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Abstract. To understand the plethora of important processes that are characterized by their complexity, from 

global pandemics to global climate change, it may be critical to quantify causal contributions between time series 

variables. Here, we examine an empirical linear relationship between the rate of changing causes and effects with 10 

various multipliers. Sign corrected normalized information flow (nIFc) tends to provide the best estimates of 

causal contributions, often in situations where such causality is poorly reflected by regressions. These include: i) 

causal contributions with alternating feedback (correlation) sign, ii) significant causal time-lags, iii) significant 

noise contributions, and iv) comparison among many causes to an overall mean effect, especially with 

teleconnection. Estimates of methane-climate feedbacks with both observational and Earth system model CESM2 15 

data are given as examples of nonlinear process quantification and model assessment. The relative causal 

contribution is hypothesized to be proportional to |nIF|, i.e. the ratio between entropy (degree of uncertainty) 

received from the cause-variable (i.e. information flow, |IF|) and the total entropy change of the effect-variable. 

Large entropy, associated with noise, deteriorates the estimates of total entropy change, and hence nIF, while the 

proportional relationship between the relative causal contribution and IF improves. 20 
 
Keywords: causality, information flow, causal contributions, methane-climate feedback, model assessment  

https://doi.org/10.5194/gmd-2021-196
Preprint. Discussion started: 19 July 2021
c© Author(s) 2021. CC BY 4.0 License.



 2 

1 Introduction 

Causality is one of the foundations of scientific understanding and progress. Causality, being one of the 

foundations of scientific understanding and progress, continues to expand its application in various research 

disciplines in recent years, including in biomedical science (Russo and Williamson, 2011; Rasmussen et al., 2016; 

Lin and Ikram, 2020; Friston et al., 2020), neuroscience (Seth et al., 2015; Chen et al., 2016; Stokes and Purdon, 5 

2017; Hill et al., 2017; Barnett et al., 2018), artificial intelligience (Pearl, 2019; Luo et al., 2020), economics 

(Granger, 1969; Varian, 2016; Athey and Imbens, 2017; Andor and Fels, 2018). For Earth sciences, causation is 

important, for example, for detecting causal signals and testing hypothesis against observed data (Sugihara et al., 

2012; Stips et al., 2016; Winkler et al., 2021), evaluating, constraining, and improving climate models (Cox et al., 

2018; Bai et al., 2018; Hall et al., 2019; Verbitsky et al., 2019; Vázquez-Patiño et al., 2020; Nowack et al., 2020), 10 

and estimating attribution of extreme or local events to climate or other global change (Ornes, 2018; Pfrommer et 

al., 2019; Swain et al., 2020). The application of various causal methods to Earth sciences has been reviewed by 

Runge et al (2019), where the challenges of such methods are discussed, especially those arising from the 

nonlinear and spatiotemporal variation of complex processes. Runge et al (2019) also suggested a way forward 

for Earth sciences, by combining observational causal inference and physical modelling. Beyond the likelihood 15 

of causality, the development of methods that are capable of quantifying physical causal contributions between 

time series is, therefore, key to resolving and understanding causality in Earth systems science process. 

 

The progress of causal research has been fueled by the continued development and improvement of analytical 

tools for assessing causal influences, from the Nobel-prize winning Granger causality developed in 1960s 20 

(Granger, 1969) to the Shannon entropy-based information transfer (flow) (Schreiber, 2000) in the 21st century. 

Among various methods, the information flow (IF) (Liang, 2014, 2016, 2018) and its normalized form (nIF) 

(Liang, 2015, 2016) derived by Liang are relatively new, yet rigorously established, measures of causality between 

two dynamical events realized in time series. Currently, this method has mainly been applied in Earth sciences, 

with examples of its application including confirmation of the contribution of anthropogenic greenhouse gases 25 

(GHGs) to global warming in the post-industrial period (Stips et al., 2016) and in the forecasting the tropical 

cyclone genesis (Bai et al., 2018). Nevertheless, although IF and nIF are good quantitative measures of causality 

strength, their qualitative application has been limited to tuning the final form of other statistical models, such as 

improving regression-based correlation with multiple potential factors by selecting only factors with significant 

causal influence (Bai et al., 2018). This indirect qualitative application of IF or nIF does not always fully utilize 30 

the determined causality, especially if we wish to quantify the varying interdependent contributions between 

causally related variables instead of simply filtering out those variables that are deemed to have insignificant 

causal influence. A direct quantitative application of IF and nIF for building causal models, however, requires 

robust verification. Here, we explore, empirically, the conditions under which IF or nIF may be suitable for 

quantifying causal contribution trends. We have done this using mock-up interdependent variables, followed by 35 

demonstrating its application with a real-world problem: methane-climate feedback, and propose a hypothesis to 

rationalize the justifiable use of IF and nIF in determining and quantifying causal contributions.  
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2. Methods 

2.1 The Concept 

The assessment in this work is to explore if we can apply the magnitudes of IF or nIF, i.e. measures for flows of 

the amount of information or degree of uncertainty, equivalent to Shannon entropy (Liang, 2014, 2015, 2016, 

2018), as measures for quantifying causal contributions, since stronger information flow implies stronger causal 5 

contributions. Therefore, we make an empirical comparison between the IF, nIF, and regressions based on a 

common form correlating the interdependency of two time-series variables, say X and Y, estimating the 

contribution of variable X to the change of variable Y (i.e. ∂YX/∂t in equation 1). 

