind driven mixing. The model calculates the tidal slope from the prescribed 

M2, S2, N2, O1 and K1 tidal ellipses, and from this, the water’s velocity (Sharples et al., 2006). The stress applied 

by the tides is then calculated as a function of the velocity at 1m above the seabed, the density of the seawater and 

a prescribed bottom drag coefficient (Sharples et al., 2006). The surface stress exerted by the wind is calculated 

as a function of windspeed and direction (with respect to tides), air pressure and a windspeed-dependent surface 

drag coefficient (Smith and Banke, 1975). A turbulence closure scheme calculates profiles of vertical eddy 

viscosity and diffusivity as a function of current shear and vertical density (Canuto et al., 2001). The surface and 

bottom stress are propagated through the water column as a function of the vertical eddy viscosity, which is 

derived from the turbulence closure scheme (Sharples et al., 2006). S2P3 considers only the role of temperature, 

not salinity, on density (Sharples et al., 2006), limiting its application in cold water (where density variations are 

dominated by salinity), or variable salinity settings such as near river outflows. 

 



The biological model in S2P3 takes a lightweight and pragmatic view of representing primary production. 

Phytoplankton concentrations are modelled as a function of their initial concentration, vertical mixing, growth 

rate and a fixed grazing rate (Sharples, 2008). Phytoplankton growth rate is a function of the maximum growth 

rate for a given temperature and nutrient availability, modified by available photosynthetically active radiation 

(PAR) and maximum light utilisation rate, minus respiration at a constant rate (Sharples, 2008). Surface PAR is 

set to 45% of the net downwelling surface shortwave radiation, and this decays as a function of phytoplankton 

concentration and an attenuation coefficient which is dependent on whether the water column is mixed or stratified 

(Sharples, 2008). Nutrient availability is a function of vertical mixing, uptake by phytoplankton and loss through 

grazing, and is restored towards a constant concentration in the lowest model level (Sharples, 2008). The simple 

assumptions made within the biological model align with the desire to keep the computational cost of the model 

low, but also to avoid including poorly constrained processes within the model (Sharples, 2008). These 

simplifications and their impacts are discussed further in Sharples (2008). In its original form S2P3 was driven 

by sinusoidal timeseries of surface air temperature and pressure, relative humidity, total cloud cover and u and v 

surface winds. 

 

3. Scientific advances from S2P3 

 

Version 1 of S2P3-R modified the S2P3 code and provided bash scripts to run S2P3 as a 2D array of 1D column 

models to provide a computationally efficient way to simulate shelf sea physical and biological conditions (Marsh, 

Hickman and Sharples, 2015). Application of this version of the model demonstrated that this simple approach to 

shelf-sea modelling produced sensible patterns of temperature, stratification and primary production on the North 

West European Shelf and East China and Yellow seas, and showed that the model reproduced observed year to 

year variability at two sites in the English Channel (Marsh, Hickman and Sharples, 2015). The success of S2P3-

R at reproducing physical and biological structures over the recent past has motivated the developments and 

evaluation presented here. The developments described here are aimed at running the model at larger spatial scales 

and over longer time periods, including into the future to downscale and explore the coastal implications of future 

climate change. These developments presented several practical challenges, which are discussed below. 

 

S2P3-R v1.0 introduced spatial information into its simulation by considering local bathymetry and tidal mixing, 

as well as a latitudinal dependence of the clear-sky radiation and Coriolis parameter used within the model (Marsh, 

Hickman and Sharples, 2015). Application of the model over larger spatial domains was limited scientifically 

because it used common timeseries of surface air temperature and pressure, relative humidity, cloud fraction and 

wind velocities to drive all water columns within a simulation. S2P3-R v2.0 addresses this limitation by utilising 

meteorological timeseries specific to each grid location which are generated from reanalysis or climate models 

using the provided scripts (see below and the Code Availability section). 

 

Previous iterations of the model have represented downwelling shortwave irradiance as a function of time of year, 

latitude and total cloud fraction. While this approach has been applied successfully when considering the North 

West European Shelf (Sharples et al., 2006; Sharples, 2008; Marsh, Hickman and Sharples, 2015), total cloud 



fraction cannot account for the impacts on radiation of moving between regions of different cloud type or changes 

in cloud microphysics. Over climate timescales, changes in aerosol emissions, meteorology and atmospheric 

chemistry will have considerable impacts on the shortwave radiation received at the sea surface (Haywood and 

Boucher, 2000), which may dominate greenhouse gas driven climate signals at regional scales (Booth et al., 2012). 

S2P3-R v2.0 moves to prescribing the net downwards surface radiation explicitly from the reanalysis product or 

climate model output from which it is driven. 

