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Abstract. The air quality downscaling model uEMEP and its combination with the EMEP MSC-W chemical transport model

are used here to achieve high-resolution air quality modeling at street level in Europe. By using publicly available proxy data,

this uEMEP/EMEP modelling system is applied to calculate annual mean NO2, PM2.5, PM10 and O3 concentrations for all

of Europe down to 100 m resolution and is validated against all available Airbase monitoring stations in Europe at 25 m

resolution. Downscaling is carried out on annual mean concentrations, requiring special attention to non-linear processes, such5

as NO2 chemistry, where frequency distributions are applied to better represent the non-linear NO2 chemistry. The downscaling

shows significant improvement in NO2 concentrations where spatial correlation has been doubled for most countries and bias

reduced from -46% to -18% for all stations in Europe. The downscaling of PM2.5 and PM10 does not show improvement in

spatial correlation but does reduce the overall bias in the European calculations from -21% to -11% and from -39% to -30% for

PM2.5 and PM10 respectively. There is improved spatial correlation in most countries after downscaling of O3, and a reduced10

positive bias of O3 concentrations from +16% to +11%. Sensitivity tests in Norway show that improvements in the emission

and emission proxy data used for the downscaling can significantly improve both the NO2 and PM results. The downscaling

development opens the way for improved exposure estimates, improved assessment of emissions as well as detailed calculations

of source contributions to exceedances in a consistent way for all of Europe at high resolution.

1 Introduction15

The EMEP Meteorological Synthesizing Centre - West (EMEP MSC-W) at the Norwegian Meteorological Institute has been

developing and implementing a downscaling methodology to enhance the capabilities of the EMEP MSC-W chemical transport

model (Simpson et al., 2012, 2020) (hereafter the EMEP model). This downscaling model is known as uEMEP (urban EMEP)

and can achieve high-resolution air quality modelling down to 100 m for entire countries (Denby et al., 2020). Even though

the methodology is referred to as ‘downscaling’, uEMEP is actually an independent Gaussian plume modelling system which20

is added as post-processing to the EMEP model. This makes the modelling similar to other local-scale air quality models and

allows for a good physical representation of air quality concentrations.

uEMEP was first reported in the 2016 EMEP status report (Denby and Wind, 2016). Since then uEMEP has been further

developed and operationally implemented in the Norwegian Air Quality Forecasting System (Miljodirektoratet, 2020b) as

well as providing air quality data, maps and information to Norwegian municipalities through the Air Quality Expert Service25

(Miljodirektoratet, 2020a). These model applications and validations are described in detail in Denby et al. (2020).
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The long-term aim of the uEMEP/EMEP modelling system is to extend uEMEP to cover all the EMEP model domain, so that

we can have air quality modelling at street-level all over Europe. Modelling at high resolution provides a better assessment of

air quality mitigation strategies in Europe, as well as improved population exposure estimates for use in health impact studies.

Previous air quality modeling across Europe could not reach such a high resolution of 100 m (Sofiev et al., 2015; Menut30

et al., 2013), or the street-level air quality modeling studies were limited to individual cities (Stocker et al., 2012; Kim et al.,

2018). The uEMEP/EMEP modelling system is now established in Norway, where access to good quality emission related

data is available. The Norwegian emissions are summarized in Sect. 5.4 and details can be found in Sect. S4.2 of Denby et al.

(2020). Unfortunately, the same quality of high-resolution emission data that is available in Norway is not directly available

for all of Europe. Many countries have suitable high-resolution data but these are not readily accessible for use. In order to35

implement uEMEP for all of Europe then proxy data that can be used to redistribute emissions to fine scales are required.

Three datasets are available for all of Europe, also globally, and have been used to enable the high-resolution modelling

in Europe: OpenStreetMap (OSM) (OpenStreetMap contributors, 2020) for redistributing road traffic emissions, population

data from Global Human Settlement (GHS) (Schiavina et al., 2019) gridded to 0.0025 degrees for redistributing residential

heating emissions, and Automatic Identification System (AIS) (Kystverket, 2020) data for shipping emissions gridded to 0.002540

degrees. These datasets allow downscaling of the traffic, residential heating and shipping emission sources. All other sources

are not included in the downscaling.

Results of the European modelling for NO2, PM2.5, PM10 and O3 are presented as example maps in Sect. 3, validation

against Airbase stations is in Sect. 4 and results of a number of sensitivity studies are reported in Sect. 5.

2 Methodology45

Downscaling with uEMEP applies the following methodology where the steps are illustrated in Fig. 1 and additional details

are in Sections 2.1 to 2.4:

– Calculations are made using the EMEP model for all of Europe in a similar way to the official EMEP model calculations

but with the additional output of the EMEP local fractions (EMEP Status Report 1/2017, 2017; Wind et al., 2020).

– uEMEP is implemented as a post-processing routine to the annual mean output from the EMEP model. EMEP emission50

grids per sector and per compound are redistributed onto high-resolution sub-grids using the emission proxies.

– uEMEP then calculates the local dispersion from these sub-grid emissions using a dispersion kernel within a moving

window region defined to be the size of 2 x 2 EMEP grids.

– uEMEP removes the local fraction contribution from the EMEP grid, within the same moving window region, and

replaces these with the uEMEP sub-grid results.55

– A frequency distribution based chemistry scheme is applied to calculate downscaled NO2 and O3 concentrations from

annual mean NOX (NO + NO2) and OX (O3 + NO2) concentrations.
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– Resolution of the sub-grids varies according to the application but maps are made at 100 m and calculations at monitoring

sites are made at 25 m.

Figure 1. Schematic illustration of the EMEP/uEMEP coupled modelling system.

2.1 EMEP model implementation60

The EMEP model setup follows that in EMEP/MSC-W et al. (2020). Model version rv4.36 is used in this study, with a

horizontal resolution of 0.1◦x 0.1◦and 20 vertical layers (the lowest layer height of approximately 50 m). The model domain

covers the geographic area between 30◦N-82◦N latitude and 30◦W-90◦E longitude. The simulation year is 2018.

The meteorological data is taken from the Integrated Forecast System (IFS) of the European Centre for Medium-Range

Weather Forecasts (ECMWF), with the version IFS Cycle 40r1 (ECMWF-IFS cy40r1). The emission inventory for 2018 is65

based on the official data submissions to EMEP Centre on Emission Inventories and Projections (Pinterits et al., 2020) in 2020,

in which the PM emissions from the residential combustion sector (GNFR C) are replaced by a bottom-up estimate of TNO

(Denier van der Gon et al., 2020; Fagerli et al., 2020) for 2017. This TNO dataset should represent an improved estimate of

residential combustion emissions of PM, accounting for condensable organics in a consistent way.