!"!	
!$

= 𝛼 ×𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 × %&
%$

          (1) 

We express this as a partial derivative, ∂YX/∂t, since it only equates to dY/dt when other non-X variables are held 10 

constant (i.e. zero noise contribution), and hence it can represent the causal contribution to the effect-variable Y 

for cases with fluctuating noise. On the other hand, the total derivative dX/dt represents the actual rate of change 

of cause-variable X. The multiplier varies among methods. For linear regression, it is mR2 where m is given by Y 

= mX + c and R is the correlation coefficient. For second order regression, the multiplier is M2R2 with M2 = 2aX+b, 

the differential of Y = aX2 + bX +c (with subscript 2 in M2 denoting 2nd order regression). However, correlation 15 

via such regressions does not imply causality and could lead to inaccurate conclusions. We, therefore, would like 

to assess if we could fit |IF| or |nIF| as the multiplier with its positive or negative sign corrected by the sign of 

correlation coefficient in the regression, corresponding to either positive or negative feedback (correlation). We 

denote the sign-corrected IF and nIF as IFc and nIFc, respectively. Since both R2 and |nIF| lie in the range 0 to 1, 

we also compare the estimates using m|nIF| as the multiplier in equation 1. Hence, five multipliers are examined: 20 

mR2, M2R2, IFc, nIFc, and m|nIF|. The parameter α is a calibration factor obtained by comparing the observed 

dY/dt or designed ∂YX/∂t with the product of multiplier and dX/dt. Theoretically, α = 1 for regression but we allow 

variability here. 

 

In detail, the maximum likelihood estimator of the information flow from X to Y is given by (Liang, 2014): 25 

𝐼𝐹&→" =
(""("!(!,$")("!

% (",$"
(""
% (!!)(""("!

%          (2) 

where CYX is the covariance between variables Y and X, and CX,dY is the covariance between X and �̇�, given by the 

series approximation of dY/dt using Euler forward differencing (�̇�* = (𝑌*+, − 𝑌*)/𝛥𝑡). The same system of 

notation applies to CXX, CYY, and CY,dY too.  

 30 

The normalized information flow (Liang, 2015) is given by dividing the IF by a normalizing factor, Z. 

𝑛𝐼𝐹&→" = |𝐼𝐹&→"|/𝑍&→"          (3) 
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where 9%-"
∗

%$
9 + :%-"
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%$
: is the estimated increase in marginal entropy (extent of uncertainty) HY, which includes 

the rate of change of HY due to Y itself (first term) and the contribution from noise (second term). Note that for 

simplicity we consider the self-dependent contribution (1st term) as part of the noise.  

 

Since the original positive/negative sign of IF refers to the increasing/decreasing trend of uncertainty (or 5 

decreasing/increasing trend of predictability) (Liang, 2014, 2018), to determine the direction of positive vs 

negative feedback, we apply a “sign-corrected” nIFc and IFc taking the sign given by the Pearson correlation 

coefficient between variables X and Y (i.e. RXY). Magnitudes indicate the strength of causality. 

𝐼𝐹.,&→" = :(""("!(!,$")("!
% (",$"

(""
% (!!)(""("!

% : × (±1, 𝑏𝑎𝑠𝑒𝑑	𝑜𝑛	𝑅&")      (5) 

𝑛𝐼𝐹.,&→" = |𝐼𝐹&→"|/|𝑍&→"| × (±1, 𝑏𝑎𝑠𝑒𝑑	𝑜𝑛	𝑅&")       (6) 10 

 

By combining equations 1, 3 and 4 into equation 7, for nIFc as the multiplier, we are testing a hypothesis whether 

the relative causal contribution, (∂YX/∂t)/(dX/dt), is proportional to |nIFXàY|, the fractional entropy received from 

cause-variable (i.e. IFXàY) over the total entropy change of effect-variable Y, in other words, whether the fractional 

uncertainty contributed by the cause-variable is proportional to its physically measured relative causal 15 

contribution to the effect-variable. Alternatively, for IFc as the multiplier, we are testing if Shannon entropy from 

cause/-variable alone could measure the relative causal contributions. 