 

Analogous to the treatment of shortwave radiation within S2P3, the net loss of heat from the surface of the ocean 

in the form of longwave radiation was calculated in S2P3-R v1.0 from the temperature-dependent longwave 

emission derived from the Stefan–Boltzmann equation, moderated by cloud-fraction and humidity. This approach 

cannot account for spatial/temporal changes in cloud-top height and optical thickness, which have been shown to 

be as important as cloud fraction in determining the radiation field (Chen, Rossow and Zhang, 2000). These factors 

are of 1st order importance when relocating the model from high to low latitudes, performing simulations spanning 

these latitudes, or when considering the impacts of anthropogenic aerosols and cloud-feedbacks in response to 

climate change. A further limitation of inferring the downwelling longwave radiation as a function of cloud 

fraction when performing long historical simulations or simulations driven from future climate projections, is that 

the change in the radiation budget associated with changing greenhouse gas concentrations is not directly 

accounted for. S2P3-R v2.0 revises the surface heat-loss through longwave radiation (QLongwaveNet) to: 

𝑄!"#$%&'()(* =	𝜀+"#$%&'(𝜎𝑇, − 𝑄!"#$%&'(-"%#%&./0𝑆      (1) 

Where 𝜀+"#$%&'(  is the long-wave emissivity (0.985), 𝜎 is the Stefan–Boltzmann constant (σ = 5.67 × 10−8 W 

m−2 K−4), T is the temperature of the surface layer, 𝑄!"#$%&'(-"%#%&./0 is the prescribed downwelling longwave 

radiation at the surface, and S is a constant to account for the fact that the model is not simulating the ocean skin, 

where a proportion of the longwave radiation will be absorbed and re-emitted without interacting with the water 

at the depths represented by the top layer of the model. 

To facilitate longer timesteps in deeper waters, S2P3-R v1.0 scaled the vertical resolution in each water column 

with the water-depth. This has been revised to a fixed 2m vertical resolution in S2P3-R v2.0 to prevent variability 

in level thickness introducing spatial artefacts to simulated surface water conditions. Phytoplankton growth in the 

model, and therefore primary production relies on a flux of nitrate into the lowest vertical level of the model. In 

S2P3-R v2.0 we move from representing this as a single value in space and time, to a value specific to each grid 

box, read in from an ancillary file. A script is provided to generate this ancillary file from World Ocean Atlas 

(Levitus, 1982) data (see Code Availability section). 

 

A schematic overview of S2P3-R v2.0 is presented in Figure 1. 

 

 

 



 
Figure 1. Schematic description of the processes accounted for in S2P3-R v2.0 and prescribed quantities, both forcings 

and constants. WOA stands for World Ocean Atlas. 

 

4. Practical advances from S2P3 

 

The practical developments made to version 2.0 of S2P3-R fall into two categories (1) how the model runs, and 

(2) how to generate the data used to set up and force the model. 

 

The initial spatial implementation of S2P3 (S2P3-R v1.0) focused on what could be achieved by running S2P3 in 

a regional sense, and as such provided Bash scripts which ran individual instances of the 1D model for each of 

the latitude/longitude locations specified in a domain file containing depth and tidal forcing data. S2P3-R v2.0 

makes several changes to reduce the amount of input-output associated with this approach and distributes the 

processing of water columns over multiple processor cores. This is done by (1) re-writing the code which runs the 

underlying Fortran model code from Bash to Python using the multiprocessing module, (2) reading the depth and 

tidal data from file once, then passing it from memory to the Fortran code for each point, and (3) accumulating 

the output annually and writing this year by year to netCDF or text files. The model has been modified to run one 

year at a time, writing output then ‘resubmitting’ to allow long, high-resolution, or large spatial domain, 

simulations to be performed without hitting memory or submission length limits. 



 

The independence of each grid point, combined with the developments to consolidate reading or writing data to 

disk, means that the model scales very efficiently when more/fewer processor cores are used (Figure 2). 

 

 
Figure 2. Processing time in hours to complete one year of simulation at 0.2o resolution in a ‘global’ (65oS-65oN, 180oW-

180oE) configuration spanning water depths of 10-100m. The high latitudes were removed because the model assumes 

constant salinity and the model does not include a representation of sea ice. Simulations were undertaken on an AMD 

2990WX 32-Core 3Ghz Processor with multi-threading.  

