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An aerosol classification scheme for global simulations using the-Keans
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Abstract. TheK-meangamachine learninglgorithm is applied talimatologicaldata ofseveraerosol properties from a global
aerosol simulationsing EMAGMADES3. The aim is tgartition the aerosgropertiesacross the global atmosphere in specific
aerosol regimegmnainly for evaluation purpose K-means is an unsupervised machine learning metithdthe advantage

that an a priori definition of the aerosol classesdt requied. Using K-means, were able tauantigtively define global
aerosol regimesso-called aerosol clusterand explain thie internal properties as well as thécationandextersion. This
analysis showthat aerosol regimes in the lower tropospheestionglyinfluenced by emissions Key dri ver s of
internal properties and spatial distribution,de instancepollutants frombiomass burning/biogen&ourcesmineraldust,
anthropogenipollution, as well agheir mixing. Severalcontinental clustengropagate into oce@nregionsas a result of long
range transport of air massd@$e identifiedoceanic regimes show a higher degree of pollution in the northern hemisphere
than over thesoutrernocears. With increasingaltitude, theaerosol regimepropagatdrom emissiorAnducedclustes in the

lower troposphere to roughly zohadistributed regimes in the middle troposphere enthe tropopause regiorNotably,

three polluted clusteriglentified over Africa, India and eastern Chjrcoverthe wholeatmosphericolumnfrom the lower
troposphere tthetropopause regiofm he resultof this analysisieed to be interpreted taking the limitag@mnd strengtbof

global aerosol models into consideration. On the one hand, global aerosol simulations cannot estinszi@siuadl localized
processes due to the coarse resolution. On the other hand, pitene cdhe spatial pattern of aerosol properties on the global
scale, implying that the clustering results could provide useful insights for aerosol research. To estimate the uncertainties
inherent in the applied clustering method, two sensitivity tests hagn conducted i) to investigate how various data scaling
procedures could affect the-ideans classification and ii) to comparenteans with another unsupervised classification
algorithm(HAC, i.e.Hierarchical Agglomerative Clustering)heresuts showthat thestandardization based on sample mean
and standard deviatida the mostppropriate standardization method for this stuadyit keeps the underling distribution of
the raw dataset and retains the information of outliehe two clusteringalgoiithms provide similar classification results,
supportingthe robustness of our conclusiorBhe classification procedures presented in this study have a markedly wide

application potential for future modbhsed aerosol studies.
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1 Intr oduction

Aerosolsplay an important role in the climate system (Boucher et al., 2013).ififhégnce climate directly by scattering and
absorption of solaand terrestriatadiation as well as indirectlypy modifications of cloud propertieShe najor components

of atmosphec aerosols are mineral dust, blacdrbon (BC)and organic carbon, qffate, nitrate, ammonium and sea salt.
Due to their relatively short residence timgg contributions of these components, their state of mixing as well as the particle
size distribution show a large spatial and temporal variatalityhe global scalée.g.,Lauer and Hendricks, 2008jann et

al., 2010 2014 Pringle et al., 2010Aquila et al., 2011, Sessions et al., 204&iser et al., 2019 Additionally, their effects

on clouds and radiation are highly variabléedothe strong @penarcieson the physical and chemical properties of the
aerosols. Thign combination with uncertaiies in the current knowledge of key aeresalhted processes makes the
guantification of aerosatlimate effects a challengand results in comparatively large uncertainties in the existing
guantifications of the climate impact of anthropogenic aerdsals,Boucher et al. 2013; Myhre et al. 2QBellouin et al.,
2020.

Global aerosetlimate models equipped wittetailedrepresentationsf aerosol microphysal and chental processes are
essentiatools for the quantification of aerosodlimate effects €.g.,Boucher et al. 1998; Takemura et al. 2005; Stier et al.
2005,2006;Lauer et al. 2007doose et al. 200Righi et al. 2013Randles et al. 2013; Kipling et al. 20Myhre et al. 2017;
Bellouin et al.,202Q Righi et al. 202] During the &st decadegonsiderablattempts have beanade bythe global aerosol
modelling community todevelopimproved descriptions of aerosalimate interactionse(g., Ghan and Schwartz, 2007
Boucher et al., 203 Riemer et al., 2009 Earlymodellingapproabes considered only the mass of aerosol species. However,
observationsmply that the number, size distributioand mixing state of aerosols are also critical factorsafoaccurate
representation aderosoiclimate interactioa(Albrecht et al. 198p First attempts ofepreserning the aerosol size distribution
and mixing state in global modedsartedat the end of the 2™ century €.g.,Jacobson 2001). Due to limited computing
capacities and the huge computational expensgielo@l aerosaetlimatemodels, cost effective algorithms have been applied,
for instancethelognormal representations of the aerosol size distribugan,Stier et al. 2005; Lauer et al. 200%quila et