The EMEP model calculates and outputs the ’local fraction’, used by the uEMEP downscaling to remove double counting70

of emissions (Denby et al., 2020; Wind et al., 2020). The local fraction is the contribution of emissions in one EMEP grid to

itself and to its neighbouring grids. For this application only a 3 x 3 grid contribution region is calculated, though for other
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applications this can be much larger. By tagging the grid emissions in this way the local contribution from EMEP can be

removed and replaced by the high-resolution uEMEP sub-grid calculation.

2.2 uEMEP model implementation75

The uEMEP model is described in a recent publication (Denby et al., 2020). In that article the Norwegian forecast application

of uEMEP is described where hourly downscaling using bottom-up emission inventories is carried out. For the European

application calculations are made on annual mean data, creating air quality maps for Europe down to 100 m resolution and

calculating concentrations at Airbase stations positions down to 25 m.

Downscaling is carried out in the following way. EMEP grid emissions per sector and per source are redistributed to uEMEP80

sub-grids using the proxy emission data described in Sect. 2.3. Each sub-grid dispersion calculation uses only the emission

sub-grids within the moving window emission region, see Fig. 1. For annual mean calculations dispersion is carried out using a

rotationally symmetric Gaussian dispersion kernel (Denby et al., 2020), given an initial plume size and height. These parameters

are provided in Table 1. The initial horizontal plume size is determined by the size of the sub-grid. The Gaussian dispersion

parameters used are based on the Kz dispersion methodology described in Denby et al. (2020) but adapted to the rotationally85

symmetric dispersion kernel. The EMEP model local fraction contribution originating from within the moving window region

is removed and replaced with the sub-grid dispersion calculation from uEMEP, thus avoiding double counting of emissions

(Fig. 1). For these simulations this region corresponds to 2 x 2 EMEP grids, i.e. within an area that is ± 0.1o in both latitude

and longitude. This ensures that no matter where the uEMEP calculation sub-grid is placed that the moving window region

will always be covered by the 3 x 3 local fraction region.90

Downscaling with uEMEP occurs only for primary emissions. NO2 is calculated from NOX and OX using the same travel

time parameterisation described in Denby et al. (2020) but applied to annual mean wind speeds, photo-dissociation rates

and concentrations. To account for non-linearity in the NO2 chemistry, when calculating with annual means, an additional

frequency distribution correction factor is implemented, see Sect. 2.4. Annual mean downscaled O3 is also determined using

this same parameterisation.95

To improve efficiency of the calculations, Europe is split into a number of tiles that cover the European land domain. For the

100 m resolution mapping calculations there are 1097 tiles, each of which is 100 km x 100 km. These tiling regions are shown

in Fig. 2.

Table 1. Initial dispersion (σz0) and emission height (hemis) for the three downscaled sources for all primary pollutants.

Source Initial dispersion (σz0) emission height (hemis)

Traffic (GNFR6) 2 m 1 m

Residential heating (GNFR3) 10 m 15 m

Shipping (GNFR7) 15 m 70 m
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Figure 2. Annual mean PM2.5 concentrations calculated with the EMEP model at 0.1o for 2018. Shown are the uEMEP tiling regions used

in the calculations. In total 1097 100 km x100 km tiles with 100 m resolution are used to model Europe.

2.3 uEMEP proxy data

We use road data from OSM to redistribute the traffic emissions. Though the spatial coverage of OSM is very good, it does not100

contain actual traffic data. Redistribution of the emission data is achieved by weighting the different road categories provided in

OSM. The following road categories are considered: motorway, trunk, primary, secondary, tertiary, unclassified and residential.

Each is weighted relative to the other so that emissions can be redistributed and attributed to the road links. Estimates of the

weights are based on the representative average daily traffic (ADT) for different road categories for Norwegian average road

situations. The weighting currently employed for the redistribution is shown in Fig. 3. It is also worth noting that for major105

roads, such as motorways, OSM often represents these as dual carriageways, i.e. as two separate road links. In these cases the

weighting of a motorway will be twice that indicated here. Sensitivity tests with alternative weighting, see Sect. 5.2, show the

choice of weighting does impact on the results but that the current choice provides close to optimal spatial correlation when

compared to measurements.

A global population dataset from the GHS is used as the proxy for redistributing residential heating emissions. We choose the110

highest available resolution of 9 arcsec (0.0025o) from the year 2015. The coordinate system is WGS84. This dataset indicates
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Figure 3. Weighting of the OpenStreetMap road categories used to redistribute EMEP traffic emissions for downscaling. Applied to all

primary pollutants.

the distribution of population as the number of people per cell. A number of alternative formulations of the population proxy,

as well as an alternative proxy based on building density, are assessed in Sect. 5.3

AIS data for shipping emissions are provided by the Norwegian Coastal Administration. The raw data, which contains a

list of instantaneous point emissions, is averaged over the year 2017 and gridded to 0.0025o. Though these data are actual115

emissions we still use them as proxy data to redistribute EMEP gridded emissions, to be consistent in the methodology.

2.4 uEMEP chemistry parameterisation for annual mean NO2

uEMEP downscales only primary pollutants. It is thus necessary to apply chemistry parameterisations to the NOX and EMEP

O3 concentrations to derive downscaled NO2 and O3 concentrations. Two methods for doing this are described in Denby et al.

(2020). One for hourly concentrations using a weighted travel time parcel method and the other for annual means, which is120

based on a simple empirical relationship between observed NO2 and NOX . It is desirable to apply the model based chemistry

scheme rather than an empirical scheme, however due to the non-linearity of the NO2 chemistry the chemical scheme cannot

be directly applied to annual mean concentrations.

To solve this, chemistry is not calculated on just a single annual mean value for NOX and O3 but on a frequency distribution

for these parameters that represent the variability over a year. This can be illustrated for the photostationary case where the125

NO2 concentrations can be derived from NOX and OX using

[NO2] =
1

2

(
([NOX ] + [OX ] +J/k1)−

√
([NOX ] + [OX ] +J/k1)2− 4[NOX ][OX ]

)
(1)
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where the concentrations are annual mean values in molecules/cm3, k1 is the production reaction rate and J the photo-

dissociation rate for NO2. If the frequency distribution for the three annual mean variables [NOX ], [OX ] and J/k1 is known130

then we can integrate over Eq. (1) using these distributions as weighting functions. An appropriate probability distribution

function for the concentrations is the log-normal distribution, which can be written as

PDFx =
1

xσ
√
2π
exp

(
− (log(x)−µ)2

2σ2

)
(2)

where the log-normal parameters µ and σ are determined from the mean (m) and the standard deviation (s) by135

µ= log

(
m2

√
m2 + s2

)
and σ2 = log

(
1+

s2

m2

)

The frequency distribution of J is not log-normally distributed, since it is dependent on the solar zenith angle (ZA) and

various other meteorological parameters, such as cloud cover and water vapour content. The EMEP model uses lookup tables140

based on precalculated J values from the Phodis model (Jonson et al., 2000). In order to implement the frequency distribution

of J in uEMEP a power law fit is made to the tabulated values. This can be written as:

J = Cjcos(ZA)
−pj (3)

whereCj is a constant that is normalised out when producing the normalised frequency distribution and pj = 0.28. The standard145

deviation of k1, dependent on air temperature, is significantly smaller than for J so it is treated as a constant.