 

Model developments around usability include (1) translating the Fortran code so it can be compiled with the open-

source GFortran compiler rather than the proprietary ifort compiler and by doing so improving accessibility, (2) 

providing the user-option to generate output files directly in netCDF format, (3) providing an interface for 

prescribing which output diagnostics the user wishes to produce, and (4) the provision of scripts and associated 

ReadMe files to enable simple generation of all of the required input files (see Code Availability section). These 

files are the domain (which specify the depth and tidal forcing for each model grid-point), nutrient ancillary and 

meteorological forcing files (Figure 3). The input generation scripts, the input data they require, and how the 

outputs are used by the main model are detailed in Figure 3. The practicalities of how to obtain and run the scripts 

and associated data are detailed in the code availability section and supplied ReadMe files (see Code Availability 

section). 

 

 



 

Figure 3. Overview of the S2P3-R v2.0 framework, which includes the model and runscript but also separate scripts to 
generate the required input files. The arrows show where externally available data or the output from one component 
of S2P3-R V2.0 is supplied to another component/output. 

5. Global Evaluation 

 

S2P3-R v2.0 is an intentionally simple model. By ignoring lateral advection, one should expect to see model 

temperature biases in regions of heat convergence or divergence, i.e. where significant amounts of heat are 

imported or exported through advection, or local dissipation rates are enhanced through horizonal processes. The 

fact that a region may experience a temperature bias does not itself mean the model is not useful in that region. 

Despite biases in average temperatures, the model may still capture variability on the timescales of interest. The 

model variability may however be compromised if there is a temperature bias at low ambient temperatures, where 

the non-linearity of the equation of state of seawater reduces the sensitivity of density to temperature variability. 

This limits the applicability of S2P3-R v2.0 in cold waters, and alongside the specification of constant salinity 

and omission of sea ice processes, means that the evaluation of the model has been restricted to the subpolar and 

lower latitude ocean (<65oN/S). The evaluation presented here is intended to allow potential model users to 

identify whether S2P3-R v2.0 is an appropriate tool to use for the question and location they are interested in. We 

first evaluate the global performance of the model, then focus evaluation on a mid-latitude, then a low-latitude 

region. Evaluation in each section begins with the physical variables, then moves on to the biological component 

of the model. 

 

The model simulations presented here have been set up at 0.2o spatial resolution using the input fields described 

in table 1. 

 
Table 1. Model inputs. 

Model input Source Reference 

Bathymetry Global and N.W. 

European Shelf 

ETOPO1 (Amante and Eakins, 2009) 

Bathymetry Australia 3DGBR (Beaman, 2010) 

Tides Produced using the Oregon State 

University 

 Tidal Inversion Software 

(Egbert and Erofeeva, 2002) 



 (OTPS) 

Meteorological Forcing ECMWF ERA5 (Hersbach et al., 2019) 

Nutrients World Ocean Atlas 13 (Levitus, 1982) 

 

5.1 Global Physical Evaluation 

 

An initial comparison of model SSTs against satellite SSTs (Merchant et al., 2019) at a global scale indicates that 

the model displays its smallest biases in the subtropics to subpolar regions (Figure 4). The prevalence of warm 

biases in the tropics and cool biases in the high latitudes is consistent with export and import or warm waters from 

and to these regions respectively (Figure 4). To allow potential users to examine model performance in their 

regions of interest in greater detail, the data underlying Figure 4 is made available as described in the Data 

Availability section. 

 



 
Figure 4. A. Model SST simulation minus satellite SST data averaged between 1st Jan 2006 and 31st Dec 2016. White 

indicates that the model is displaying no surface temperature bias, red indicates the model displays a warm bias, and 

blue the model displays a cool bias. The model was forced with atmospheric data from ERA5 (Hersbach et al., 2019). 

B. Net surface downward heat flux calculated from the ECMWF ERA5 reanalysis (Hersbach et al., 2019). Where this 

is positive there is a net heat flux into the ocean. So, assuming that system is approximately at steady state, heat is 

advected out of these areas. Where the net downward heat flux is negative there is advection of heat into this region. 

S2P3-R V2.0 does not account for lateral advection, so one would anticipate that the model will display a warm bias in 

regions where heat is typically advected from (i.e. tropics) and cool biases where heat is advected to (i.e. high latitudes).  

 

Beyond calculating the surface heat budget based on atmospheric forcings, the model skill in simulating surface 

temperatures comes from vertical mixing processes which exchange heat between the surface and subsurface 

layers as a function of temperature induced density differences and wind and tide stress. In line with this, we find 

that large SST biases are more prevalent at low M2 tidal amplitudes (Figure 5). While this analysis indicates that 

strong tidal mixing can contribute to a skilful simulation, it does not appear that tidal magnitude provides a rule 

to determine where best to use this model. Stratification is highly seasonal in the mid-latitudes (30 to 60° north or 

south), with summer stratification typically corresponding to areas of weak tidal mixing, and a pervasive loss of 



stratification during the winter. If strong tides played a 1st order role in model skill, one would expect to see 

smaller model biases in the summer than winter across the mid-latitudes (Figure 6), instead we see little 

seasonality in the bias in much of the mid-latitudes (e.g. North West European Shelf and Patagonian Shelf), 

stronger summer than winter bias in the South China Sea and Bering Sea, and only smaller summer than winter 

biases in the Scotian and Southern Brazilian shelves. 