al. 20L1; von Salzen 200&2ringle et al., 201Kaiser et al. 2019Recentapproaches allow for tracking soluble and insoluble
aerosol particleomponentss well as the mixtures andacilitate the simulation gbarticlenumber, mass concentration and
size distribution. Beyond the direct radiative impact of aerosols, @estosid interactions are key processes driving the
aerosol climate effects. Hengerametrizations of aerosol act@tionin liquid clouds have been establisheddGahn et al.

2011 for a review. In addition, aerosahduced formation of ice crystaldtracts increasing attentigikanji et al., 2017;
Heymsfield et al. 2017)To represent the manifold ice formation pathways induced by a large number of different aerosol
types in global aerosalimate models, the applied microphysical cloud schemeglhas the underlying aerosol saindels

have beerurther extended(e.g.,Lohmann and KéarcheR002; Karcher et g12006; Lohmann et al2007; Lohmann and
Hoose 2009;Hendricks et al., 201Kuebbeler et al2014; Righi et al.2020).
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The above exaples demonstratéhe growing complexity of global aerosomodek which, consequentlyresults in darge
number of parametemhich descrile the aerosol number concentration, size distribution and composition in global models
andmakes thanalysis evalwationandinterpretation of the model results a challenge. This is further complicated by the large
spatial and temporal variability of the aeropabperties Under these circumstancesanalysing all relevantariablesfrom a
typical globalmodelsimulationcanbecomeunfeasible New analysismethod arethereforerequired to gather information
from the huge set ofariablesand theirtemporal and spatialariakility . A powerful tool to facilitate the analysis of global
aerosol model resulis the partitioning of the modesimulatedaerosol into differengroups/clusters each characterized by
specific propertiesin the following, hese groups wilbe called aerosol regimemformation on how thesaerosolregimes

are distributed in space could Bery helpful to obtain eoncise butomprehensiveiew on the complex system ofodelled
aerosol parameters. Detailed knowledg¢hefspatialdistribution ofindividual aerosolregimescould be the basis for further
analysesnd model improvemenEor instance, observations wittarspecific aerosol regime can bembinedfor evaluating
simulation resultsvith regard to this specific aerosol typeirthermoremodel evaluationesultshased on observations limited

in space and timge.g.aircraftbased field campaighscould begeneralized t@ whole aerosol regime covering much larger
areas and time periodassuming that theystematianodelbiassto be correctedccur nearly homogenously throughout the
whole clusterln addition, knowledge ofhe properties and spatial extensionaefosol regimesould serve asupportive

information for satellite retrieval and for the planning of furttield campaigndor aerosol observation

Previous aerosol classifications have beeinly conductedn the context obbservational studies using measurements of
aerosol microphysical and optical properties. For example, Grol3 et al. (2013, 2015) applied classification schemes to identif
specificaerosol typeand their mixture®ased otidar measuremestandsatellitedata Their classificatioprocedure follows

a tree structurerheredifferent aerosol microphysical and optical properitigsly differentclassificatiorbranches. Thiallows

to identify complicated vertical stratifications of differex@rosol types througlutthe atmosphere. Bibi et al. (2016) applied
multiple clustering techniques mnalyseseasonal differensen prevailingaerosol types at four locations in India. Their
classificationwas based on the analysis of pairs of aerosdlcap properties gained from the Aerosol Robotic Network
(AERONET) sun photometer measurements. Schmeisser et al. (2017) applied a similar multiple clustering technique to classif
aerosol types based on surfdmsedbservations of spectral aerosol ogliproperties from a global station network. Nicolae

et al. (2018) classified six aerosol types using an artificial neural neappiled tolidar measuremeat The neural network

