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Abstract. The K-means machine learning algorithm is applied to climatological data of seven aerosol properties from a global 

aerosol simulation using EMAC-MADE3. The aim is to partition the aerosol properties across the global atmosphere in specific 

aerosol regimes, mainly for evaluation purposes. K-means is an unsupervised machine learning method with the advantage 

that an a priori definition of the aerosol classes is not required. Using K-means, we are able to quantitatively define global 

aerosol regimes, so-called aerosol clusters, and explain their internal properties as well as their location and extension. This 10 

analysis shows that aerosol regimes in the lower troposphere are strongly influenced by emissions. Key drivers of the clustersô 

internal properties and spatial distribution are, for instance, pollutants from biomass burning/biogenic sources, mineral dust, 

anthropogenic pollution, as well as their mixing. Several continental clusters propagate into oceanic regions as a result of long-

range transport of air masses. The identified oceanic regimes show a higher degree of pollution in the northern hemisphere 

than over the southern oceans. With increasing altitude, the aerosol regimes propagate from emission-induced clusters in the 15 

lower troposphere to roughly zonally distributed regimes in the middle troposphere and in the tropopause region. Notably, 

three polluted clusters identified over Africa, India and eastern China, cover the whole atmospheric column from the lower 

troposphere to the tropopause region. The results of this analysis need to be interpreted taking the limitations and strengths of 

global aerosol models into consideration. On the one hand, global aerosol simulations cannot estimate small-scale and localized 

processes due to the coarse resolution. On the other hand, they capture the spatial pattern of aerosol properties on the global 20 

scale, implying that the clustering results could provide useful insights for aerosol research. To estimate the uncertainties 

inherent in the applied clustering method, two sensitivity tests have been conducted i) to investigate how various data scaling 

procedures could affect the K-means classification and ii) to compare K-means with another unsupervised classification 

algorithm (HAC, i.e. Hierarchical Agglomerative Clustering). The results show that the standardization based on sample mean 

and standard deviation is the most appropriate standardization method for this study, as it keeps the underling distribution of 25 

the raw dataset and retains the information of outliers. The two clustering algorithms provide similar classification results, 

supporting the robustness of our conclusions. The classification procedures presented in this study have a markedly wide 

application potential for future model-based aerosol studies.  
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1 Intr oduction 

Aerosols play an important role in the climate system (Boucher et al., 2013). They influence climate directly by scattering and 30 

absorption of solar and terrestrial radiation, as well as indirectly by modifications of cloud properties. The major components 

of atmospheric aerosols are mineral dust, black carbon (BC) and organic carbon, sulphate, nitrate, ammonium and sea salt. 

Due to their relatively short residence times, the contributions of these components, their state of mixing as well as the particle 

size distribution show a large spatial and temporal variability on the global scale (e.g., Lauer and Hendricks, 2006; Mann et 

al., 2010, 2014; Pringle et al., 2010; Aquila et al., 2011, Sessions et al., 2015, Kaiser et al., 2019). Additionally, their effects 35 

on clouds and radiation are highly variable due to the strong dependencies on the physical and chemical properties of the 

aerosols. This in combination with uncertainties in the current knowledge of key aerosol-related processes makes the 

quantification of aerosol-climate effects a challenge and results in comparatively large uncertainties in the existing 

quantifications of the climate impact of anthropogenic aerosols (e.g., Boucher et al. 2013; Myhre et al. 2017, Bellouin et al., 

2020).  40 

 

Global aerosol-climate models equipped with detailed representations of aerosol microphysical and chemical processes are 

essential tools for the quantification of aerosol-climate effects (e.g., Boucher et al. 1998; Takemura et al. 2005; Stier et al. 

2005, 2006; Lauer et al. 2007; Hoose et al. 2008; Righi et al. 2013; Randles et al. 2013; Kipling et al. 2016; Myhre et al. 2017; 

Bellouin et al., 2020; Righi et al. 2020). During the last decades, considerable attempts have been made by the global aerosol 45 

modelling community to develop improved descriptions of aerosol-climate interactions (e.g., Ghan and Schwartz, 2007; 

Boucher et al., 2013; Riemer et al., 2019). Early modelling approaches considered only the mass of aerosol species. However, 

observations imply that the number, size distribution, and mixing state of aerosols are also critical factors for an accurate 

representation of aerosol-climate interactions (Albrecht et al. 1989). First attempts of representing the aerosol size distribution 

and mixing state in global models started at the end of the 20th century (e.g., Jacobson 2001). Due to limited computing 50 

capacities and the huge computational expenses of global aerosol-climate models, cost effective algorithms have been applied, 

for instance, the lognormal representations of the aerosol size distribution (e.g., Stier et al. 2005; Lauer et al. 2005; Aquila et 

al. 2011; von Salzen 2006; Pringle et al., 2010; Kaiser et al. 2019). Recent approaches allow for tracking soluble and insoluble 

aerosol particle components as well as their mixtures and facilitate the simulation of particle number, mass concentration and 

size distribution. Beyond the direct radiative impact of aerosols, aerosol-cloud interactions are key processes driving the 55 

aerosol climate effects. Hence, parameterizations of aerosol activation in liquid clouds have been established (see Gahn et al., 

2011, for a review). In addition, aerosol-induced formation of ice crystals attracts increasing attention (Kanji et al., 2017; 