 

 
Figure 5. 2D histogram demonstrating the relationship between tidal amplitude (M2 tide) and absolute annual-mean 

SST difference between the model and satellite data. 



 
Figure 6. Annual mean SST bias (top), and difference in absolute SST bias between summer and winter (bottom). In 

(b) Blue indicates that the summer months (June, July, August in the Northern hemisphere and December, January, 

February in the Southern hemisphere) display a smaller absolute bias than the winter months (December, January, 

February in the Northern hemisphere and June, July, August in the Southern hemisphere). 

Despite the model displaying average temperature biases across some regions of up to ~3K, there is no consistent 

relationship between such biases and the model’s ability to correctly simulate year-to-year variability (Figure 7). 

More than half of the year-to-year variability is captured by ~60% of the simulated grid cells (Figure 8). Squared 

Pearson's product moment correlations (R2) calculated between (i) annual mean SST timeseries at each grid point 

from the ERA5 forced S2P3R V2.0 simulations and (ii) satellite SST data (Merchant et al., 2019) from 2006-

2016 (inclusive) demonstrate high levels of skill in areas such as north of Australia, the Java Sea and the Bering 

Sea (Figure 7) despite these areas displaying significant positive/negative temperature biases (Figure 4). 

Conversely, the northern South China sea and southern Australia display low skill at capturing interannual 

variability (Figure 7), despite the model displaying low temperature biases in these regions (Figure 4). In the case 

of the South China sea this may relate to highly variable riverine freshwater influences on stratification. 

 



 
Figure 7. Pearson's R2 calculated between annual mean Model SST simulation and annual mean satellite SST data 

(Merchant et al., 2019) between 2006 and 2016. 

 
Figure 8. Sorted R and R2 values from all grid cells calculated from global shelf-sea SST simulation correlation with 

satellite SST (Figure 7). 

 

5.2 Global Biogeochemical Evaluation 

 

The biological component of S2P3 v2.0 remains unchanged from previous versions, apart from the addition of a 

spatially varying nutrient field derived from World Ocean Atlas (Levitus, 1982) to which the bottom water nitrate 



is relaxed. S2P3 has previously been used to investigate biological questions including investigating the drivers 

of timing of spring blooms in response to stratification (Sharples et al., 2006) and to explore the impact of tidal 

cycles on productivity (Sharples, 2008) for typical North West European shelf seas. More recently a version of 

S2P3 has been developed to better represent the impacts of grazing and to include the impact of photo-acclimation 

on phytoplankton growth (Bahamondes Dominguez et al., 2020). 

 

Evaluation of the model’s biological performance at a global scale is more challenging than the evaluation of 

surface temperature, because satellite chlorophyll-a products are often unreliable in shallow waters, where 

suspended sediment, coloured dissolved organic matter (CDOM) and bottom reflection influence the retrievals 

considerably (Darecki and Stramski, 2004). The analysis presented here uses the ESA CCI Chlorophyll-a product 

data (Sathyendranath et al., 2020) but filters out waters shallower than 70m (Sathyendranath et al., 2019) to avoid 

the issues mentioned above.  The model demonstrates low (<0.2 mg m-3) chlorophyll-a biases when compared to 

satellite estimates in all regions apart from Southeast Asia, Australia, the Baltic Sea and the northern Bering Sea 

(Figure 9). The most extensive area of bias being Southeast Asia and Australia. This is also an area of high SST 

bias (Figure 4), although there is no strightforward relationship between regions of SST and regions of 

chlorophyll-a bias. Phytoplankton growth in the model is a function of, amongst other factors, temperature and 

Photosynthetically Active Radiation (PAR). Overestimation of chlorophyll-a may therefore be a response to 

postive seawater temperature biases, or both may be responding to a positive shortwave radiation bias. 



 



Figure 9. Comparison of surface level chlorophyll-a concentrations with satellite based chlorophyll-a estimates 

(Sathyendranath et al., 2020). Figures present an annual mean of all data available between 1997 and 2017 inclusive. 

Satellite data filtered to include minimise issues associated with case 2 waters by selecting water ≥ 70m water depth. 