was trained with predefined data from different aerbgms Applying similar algorithms to global model resultsing optical

aerosol properties to classify aerosol tygesvevercould beproblematicsince the optical properties aterivedquantities

which are calculated fromrimary (prognostic)guantities such as aerosalmber, size and compositiohhese calculations

also require additional assumptions, usually retridien measurements, e.g.aerosol réactiveindices possiblyimplying
furtheruncertaintiegDietmdiller et al. 2016 Hencenewalgorithms for aerosol classification basedprimary aerosainodel

parametersvould be more appropriate
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In this study, weaapplythe K-means machine leaing clustering algorithm (Hartigan and Wong 1979) for identifying clusters

of specific aerosol tygs in global aerosol simulatiarbhis methodartitions n samples intd clusters in which each sample

is assigned to the <cl ust er cente(ohclusten eentroid).dneans belomys te theaclassef t o
unsupervised machirearning algorithms. This is especially useful when the classification criteria are unknown, as in the case
of aerosol classification whetbe specific aerosol characteristior the predominant regimese not known a priori.In
comparison withtsupervised classification algoritlsnvhich requiresubstantiaprior knowledgeof classesan unsupervised
classificationis relatively easy to use, biit requires the identification and labeling of the resulting clustersafter the
classification The canmon known limitations of Kmeans include the presence of clusters with equal variances and its
sensitivily to outliers.K-means has already been applied in atmospheric research. For instance, it has been successfully use
to distinguish clouds and aerosdah CALIOP/CALIPSO observations (Zeng et al. 20189}his study, we apply thedheans
algorithm to global aerosol simulatiofishe main goals to answer the following questions: (1) how caajor aerosol regimes

be identified inglobal aerosol simulains? (2what is the spatial distribution tieseregime® and (3) which aerosotypes

are dominanin which pars of the world? The Kmeans method iapplied herdo identify clusters of different aerosol types

in global simulations. The spatial extension of these clustersantified. The aerosol properties considered for the clustering
processwere simulated using theglobal chemistryclimate model systenEMAC (the ECHAM/MESSy Atmospheric
Chemistrygeneral circulation modeléckel et al. 2010, 2016) equipped with the aerosol microphysical sub module MADE3
(Modal Aerosol Dynamics model for Europe adapted for global applications, third generation, Kaiserkt,&2029).The

aerosol propertieanalysed herenclude the mass concentrations of mineral dB&t, particulde organic matte(POM), sea

salt, the sum afierosokulphate nitrateand anmonium(SNA), as well as particle number concentrationdifferentaerosol

size modesT he clustering analysis is conducted separately for the lower troposphere, the mid tropospherecgup these

region To quantify potential uncertainties of the clustering procedure, the sensitivity of the results to diffetteods for

scaling the input data is explored. We also provide a comparisomudafs clustering with another unsupervised machine

learning clustering algorithm, namely the Hierarchical Agglomerative Clustering (HAC).

The paper is structured as follswsection 2 describate modeldata andhe analysisnethods in detail. The results of the
global clusteringprrocedureare presenteith Sect.3, includingseparate discussionstbe three predefined atmospheric layers.
Section 4 provides an uncertair@yalysis by testing various sensitivities of the obtained results to methodical aslisedts
view of thelimitation and strength of global aerosol modatel potential applications of the presented clustering method.

summary of the main conclusioas well as an outlook are givenSect.5.



2 Data and method
2.1 Model description and configuration

130 As a basis for aerosol classification in the present studgnalyseone of theglobalmodelsimulatiors of Beer et al. (2020)
performed withthe global aerosol modétMAC-MADE3. MADE3 simulates nine different aerosol specieslpisate
ammonium, nitratethe sea salspecies sodium and chlorid®C, POM, mineral dust and aerosol wateFhesenine aerosols
species occun three differentntemal mixtureqpurely soluble particles, mixed particles consisting of an insoluble core with
a soluble coating, and particles mainly composed of insoluble material and only very thin soluble cedtingt)reesize