!"! !$⁄
%& %$⁄ ∝ |𝑛𝐼𝐹&→"| =

|23!→"|
|23!→"|+	4*.56786	4*	975:4*7;	6*$5<=>	-"

      (7) 

 

2.2 Assessing the Multipliers using 1D and 3D  Mock-Up Data  20 

Real-world applications of the concept of information flow are likely to involve multi-dimensional datasets. We 

have carried out an assessment of the method firstly on a one-dimensional (1D) example and subsequently on a 

three-dimensional (3D) example. We explore the relationships between interdependent variables X and Y, 

representing a cyclic causal interference or a feedback loop. In the 3D context we make an analogy to climate 

systems, which typically concern data expressed in terms of longitude (lon), latitude (lat), and time (t) coordinates 25 

across the globe’s surface (Fig. 1). We focus on a scenario with highly fluctuating causal contributions from X to 

Y (or vice versa) and a relatively weakly fluctuating noise contribution which can be due to factors other than X 

or Y. This example is used because it is a rather common scenario, especially pertinent to studies that attempt to 

distinguish strongly fluctuating causal contributions from relatively stable low-noise contributions. Such studies 

could include, as an example, the natural feedbacks behind climate change, such as the climate-dependent natural 30 

emissions of methane (CH4). In such case, the relative causal contribution described in equation 7 is then the 

instantaneous climate feedback strength expressed as concentration change per degree temperature change. These 

causal contributions to the concentration change, as well as the associated feedback strength, may show significant 
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fluctuations on seasonal, interannual and multi-decadal periods (Cheng and Redfern, under review), while such 

fluctuations sit atop more stable (generally growing) background trends due to historical anthropogenic emissions.  

 

In our empirical assessment, mock-up data were obtained from designed interdependent functions with 1D-to-1D 

variables (Fig. 1a, Figs. 2-4 and Figs. S1-S6), cause-maps of 3D-to-global-mean-1D variables (distribution and 5 

variability of contribution from causes, Fig. 1d, Fig. 5 and Figs. S7-9), and effect-maps of global-mean-1D-to-3D 

variables (distribution and variability of contribution as effects, Fig. 1e, Figs. S10-S13). The multipliers between 

designed variables X and Y are estimated over a moving time range. The estimated multiplier is then multiplied 

by the rate of change of cause at the middle of the time-window so that the causal contribution can be estimated 

according to equation 1. For the 1D tests, each time range spans 100 time-units, while for the 3D tests, each 10 

window consists of only 49 time-units, as could be common for studying interannual variability of monthly data 

(i.e. 49 months in total, representing a centered month ± 24 months). These designed functions are generally 

expressed as: 

dY/dt = ∂YX/∂t + ∂Yn/∂t = f(dX/dt, t) + n(Y, t), and dX/dt = ∂XY/∂t + ∂Xo/∂t = g(dY/dt, t) + o(X, t)  (8) 

where f and g are the interdependent contributions, designed as the sum of two trigonometric terms with varying 15 

frequencies and a linear term. The trigonometric terms mimic typical climate oscillations resulted from alternating 

positive and negative feedbacks, such as the famous El Niño–Southern Oscillation (ENSO) cycle (Im et al., 2015). 

Similarly, the n and o are noise (including self-dependent) functions designed to include three terms, either a 

constant plus two changing trigonometric terms, or a constant plus a changing trigonometric term plus a linear 

term (see Table S1 for the exact expressions of functions). Most of the time the noise function is positive to mimic 20 

the long-term historical net atmospheric CH4 accumulation due to the increased anthropogenic activity.  For the 

3D-to-1D cause-map tests (Fig. 1d), we further consider the presence (Figs. 5 and S7) or absence (Figs. S8-S9) 

of interdependent teleconnection, by assigning the interdependent function based on values from the opposite side 

of the hemisphere (e.g. interdependency between dX/dt at 60°N and dY/dt at 60°S, see Fig. 1c) or same grid (Fig. 

1b), respectively. For assessment with effect-maps (Fig. 1e), the same sets of these interdependent variables are 25 

applied (Figs. S10-S13).  

 

Figure 1. Illustrative causal graphs of designed 1D and multi-D causally interdependent variables X and Y, 

with/without teleconnection, and the basis of estimates for cause map and effect map. 