Heymsfield et al. 2017). To represent the manifold ice formation pathways induced by a large number of different aerosol 

types in global aerosol-climate models, the applied microphysical cloud schemes as well as the underlying aerosol sub-models 

have been further extended (e.g., Lohmann and Kärcher, 2002; Kärcher et al., 2006; Lohmann et al., 2007; Lohmann and 60 

Hoose, 2009; Hendricks et al., 2011; Kuebbeler et al., 2014; Righi et al., 2020).  
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The above examples demonstrate the growing complexity of global aerosol models which, consequently, results in a large 

number of parameters which describe the aerosol number concentration, size distribution and composition in global models 

and makes the analysis, evaluation and interpretation of the model results a challenge. This is further complicated by the large 65 

spatial and temporal variability of the aerosol properties. Under these circumstances, analysing all relevant variables from a 

typical global model simulation can become unfeasible. New analysis methods are therefore required to gather information 

from the huge set of variables and their temporal and spatial variability . A powerful tool to facilitate the analysis of global 

aerosol model results is the partitioning of the model-simulated aerosol into different groups/clusters, each characterized by 

specific properties. In the following, these groups will be called aerosol regimes. Information on how these aerosol regimes 70 

are distributed in space could be very helpful to obtain a concise but comprehensive view on the complex system of modelled 

aerosol parameters. Detailed knowledge of the spatial distribution of individual aerosol regimes could be the basis for further 

analyses and model improvement. For instance, observations within a specific aerosol regime can be combined for evaluating 

simulation results with regard to this specific aerosol type. Furthermore, model evaluation results based on observations limited 

in space and time (e.g. aircraft-based field campaigns), could be generalized to a whole aerosol regime covering much larger 75 

areas and time periods, assuming that the systematic model biases to be corrected occur nearly homogenously throughout the 

whole cluster. In addition, knowledge of the properties and spatial extension of aerosol regimes could serve as supportive 

information for satellite retrieval and for the planning of further field campaigns for aerosol observation.  

 

Previous aerosol classifications have been mainly conducted in the context of observational studies using measurements of 80 

aerosol microphysical and optical properties. For example, Groß et al. (2013, 2015) applied classification schemes to identify 

specific aerosol types and their mixtures based on lidar measurements and satellite data. Their classification procedure follows 

a tree structure where different aerosol microphysical and optical properties imply different classification branches. This allows 

to identify complicated vertical stratifications of different aerosol types throughout the atmosphere. Bibi et al. (2016) applied 

multiple clustering techniques to analyse seasonal differences in prevailing aerosol types at four locations in India. Their 85 

classification was based on the analysis of pairs of aerosol optical properties gained from the Aerosol Robotic Network 

(AERONET) sun photometer measurements. Schmeisser et al. (2017) applied a similar multiple clustering technique to classify 

aerosol types based on surface-based observations of spectral aerosol optical properties from a global station network. Nicolae 

et al. (2018) classified six aerosol types using an artificial neural network applied to lidar measurements. The neural network 

was trained with predefined data from different aerosol types. Applying similar algorithms to global model results using optical 90 

aerosol properties to classify aerosol types, however, could be problematic since the optical properties are derived quantities, 

which are calculated from primary (prognostic) quantities such as aerosol number, size and composition. These calculations 

also require additional assumptions, usually retrieved from measurements of, e.g. aerosol refractive indices, possibly implying 

further uncertainties (Dietmüller et al. 2016). Hence new algorithms for aerosol classification based on primary aerosol model 

parameters would be more appropriate.  95 
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In this study, we apply the K-means machine learning clustering algorithm (Hartigan and Wong 1979) for identifying clusters 

of specific aerosol types in global aerosol simulations. This method partitions n samples into k clusters in which each sample 

is assigned to the cluster with the nearest distance to the clustersô centre (or cluster centroid). K-means belongs to the class of 

unsupervised machine learning algorithms. This is especially useful when the classification criteria are unknown, as in the case 100 

of aerosol classification where the specific aerosol characteristics for the predominant regimes are not known a priori. In 

comparison with supervised classification algorithms which require substantial prior knowledge of classes, an unsupervised 

classification is relatively easy to use, but it requires the identification and labelling of the resulting clusters after the 

classification. The common known limitations of K-means include the presence of clusters with equal variances and its 

sensitivity to outliers. K-means has already been applied in atmospheric research. For instance, it has been successfully used 105 

to distinguish clouds and aerosols in CALIOP/CALIPSO observations (Zeng et al. 2019). In this study, we apply the K-means 

algorithm to global aerosol simulations. The main goal is to answer the following questions: (1) how can major aerosol regimes 

be identified in global aerosol simulations? (2) what is the spatial distribution of these regimes?  and (3) which aerosol types 

are dominant in which parts of the world? The K-means method is applied here to identify clusters of different aerosol types 

in global simulations. The spatial extension of these clusters is quantified. The aerosol properties considered for the clustering 110 

process were simulated using the global chemistry-climate model system EMAC (the ECHAM/MESSy Atmospheric 

Chemistry general circulation model, Jöckel et al. 2010, 2016) equipped with the aerosol microphysical sub module MADE3 

(Modal Aerosol Dynamics model for Europe adapted for global applications, third generation, Kaiser et al. 2014, 2019). The 

aerosol properties analysed here include the mass concentrations of mineral dust, BC, particulate organic matter (POM), sea 

salt, the sum of aerosol sulphate, nitrate and ammonium (SNA), as well as particle number concentrations in different aerosol 115 

size modes. The clustering analysis is conducted separately for the lower troposphere, the mid troposphere and the tropopause 

region. To quantify potential uncertainties of the clustering procedure, the sensitivity of the results to different methods for 

scaling the input data is explored. We also provide a comparison of K-means clustering with another unsupervised machine 

learning clustering algorithm, namely the Hierarchical Agglomerative Clustering (HAC).  