135 modss (Aitken-, accumulationand coarsenode) Thisresulsin atotal of nine aerosol modethe model considerparticle
transformations due woagulationcondensation, ggsarticle partitiomg and new particle formatioMADE3 was evaluated
in detail inpast studies anghowed agenerallygood model performanceKaiser et al (2014) demonstrdtéhe ability of
MADES3 to representhe aerosol microphysal proceseswhen compared to a more detailed partielsolving aerosol model
Kaiser et al. (2019%urther demonstrated goodagreement oBC, POM, gasousspecies an@articlenumber concentrati@n

140 simulated with EMAGMADES3 with variousobservationsBeer et al. (2020furtherextendedhe model setup of Kaiser et al.
(2019) by including an online pararegtation for winddriven dust emissions (Tegen et al., 20@2)performedive model
experimentdor the time period 2002013 in different horizontal and verticanodel resolutions The model results were
evaluated by comparisagainst observational dafromthe AERONET station network (Holben et al. 1998, 2001) and
aircraftbasedmeasurementffom the SALTRACE field campaig@Veinzierl et al. 2017). The comparisonBeer et al.

145 (2020)shovedthataspecificconfiguration(T63L31Tegen)outperformgheothershanks tadts higher resolution anithe more
detailed representation dfistemissionprocessesHence datafrom this simulatiorareusedfor the clustering analysis the
present study.

For the chosen simulatiddeer et al. (2020) applidgeMAC in hudged modethat is, model dynamics were constraimnesihg
150 ECMWEF reanalgis data (Dee et al. 2011) including wind divergence and vorticity, temperatudeganithm of thesurface
pressure for the yea@)00to 2013. Transient emission ddta anthopogenic sourcewereused to match this simulation
period. Anthropogenic emissisrwere chosen according tthe ACCMIP (Atmospheric Chemistry and Climate Model
Intercomparison Project; Lamarque et al. 20b@¥ntorywith RCP 8.5scenarig(Riahi et al. 2007, 2011Biomassburning
emissiors were takefrom the Global Fire Emission Database verld@®FED;van der Werf et al. 2017). Thend-driven
155 emissiors of mineral dustand sea salivere calculaed onlinefor every model time stefollowing the dust parametization
developed by Tegen et al. (2002phdthe parameterization of sea spray introduced by Guelle et al. (2001), respedely
mentioned abovehe model was appliedt a T63L31 resolution, corresponding to a ¥4.9 herizontalresolution and 31
vertical hybrid pressure levet®vering the vertical range from the surfapeto 10 hPal-or a more dtaileddescription of tk

simulation setupwe refer taBeer et al. (2020)Some important aspects regarding the quality of the aleregresentation in
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this simulation, as well as the advantages and disadvantages of global aerosol models in general, are further disciussed in Se
4.3.

2.2 Data

Seven aerosq@arametergxtractedrom theBeer et al. (20203imulation areconsideredor the clustering procesthe mass
concentration®f mineral dustBC, POM, sea saltthe sum of the sulphate, nitrate, and ammonium concent@MA), as

well as Aitken and Accumulation mode particlember concentratioNan» andNae Of the combined aerosol speciéssing

number propertiem addition to mass propertiéshelpful since theumberratio of small to large partickecan changeven

whenthe totalmass stays cotent The number concentratiol$ coarsemodeparticles arenot taken into accourtb avoid

the duplicaton of information, sincethey arestrongly correlated with the mass concentration of sea salt and mineral dust
owing to a comparatively small variability in the size distributions of the modelled mineral dusearséls particlesSince

the size distributions of the modelled Aitken and accumulation modes are more variable, the number concentrations of thesi
particles are considered in addition to the corresponding mass concentretiertdustering process intended to identify
modelgrid pointswith similar climatological mearmerosol parameterss a basis talassifythe global aerosol distributiom

different aerosol regimes.

Thesimulationdata fromyears 2000 to 2013 arrst reduced tonulti-year(14 yearsmearsto investigate the distribution of
climatological aerosol regime§o account fothe vertical variabilityof aerosol propertieshé model data &1 vertical levels

in the terrain following hybrid sigma pressilegel areused to calcula valuesfor three atmospheric layefglore specifically,
we integrat model level 131-22 forthelower tropospheréup to ~700 hPglL21-14 forthemiddle tropospheré-700 to ~300
hPg and L13-6 for thetropopause regiof+-300 to~100 hP& Note that EMAC vertical levels are ordered-toghottom.Due

to the terrain following higrid sigma pressure level concept, these layers only approxintatespond tepecific pressure
levels Deviationscanoccurin particularover elevated terraife g., the Tibetan Plateawhere thepressure is lower in the
layer than in other areashis layer definitionin the statistical analysi©iowever, ismoreflexible and can easily be adopted

to the respective applications.