A new value [NO2]pdf can then be determined using these frequency distributions

[NO2]pdf =

∞∫∫∫
0

[NO2]PDFoxPDFnoxPDFj d[NOX ]d[OX ]dJ (4)

and a correction term showing its difference from the mean is defined as150

fno2,pdf =
[NO2]pdf
[NO2]mean

− 1 (5)

When calculating in three orthogonal dimensions then it is assumed there is no correlation between the variables.
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To implement this procedure the standard deviation s must be known for NOX and OX . Values for snox and sox have been

derived from earlier model calculations for Norwegian stations. Linear regression provides robust values for sox/mox and155

snox/mnox of 0.21 and 1.14 respectively (see Fig. S5). The variability of NOX reflects the variability of the traffic emissions,

for stations within the influence of traffic, and this should be generally applicable throughout Europe. 72 sites are used for the

calculation. The calculation of the distribution correction is carried out numerically after calculation of the NO2 concentrations.

Implementation of the frequency distribution for concentrations has a significant impact, with a general reduction in NO2

concentrations compared to the annual mean calculation using Eq. 1. This reduction leads to correction terms (fno2,pdf ) of160

between 0 to -25%. The highest corrections occur around NOX=OX , where Eq. (1) shows the most non-linear behaviour. On

average for all station sites in Europe, around a -16% reduction on the initially calculated [NO2]mean has been determined. In

contrast to the distribution correction for concentrations, the distribution correction for J leads to an increase in NO2 of around

6%. This is because roughly half of the frequency distribution for J is 0, i.e night time, when there is no photo-dissociation.

In Sect. 5.5 the impact of this and other chemistry schemes is further discussed. More information concerning this scheme is165

contained in the supplementary material S1.4.

3 Example maps

Figure 4. Calculated NO2 concentrations in the 100 km tile (nr. 328) for 2018, part of the all European calculation at 100 m resolution. Left

the EMEP model calculation at 0.1o and right the uEMEP calculation at 100 m resolution. The city in this tile is Milan. Airbase stations are

shown as circles.

In this section we present example maps that are generated from the EMEP model and uEMEP simulations. 100 km example

tiles are shown in Fig. 4 - 6, demonstrating the original EMEP model calculations and the downscaled maps using uEMEP for
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Figure 5. Calculated O3 concentrations in the 100 km tile (nr. 328) for 2018, part of the all European calculation at 100 m resolution. Left

the EMEP model calculation at 0.1o and right the uEMEP calculation at 100 m resolution. The city in this tile is Milan. Airbase stations are

shown as circles. This is the same tile as is shown in Fig. 4.

Figure 6. Calculated PM2.5 concentrations in the 100 km tile (nr. 79) for 2018, part of the all European calculation at 100 m resolution. Left

the EMEP model calculation at 0.1o and right the uEMEP calculation at 100 m resolution. The city in this tile is Madrid. Airbase stations are

shown as circles.
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NO2, O3, and PM2.5. The uEMEP calculations are made on an x-y projected map commonly used for European mapping. The170

projection used is the European ETRS89-LAEA projection (EPSG: 3035). Maps presented are shown on latitude and longitude

which means that the projected uEMEP tiled maps do not necessarily follow the North-South direction.

The downscaled maps resolve more variability between stations. Compared with the EMEP model maps, uEMEP maps

have higher concentrations of NO2 and PM2.5, and lower concentration of O3, in heavy traffic and populated areas due to the

high-resolution proxy dataset.175

4 Validation

Observed annual mean concentrations of NO2, PM2.5, PM10, and O3 from Airbase (European Environment Agency, 2018)

are used for comparison with both the EMEP model and uEMEP calculations. All valid Airbase stations with more than

75% coverage are used in the validation and are assumed to be sited at 3 m above the surface. Results for the year 2018

are presented. Results focus on the spatial correlation, expressed in terms of the coefficient of determination (r2), and on the180

relative bias (Bias). For station sites the downscaling with uEMEP is performed on 25 m sub-grids, which is of sufficient

resolution to spatially represent traffic sites. However, since the Gaussian model used does not take into account buildings or

obstacles, then traffic sites in street canyons or built up areas may be underestimated. A study by Lefebvre et al. (2013) in

Antwerp, where both Gaussian and street canyon models were applied at 15 street canyon modelling sites, showed an average

street canyon modelling increment of just 11% for NO2. We include all available sites in this study because in Europe the185

majority of traffic sites appear not to be street canyons, though information on this is unclear (Tarrasón et al., 2021). Also, even

without including obstacles, the increased model resolution (up to 25 m) allows the concentration gradients at roadside to be

better described.

4.1 NO2

In Fig. S6 and Fig. S7 scatter plots for NO2 are shown for each country and Europe as a whole. These results are summarised190

in Fig. 7 where the annual mean concentration and spatial correlation are shown.

In a majority of countries the spatial correlation for NO2 is more than doubled when implementing uEMEP. The two ex-

ceptions are Ireland (IE), where the spatial correlation hardly changes with the downscaling, and Bosnia and Herzegovina

(BA), where the spatial correlation is significantly reduced. Both these countries have very few stations. The highest spatial

correlation is for Poland (PL) with r2 = 0.85.195

It is worth noting that the average spatial correlation per country is r2 = 0.62 which is higher than the spatial correlation

when assessed for all stations in Europe (r2 = 0.57). This indicates that a part of the variability occurs between countries and

can be interpreted to reflect differences related to emission reporting from each country. If the NOX emissions from individual

countries have uncorrelated bias then this will reduce the overall spatial correlation.

The relative bias is improved for all countries with the exception of Greece (EL), which is the only country with a significant200

positive bias. Overall for Europe bias is improved from -46% for the EMEP model to -18% when using uEMEP. Of the 28
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countries with 10 or more monitoring sites, 18 of these have an absolute bias less than 25% after downscaling. Turkey (TR)

has the largest negative bias, after downscaling, of -45%.