 120 

 

The paper is structured as follows: Section 2 describes the model data and the analysis methods in detail. The results of the 

global clustering procedure are presented in Sect. 3, including separate discussions of the three predefined atmospheric layers. 

Section 4 provides an uncertainty analysis by testing various sensitivities of the obtained results to methodical aspects, also in 

view of the limitation and strength of global aerosol models and potential applications of the presented clustering method.  A 125 

summary of the main conclusions as well as an outlook are given in Sect. 5. 

 



5 

 

2 Data and methods 

2.1 Model description and configuration 

As a basis for aerosol classification in the present study, we analyse one of the global model simulations of Beer et al. (2020) 130 

performed with the global aerosol model EMAC-MADE3. MADE3 simulates nine different aerosol species (sulphate, 

ammonium, nitrate, the sea salt species sodium and chloride, BC, POM, mineral dust and aerosol water). These nine aerosols 

species occur in three different internal mixtures (purely soluble particles, mixed particles consisting of an insoluble core with 

a soluble coating, and particles mainly composed of insoluble material and only very thin soluble coatings) within three size 

modes (Aitken-, accumulation- and coarse mode). This results in a total of nine aerosol modes. The model considers particle 135 

transformations due to coagulation, condensation, gas-particle partitioning and new particle formation. MADE3 was evaluated 

in detail in past studies and showed a generally good model performance. Kaiser et al (2014) demonstrated the ability of 

MADE3 to represent the aerosol microphysical processes when compared to a more detailed particle-resolving aerosol model. 

Kaiser et al. (2019) further demonstrated a good agreement of BC, POM, gaseous species and particle number concentrations 

simulated with EMAC-MADE3 with various observations. Beer et al. (2020) further extended the model setup of Kaiser et al. 140 

(2019) by including an online parameterization for wind-driven dust emissions (Tegen et al., 2002) and performed five model 

experiments for the time period 2000-2013 in different horizontal and vertical model resolutions. The model results were 

evaluated by comparison against observational data from the AERONET station network (Holben et al. 1998, 2001) and 

aircraft-based measurements from the SALTRACE field campaign (Weinzierl et al. 2017). The comparison in Beer et al. 

(2020) showed that a specific configuration (T63L31Tegen) outperforms the others thanks to its higher resolution and the more 145 

detailed representation of dust emission processes. Hence, data from this simulation are used for the clustering analysis in the 

present study. 

 

For the chosen simulation Beer et al. (2020) applied EMAC in nudged mode, that is, model dynamics were constrained using 

ECMWF reanalysis data (Dee et al. 2011) including wind divergence and vorticity, temperature, and logarithm of the surface 150 

pressure for the years 2000 to 2013. Transient emission data for anthropogenic sources were used to match this simulation 

period. Anthropogenic emissions were chosen according to the ACCMIP (Atmospheric Chemistry and Climate Model 

Intercomparison Project; Lamarque et al. 2010) inventory with RCP 8.5 scenario (Riahi et al. 2007, 2011). Biomass burning 

emissions were taken from the Global Fire Emission Database version 4 (GFED; van der Werf et al. 2017). The wind-driven 

emissions of mineral dust and sea salt were calculated online for every model time step following the dust parameterization 155 

developed by Tegen et al. (2002), and the parameterization of sea spray introduced by Guelle et al. (2001), respectively. As 

mentioned above, the model was applied at a T63L31 resolution, corresponding to a 1.9 ↔ × 1.9 ↔ horizontal resolution and 31 

vertical hybrid pressure levels covering the vertical range from the surface up to 10 hPa. For a more detailed description of the 

simulation setup, we refer to Beer et al. (2020). Some important aspects regarding the quality of the aerosol representation in 



6 

 

this simulation, as well as the advantages and disadvantages of global aerosol models in general, are further discussed in Sect. 160 

4.3.     

2.2 Data 

Seven aerosol parameters extracted from the Beer et al. (2020) simulation are considered for the clustering process: the mass 

concentrations of mineral dust, BC, POM, sea salt, the sum of the sulphate, nitrate, and ammonium concentration (SNA), as 

well as Aitken and Accumulation mode particle number concentration Nakn and Nacc of the combined aerosol species. Using 165 

number properties in addition to mass properties is helpful since the number ratio of small to large particles can change even 

when the total mass stays constant. The number concentrations of coarse mode particles are not taken into account to avoid 

the duplication of information, since they are strongly correlated with the mass concentration of sea salt and mineral dust, 

owing to a comparatively small variability in the size distributions of the modelled mineral dust and sea salt particles. Since 

the size distributions of the modelled Aitken and accumulation modes are more variable, the number concentrations of these 170 

particles are considered in addition to the corresponding mass concentrations. The clustering process is intended to identify 

model grid points with similar climatological mean aerosol parameters, as a basis to classify the global aerosol distribution in 

different aerosol regimes.  