 30 
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2.3 Example Application – Methane Climate Feedback and Model Assessment 

In addition to the mock-up data example, we also estimated the causal contribution of spatiotemporal climate 

factors to the variations of global atmospheric methane concentrations (CCH4). The climate driven contributions 

of CCH4 are estimated from equation 9, which is identical to replacing X in equation 1 by climate factors and Y by 

global ocean mean CCH4. Climate factors considered include the Land Surface Air Temperature (LSAT), Sea 5 

Surface Temperature (SST), and precipitation (Pr). Similar to, but more complicated than, the mock-up data cause 

map, these variables affect CCH4 via both local influences on the natural methane source and sink, and remote 

influence via atmospheric hydroxyl radicals (•OH) or CO (Cheng and Redfern, under review). In addition, there 

are teleconnections from SST to LSAT and Pr before they influence CCH4. The global and zonal mean marine 

surface values of CCH4 were obtained from National Oceanic and Atmospheric Administration (NOAA) 10 

Greenhouse Gas Marine Boundary Layer Reference at https://gml.noaa.gov/ccgg/. The 0.5° x 0.5° LSAT, 1° x 1° 

SST and Pr data are based on NOAA Global Historical Climatology Network (GHCN CAMS) Gridded V2, 

Optimum Interpolation NOAA_OI_SST_V2 and Precipitation Reconstruction over Land (PREC/L), respectively, 

provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from the website at https://psl.noaa.gov/. 

Each time window comprised 49 months (centered month ±24 months) as in the cause-map. Seasonal trends were 15 

removed to improve the estimates of interannual variability. The dT/dt in °C.yr-1 (as well as dPr/dt in mm.day-

1..yr-1 and dCCH4/dt in ppb.yr-1) of each month (M) was determined as the difference between the mean temperature 

(or precipitation) in one year forward (M to M+11 months) and the mean in one year backward (M-12 to M-1 

months). Once the 3D matrices of nIFc,T x dT/dt or nIFc,Pr x dPr/dt were determined, the 3D data arrays were 

downscaled into 2D (lat x time) based on exclusive land-means to obtain the zonal mean, since ecosystem methane 20 

emissions from the oceans are suggested to be much smaller than the territorial sources (Weber et al., 2019).  

 

!(-./,01)234+	
!$

= 𝛼 ×𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 × %(.;497$6	@7.$<58)
%$

        (9) 

 

To illustrate the application of these methods for model assessment, we have carried out similar analysis on 25 

indications of causal contribtions between simulated temperature and precipitation data obtained from the 

ensemble mean of Community Earth System Model 2 (CESM2) (https://esgf-node.llnl.gov/) and the same 

reconstructed CCH4 observational data as described above. The model’s historical end date is Dec 2014, and since 

we use ±24 months for analysis, the estimated climate-driven contributions inferred from the model data end in 

Dec 2012. The CESM2 is one of key models in the  Coupled Model Intercomparison Project Phase 6 (CMIP6) 30 

(Danabasoglu et al., 2020). It has recently been assessed for carbon cycle (CO2) simulation and shown reasonable 

capability in reflecting seasonal, but not interannual variations (Wieder et al., submitted). It is hence a good 

candidate to test as an example here. 
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3. Results 

3.1 Suitable Scenarios for Applying Normalized Information Flow 

We find that for conditions where causality becomes more important,  by using nIFc as the multiplier the causality 

is more clearly discerned, allowing better estimates of causality than analysis using regression. Situations where 

we observe this phenomenon include those when: 1) alternating positive-negative contributions (or feedbacks) 5 

especially if they act in opposition to the observed or designed general background trend (e.g. alternating 

contributions especially with the negative portions occurring in the context of a generally positively growing 

trend, Figs. 2-4, S4-S6, first column sub-Figs); 2) a significant time-lag arises between the cause and the effect 

(Figs. 3, S4, S6); 3) there are significant noise contributions that worsen estimates by regression more than nIFc, 

in which case estimates from IFc are improved and may indeed become the best option when there is substantial 10 

noise (Figs. 4, S4-S6); 4) distributions of causal contributions in cause maps need to be compared, especially if 

there is teleconnection between causes and effects (Figs. 5 and S7 vs. Figs. S8-S9 and vs. Figs. S10-S13).  

 

  

Figure 2. Assessment of methods for estimating interdependent contribution between designed 1D variables X 15 

and Y, highlighting the conditional advantage of nIFc (i) for discerning the opposite (negative) contribution (red 

boxes) to the general (positive) trend (sub-Fig.S1a,k). The x-axis is in time-units and the y-axis represents either 

the designed (a, b) or estimated contributions by various methods (c, d: linear regression, e, f: 2nd order regression, 

g, h: information flow, i, j: normalized information flow, k, l: m|nIF|). Three levels of interdependency (1:2:3), 

reflected by blue, red, yellow, could be reflected by the calibration factor α for nIFc, but not for IFc. Refer to Fig. 20 

S1 about comparisons betweem multipliers which are estimated based on running 100 time-units of X and Y.   
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Figure 3. Assessment of methods for estimating interdependent contribution between designed 1D variables X 

and Y, highlighting the conditional advantage of nIFc (i,j) for significant time-lag between the cause and 

consequence. The green and purple boxes indicate different time-lags between the interdependency, representing 5 

20% and 40% of the 100-time-units in estimating the multipliers, respectively. The causal signals detected should 

therefore be 20 or 40 time-units ahead of the designed effects shown in (a) and (b). Figure layout as in Fig. 2. 