4.2 PM2.5

In Fig. S8 and Fig. S9 scatter plots for PM2.5 are shown for each country and Europe as a whole. These results are summarised205

in Fig. 8 where the annual mean concentration and spatial correlation are presented.

Unlike the NO2 downscaling, there is generally no improvement in the spatial correlation when applying uEMEP for PM2.5.

Only 6 out of 17 countries show improved spatial correlation and overall for Europe there is a slight decrease, from r2 = 0.49

for the EMEP model to 0.46 for uEMEP. This result is further discussed in Sect. 6.
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Figure 7. Annual mean NO2 concentrations and spatial correlation (coefficient of determination r2) per country for 2018 calculated with the

EMEP model and uEMEP compared to Airbase observations. Only countries with 10 or more stations are shown but all stations are included

in the final EU result. 3313 stations are included in the comparison.
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Figure 8. Annual mean PM2.5 concentrations and spatial correlation (coefficient of determination r2) per country for 2018 calculated with

the EMEP model and uEMEP compared to Airbase observations including all types of stations. Only countries with 10 or more stations are

shown but all stations are included in the final EU result. 1376 stations are included in the comparison.

The relative bias is however reduced for almost all countries. For Europe as a whole the relative bias went from -21% for210

the EMEP model to -11% for uEMEP. Only the three countries Austria (AT), Sweden (SE) and Finland (FI), that had almost

no bias with the the EMEP model calculation, achieve a positive bias with uEMEP.

4.3 PM10

In Fig. S10 and Fig. S11 scatter plots for PM10 are shown for each country and Europe as a whole. These are summarised in

Fig. 9.215

The results for PM10 are similar to those for PM2.5. In this case though the majority of countries, 21 out of 27, have improved

spatial correlation with the application of uEMEP. The spatial correlation for all of Europe using uEMEP is unaltered compared

to the EMEP model calculation, with r2=0.34. This is lower than the spatial correlation found for PM2.5 by around 0.12.

12



0

10

20

30

40

50

60

AT BE BG CH ES EL CZ DE FR FI HR HU IE IS IT LT MK NL NO RO PL PT SE SI SK TR UK EU

C
o

n
ce

n
tr

at
io

n
 (

µ
g

/m
3
)

Annual mean concentrations PM10 per country

EMEP uEMEP Observations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AT BE BG CH ES EL CZ DE FR FI HR HU IE IS IT LT MK NL NO RO PL PT SE SI SK TR UK EU

C
o

rr
el

at
io

n
 (

r2
)

Spatial correlation (r2) PM10 per country

EMEP uEMEP

Figure 9. Annual mean PM10 concentrations and spatial correlation (coefficient of determination r2) per country for 2018 calculated with

the EMEP model and uEMEP compared to Airbase observations including all types of stations. Only countries with 10 or more stations are

shown but all stations are included in the final EU result. 2891 stations are included in the comparison.

As with PM2.5 the relative bias is reduced with the uEMEP downscaling. For Europe we see the relative bias went from

-39% for the EMEP model to -30% for uEMEP.220

4.4 O3

In Fig. S12 and Fig. S13 scatter plots for O3 are shown for each country and Europe as a whole. These are summarised in Fig.

10.

Ozone is generally reduced with the downscaling due to an increase in NOX concentrations. In general for Europe we see a

reduced positive bias from +16% for the EMEP model to +11% for uEMEP. Spatial correlation is also improved in 21 of the225

24 countries. The only countries to show significant degradation in the downscaling results are Switzerland (CH) and Greece

(EL). This is likely due to the overestimated NOX concentrations there (Fig. 7).
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Figure 10. Annual mean O3 concentrations and spatial correlation (coefficient of determination r2) per country for 2018 calculated with

the EMEP model and uEMEP compared to Airbase observations including all types of stations. Only countries with 10 or more stations are

shown but all stations are included in the final EU result. 1974 stations are included in the comparison.

5 Sensitivity studies

In this Section we present the results of several sensitivity calculations using uEMEP. These include sensitivity to sub-grid

resolution, traffic emission proxies, residential combustion emission proxies, sensitivity to alternative bottom up emissions in230

Norway and sensitivity to the NO2 chemistry scheme.

5.1 Sensitivity to resolution

When calculating concentrations at station positions a grid resolution of 25 m is used. However, when mapping all of Europe

a lower resolution of 100 m is employed. In Fig. 11 we show the results of a change in resolution on the annual mean NO2 and

PM2.5 concentrations for resolutions from 25 to 500 m.235
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Figure 11. Change in bias and spatial correlation (coefficient of determination r2) as a result of changes in uEMEP resolution. Shown are the

results for NO2 and PM2.5. Also included is the EMEP model 0.1o calculation in yellow. The results are based on the European calculations

and all available Airbase stations are included.

For NO2 both bias and spatial correlation improve with increasing resolution. 100 m calculations are on average 4% lower

than the 25 m calculations. For PM2.5 there is little change in bias between the different resolutions. Both shipping and

residential combustion sources are only provided at 250 m so any further change in model results at lower resolutions will be

due to the traffic contribution only. Spatial correlation is basically unchanged for PM2.5 at all resolutions.

5.2 Sensitivity to OSM weighting240

In Fig. 3 the weighting imposed on the OSM road categories is shown. This weighting specifies the relative contribution of

the different road categories to the redistribution of the gridded traffic emissions in uEMEP. This weighting is based on an

analysis of Norwegian traffic data but it is worthwhile assessing the sensitivity of the calculated NO2 concentrations using

different weights. To assess this sensitivity a power law is applied to the weighting. For power indices greater than 1 then more

weighting is applied to the major roads, for power law indices less than 1 then more weight is applied to the the minor roads.245

The different weights for the different power law indices are shown in Fig. 12. The results of this sensitivity test, presented in

terms of relative bias and spatial correlation (r2), are shown in Fig. 13.

Bias is quite strongly affected by the change in weighting. Higher concentrations are calculated when more weight is given

to the minor roads. This is likely because most measurement sites are not on major roads. Increasing the weighting to minor

roads will generally increase the urban background levels. The spatial correlation is among the highest for the current weighting250
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Figure 13. Change in bias and spatial correlation (coefficient of determination r2) for NO2 as a result of changes in the power law index

applied to the OSM road traffic weighting. Lower power law indices give more weight to minor roads, higher power law indices give more

weight to major roads. The results are based on the European calculations and all available Airbase stations are included.

with a power index of 1. This confirms that the initial estimate, based on Norwegian traffic, reflects a good general distribution

of traffic in Europe. If real traffic volume were available then the weighting would be more precise. Tests on Norwegian data,

Sect. 5.4, confirm that spatial correlation is significantly improved when using real traffic data for the redistribution weighting.