 

The simulation data from years 2000 to 2013 are first reduced to multi-year (14 years) means to investigate the distribution of 175 

climatological aerosol regimes. To account for the vertical variability of aerosol properties, the model data at 31 vertical levels 

in the terrain following hybrid sigma pressure level are used to calculate values for three atmospheric layers. More specifically, 

we integrate model level L31-22 for the lower troposphere (up to ~700 hPa), L21-14 for the middle troposphere (~700 to ~300 

hPa) and L13-6 for the tropopause region (~300 to ~100 hPa). Note that EMAC vertical levels are ordered top-to-bottom. Due 

to the terrain following hybrid sigma pressure level concept, these layers only approximately correspond to specific pressure 180 

levels. Deviations can occur in particular over elevated terrain (e.g., the Tibetan Plateau) where the pressure is lower in the 

layer than in other areas. This layer definition in the statistical analysis, however, is more flexible and can easily be adopted 

to the respective applications.  

2.3 Method 

The K-means algorithm used in this study is an unsupervised machine learning algorithm which does not require training data 185 

based on known and established classifications. It was first introduced by MacQueen (1967) and a more efficient version of 

K-means was developed by Hartigan and Wong (1979). K-means is a procedure based on the calculation of the squared 

Euclidean distance (Spencer, 2013). The Euclidean distance describes the distance between two points in the Euclidean space 

which can be spanned in any integer dimensions. Assuming that p and q are two points in a j-dimensional space, the Euclidean 

distance d (p, q) between p and q is calculated by: 190 
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Ὠὴȟή ὴ ή ὴ ή Ễ ὴ ή     (1) 

The K-means method partitions a sample set into a predefined number of clusters (k) using minimization within cluster 

variances. The basic input of the algorithm is a sample X= {x1, é, xn} with xm = (x1
m, x2

m, é xj
m) and άᶰρȟȣȟὲ, where n 

is the number of data points and j is the number of variable properties. The sample X is grouped into k cluster subsets (S1, S2, 

é Sk) by minimizing the sum of the variances within each cluster Si=1, é, k as follows:  195 

  
ÁÒÇάὭὲ
Ὓ

В В ᴁὼ Аᴁᶲ            (2) 

where µi is the center of cluster Si (also called cluster centroid) and the term ᴁὼ Аᴁ is a simplified notation of Eq. (1) 

describing the Euclidean distances between all samples in x and their cluster center А  in j Euclidean dimensions. The argmin 

operator identifies the set of clusters Si=1, é, k which minimizes the total sum of the Euclidean distance. By applying this 

procedure, each member of X is assigned to a specific cluster. K-means is a stepwise forward iteration process. In the first step, 200 

the cluster centroids are assigned randomly and a prototype of the clusters is first estimated using equation (2). Then, in the 

second step, the cluster centroids are replaced by prototype cluster means. These two steps are iterated until the cluster centroids 

change only marginally or even stay constant. At this point the corresponding clusters can be regarded as the optimal set of 

clusters.  

 205 

Selecting the number of clusters k is one of the most challenging tasks in cluster analysis. Researchers developed many 

different approaches to select k but there is no standard solution which can be generally applied (e.g. Rousseeuw 1987; Sugar 

and James 2011; Amorim and Hennig, 2015). In this study we use clustering evaluation metrics in combination with a 

plausibility check for evaluation of the obtained clusters. Two clustering evaluation metrics commonly used are the sum of 

squared errors (SSE) and the silhouette coefficient (SC; Rousseeuw, 1987). The SSE is the sum of squared errors calculated 210 

between all data points and their cluster centre: 

ὛὛὉВ Вὢ А   (3) 

By plotting the SSE as a function of k and looking for the elbow point on the resulting curve, it is possible to identify the level 

of a mathematical optimization beyond which the further decrease in the error with increasing k is no longer worth the 

additional computing cost.  215 

The SC is a metric to validate the consistency/similarity within data of clusters and is defined as:  

 Ὓὅ
В

,           (4)   

with  ίὧὭ
 ȟ

          (5) 

where a(i) is the averaged distance of sample i to all other samples within a cluster and b(i) is the averaged distance of sample 

i to all samples of its nearest cluster that the sample i is not a part of. SC values range from ï 1 to +1, with a higher value 220 

indicating that samples are well matched to the cluster they were assigned to, while they fit poorly to other clusters (Rousseeuw, 

1987). 
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In this study, we apply the K-means clustering algorithm and calculate cluster evaluation metrics using the Python machine 

learning package scikit-learn (Pedregosa et al. 2011). The individual model grid points of the global simulation (192×96=18432 225 

points at the chosen T63 horizontal resolution) are assigned to k clusters based on the seven simulated aerosol properties as 

stated in Sect. 2.2. There is no vertical dependency here since the method is applied separately in each of the three atmosphere 

layers as defined in Sect. 2.2. A common requirement for the K-means algorithm is the standardization of the input dataset, 

due to the fact that input quantities span different orders of magnitudes and can have different units. Since aerosol mass and 

number concentrations have different units and are characterized by very different numerical values, each of the individual 230 

aerosol properties xl,  ὰɴ ρȟȣȟὮȟ are standardized to xl
s by subtracting their respective mean and dividing each value by its 

respective standard deviation (StandardScaler method in the scikit-learn package): 

                  ὼ   (6) 

where xl
s stands for standardized data, xl is the original data, ὼ is the mean and ůl is the standard deviation of this specific 

aerosol property l calculated from the whole set of samples. The standardization ensures the comparability of the different 235 

aerosol quantities and facilitates evaluating the prominence of individual aerosol properties in the respective regimes. It also 

avoids clustering due to one dominate species but instead focusing on the connection between the different species.   