Refer to Fig. S2 for the multipliers and general trend. 

 

  10 
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Figure 4. Assessment of methods for estimating interdependent contribution between designed 1D variables X 

and Y, highlighting the impact of large noise-contributions that worsen the estimates by all methods, although that 

given by IFc appears less severly affected than the estimates obtained by regression. Figure layout as in Fig. 2. 

The green arrows indicate successful capture of the opposite contribution from common trend which is more 5 

common than Fig. 2. There are instances of false signals (orange arrows), bad estimates (red arrows), and wrong 

feedback signs (purple arrows). It appears that IFc becomes the best multiplier (g, h) with more consistent |IF| 

values independent with the 1:2:3 ratio (Fig. S3), allowing practical use of constant calibration factor α. The 

estimates by IFc and nIFc (especially IFc) appear to be more resistant to incorrect feedback signs. However, if a 

limit is breached, the error with respect to the 1:2:3 ratio could become -1:-2:-3, while for regressions that ratio 10 

becomes similar to  -3:-2:-1.  
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Figure 5. Assessment of methods for estimating interdependent cause-maps between designed 3D variables X and Y, 

highlighting the conditional advantage of nIFc for detecting teleconnection. The first and second rows are the designed 

distributions of the rate of change of variables and interdependent contributions to that rate of change (effect-maps), 

respectively. The rows below are cause-map estimates by various methods, which are judged more accurate when they 5 

better represent the north-south mirror image shown in the second row. Besides nIFc, the IFc with a lower 

interdependent contribution (left column) also provides reasonably good estimates of 𝜕XYlat/dt.  
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The results from the 1D-to-1D tests are depicted in Figs. 2-4 and S1-S6. In each, the first row presents the designed values. 

Figs. 2-4 and the first two columns in Figs. S4-6 show the interdependent contributions of dX/dt from Y (i.e. ∂XY/∂t) and dY/dt 10 

from X (i.e. ∂YX/∂t). Hence, comparison of the signals between sub-Figs a-b and the estimates by various methods in rows 

beneath is key to this assessment. Figures S1-S3 supplement Fig.2-4 for further comparison. Sub-Figs a and b of Figs. S1-S3 

show the designed dX/dt and dY/dt, respectively, so the differences between the first row in Figs-2-4 and Figs. S1-S3 reflect 

the contributions from noise signals. The middle rows in Figs. S1-S3 are key elements of the “multiplier” in the various 

methods. These correspond to R2 in the linear and second-order regressions, and to the absolute |IF| and |nIF|. Each pair of 15 

interdependent X and Y datasets is further split into three levels of interdependency: ∂X1Y1/∂t and ∂Y1X1/∂t (blue), ∂X2Y1/∂t and 

∂Y2X1/∂t (red), and ∂X3Y1/∂t and ∂Y3X1/∂t (yellow), with the latter two pairs being double and triple the values of ∂X1Y1/∂t and 

∂Y1X1/∂t, respectively. Comparing the results across this 1:2:3 ratio of interdependency helps indicate the feasibility of applying 

a constant calibration factor α throughout the 3000 time-units. 

The first column of Fig. 2 highlights the alternating positive-negative contributions, with the red boxes emphasizing the 20 

negative contribution of ∂XY/dt from the dominating positive dX/dt (Fig. S1a) and growing X (Fig. S1k). These negative signals 

are generally underestimated, indeed almost undetectable, in estimates by regression methods but reasonably reflected when 

applying estimates from nIFc. The more frequently alternating pattern of ∂XY/dt than ∂YX/dt is, in fact, due to the faster phase 

transition in our designed trigonometric terms for the interdependent feedbacks (Table S1). If both positive and negative 

feedbacks occur during one timeframe of causal analysis (i.e. 100 time-units here), the opposite sign feedbacks will cancel 25 

each other and weaken the overall correlation, and the one in the original less dominant direction (i.e. the negative contributions 

here) may even vanish. On the other hand, the second column of Fig. 2 shows reasonable estimates given by regression methods 

but significant false signals are suggested by the estimate from nIFc. Note that the calibration factor α for the regressions here 

is fixed as one, while it is adjusted for estimates by nIFc, with the 1:2:3 ratio. This is seen in the nearly identical magnitude of 

|nIF| (Fig. S1i,j) with this simple change of linear interdependency relationship. On the other hand, the magnitude of |IF| (Fig. 30 

S1g,h) occasionally reflects an approximate 1:2:3 ratio when the signals are strong, however, it remains rather independent of 

the 1:2:3 ratio in most cases. This inconsistency makes it impractical to calibrate the interdependent contribution with a 

constant α over time-scale. The estimate by m|nIF| appears to almost entirely lose its conditional advantage from nIFc (sub-

Fig. i vs. k), and remains less reliable than regressions in other situations (sub-Fig. d/f vs. l). Hence, the key concerns mainly 

lie in the conditional advantage or disadvantage that determines whether the use of regression or of nIFc results in better 35 

estimates. 