5.3 Sensitivity to the residential combustion emission proxy

For the PM2.5 calculations presented in Sect. 4.2 population density data at 0.0025o has been used to redistribute the residential255

combustion emissions in uEMEP. The results indicate a slightly reduced spatial correlation but also with an improved negative

bias. In this section we assess the sensitivity of the redistribution proxy to a number of alternative proxies. Firstly a power law

is applied to the population density data. A lower power law index will reduce the weighting towards highly populated regions.
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Figure 14. Change in bias and spatial correlation (coefficient of determination r2) for PM2.5 as a result of changes in the residential

combustion proxy. A lower power law index gives less weight to the population redistribution, a higher power law indices give more weight.

’Building/population’ is the building density masked by population data. See text for details.

A power law index of 0 will work as a mask, redistributing the EMEP emissions evenly to any 250 m sub-grid that contains

population. As an alternative to the population data, building density data has also been extracted from the OpenStreetMap260

dataset. This has also been placed on a 0.0025o grid for all of Europe. Two alternatives with this proxy are tested. The first

using building density as the weighting proxy and the second using building density masked with population, so that only areas

with both buildings and population are used for redistribution. In addition to the alternative proxy data the sensitivity of the

calculations to emission height, currently set to 15 m, is also assessed.

The results are shown in Fig. 14. Here we see that a power law of 0.25 gives slightly improved spatial correlation and that265

the use of building density also slightly improves spatial correlation compared to population. However, none of the alternative

proxies significantly improves the spatial distribution of PM2.5 and none attain the spatial correlation of the EMEP model

calculations at 0.1o. There is a general trend for reduced negative bias to lead to reduced spatial correlation in all calculations,

so when the contribution from the downscaled residential combustion increases then spatial correlation decreases. This infers

that the redistribution is not improving the results.270

In addition to the proxy sensitivity the result of the EMEP model calculation where all local EMEP model grid contributions

(± 1o) have been removed is shown in Fig. 14. This shows firstly that around 10% of the PM2.5 in the EMEP model comes

from within this local region and that the inclusion of these emissions does add to improved spatial correlation at the EMEP

model 0.1o scale, from r2 = 0.467 to 0.488. Here we see more clearly that while the bias is improved by downscaling the spatial

correlation is not and is similar to the spatial correlation obtained from the non-local contributions. However, it is possible to275

achieve improved spatial correlation when more appropriate downscaling proxies are used. This is presented in Sect. 5.4.

5.4 Results of improved emission data in Norway

Throughout the uEMEP downscaling simulations we used the 0.1o country reported emission data and redistributed it using

population, OpenStreetMap data and AIS shipping data as redistribution proxies. However, many countries have more detailed
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emission data sets, including Norway, that could be used to improve the downscaling calculations. To test the impact of more280

realistic spatial distributions of emissions, the emission and emission proxy data used in Norway are replaced in the EMEP

model and uEMEP calculations with the emission data currently used in the national air quality forecasting in Norway. Details

surrounding these emissions can be found in Denby et al. (2020) and Grythe et al. (2019). The most important differences

between the Norwegian and European emissions and emission proxy data are: (1) Traffic volume data from the Norwegian

national road database is used instead of OSM weighting. Exhaust emissions are based on emission factors using a bottom285

up methodology and NOX emissions are additionally corrected for temperature. (2) The non-exhaust road dust emissions are

calculated with the NORTRIP model (Denby et al., 2013a; Denby et al., 2013b) which are significantly larger than the current

national estimates reported for Norway. (3) The total Norwegian residential heating emissions of PM are the same for both the

Norwegian and the European emissions but the Norwegian emissions have been redistributed using the MetVed model (Grythe

et al., 2019), which uses much more detailed information than just population to distribute the residential heating emissions at290

250 m. (4) The Norwegian emissions and the uEMEP proxy data are entirely consistent with each other since the Norwegian

emissions are aggregated grid emissions based on the fine scale emission data.

We make four separate downscaling calculations for Norway using the two emissions, ’European emissions’ and ’Norwegian

emissions’, and the two high-resolution proxy datasets, ’European proxy downscaling’ and ’Norwegian proxy downscaling’,

respectively. Shipping is not changed in these simulations and in this case the calculation year is 2017. Though the resolution295

of the EMEP model in the Norwegian forecasting system is nominally 2.5 km, for these simulations we use the same 0.1o

EMEP model grid resolution. The results are shown in Fig. 15 for NO2, PM2.5 and PM10 where the relative bias (%) and

spatial correlation (r2) are presented.

For NO2 in Norway the large negative bias seen in the EMEP model is almost completely removed by the use of the traffic

downscaling, using either the Norwegian or European emission data. On a national level the local Norwegian (bottom up) traffic300

NOX emissions are roughly 25% higher than the EMEP (top down) emissions. NO2 concentrations are slightly overestimated

when using the Norwegian proxy data for traffic. Spatial correlation is improved with the use of the Norwegian proxy data

for traffic, compared to European emissions that use OSM data, from r2 = 0.6 to 0.72. It is worth noting that in the complete

Norwegian calculation reported in Denby et al. (2020) using hourly calculations that the spatial correlation is even higher at r2

= 0.78, but the bias is less at -5%.305

For PM2.5 biases are very similar for both the European and Norwegian proxy data sets when using either the European or

Norwegian emissions. The spatial correlation however is significantly higher when using the Norwegian emissions, both at grid

level and after downscaling. There is significant improvement, r2 increases from 0.37 to 0.55, when both changing European

emission to Norwegian emission and changing the residential heating proxy from population (European proxy) to the MetVed

model (Norwegian proxy). This indicates that improved spatial representation can be attained when both the gridded and the310

proxy data are consistent and more representative. However, little can be improved with downscaling when the initial gridded

emissions are not well distributed, even with improved proxy data. Interestingly we see the same result as reported in Sect.

4.2, that the spatial correlation is reduced when applying the European proxy data to the European emissions. These results
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Figure 15. Change in bias and spatial correlation (coefficient of determination r2) as a result of changes in Norwegian emission and emission

proxy data for NO2, PM2.5 and PM10 calculations. ’European emissions’ are the emissions used for all of Europe and ’Norwegian emissions’

replaces these emissions for traffic and residential heating with alternative emissions used in the Norwegian air quality forecasting system.