 

In summary, we use a standardization method to harmonize the order of magnitude of the different aerosol quantities to ensure 

comparability and then apply K-means for the aerosol classification tasks. To investigate the robustness of this method, two 240 

additional sensitivity tests are conducted in this study. The first test is designed to analyse how data scaling transforms the 

input aerosol data and how K-means clustering is influenced by different scaling methods. In addition to the standardization 

method described above, we apply three further data scaling methods for standardizing the aerosol data, namely the 

MaxMinScaler, the Robustscaler and the Normalizer from the scikit-learn package (Pedregosa et al. 2011) (see Table 1 in 

Section 4.1). As a further method, we apply the StandardScaler in Eq. (6) to the (base-10) logarithm of the aerosol concentration 245 

data to change the data distribution intentionally. A detailed description of this these scaling methods is presented in Sect. 4.1. 

In the second sensitivity test we compare the results of K-means clustering to those obtained with a different unsupervised 

machine learning method (HAC), using the StandardScaler standardization. This allows us to investigate whether choosing an 

alternative clustering algorithm might lead to fundamental differences in the obtained aerosol clusters. Details on this 

sensitivity test can be found in the Sect. 4.2. 250 
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Figure 1: Simulated climatological aerosol properties for the lower troposphere (surface to ~700hPa) including vertically 

integrated mass concentration of mineral dust (a), BC (b), sea salt (c), POM (d), SNA (e), vertically integrated particle 

number concentration of the Aitken mode Nakn (f) and of the accumulation mode Nacc (g).   

 255 
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3 Results 

In this section we present the results of K-means clustering for global aerosol properties in three atmospheric layers as defined 

in Sect. 2.2. We focus on 4 aspects: (1) the spatial distribution of the seven individual aerosol properties as inputs for the K-

means analyses; (2) the evaluation metrics for the K-means clustering which support the selection of a proper cluster number 

k; (3) the spatial distribution of classified aerosol regimes; and (4) the characteristics identified for each aerosol regime 260 

regarding the data distribution of aerosol properties within each class.  

 

The results of the clustering analyses are visualized in this study using global geographical maps of the cluster distributions. 

In addition, we show so-called box plots which provide additional statistical descriptions of the data distributions for individual 

aerosol parameters within each cluster. By comparing the data distributions between individual aerosol parameters and regimes 265 

we explicitly analyse the characteristics of each regime.  

 

3.1 Lower troposphere clusters 

For identifying lower tropospheric clusters, the aerosol mass and number concentrations from the global simulation are 

vertically integrated from the Earth surface to the model layer which corresponds to about 700 hPa. The resulting spatial 270 

distributions are shown in Fig. 1. High mineral dust column masses (up to 1× 106 µg/m2) are simulated over the Sahara and in 

other deserts, while values in other regions are mostly small (Fig.1a).  BC column masses are highest in south and east Asia 

(up to about 3.5 × 103 µg/m2), due to anthropogenic pollution, and over central Africa (about 2 × 103 µ g/m2) resulting from 

intense biomass burning activity (Fig.1b). Peak values of the sea salt column masses over the oceans range between 1 × 104 

µg/m2 and 2 × 104 µg/m2 (Fig.1c).  The pattern of POM columns closely follows that of BC, since the two species share similar 275 

emission sources (Fig.1d). Enhanced total masses of sulfate, nitrate, and ammonium (SNA) are noticeable especially over 

south of the Eurasian continent (up to 5 × 104 µg/m2) and the Arabian Peninsula (Fig.1e), which could be due to coal burning 

for energy production (Klimont et al. 2013) especially in the case of India and China. Column integrated numbers of Aitken 

mode particles, in the following called Aitken mode number columns, are generally high in the Northern Hemisphere, with 

large values close to strongly polluted areas (Fig.1f), while biomass burning largely contributes to the accumulation mode 280 

number column, which is particularly high in prominent biomass burning regions such as Central Africa and South America 

(Fig.1g). As expected, aerosol mass and number column show a large spatial variation in the lower troposphere, closely 

following the geographical distribution of the main emission sources. This variability results in a complex pattern of aerosol 

regimes as shown below. 

 285 
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Figure 2: Lower troposphere clustering using K-means. The top panel shows the evaluation metrics SSE (a) and SC (b) vs a 

k range of 2-14. The middle plot (c) highlights the spatial distribution of 10 aerosol regimes for the lower troposphere. The 290 

bottom plot (d) shows the data distribution of the 7 considered aerosol properties within the 10 individual aerosol regimes, and 

cluster names assigned to each cluster based on the analysis of the aerosol data within the respective cluster.  The boxplots 
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describe the distribution of data by displaying 5 statistical quantities that are not outliers: the maximum value (top whisker), 

75% quantile, median (top of box), median (middle line in box), 25% quantile (bottom of box) and minimum value (bottom 

whisker) of standardized aerosol parameters that are not outlies. The black dots are outliers which are defined as the data 295 

beyond 2.67ů of a normal distribution.  