 

Figure 3 focuses on an examination of the conditional advantage or disadvantage for different methods under varying time-lag 

of interdependency. We have imposed a three-step time lag condition. The designed contributions are set with a lag of only 1 

time-unit (which is also applied to all other mock-up data shown in the other Figures) across times 2-1000, 20 time-units during 40 
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time 1001-2000 (highlighted in green boxes), and 40 time-units during time 2001-3000 (highlighted in purple boxes). Since 

the estimates of the multipliers are based on 100 time-units of X and Y without time-lag, as we run forward from time 2-101 

to 2991-3000, 20% or 40% of the data in each window may contribute to potentially misleading (non causative) correlation. 

In the case of Fig. 3, the regression signals weaken during these two periods, but the estimates by nIFc remain robust without 

noticeable deterioration. Note that the estimated signals of causes could be around 20 or 40 time-units ahead of the designed 45 

signals of effects during these two periods.  

 

Figure 4 shows the results of an examination of the impact of large noise contributions. The designed functions are 

approximately the same as those shown in Fig. 2 except the positive noise function is enlarged. This results in a more likely 

occurrence of opposite contribution to the common trend that could be captured by nIFc other than regressions, as indicated 50 

by green arrows in red boxes (comparing sub-Fig. j in Fig. 2 and 4). While the conditional advantage of nIFc highlighted in 

red boxes remains as in Fig. 2, the higher noise contributions reduce the accuracy of estimates for all methods, but the 

deterioration appears to be more significant when using regression. The orange, red, and purple arrows, highlight these 

inaccuaracies, highlighting false signals, bad estimates, and incorrect feedback signs, respectively. We note that the regression 

method loses its capability to differentiate the 1:2:3 ratio, resulting in impractical application for a constant calibration factor. 55 

We find that incorrectly attributed feedback signs (purple arrows) are less likely for estimates by nIFc and IFc (especially IFc) 

than using regression under this high positive noise contribution scenario. In addition, we note that the error associated with 

ability to reflect the 1:2:3 ratio could be as poor as -3:-2:-1 for regressions, but that ratio the worst outcome using nIFc and IFc   

gives a ratio of -1:-2:-3 once a certain limit is breached. The nIFc-estimated peaks also appear to split into broader periods. 

Nevertheless, the relatively weaker interdependent contribution could help mitigate inconsistency problems when applying a 60 

constant calibration factor to IFc (Fig. S3g,h). This leads us to the conclusion that IFc appears to be the best multiplier (sub-

Fig. g,h) in these circumstances. Figures S4-S6 further show the combined conditions under medium and large noise 

contribution scenarios.   

 

Figure 5 shows the designed and estimated contributions between two 3D variables with teleconnection operating from the 65 

opposite hemispheres (e.g. X at 60 ̊N are interdependent with Y at 60 ̊S), projected down to two dimensions by using the zonal 

mean. The first row represents the designed distributions of interdependent variables X and Y, and the second row shows the 

interdependent contributions (effects). The further rows below give the estimated cause-maps. The designed noise-contribution 

alternates between positive and negative with a rather insignificant positive bias, hence the conditional advantage in Fig. 2i is 

also insignificant. Furthermore, the time-lag is only one time-unit over the running window of time-series data, with 49 time 70 

units in each series, which limits the conditional advantage given in Fig. 3i. Nevertheless, in view of the mirrored 

teleconnection between north and south hemispheres, the best estimate of cause-map should also be a mirrored image of the 
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2nd row. This mirror characteristic can be best detected in the estimates given using IFc and nIFc. However, the estimates 

obtained by regressions and m|nIF| do not provide any clear evidence of such mirroring, although the estimates by second-

order regression may manage to reflect this slightly better than those provided by first-order regression. Figure S7 gives a 75 

further example of a similar analysis, with north-south teleconnection operating at higher variability frequency, and we see the 

same trends. The advantage of empoying nIFc, and IFc for estimating the spatial distribution in 3D-to-1D cause-maps is still 

apparent, but to a lower extent, in the absence of teleconnection (Fig. S8-S9). In particular, in a low noise-contribution scenario 

(right column maps), the estimates obtained using nIFc, and IFc could become worse than those suggested from regressions. 