’European’ and ’Norwegian’ proxy downscaling are explained in the text. Calculation year is 2017. The number of available stations is 41,

36 and 44 respectively for NO2, PM2.5 and PM10.

indicate that significant improvements can still be obtained in the downscaling if improved emissions and emission proxies are

implemented.315

For PM10 both bias and spatial correlation are significantly improved with the implementation of the local emissions and

proxies. This is to a large extent due to the improvement in the road dust emission contribution but also due to an improvement

in the residential heating distribution. Spatial correlation is also significantly increased, from r2 = 0.27 to 0.49.
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5.5 Sensitivity to the NO2 chemistry scheme

Included in uEMEP are a number of simplified NO2 chemistry schemes, used to derive downscaled NO2 concentrations from320

NOX and O3 concentrations. In the results presented so far we have used the weighted travel time parcel method, as applied

and described in Denby et al. (2020), with the additional use of the frequency distribution correction described in Sect. 2.4

("Travel time" in Fig. 16). Two additional chemistry-based schemes and two empirically-based schemes are also available.

The two alternative chemistry schemes are the photo-stationary formulation ("Photostationary" in Fig. 16) and an alternative

stationary formulation ("Stationary" in Fig. 16) that also allows for deviation from the photo-stationary state (Maiheu et al.,325

2017). The first empirical scheme is the Romberg scheme (Romberg et al., 1996) ("Romberg" in Fig. 16), also described in

Denby et al. (2020), that directly converts NOX to NO2 concentrations. The parameters for this equation have been updated by

fitting to all available Airbase data for the year 2017. The other empirical formulation is the SRM scheme (Wesseling and van

Velze, 2014) ("SRM" in Fig. 16) that is also based on a fit to measurement data but includes background O3 as one of the input

parameters. The advantage of the two empirical fits is that they should convert NOX to NO2 in a manner that is consistent with330

the observations, and as such can be applied to annual mean concentrations directly, without any correction for non-linearity.

All methods are described in Sect. S1.

In Fig. 16 we provide the results of the sensitivity tests, showing bias and spatial correlation for both NO2 and O3. The three

chemistry based schemes give similar results indicating that in all three cases the calculations are close to photo-stationary.

The two empirical fits also give similar results, with the largest negative bias in NO2 given by the Romberg scheme with -25%.335

Since the Romberg scheme is specifically designed to reflect measurements, providing the correct NO2/NOX ratio, it can be

regarded as the closest to the measurements. The bias differences between chemistry schemes and the Romberg scheme indicate

that chemistry schemes have higher concentrations of NO2 than the Romberg scheme, thus overestimate the NO2 contribution

when applied to annual mean concentrations. This is partially due to the positive bias in the EMEP model O3 concentrations of

16%, but this only accounts for around 4% of the additional NO2. Included in Fig. 16 is the annual mean calculation without340

the frequency distribution correction ("Travel time (annual)"), showing a 10% difference in bias when compared to calculations

that use this correction. Spatial correlation is also improved by using the frequency distribution methodology.

6 Discussion

Downscaling only applies to emissions within a limited region of ± 0.1o surrounding each receptor sub-grid. Based on the

uEMEP calculation, the local contributions to NOX are significantly larger than for PM. The different source contributions at345

measurement sites are given in Table 2 and this shows that, on average in Europe, 58% of the NOX contributions come from

traffic within this limited region. In contrast only 19% of the PM2.5 is attributable to residential heating, the largest downscaled

contribution, from inside this region.

NO2 is well modelled with high spatial correlation for many countries, but still with a significant negative bias of -18%.

There is significant variation in bias between countries even though the methodology is consistently applied to all countries.350

This may be attributable to the various methods used for generation of the national emissions. Though the problem remains
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Figure 16. Change in bias and spatial correlation (coefficient of determination r2) for NO2 and O3 with implementation of 6 different

versions of the chemistry schemes. See text for details.

Table 2. Source contribution to all air quality stations in Europe calculated with uEMEP. uEMEP local contributions are from primary

emissions within a region of 2 x 2 EMEP grids (± 0.1o) in both latitude and longitude. Non-local EMEP model contributions are all

emissions from outside this region, for the downscaled sources, as well as all other primary and precursor emission sources from within this

region that are not downscaled.

Source NOX (µg/m3) PM2.5 (µg/m3) PM10 (µg/m3)

Traffic (GNFR6) 13.9 (58%) 0.71 (6%) 1.1 (7%)

Residential heating (GNFR3) 1.8 (8%) 2.2 (19%) 2.6 (16%)

Shipping (GNFR7) 0.30 (1%) 0.01 (0.1%) 0.01 (0.1%)

Non-local EMEP 7.9 (33%) 8.4 (75%) 12.3 (77%)

Total 23.9 (100%) 11.3 (100%) 16.0 (100%)

that uEMEP does not take into account dispersion in street canyons, where a number of traffic site measurements are made,

it is generally the case that the spatial representativeness of the uEMEP calculations is suitable for comparison with these

measurements (Lefebvre et al., 2013). Variation in bias between countries is then no longer a case of a mismatch in resolution
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but most likely reflects bias in the national emissions. uEMEP may be used to investigate this variability between countries355

further and to help harmonise future emission inventories across Europe.

There is a significant difference between the results achieved for the downscaling of PM compared to NO2. NO2 is dominated

by traffic emissions and this is spatially well defined using OSM as a proxy. The largest contributor to PM in the downscaled

sources is residential heating, with contributions of 19% and 16% for PM2.5 and PM10, respectively (Table 2). This is inline

with other estimates of residential combustion in Europe. Thunis et al. (2017) calculated a contribution of 13% from residential360

combustion from primary PM2.5 averaged over 150 European cities, without downscaling. Population is used as a downscaling

proxy for the residential source, but it appears that this is not a good proxy for high-resolution emission redistribution. Though

clearly residential heating emissions occur where people live there can be large variation from city to city and from urban to

suburban and to rural areas as heating practices vary significantly depending on housing type and on availability of alternative

heating sources. To some extent this has been taken into account in the emission inventory at 0.1o, but the emission proxy used365

in uEMEP is likely not consistent with the EMEP emission inventory.

The Norwegian sensitivity tests show that when consistent emissions and emission proxies are used then spatial correlation

can be significantly improved. For the application of uEMEP in Europe this was not the case since each country has their own

methodology for calculating gridded EMEP emissions that may or may not make use of the downscaling proxies applied in

uEMEP. A more consistent approach, as applied in Norway, would be to use the same spatial redistribution proxies in both370

the gridded EMEP emissions and the downscaling proxies. This would require additional interaction and cooperation between

emission inventory developers and air quality modellers.