The nutrient data to which the water in  the model’s bottom level was relaxed to is taken from the winter values in 

World Ocean Atlas for each hemisphere.  

 

To facilitate a more detailed understanding of the model performance, we now evaluate the model in one mid-

latitude region, the North West European Shelf, then one lower latitude region, the Great Barrier Reef.  

 

6.1 North West European Shelf Physical Evaluation 

 

The North West European Shelf is both typical of the mid-latitude regions, where the assumptions made in this 

modelling framework appear to work well (Figure 4), and is a large area of shallow water which has previously 

been studied in detail both observationally (e.g. Smyth et al., 2015) and using state of the art 3D models (e.g. 

Graham et al., 2018).   

 

Forced with the ERA5 atmospheric data (Hersbach et al., 2019), S2P3-R v2.0 simulates the time-averaged SST 

within 0.5K across much of the North West European Shelf (Figure 10). The model also simulates the trend and 

interannual variability in SST well in the North Sea, English Channel and Irish Sea (Figure 11), despite the North 

Sea and English Channel displaying cool and warm temperature biases of approximately 0.5K respectively (Figure 

11). The cool bias in the northern North Sea is consistent with the model not accounting for the inflow of relatively 

warm Atlantic Water via the Dooley Current between Orkney and Shetland (Dooley, 1974; Marsh et al., 2017; 

Sheehan et al., 2020).  

 



 
Figure 10. S2P3R v2.0 SST averaged between the years 1986 and 2006 inclusive minus satellite SSTs (Merchant et al., 

2019) averaged over the same interval. Labelled dashed lines illustrate bathymetry in meters.  



 

Figure 11. S2P3R v2.0 SST averaged annually and across the three regions highlighted in inset maps, and annually 

averaged satellite SSTs (Merchant et al., 2019) from the same regions. 

Bottom water temperatures can be examined at individual locations using mooring data, as done in Marsh et al., 

(2015), or at sparse locations against gridded data (e.g. Good, Martin and Rayner, 2013), but to facilitate a more 

spatially complete assessment we here turn to state-of-the-art model output, generated by the 1.5km NEMO-shelf 

Atlantic Margin Model (AMM15) (Graham et al., 2018). We find that S2P3-R v2.0 replicates the average values 

and interannual variability in bottom water temperatures in the North Sea, English Channel and Irish sea captured 

by the AMM15 model (Graham et al., 2018) with biases of less than 0.5K and R2 values of 0.92, 0.84 and 0.93 

the North Sea, English Channel and Irish Sea respectively (Figure 12). While the AMM15 model is not a perfect 

surrogate for observations, this comparison gives us confidence in these regions that the use of the highly 

computationally efficient S2P3-R v2.0 model to a first order gives us comparable bottom water temperature results 

to a state-of-the-art and computationally demanding three-dimensional modelling system. 

 



 

Figure 12. S2P3R v2.0 bottom water temperatures averaged annually and across the three regions highlighted in inset 

maps, and annually bottom water temperatures from these same regions taken from a state-of-the art shelf sea model 

hindcast (Graham et al., 2018). 

 

6.2 North West European Shelf Biogeochemical Evaluation 

 



S2P3R v2.0 underestimates surface chlorophyll-a when compared to annual mean satellite derived estimates 

(Sathyendranath et al., 2020) across most of the North West European Shelf by 0.25 to 0.50 mg/m3 (Figure 13).  

The smallest bias is seen in the North Sea, and the largest in the Irish Sea (Figure 13). 

 

 
Figure 13. Comparison of North West European Shelf surface level chlorophyll-a concentrations with satellite based 
chlorophyll-a estimates (Sathyendranath et al., 2020). Figures present an annual mean of all data available between 
1997 and 2017 inclusive. Dashed lines represent 20m depth contours. Satellite data are filtered to minimise the 
influence of case 2 waters by focusing on water ≥ 70m water depth. 

 

The seasonal and interannual variability of phytoplankton production, and therefore chlorophyll-a concentration 

are strongly influenced by changes in stratification. Where the water column is mixed throughout the year (e.g 

English channel and southern North Sea), phytoplankton growth tends to display a single peak governed to a first 

order by the cycle of solar irradiance and the availability of nutrients, with development of the peak slowed by 

mixing of phytoplankton into deeper, poorly lit, waters (e.g. Figure 14 a, c, e, g, i, j) (Wafar, Le Corre and Birrien, 

1983). Where the water column is seasonally stratified and winter mixing has removed any upper-water column 

nutrient limitation potential, a spring bloom typically develops as the mixed layer - defined by turbulence levels 