This is consistent with the findings seen in Fig. 4 and S6, suggesting that using IFc as the multiplier gives better results at 80 

higher noise levels. For 1D-to-3D effect-maps, regression tends to give better estimates regardless of the absence or presence 

of teleconnection (Fig. S10-S13). This is because there are, altogether, 360 x 180 time-series over the grids which contribute 

to a single global mean time-series in the 3D-to-1D cause-maps, emphasizing the importance of locations of cause signals in 

this case. This contrasts with the 1D-to-1D and 1D-to-3D effect maps where location-data of the causes are already merged 

into a global mean value. 85 

 

3.2 Estimated Climate-Driven Contributions to CCH4 based on Observed and Modeled Data 

Figure 6 shows the results of estimated terrestrial climate driven contributions to the variations of CCH4 based on the 

observational climatic data and the various methods discussed above. Despite the fact that only the global CCH4 is addressed 

in equation 8, the estimates given when using nIFc reasonably reflect the variations of reconstructed CCH4 from observation on 90 

both temporal and zonal scales. In comparison, the estimates given by other methods are noticeably inferior. The estimates 

given by using IFc do not reflect the strong climate-driven contributions before 1992 and after 2013 so well, while the estimates 

given by mR2 and m|nIF| do not reflect contributions from mid-high latitudes as well as years with slower CCH4 as clearly as 

does the use of nIFc. The problem with estimates by IFc probably arise from its inherent, but inappropriate, assumption of a 

constant calibration factor α. The underestimates by mR2 and m|nIF| likely are associated with the fluctuating causal pattern 95 

(including the change between positive and negative feedbacks, (Cheng and Redfern, under review)), especially for years with 

weaker climate-driven contributions. This trend is aligned with the phenomenon shown in left column of Fig. 2. The lag 

between cause to effect, as in Fig. 3, could also result in poor estimates when using regression methods, since the cause-signals 

by nIFc tend to lead the actual CCH4 by months to a year or more, especially at mid-high latitudes. For nIFc, the estimated 

climate-driven contributions in the Northern Hemisphere (NH) better reflect its actual zonal CCH4 patterns as compared to 100 

signals from the Southern Hemisphere (SH). This could be due to the much higher terrestrial area in the NH and its stronger 

causal contribution to the global CCH4.  
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Figure 6. Reconstructed zonal CCH4 varations from observation and estimated climate-driven contributions by various 105 

methods based on observational climatic data. The anthropogenic emission and concentration (self-) dependent atmospheric 

oxidation are considered as “noise” in this analysis. The estimates given by nIFc align the best with observed trends.  
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Figure 7. Reconstructed zonal CCH4 varations from observation and estimated climate-driven contributions by various 

methods based on simulated climatic data. Unlike Fig. 6, the simulated climatic data fails to reproduce the spatiotemporal 110 

pattern of CCH4 especially at mid-high latitudes. Such gaps indicate the need for model improvement.   
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For comparison, Fig. 7 shows the estimated climate-driven contributions to the CCH4 inferred from the CESM2 simulated 

climatic data. In contrast to Fig. 6, estimates given by nIFc reflect the observational spatiotemporal pattern of CCH4 poorly, 

especially at mid-high latitudes. Figure 7 fails to show the strong signals seen in Fig. 6, such as 0-30°S (1988), SH (1991), and 

NH (1998) instances, and amplifies the 1991 false NH signal. This highlights missing or misrepresented processes of terrestrial 115 

CH4 emissions and/or sinks in the CESM2 model. Nevertheless, the estimates by other methods show similar limitations as in 

Fig. 6. Since other statistical analyses discussed here are less capable in quantifying the causal contributions with observational 

data, their use for model gap identification and improvement will also be limited. 

 

4. Discussion and Conclusions 120 

From our test cases and results above we can make some general points. Firstly, our methodology for the application of the 

concepts of information flow and normalized information flow is simple and useful. With the potential of quantifying causal 

contributions between time-series, these methods could help identify missing or misrepresented processes in Earth System 

Models. We propose a hypothesis to rationalize our findings from the empirical assessments. Finally, we make suggestions for 

how the method may be further improved.  125 

 

We have validated four applicable conditions for which we suggest the best approach is to adopt nIFc in the proposed empirical 

linear equation, as outlined our results (above), while IFc appears to be the best multiplier in those scenarios in which the noise-

contribution is large. This simple equation could be widely applied for understanding real-world problems that satisfy at least 

one of the four conditions. Besides the given example of methane-climate feedbacks, there are a great many problems that 130 

would lend themselves to such analysis. We believe that this method is useful for a very large number of feedback systems in 

Earth systems science as well as other research domains characterized by complexity. Even socio-economic feedbacks could 

be analyzed, bringing new insight for designing climate-change communications and policies (Cheng et al., in preparation). 