It is worth noting that no selection of the Airbase monitoring data was carried out. All available stations with more than 75%

coverage were used. This includes mountain stations, all traffic stations as well as industrial sited stations. In comparisons with

the EMEP model these types of sites are often removed. All stations were also assumed to be sited at 3 m above the surface.375

It is quite possible that different results would be obtained if a selection of stations was carried out. This will be assessed at a

later time.

7 Conclusions

Downscaling of annual mean concentrations from the EMEP model have been carried out for NO2, PM2.5, PM10, and O3 using

the uEMEP model. Downscaling redistributes EMEP gridded emission data, using suitable proxy data, to high-resolution sub-380

grids and then calculates the sub-grid concentrations using a Gaussian dispersion model. These are then recombined with the

EMEP model concentrations in a consistent way that avoids double counting of the emissions. Maps for all of Europe have

been produced at a resolution of 100 m and concentrations at all Airbase measurement sites have been calculated at 25 m.

The results for NO2 show significant improvement with a doubling of spatial correlation for most countries and a significant

reduction in negative bias. For NO2 the downscaling works very well, which is due to the fact that NOX emissions are mainly385

attributable to traffic and these emissions are well defined spatially with the proxy data used. O3 concentrations are decreased

due to higher NOX concentrations. Both concentrations and spatial correlations of O3 are better simulated with uEMEP.
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Neither PM2.5 nor PM10 shows any improvement in spatial correlation with the downscaling, though the negative bias in

PM concentrations is improved. The spatial distribution of PM emissions can be improved, as demonstrated for Norway, with

more accurate proxy data, but emissions of PM remain difficult to quantify properly at high resolutions and will require further390

effort. One way forward is to harmonise the proxies used for both the EMEP gridded emissions and the uEMEP downscaling.

This has been shown to improve results in Norway.

Downscaling can provide additional information concerning the contributions of local sources. This may be combined with

the EMEP model source-receptor calculations to provide a more complete picture of local and long-transported contributions.

The method can lead to a better assessment of local versus regional mitigation strategies to improve air quality in Europe at395

high resolution. It also shows good potential to be used to improve exposure estimates.

Code and data availability. The uEMEP_v6 model used in this study is archived on Zenodo (https://doi.org/10.5281/zenodo.4923185), as
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S1 NO2 chemistry schemes

Included in uEMEP are a number of simplified NO2 chemistry schemes, used to derive downscaled NO2 concentrations from

NOX and O3 concentrations. The results presented in this paper have used the weighted travel time parcel method, as applied

and described in Denby et al. (2020), together with the frequency distribution correction scheme (Section 2.4). In addition to

this parameterisation two other chemistry based formulas are available. The first being the photo-stationary formulation, also5

described in Denby et al. (2020), and the second a stationary formulation that allows for deviation from the photo-stationary

state that may be caused by emissions, advection gradients or additional chemistry (Maiheu et al., 2017). Two empirical

formulations are also included that are based on a fit to measurement data. The first, the Romberg scheme (Romberg et al.,

1996), is already described in Denby et al. (2020) and directly converts NOX to NO2 concentrations. The parameters for this

equation have been updated by fitting to all available Airbase data for the year 2017. The second empirical scheme, the SRM10

scheme (Wesseling and van Velze, 2014), includes background O3 and NO2 combined with local NOX as input parameters.

The advantage of the two empirical fits is that they should convert NOX to NO2 in a manner that is consistent with the

observations, and as such can be applied to annual mean concentrations without correcting for non-linear chemistry. The first

method is already described in (Denby et al., 2020), the remaining methods are presented in the following sections.

S1.1 Stationary scheme based on EMEP equilibrium15

The solution to the photo-stationary equilibrium of NO2 that only considers the NOX titration of O3 (reaction rate k1) and

the photo-disassociation of NO2 (photo-disassociation rate J) is already presented in Section 2.4. This steady state solution

implies

k1[NO][O3]

J [NO2]
= 1 (S1)

S1



20

For the case where there is equilibrium but other terms such as emissions, deposition or additional chemistry are involved then

we can define a constant λ such that

k1[NO][O3]

J [NO2]
= λ (S2)

For λ < 1 this implies a sink of NO2 and for λ > 1 a source. The steady state solution can then be written, as in Eq. (1), as25

[NO2] =
1

2

(
([NOX ] + [OX ] +λJ/k1)−

√
([NOX ] + [OX ] +λJ/k1)2 − 4[NOX ][OX ]

)
(S3)

By simply extracting the parameters listed in Eq. (S1) from the EMEP model we can determine λ and by using Eq. (S3) we can

calculate the downscaled NO2 concentrations. At the station sites used in this study we find on average λ= 0.95 with a standard

deviation of 0.35. Around 60% of the sites have λ < 1. This means there is significant divergence from the photo-stationary30

assumption in the EMEP annual mean calculations. λ is also strongly correlated with NO2, increasing with increasing NO2,

indicating that emissions are perhaps the dominating factor leading to non photo-stationary equilibrium. It should be noted that

the term [NOX ] + [OX ] in Eq. (S3) is usually significantly larger than J/k1 so even with a significant deviation of λ from

unity then the NO2 concentrations will not be largely affected.

This parameterisation is particularly useful if NO2 concentrations from EMEP are to be recalculated, for example when35

using the local fraction to assess the impact on concentrations with changes in emissions in a post-processing step. It is not

necessarily the case that the conditions leading to a deviation of λ from unity are equally applicable for the downscaling

chemistry.

S1.2 Updated Romberg scheme

The Romberg scheme (Romberg et al., 1996) is the simplest method for converting NOX to NO2. It is based on an empirical40

fit to the formula

[NO2] = a
[NOX ]

[NOX ] + b
+ c[NOX ] (S4)

The parameters a, b (µg/m3) and c are derived by fitting to observed annual mean concentrations. The term c should in45

some way reflect the ratio of NO2/NOX emissions, i.e. the asymptotic limit for large NOX . Values for these parameters were

given in Denby et al. (2020), based on a fit to Norwegian measurement data. For the European application a new fit is made to

S2



annual mean concentrations from all available European observations for 2017. This is shown in Fig. S1. The fitted parameters

are: a= 41.1, b= 56.4 µg/m3 and c= 0.162. The root mean square error of this fit is 2.9 µg/m3, or a normalised error of

around 14%.50

When implemented in uEMEP a small adjustment is made to Eq. (S4). It is desirable that background NO2 levels provided by

EMEP are not altered by this calculation. Background NO2 and O3 concentrations are calculated in uEMEP after the removal

of the local fraction contribution from NOX . In Denby et al. (2020) this is referred to as the non-local contribution. To achieve

this we rewrite Eq. (S4) as follows

[NO2] = a
[NOX ]