(Chiswell, 2011; Chiswell, Calil and Boyd, 2015) - shallows across a seasonally-deepening critical depth, 

shallower than which light-limited phytoplankton production exceeds approximately depth-invariant 

phytoplankton losses (Sverdrup, 1953). In these seasonally stratified waters, an autumn bloom (and therefore 

second chlorophyll-a peak) may also develop as cooling results in buoyancy loss from the surface or winds 

increase turbulence, and the mixed layer deepens and refreshes what have become nutrient limited sunlit waters, 

with nutrients from deeper in the water column (Findlay et al., 2006). This potentially skewed, bimodal 

distribution is captured by the model in seasonally stratified sites (Figure 14, c, k, o). While in the central North 

Sea and Celtic Sea, the seasonal evolution of model chlorophyll-a concentrations match closely with that inferred 

from observations (Figure 14 c, k, o), in most sites the model fails to capture the full complexity of the seasonal 

signal. The model also fails to capture the interannual variability in chlorophyll-a at those sites where long enough 



observational timeseries exist to assess this (Figure 14). The lack of evidence for correctly simulated interannual 

variability potentially reflects the importance of processes not represented in this model such as photo-acclimation 

(Bahamondes Dominguez et al., 2020), grazing (Bahamondes Dominguez et al., 2020) and phytoplankton species 

composition (Barnes et al., 2015) in controlling interannual variability, or the importance of variability in nutrient 

flux across the shelf-break (Holt et al., 2012) and from rivers (Capuzzo et al., 2018). 

 

 

Figure 14 Comparison of model chlorophyll-a timeseries (red) with chlorophyll-a fluoresence measurements (black) 

made on 10 autonomous buoys situated round the UK as part of the CEFAS SmartBuoy network (Sivyer, 2016). Both 

datasets have been monthly averaged, logged,  had the timeseries mean removed and been normalised by their standard 

deviation. Fluoresence data has been filtered to include only that collected between 18:00 and 06.00 hours to avoid 

quenching of the signal by sunlight. Maps on the right hand side illustrate the location of each buoy. Note that buoys 

have been operational over different time windows. 

 



7.1 Great Barrier Reef Physical Evaluation 

 

Moving to the low-latitudes where SST biases in the S2P3R v2.0 model are typically larger than they are in the 

mid-latitudes (Figure 4), a simulation has been undertaken which encompasses the Great Barrier Reef (GBR). 

The GBR is well instrumented, allowing analysis of subsurface as well as surface temperatures in this region. 

 

The modelled SSTs in the GBR display a positive bias relative to satellite SSTs in the north and negative bias in 

the south (Figure 15). This may relate to the fact that the model does not simulate lateral advection, which will be 

exporting heat from the north to the south in the East Australian Current. 

 

S2P3R v2.0 appears to capture much of the interannual variability observed in SSTs over the GBR since the early 

1980s (Figure 16), but with a temperature bias of <0.5K (Figure 15). The simulation however appears to 

erroneously simulate a stepwise cooling around the year 2000 which compromises the overall correlation between 

model and satellite SSTs (Figure 16). This stepwise cooling may reflect changes in the assimilation of 

observations into the ERA5 reanalysis product which is used to force the model. 



 
Figure 15. S2P3R v2.0 SST averaged between 1986 and 2006 inclusive minus satellite SSTs (Merchant et al., 2019) over 

the same interval. Labelled dashed lines show bathymetry in meters. 



 

Figure 16. Comparison of interannual SST variability between S2P3R v2.0 and satellite (Merchant et al., 2019) over 

the GBR, subdivided into three latitudinally delineated regions. These regions are identified in the inset maps.  

While a state-of-the-art regional model for the GBR region exists (Steven et al., 2019), a long validated hindcast 

is not available to allow evaluation of the S2P3R V2.0 simulation of bottom water temperatures in the GBR 

analogous to that presented here for the North West European Shelf. The GBR is however instrumented with an 

extensive mooring network, making up part of the IMOS FAIMMS (Integrated Marine Observing System, Facility 

for Automated Intelligent Monitoring of Marine Systems) Sensor Network (IMOS, 2009a, 2009b, 2009d, 2009e, 

2009c, 2015, 2017). The location of the moorings utilised in the evaluation presented here are highlighted in 

Figure 17. 
 

In situ observations indicate that a cool bias exists in the modelled SSTs, but this is restricted to austral winter 

months (Figure 17c). The fact that a warm bias is not evident in the mooring data, as it is in the satellite SST data 

(Figure 15), may result from a sampling bias within the mooring dataset towards deeper waters. Modelled bottom 

water temperatures from the lower latitude mooring sites present a cool bias, but a linear relationship when 

compared with observational data (Figure 17d). The cool bias may reflect the fact that the model output against 

which the observations are compared represent a mean value across a ~10km2 grid-cell and for example may well 

therefore not be simulating the conditions at the same depth as the observations are made. 