2.3 Method

TheK-meansalgorithmused in this studis an unsupervised machine learning algorithm whiasdot require training data
based orknown and established classificationswés first introduced by MacQueen (1963 da mae efficient version of
K-meanswas developed byHartigan and Wong (1979K-means is grocedure basedn the calculation othe squared
Euclidean distance (Spen¢2013).The Euclidean distance describi® distance between two points in the Euclidean space
which canbespannedn any integer dimensionéssumingthatp andg are two points in gdimensional space, the Euclidean

distancdd (p, g) betweerp andq is calculated by
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The K-meansmethodpartitions a sample set inepredefined number of cluste(k) using minimiation within cluster
variancesThe basic input of the algorithm assampleX= {x!,  €},with X"= (", %™, @) amda N pHB Rt , wheren
is the number of data points anid the number of variablgroperties. The sampleis grouped intk cluster subsetss(, $,
€ Bby minimizingthe sum of thevarianceswithin each cluste§-i, ¢ .« as follows:

A O”fgé B, My AA @)
where i is the center ottlusterS (also called cluster centroidindthe terma&y A £is a simplifiednotation ofEq. (1)
descriling theEuclidean distancdsetween alsamplesn x and their cluster centéy  inj Euclidean dimension3heargmin
operator identifies the set of clustéds;, ¢ .k which minimizes the total sum of the Euclidean distamyeapplying this
procedure, each memberXfs assigned to a specific clusté€rmeans is a stepwise forward iteration prockesthefirst step,
the cluster centroids are assigned randcemiga prototype of the clusters is first estimated using equa®p bien,in the
second steqhe cluster centroghrereplaced by prototype cluster msahhese two steps are iterated uthté cluster centroids

changeonly marginally or even stay constaAt. this pointthe corresponding clusters can be regamgtie optimal set of
clusters.

Selecting the number of clustekss one of the mosthallengingtasks in cluster analysis. Rasehers developed many
different approaches to select k but there is no standard solution which can be generally appgRedgseguw 198 Bugar
and James 2011; Amorim and Hennig, 2018)tHis study we uselustering evaluation metricd& combinationwith a
plausibility checkfor evaluationof the obtained cluster§wo clustering evaluation metrics commonly used are the sum of
squared err@(SSE) and the silhouette coeffici®C; Rousseeuw, 1987The SSE is the sum of squared esialculated
between all data points and their clustentre

“Y'YOB B&d A (3)
By plotting the SSE as a function kfand looking for theelbow pointon theresultingcurve it is possible to identify the level
of a mathematical optimizationeyond which thdurther decrease in the erravith increasingk is no longer worth the
additional computing cost.

The SCis a metric to validate the consistency/similarity within data of clustedss defined as

vo 2 , (4)

with i a0 — 5)

wherea(i) is the averagedistanceof sample to all othersampleswithin a cluster and(i) is theaveraged distanagf sample
i to all samples of its nearest cluster that the sam@eot a part of SC valuesrange fromi 1 to +1, witha higher value
indicating that samples are well magcto the cluster they were assignegdabile they fit poorly to other clustefRousseeuw,

1987)
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In this study, weapplythe K-means clusteringlgorithmand calculate cldsr evaluation metrics using tfthonmachine

learning package scikiearn(Pedregosa et al. 201 T)heindividual modelrid pointsof theglobalsimulation(192x96-48432

pointsat the chose 63 horizontalresolutior) areassignedo k clusters based on tlevensimulated aerosol properties

stated inSect.2.2 There is no vertical dependency here since the method is applied separately in each of the three atmospher
layersasdefined inSect.2.2. A common requirement fahe K-means algorithm is the standardization of the input dataset,

due to the fact that input quantities span different orders of magnitudes and can have different units. Since aerodol mass ar
number concentrations have different units and are characterizeshbgifferent numerical valuegach of thendividual

aerosol properties, av ph8 hOharestandardizedo x® by subtracting their respective mean and dividing each value by its

respective standard deviation (StandardScaler method in thelsaikipackage)

w — (6)
wherex® standsfor standardized data; is the original dataoi s t h e mis thenstardard deviation of thépecific
aerosol property calculated from the whole set of sampléhke standadizationensuregshe comparability of the different

aerosol quantitieandfacilitates evaluating the prominence of individual aerosol properties in the respective réigaises

avoids clustering due to one dominate species but instead focusihg connection between the different species