[NOX ] + b
+ c[NOX ] + ∆[NO2]bg (S5)55

where ∆[NO2]bg is the difference between the EMEP calculated NO2 non-local contribution and the Romberg calculation of

the non-local contribution given by

∆[NO2]bg = [NO2]nonlocal − a
[NOX ]nonlocal

[NOX ]nonlocal + b
+ c[NOX ]nonlocal (S6)

60

This ensures that the calculated NO2 concentrations are unchanged when the local contribution to NOX is negligible.
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Figure S1. Annual mean NO2 versus NOX concentrations for 2017 showing 1774 available Airbase stations. The fit using the Romberg

equation is also shown, using the parameters provided in the text.
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S1.3 SRM scheme

The SRM scheme for NO2 calculation is implemented in The Netherlands as part of the Standard Calculation Method for

air quality (Wesseling and van Velze, 2014). This scheme requires information on background levels of O3 and NO2. Whilst

this information is directly available from the model calculations this is more difficult to extract from measurement data. For65

this reason no fitting or changes to the parameters given in Wesseling and van Velze (2014) have been made. The equation is

slightly re-written to be comparable with the Romberg scheme and the uEMEP formulation as:

[NO2] = [NO2]bg + [O3]nonlocal
[NOX ]local

[NOX ]local + bsrm
+ csrm[NOX ]local (S7)

where70

bsrm =
100

1− csrm
and csrm = 0.15

The value for csrm applied here is the traffic exhaust NO2/NOX emission ratio used in uEMEP, and the value for bsrm (µg/m3)

comes directly from Wesseling and van Velze (2014). The parameters csrm and bsrm are refered to as F and K respectively in

Wesseling and van Velze (2014).75

This equation clearly resembles the Romberg scheme, Eq. (S4), with the exception that a background NO2 and a local NOX

are used. Here the background ozone would then be equivalent to the parameter asrm = [O3]nonlocal.

S1.4 Additional information on the frequency distribution correction scheme

A frequency distribution correction scheme for annual mean calculations of NO2 is described in Section 2.4. This is imple-

mented to deal with the non-linear nature of the NO2 chemistry when calculating annual means. Here we present some of the80

background information used to derive this scheme.

An example of the NOX , OX and J frequency distributions is shown in Fig. S2. Here we see the log-normal distribution

of the concentrations and the quite different distribution of the photo-dissociation rate J . J has a frequency of close to 0.5 at

J = 0, since this, over the course of a year, is the amount of time the sun is below the horizon. The example shown here is

taken from a low latitude European urban background station, with moderate NOX and high O3.85

An assessment of measurement and model data for 2018 was carried out for Norwegian stations in order to derive the

standard deviations of the NOX and OX concentrations. This assessment was limited to available data and a more substantial

assessment could be carried out on a larger set of data. Focus is on the modelled distributions since this is what needs to be

reproduced in order to correct the annual mean calculation. Firstly the concentration distributions were tested for a log-normal

distribution. An example for both NOX and OX , both modelled and observed is shown for the urban background station90

Klosterhaugen in Bergen, Norway, in Fig. S3 and Fig. S4. This is one of the few stations measuring both NOX and O3 in
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Figure S2. Example of the frequency distribution for NOX , OX and J concentrations used in the model. This is taken from the calculation

of an actual site in Southern Europe. X axis is logarithmic.

Norway. Further assessment of the log-normal distribution was carried out for all modelled data at the 72 sites modelled in

Norway for that year. This assessment showed that the concentrations were very close to log-normally distributed at all sites.

Figure S3. Measured and modelled NOX distributions for year 2018 at the station Klosterhaugen, Bergen, shown on both a linear and a

logarithmic scale.
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Figure S4. Measured and modelled OX distributions for year 2018 at the station Klosterhaugen, Bergen, shown on both a linear and a

logarithmic scale.

The standard deviations were then derived and compared to mean values. The results for both NOX and OX at modelled

stations are shown in Fig. S5. For NOX the observed values are also included since these are more readily available. The95

relationship for NOX is very robust and will reflect the temporal variation of the NOX sources, mostly traffic, and of the

meteorology. It is worth noting that the normalised standard deviation of the traffic time profile applied in the Norwegian

calculations is 0.71. Additional variability will be added due to meteorology. For OX the standard deviation is less dependent

on the mean concentration. Even so, the normalised standard deviation of OX is significantly smaller than that of NOX .

Finally the correlation between NOX and OX was addressed since the frequency distribution correction assumes these two100

concentrations are not correlated. This assessment showed both negative and positive correlations at the modelling sites. Sites

with high NOX concentrations showed positive correlation and background sites showed mostly negative correlation. Since

NO2 is part of both NOX and OX then this positive correlation is not surprising. Values for the correlation (r) ranged from

-0.4 to +0.6. This result shows there is correlation between NOX and OX but this would be difficult to take account of in the

frequency distribution correction currently implemented in the model.105
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Figure S5. Scatter plot of hourly standard deviation versus annual mean NOX and OX for 2018 for all the 72 modelled sites. Also included

are measurement data from 41 of the sites that measured NOX with data coverage >75%. The regression slope, intercept set to 0, and the

correlation are also shown in the plots.
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S2 Scatter plots per country

Figure S6. Scatter plots of annual mean NO2 concentrations per country for 2018 calculated with uEMEP. Only countries with 10 or more

stations are shown individually but all stations are included in the final EU plot.
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Figure S7. Scatter plots of annual mean NO2 concentrations per country for 2018 calculated with EMEP. Only countries with 10 or more

stations are shown individually but all stations are included in the final EU plot.
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Figure S8. Scatter plots of annual mean PM2.5 concentrations per country for 2018 calculated with uEMEP. Only countries with 10 or more

stations are shown individually but all stations are included in the final EU plot.
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Figure S9. Scatter plots of annual mean PM2.5 concentrations per country for 2018 calculated with EMEP. Only countries with 10 or more

stations are shown individually but all stations are included in the final EU plot.
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Figure S10. Scatter plots of annual mean PM10 concentrations per country for 2018 calculated with uEMEP. Only countries with 10 or more

stations are shown individually but all stations are included in the final EU plot.
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Figure S11. Scatter plots of annual mean PM10 concentrations per country for 2018 calculated with EMEP. Only countries with 10 or more

stations are shown individually but all stations are included in the final EU plot.
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Figure S12. Scatter plots of annual mean O3 concentrations per country for 2018 calculated with uEMEP. Only countries with 10 or more

stations are shown individually but all stations are included in the final EU plot.
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Figure S13. Scatter plots of annual mean O3 concentrations per country for 2018 calculated with EMEP. Only countries with 10 or more

stations are shown individually but all stations are included in the final EU plot.
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