 

As explained in Sect. 2.3, K-means classifications are conducted for a range of predefined cluster numbers k. The resulting 

classification is coarse at low k, while increasing k leads to increased complexity. At some point, however, the added 

complexity of the K-means classification does not add further information and therefore a further increase of k is not useful. 300 

Hence, choosing a proper cluster number for the K-means analysis is not straightforward. Here, we use 10 clusters for the 

lower troposphere based on the K-means evaluation metrics (SSE and SC) and on expert judgement as described above. SSE 

describes the sum of squared errors from each sample to the respective cluster centre (Eq. 3) and decreases with increasing k. 

For the lower troposphere, SSE decreases rapidly from k=2 up to about k=7 and then more slowly for larger k (Fig. 2a). The 

SC is highest at k=2, decreases between k=2 and k=  4 and reaches a roughly constant level at k=5-11(Fig. 2b). The higher the 305 

SC value is, the more similar are the data within the cluster and the more distinct to other clusters. The optimal solution is 

obtained by minimizing SSE and maximizing the SC. Therefore, taking a balance between small SSE and large SC, we limit 

the selection of k to 9 to 11. The difference between the 9-cluster and the 10-cluster classification is that one oceanic aerosol 

regime in the 9-cluster classification is further divided into two clusters in the 10-cluster classification. The 11-cluster 

classification includes a tiny regime which adds little information with respect to the 10-cluster one (Figure S1 in the 310 

supplementary material). We therefore choose k=10 for the aerosol classification in the lower troposphere.  

 

The resulting 10 aerosol regimes classified by K-means for the lower troposphere are displayed in Figure 2c. These identified 

major aerosol classes match well with the expected regimes in this altitude range. Polar aerosols are classified in cluster 0, 

while oceanic aerosols are roughly divided between Northern and Southern Hemisphere by clusters 6 and 8, respectively. The 315 

large forests and savannas of Africa and South America are covered by cluster 5 and cluster 1 including major biogenic and 

fire aerosol sources (e.g., Dentener et al., 2006). Clusters 9 and 3 cover the main desert regions over Sahara and the Arabian 

Peninsula. Cluster 9 marks the strong dust emission spots, while cluster 3 represents a kind of ñbackground desertò which 

shows slight influences by aerosol transported from surrounding areas. The regions characterized by strong anthropogenic 

pollution (Southern and eastern Asia) are assigned to cluster 7, while regions with moderate and low pollution are covered by 320 

cluster 4 and cluster 2, respectively, with the latter often extending to oceanic regions possibly affected by long-range transport 

of anthropogenic pollution from the continents.  

 

The characterization of the aerosol regimes in the lower troposphere obtained with the K-means method can be further explored 

and interpreted using the boxplot in Figure 2d. The figure shows the distribution of samples collected within each regime and 325 

several statistical metrics, including maximum, 75% quantile, median, 25% quantile and minimum of the standardized aerosol 

parameters that are not outliers. We recall the use of multi-annual mean sample values and the consideration of column 
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integrated values in the lower tropospheric column. The dots are outliers that can be ignored for statistical discussion. They 

are defined by +/- 1.5 times of the interquartile range of the data, which corresponds to data beyond 2.67 sigma of a normal 

distribution. Note that values on the y-axis are the standardized values (calculated with Eq. 5) but not the absolute value as 330 

shown in Fig.1, in order to do a proper classification with K-means and to compare species with different units and scales. All 

aerosol properties within cluster 0 (polar regions) show lower values than in the other clusters, meaning that this can be 

considered as aerosol background, as denoted also in Figure 2d. Low values are found also in clusters 6 and 8, with the 

exception of sea salt, which has enhanced values: we therefore mark these two clusters as oceanic aerosol. Clusters 6 and 8 are 

very similar, which explains why they are merged into one cluster if a 9-cluster classification is used. The difference between 335 

them are the slightly higher values of aerosol properties other than sea salt concentrations within cluster 6, which points to a 

more polluted marine regime than in cluster 8, which represents remote oceanic regions. Cluster 1 and 5 cover the major forests 

and savannas in Africa and South America and downwind areas and are characterized by enhanced POM, BC and Nacc, which 

are all typical indicators of strong biomass burning and biogenic activity. The difference between the two clusters is that the 

enhancement of these quantities is more pronounced in cluster 5 compared to cluster 1. This difference suggests that fresh 340 

biomass burning and biogenic aerosol characterize cluster 5, while more aged particles are found in cluster 1 as a result of 

long-range transport and the subsequent dispersion of the affected air masses in combination with particle wet and dry 

deposition. Cluster 9 and cluster 3 both show enhanced mineral dust values which agrees with their locations in large deserts 

or in close proximity to desert regions. Cluster 9 shows much larger mineral dust values and much lower values for the other 

aerosol properties (in particular SNA and Nakn) than cluster 3. This suggests that cluster 9 covers the regions of localized strong 345 

dust emissions, while cluster 3 includes dust dominated air masses which are mixed with pollution from other regions. The 

dominance of BC and SNA in cluster 7 matches well with the large pollution characterizing the south and east Asian regions 

covered by this cluster. Cluster 7 also shows enhanced POM and number concentrations in both aitken and accumulation 

modes. We therefore name it the enhanced polluted Asian cluster. Clusters 2 and 4 cover large parts of the Eurasian and 