In summary, we use a standardization method to harmonize the order of magnitude of the different aerosol quantities to ensur
comparability and then apply-Kieans for the aerosol classification tasks. @stigate the robustness of this method, two
additional sensitivity tests are conducted in this study. The first test is desigapdlysehow data scaling transforms the

input aerosol data and how-eans clustering is influenced by different scalirgthods. In addition to the standardization
method described above, we apply thfagher data scaling methods for standardizing the aerosol data, namely the
MaxMinScaler, the Robustscaler and the Normalizer from the deiit package (Pedregosa et24111) (see Table 1 in
Section 4.1). As a further method, we apply the StandardScaler in Eq. (6) to theQplagmrithm of the aerosol concentration

data to change the data distribution intentionally. A detailed description t¢ii¢isis scaling methodspresented in Sect. 4.1.

In the second sensitivity test we compare the results-wfelins clustering to those obtained with a different unsupervised
machine learning method (HAC), using the StandardScaler standardization. This allows us to invéstifya@techoosing an
alternative clustering algorithm might lead to fundamental differences in the obtained aerosol clusters. Details on this

sensitivity test can be found in the Sect. 4.2.
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Figure 1: Simulated climatological aerosol properties for the lotk@posphere (surface to ~700hPa) including vertically
integrated mass concentration of mineral dust (a), BC (b), sea salt (c), POM (d), SNA (e), vertically integrated particle
number concentration of the Aitken modea«Nf) and of the accumulation mod&cc(Q).
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3 Results

In this sectionwe present theesults of kmeans clusterinfpr global aerosoproperties irthreeatmosphericdyeis asdefined

in Sect. 2.2We focus ot aspects(1) the spatial distribution of the seven individual aerosol propeas inputs fothe K-

means analysef?) the evaluation retricsfor the K-means clusteringrhich support theselection ofa proper cluster number
260 k; (3) the spatial distribution of classified aerosol regimaad @) the characteistics identified for each aerosol regime

regardingthe datadistribution of aerosol propégswithin each class

The results ofhe clustering analyses are visualized in this study using glpdayraphicamaps of the cluster distributions.
In addition, we show soalledbox plots which provide additional statistical descripgiofthe data distributions for individual

265 aerosol parameters within each clusByrcomparirg thedata distributions between individual aerosol parameters and regimes
we explicitly analysethe characteristics of each regime.

3.1 Lower troposphere clusters

For identifying lower troposphericlusters, the erosolmass and number concentratidnem the global simulatiorare
270 vertically integratedfrom the Earth surface tdhe model layer whic corresponds tabout 700 hPaThe resulting gatial
distributiors are shown in Figl. High mineral dustolumn masss(up to 1x 10 ug/n¥) aresimulatedover the Sahara and in
other desertawvhile values in other regionsre mostly small (Fig.1a). BC column masssarehighest in south and east Asia
(up toabout3.5 x 1 pug/n), due to anthropogenic pollution, and over central Africa (aboufl@ p g/m?) resulting from
intense biomass burning activifig.1b). Peak values of theea saltcolumn masssover the ocears rangebetweenl x 10*
275 pg/m? and2 x 10* pg/n? (Fig.1c). The pattern oPOM columrs closely followsthat of BC, since the two species share similar
emission sourcef~ig.1d). Enhanced total massof sulfate, nitrate, and ammoniurB8NA) are noticeable especialtyer
south ofthe Eurasian continer(up to 5x 10* ug/n?) and the Arabian Peninsulgig.1e) which could be due to coal burning
for energy production (Klimont et al. 20183pecially in the case tridia and ChinaColumn integated numbers of Aitken
mode particles, in the following calleditken mode numbecolumrs, are generally high in the Northern Hemisphere, with
280 large values close to strongly polluted ar@ag.1f), while biomass burninargely contributes to the accumulidon mode
number column, which iparticularlyhigh in prominentbiomass burning regiorsichas Central Africa and South America
(Fig.1g). As expectedaerosol mass and number colusiow a large spatial variatidn the lower troposphereclosely
following the geographical distribution of the main emission souides variability results in a complex pattern of aerosol
regimes as shown below.
285