 

Figure 17. Comparison of S2P3R v2.0 surface (A and B) and bottom (C and D) temperatures against mooring 

observations from IMOS and FAIMMS and moorings (IMOS, 2009a, 2009b, 2009d, 2009e, 2009c, 2015, 2017). The x-

y values of the data presented in plots on the top and bottom (A and B, and C and D) are identical, but are coloured to 

highlight where temporal and geographical biases exist in the model output. Seabed observations are considered here 

to be those falling within 5m of the site-depth for each mooring. The map shows the location of surface (red) and bottom 

(blue) temperature mooring observations used in model evaluation over the GBR. 

7.2 Great Barrier Reef Biogeochemical Evaluation 
 

Comparison is made between the S2P3R v2.0 simulation of chlorophyll and annually averaged European Space 

Agency Climate Change Initiative (ESA CCI) long term satellite chlorophyll data (Sathyendranath et al., 2020). 

The ESA CCI long term satellite chlorophyll product is focused on case-1 waters (Sathyendranath et al., 2019). 

The comparison presented here is therefore restricted to water depths ≥ 70m, a compromise which allows us to 

exclude the most coastally influenced waters while maintaining moderate spatial coverage. The S2P3R v2.0 

simulation of chlorophyll displays low negative biases <0.2 mg/m3 (Figure 18). These biases are considerably 

lower than those simulated on the North West European shelf (Figure 13), the region within which the model was 

originally designed to investigate chlorophyll seasonality (Sharples et al., 2006).  



 
Figure 18. Comparison of GBR surface level chlorophyll-a concentrations with satellite based chlorophyll-a estimates 

(Sathyendranath et al., 2020). Figures present an annual mean of all data available between 1997 and 2017 inclusive. 

Satellite data filtered to include just water ≥ 70m to minimise contamination by case 2 waters. 

Evaluation of the model’s ability to simulate the seasonal cycle and interannual variability in chlorophyll-a in the 

GBR region has been conducted using moored buoy fluorescence data, as done for the North West European 

Shelf, but with more restricted temporal coverage (Figure 19). Unlike the spring/autumn bloom dominated 

seasonal evolution of chlorophyll-a experienced in many temperate sites, the seasonal cycle simulated by the 

model and illustrated by the observations across the GBR sites examined here follows a relatively smooth 

oscillation with the peak values in the model data occurring in late summer (Figure 19). In contrast to many of 

the North West European Shelf sites, this behaviour likely results from the intersection of the critical depth 

(Sverdrup, 1953) with the seabed at these high light and shallow locations. The incomplete or short length of the 

GBR fluorescence observational datasets mean that it is not possible to undertake a detailed investigation of 

interannual variability, however the longest of the mooring datasets (Figure 19k) exhibits its lowest chlorophyll-

a peaks in the same years as those simulated by the model (2018 and 2019). In a typically oligotrophic setting, 

like much of the GBR, one might expect year to year variability to be dominated by injections of nutrients from 

the shelf-break or the coast (Furnas and Mitchell, 1986). Despite the model not representing these processes, it 

never-the-less simulates considerable inter-annual variability, indicating the potential for atmospheric and vertical 

ocean dynamics drivers of such variability. 

 



 
Figure 19. Comparison of model chlotophyll-a timeseries (red) with chlorophyll-a fluoresence measurements (black) 

made on 6 moored buoys situated down the GBR as part of the IMOS Australian National Mooring Network (IMOS, 

2015). Both datastes have been monthly averaged, logged, had the timeseries mean removed and been normalised by 

their standard deviation. Surface level data was not available for all sites, so data represent an average over the top 

12m of the water column to improve spatial data coverage. 

 

8. Summary and discussion: 

Forced by observation-derived atmospheric conditions, a simulation spanning the shelf seas of the global tropical-

to-subpolar ocean at approximately 10km2 resolution captures >50% of the observed interannual SST variability 

between 2006 and 2016 in ~60% of the grid cells, and greater than 80% of the interannual SST variability in ~20% 

of the grid cells (Figure 8). This tells us that a large part of the SST variability in a significant component of our 

global shelf-seas is atmospherically forced, rather than being forced by variable lateral exchanges with the deep 

ocean or runoff. When compared to satellite data (Merchant et al., 2019), 61% of grid cells however present an 



SST bias of greater than 1K and 42% present an SST bias of greater than 2K, highlighting limitations to the simple 

modelling approach. 