American continental regions. Cluster 4 is more polluted than cluster 2, but both are relatively clean compared to other 350 

continental clusters nearby (e.g., the strongly polluted Asian regions). We refer to these clusters as moderately polluted 

continental and weakly polluted continental, respectively. Another important aspect worth noting is that continental aerosol 

clusters frequently propagate into oceanic regions, showing that this method is also able to capture the long-range transport of 

pollutants from the emission regions to the relatively clean marine environment. For example, clusters 1, 2, and 3 cover also 

parts of the middle Atlantic Ocean, cluster 2 also appears over the Pacific Ocean near the west coast of the American continent, 355 

and cluster 4 extends over the north western Pacific.    
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3.2 Middle troposphere clusters 

 

Figure 3: The same as Figure 1 but for the middle troposphere (from ~ 700hPa to ~300hPa). 

 360 
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The clustering analysis for the middle tropospheric layer uses global aerosol data from about 700 hPa to 300 hPa. As depicted 

in Fig. 3, this altitude range shows lower values for the column mass and number concentrations (Fig. 1). For example, the 

column mass of middle troposphere mineral dust (Fig. 3a) ranges from 2 × 103 µg/m2 to 3.4 × 104 µg/m2 in areas with 

prominent dust impact, compared to a range of 100 µg/m2 to 1 × 106 µg/m2 in the lower troposphere (Fig. 1a). This is caused 

by the decrease of air density during upward transport, by the dilution of the dust load due to mixing with dust-free air masses 365 

as well as by possible sinks due to wet deposition. A similar reduction is also evident in the other aerosol properties. The spatial 

distribution patterns, however, remain the same between middle troposphere and lower troposphere. However, the overall 

patterns, in many cases, show a larger spatial extension, caused by long-range transport and dispersion of the respective air 

masses. 

 370 

Due to this dispersion, a less complex clustering is required than in the lower troposphere. In general, we can expect k to 

decrease with increasing altitude, due to the more uniform spatial aerosol distributions in the upper atmospheric layers. For 

the middle troposphere, we evaluated K-means classifications with k=2 to k=8 using the same metrics as applied above (Fig.4 

a and b). As for the lower tropospheric case, SSE decreases with increasing k, but more slowly already for kÓ6. The SC 

decreases to a minimum for k=4 and increases again to a stable level between k=6 and k=8. The distribution of the major 375 

aerosol regimes becomes very robust at k=6, while only minor regimes are introduced at higher values which do not show 

prominent features. We therefore choose a 6-cluster classification for the middle troposphere (See also Figure S2 in the 

supplementary material). 

 

In the middle troposphere, the aerosol regimes are more zonally uniform than lower down but the lower troposphere has still 380 

a very strong influence on the pattern (Fig. 4c). The zonal uniformity particularly occurs in the case of clusters 0, 2 and 5 and 

appears to be related to the increasing prevalence of zonal wind patterns in the middle troposphere. Clusters 1, 3 and 4, on the 

other hand, show a stronger influence of the distribution of the emission sources and the transport patterns of the lower 

troposphere. The statistical analysis of the aerosol properties within each cluster allows to broadly classify the clusters 2 and 

5 as middle tropospheric background clusters, and clusters 1, 3, and 4 as middle tropospheric polluted clusters (Fig. 4d). The 385 

lowest values of all aerosol properties are found in cluster 5 which can be classified as middle tropospheric background 

(relatively clean) and covers large fractions of the southern hemispheric oceans and the polar regions. Cluster 2 is characterized 

by enhanced sea salt values, while the values of other aerosol species remain low as in cluster 5. Hence the cluster includes 

background air enriched with sea salt due to enhanced wind-driven emissions. Cluster 2 mainly covers the intertropical 

convergence zone (between 20°S and 20°N) with its strong updrafts and the southern hemispheric storm track area around 390 

60°S, which is also an uplift region between the mid-latitude cell and the polar cell of the main atmospheric circulation pattern. 

Due to the strong upward transport in these regions, sea salt is lifted from the sea surface to the middle troposphere. Cluster 0 

is mainly located in the Northern Hemisphere and above the continents: it is characterized by mildly enhanced BC, SNA, 

POM, Nakn, and Nacc. Similar enhancements of some of these aerosol properties are evident in clusters 1, 3, and 4, but with 
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much larger values. These clusters show similar aerosol characteristics and cover similar regions as their counterparts in the 395 

lower troposphere (note however that the algorithm assigns different cluster index numbers for the lower and middle 

troposphere cases). These three polluted clusters nicely identify three distinct sources: cluster 1 is mostly affected by the strong 

emission regions in south and east Asia and southern Europe/Mediterranean, cluster 3 presents a mixture of mineral dust and 

other pollutions sources, with an evident prominence above large deserts, and cluster 4 is an enhanced carbonaceous/biogenic 

cluster, with significant coverage over the biomass burning and biogenic sources e.g. in South America and Africa. It occurs 400 

also over East Asia with its high anthropogenic emissions of carbonaceous particles. Note that the scaled values in Fig. 2d and 