Nevertheless, the analyzed results from real-world problems have to be interpreted with caution and preferably together with 

reasonable and consistent physical explanations. For example, we have (earlier) validated the estimated 3D distribution of 135 

causal contributions by comparing with the observed 2D and even 3D concentration patterns and built our statistical causal 

models that are aligned with material balances of CH4 (Cheng and Redfern, under review): Climatic influence on the methane 

source and sink could behave differently as positive and/or negative feedbacks on interannual to interdecadal timescales, such 

as via wildfire-CO-OH and SST-OH, possibly leading to a rising CCH4 even in conditions of negative feedback during a La 

Niña year (e.g. 2020), in addition to the long-term trend of positive feedback with global warming. This nonlinearity results in 140 

complex accelerations and/or decelerations of net methane emissions on various timescales. Since such nonlinearity is the 

major challenge for process-based Earth system models (Runge et al., 2019) but we show that it can be revealed by quantifying 
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causal contributions with nIFc. We believe that the methods discussed here will therefore, be valuable for future model 

assessment and improvement.  

 145 

As mentioned in section 2.1, the reasonable estimates of causal contributions by nIFc suggests that the fractional uncertainty 

contributed by cause-variable, i.e. |nIF|, could be proportional to its physically measured relative causal contribution to the 

effect-variable, i.e. (∂YX/∂t)/(dX/dt). Nevertheless, what is the reason behind the inconsistency limitation of IFc, and why is 

such a problem mitigated at high noise levels?  

 150 

 
Figure 8. Illustration of possible reasons behind the observed limitations for |IF| and |nIF|: with low relative noise 

contributions, the change of noise contribution tends to influence the consistency of |IF|; and with high relative noise 

contributions, the uncertainty due to inherit |nIF| assumption may dominate the error. 

 155 

Our observations that lie behind this question have been noted in a different context before, where it was seen that the 

magnitude of noise amplitude may shift the causal direction between two time-series measured by IF (Liang, 2018). Intuitively, 

although the amount of information (the magnitude of uncertainty or Shannon entropy) is expected to increase with increasing 
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amplitude of uncertainty from the noise, the dominating causal direction should remain constant. This dilemma can be 

rationalized if the dominating causal direction between XàY and YàX is determined by nIF instead of IF, in other words, by 160 

the relative causal contribution instead of the absolute flow of entropy. Figure 8a attempts to illustrate a scenario in which 

there is a relatively weak noise contribution to the total entropy change. A sharp change in noise contribution with a constant 

|nIF| is represented by an absolute increase of grey area, i.e. increase in marginal entropy HY, with a constant red-circled area 

fraction. This results in an inconsistent |IF|. On the other hand, Fig. 8b shows a scenario with strong noise contribution to the 

total entropy change (large grey area fraction). An increase of noise contribution with an unchanged |nIF| would have a 165 

negligible influence on the consistency of |IF|; hence the benefit of normalization diminishes but its associated error grows 

due to the reliance of the noise contribution when estimating |nIF| (equation 4). As seen in equation 7, when the increase in 

marginal entropy HY dominates the denominator, |nIF| will be approximately proportional to |IF| and hence also to 

(∂YX/∂t)/(dX/dt) as well, while the actual estimate of |nIF| is heavily influenced by the increased marginal entropy. 

 170 

This method could be further improved. For example, if our hypothesis holds, we can extend it to multi-variable causal 

contributions (expressed below), subject to the independency between various cause-variables Xi: 
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      (10) 

where θXàY represents the fractional contribution to dY/dt from dXi/dt, and the sum of θXàY should be less than 1. However, 

for real applications, it may be difficult to estimate the calibratiovn factor αi if the contribution is low; and the interdependencies 175 

between Xis may often be assumptions without rigorous justification.  

 

The lead-lag between causes and effects provides another opportunity for further improvement of this methodology. As seen 

in Fig. 3, the estimates by nIFc also allow a reasonable estimate of the designed time-lead of causes ahead of effects (by 

comparing sub-Fib i,j to a,b for periods in green and purple boxes). Using  this lead-time estimate, one may revise the selected 180 

time-series to better match the series between causes and effects and potentially improve the estimates of correlation sign. 

Furthermore, the original sign of IF and the estimated error in IF with defined confidence level (e.g. 90%)  (Liang, 2014, 2018) 

have yet to be used. The estimated error may help to provide a range (instead of just a value) of causal contribution with a 

defined confidence level. The original sign that indicates increasing or decreasing uncertainty or predictability may also be 

useful in some ways. Last but not the least, comparison with other causal methods may reveal new insights and possibly 185 

improve the applicability of our proposed methodology.  

 

Code and Data Availability: Data sources are all public databases as indicated at the appropriate point in the text. Analysis, 

represented by the data shown in the Figures, was carried out using standard MatLab routines, with source codes obtainable at 

dx.doi.org/10.6084/m9.figshare.14985381. 190 
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