Together, analysis of SST variability and SST bias indicate there are significant areas of our global shelf seas 

where the model should be used with extreme caution. These regions are likely to be those which have; (1) 

substantial exchange of heat with the open ocean through lateral advection, (2) low tidally driven mixing and 

therefore a low ratio of vertical/horizontal control over SSTs (Figure 5), (3) significant influences from local 

processes/properties such as riverine inputs or locally unusual bottom drag coefficients, (4) high salinity 

variability and low temperatures, or (5) on-shelf propagation and dissipation of the internal tide. The model could 

however be tuned to account for some of these influences if studies were to be undertaken with a focus on such 

regions. 

Regional evaluation has been conducted across the North West European Shelf around the UK, and the Great 

Barrier Reef. The model captures most of the observed SST trend and variability in the waters around the UK 

(Figure 11), with a temperature biases of <0.5K across most of the region (Figure 10). S2P3R v2.0 also captures 

between 84 and 93% of the variability in bottom water temperatures simulated by a state-of-the-art shelf sea model 

hindcast (Graham et al., 2018) for the three focal regions of the North Sea, English Channel and Irish Sea. 

Comparison of modelled and satellite SSTs across the Great Barrier Reef indicate over ~10-year intervals the 

model performs well, but there appear to be step-changes in the modelled SST which are not seen in the satellite 

data. The discontinuity occurring around the year 2000 may reflect a step change in the data assimilation 

configuration used within the ERA5 product or data being assimilated by that product (Hersbach et al., 2018) 

used to provide the atmospheric forcing to S2P3R v2.0. Alternatively, the step changes may result from changes 

in the lateral supply of heat from the open ocean. 

A particular strength of this modelling approach is likely to be in examining or predicting anomalies or extremes 

which occur under a consistent set of oceanographic conditions. For example, the marine heat waves associated 

with tropical coral bleaching tend to occur following doldrum-like condition, when there is limited advection and 

mixing (Skirving, Heron and Heron, 2011). 

Observational limitations mean the model’s simulation of biological production in space and time is harder to 

assess than that of temperature. The model however captures the broad scale patterns of surface chlorophyll 

(Figure 9, Figure 13, Figure 18), with a weak indication of latitudinally varying bias towards overprediction in 

low latitudes and underprediction in high latitudes (Figure 9). While the model displays considerable skill in many 

locations at simulating intra-annual chlorophyll variability (Figure 14, Figure 19), it demonstrates no skill at 

simulating inter-annual chlorophyll variability. This implies that the large-scale processes which govern the 

seasonal progression of primary production do not also govern interannual variability. Factors such as riverine 

input of nutrients may dominate interannual variability in many locations (Lenhart, Radach and Ruardij, 1997). 

These results emphasise the importance of decadal and longer observational biogeochemical timeseries for 

assessing the skill of models at simulating those processes which are likely to govern the biogeochemical response 

of our shelf seas to anthropogenic climate change. 



In summary, S2P3R v2.0 is a simple to use, computational efficient shelf sea modelling tool ideally suited to (a) 

semi-dynamically downscaling climate projections, (b) undertaking large-scale, long or large ensemble 

projections, (c) use after careful evaluation by management or policy groups without access to large technical or 

computational resources. The objective assessment of the model presented here will hopefully guide potential 

users as to whether S2P3R v2.0 is the tool to answer their questions. Where S2P3R v2.0 is considered to be an 

appropriate tool, we would encourage local assessment of the data presented here at a global scale and hope to 

facilitate this through the provision of these data (see Data Availability section). Finally, within the Code 

Availability section of this manuscript we provide the model code, code required to produce the model forcing 

datasets, an example model setup with pre-prepared forcing data, and within the Readme file, step-by-step 

instructions for setting up and running the model. 

9. Code Availability 

S2P3Rv2.0 is available from github: https://github.com/PaulHalloran/S2P3Rv2.0 

The release associated with this manuscript (https://github.com/PaulHalloran/S2P3Rv2.0/releases/tag/v1.0.1) has 

been archived to Zenodo with the following DOI 10.5281/zenodo.4147559. 

The README file available on github or via the DOI link provides step by step instructions for how to install, 

setup and run the model, and provides a basic script for analysing the model output. At the bottom of the README 

a worked example is provided to help the user go through the full process from generating model forcing files, 

running the model and displaying the output with some example data. 

10. Data availability 

Model minus satellite SST data from the global (65oS-65oN) simulation averaged between 2006 and 2016 from 

which the global validation has been undertaken in this manuscript are archived as netCDF and CSV files to allow 

potential users to undertake bespoke assessment of the model http://doi.org/10.5281/zenodo.4018815 (Halloran, 

2020). 
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