Fig. 4d should not be compared directly among the different atmospheric layers, because the input data for K-means analyses 

are scaled individually based on the data within each layer.   
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Figure 4: The same as Figure 2 but for the Middle troposphere (from ~ 700hPa to ~300hPa). 405 
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Figure 5: The same as Figure 1 but for the tropopause region (from ~ 300hPa to ~100hPa). 
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3.3 Tropopause region clusters 

The clustering analysis for the tropopause region considers global aerosol data from about 300 hPa to 100 hPa. The degree of 

spatial dispersion again increases when compared to the lower layers. Therefore, the distributions become more homogeneous 410 

than in the middle and lower troposphere (Fig.5). The maximum values of the five aerosol mass columns (mineral dust, BC, 

sea salt, POM, SNA) are lower in the tropopause region (Fig. 5) than their background value in the lower troposphere (Fig.1). 

For example, the maximum mineral dust mass column in the tropopause region amounts to about 1 × 103 µg/m2, which is close 

to the minimum value of mineral dust in the lower troposphere. Although aerosol mass columns in the tropopause region are 

generally small and a high degree of dispersion is reached, the spatial patterns for mineral dust, BC, POM and SNA are still 415 

related to those in the lower troposphere. This demonstrates that local upward transport of aerosols from the Earthôs surface to 

the tropopause region is efficient in areas showing enhanced dust concentrations. However, this does not fully apply to sea 

salt, which reaches high values only in the tropics corresponding to regions of strong convection over the oceans into the 

tropopause region (Fig. 5c). With regard to the aerosol number columns, the effects of vertical and zonal transport appear to 

be more complex. While the accumulation mode particle number shows a similar behaviour as the mass loadings, the Aitken 420 

mode particle number column appears to be strongly influenced by new particle formation in the tropopause region. Hotspots 

of the particle number occur particularly over regions of enhanced gaseous pollution which provides aerosol precursor gases, 

such as SO2, leading to aerosol nucleation and growth favoured by the clean environment of the tropopause region. 

 

As mentioned above and favoured by the homogeneous characteristics of aerosol in the tropopause region shown in Fig. 5, a 425 

more simplified clustering can be applied in this layer, reducing k to less than 6. Aerosol cluster distributions for a range of 

different k are shown in Fig. S3 (Supplementary material). The SSE of K-means clustering for the tropopause region (Fig. 6a) 

shows a similar structure as in the middle troposphere (Fig. 4a), with noticeable convergence from about k=6. The SC reaches 

a maximum for k=4 and k=5 (Fig. 6b). The combination of these two metrics suggests k=5 as the proper choice for the K-

means classification for the tropopause region. The resulting 5 clusters are shown in Figure 6c. Large parts of the tropopause 430 

region belong to cluster 1, which covers the whole polar regions and most of the southern extra-tropics. The second largest 

cluster is cluster 2, which covers a large part of the northern extra-tropics and about half of the tropical ocean regions, with the 

other half mostly covered by cluster 3. Cluster 0 and 4 cover a small portion of the continents including central Africa, the 

Saharan region as well as tropical and subtropical Asia. Figure 6d highlights the aerosol characteristics for each cluster of the 

tropopause region. Cluster 1 shows the lowest values for all aerosol properties which suggests to characterize it as tropopause 435 

region background. Note that in the polar regions, the pressure levels considered here are mostly located in the stratosphere, 

and therefore contain comparably clean air. Cluster 3 show similarly low values for all species except for sea salt, which is 

significantly enhanced due to upward transport in the intertropical convergence zone. Hence, we denote it as the tropopause 

region enhanced sea salt cluster. The slightly enhanced Nacc in cluster 3 relative to the cluster 1 is probably caused by new 

particle formation. Cluster 2 shows slight increases for all aerosol properties relative to cluster 1, but being still lower than in 440 
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the other clusters. We therefore define cluster 2 as the tropopause region mildly polluted cluster. Cluster 0 features strongly 

increased mineral dust accompanied by slight increases in BC and SNA. Therefore, it can be termed tropopause region 

dust/polluted cluster. This is also supported by its geographical location over the Sahara and the Middle East where mixtures 

of desert dust with anthropogenic pollution could be expected. Cluster 4 shows strongly enhanced BC, SNA and POM, and 

mildly enhanced mineral dust which suggests to term this regime tropopause region polluted/mixed cluster. On the one hand, 445 

it is strongly influenced by the biomass burning and biogenic aerosol sources over central Africa and South America. On the 

other hand, it shows also relevant coverage over East Asia, resulting from the strong pollution sources in these regions. Note 

that there are many similarities between the aerosol regimes of the tropopause region and the mid troposphere (Fig. 4), 

especially for clusters 3 and 4, which are largely controlled by efficient updrafts. Hence these clusters correspond also well to 

lower tropospheric aerosol regimes of similar characteristics occurring in the same regions (Fig. 2).  450 
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Figure 6: The same as Figure 2 but for the tropopause region (from ~ 300hPa to ~100hPa).   

 