10
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Figure 2: Lower troposphere clustering usingrifeans. The top panel shows the evaluation metrics(&Sthd & (b) vs a
290 krange of 214. The middle plot (c) highlights the spatial distribution of 10 aerosol regimes for the lower troposphere. The
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describe the distribution of data by displaying 5 statistical quantitesare not outliershe maximum value (top whisker),

75% quantile, median (top of box), median (middle line in box), 25% quantile (bottom of box) and minimum value (bottom
whisker) of standardized aerosol parameters that are not outlies. The black dots are outliersewdeéinet as the data
beyond 2.678 of a normal distribution.

As explained in Sect. 2.&-means classificatiaare conductedor a range of predefineduster number&. The resulting
classification iscoarseat low k, while increasingk leads to incresed complexity. At some pointhowever,the added
complexity of the K-means classificatiodoes not addfurther informationand therefore a further incressf k is not useful
Hence, boosing a proper cluster number foe K-means analysis isot straightforward Here, we use 10 clustersfor the
lower troposphere based tire K-meansevaluationmetrics(SSE andSC) andon expert judgemeras described abovBSE
describeshe sumof squared errors from each sampléhte respectiveluster centrédEq. 3)anddeaeases with increasirlg
For the lower tropospher§SEdecreases rapidyom k=2 up to abouk=7 and themmore slowly for largek (Fig. 2. The
SCis highest ak=2, decreasdsetweerk=2 andk= 4 andreaches aoughly constanievel atk=5-11(Fig. 2b) The higher the
SCyvalue is, the morsimilar are thedata within the cluster artthe more distinct to other cluster§he optimal solution is
obtained by minimizing SSE and maximizing €. Therefore, aking abalance betweesmall SSEandlarge SC, we limit
the selection ok to 9 to 11.The difference betweethe 9-cluster andhe 10-clusterclassificationis that one oceanic aerosol
regime inthe 9-cluster classification is further divided into two clusters in Hi@ecluster classifiation The 11-cluster
classification includes tiny regime whichadds little information with respect to the -&luster one(Figure S1 inthe

supplementary materialVe therefore choode=10 for theaerosoklassification in the lower troposphere.

Theresulting 10aerosol regimes classified byrideandor the lower tropospherare displayed ifrigure2c. These identified

major aerosol classesatchwell with the expected regimes in this altitude rarigelar aerosalare classified in cluster 0,

while oceanic aerosslareroughlydivided between Northern and Southern Hemisphere by clusters 6 and 8, respectively. The
largeforess and savannasf Africa and South Americare covered by clusterd@nd cluster Including major biogenic and

fire aerosokourceqe.g., Dentener et al., 2006)lustes 9 and 3 covethe main desert regionver Saharaandthe Arabian
PeninsulaCluster 9 marks the strordustemission spots, while clusterr8presentsa kind ofibac k gr o uwhith d e s e
shows slight influerces by aerosdransportedrom surrounding areasThe regions characterized by strong anthropogenic
pollution (Southernand easirn Asia) are assigned tduster 7 while regions with moderate and low pollution are covered by
cluster 4 and cluster, Pesgectively, with the latteoftenextending taceaniaegionspossibly affected biong-range transport

of anthropogenic pollutiofrom the continents

The characteziationof theaerosol regimein thelower tropospherebtained with the Kmeans methodan be further explored
and interpretedsingthe boxplot in Figure2d. The figureshows thedistribution of sample collectedwithin each regime and
severabktatistical metricincludingmaximum, 75% quantile, median, 25% quantile and minimuthexdtardardized aerosol
parameterghat are not outliersWe recall theuse of multi-annual mean sample valuasd the consideation of column
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integrated values in the lower tropospheric coluftme dots are outlierthat can be ignored for statistical discussion. They
are defined byt/- 1.5 times of theinterquartile range ahe data, which corresposdo databeyond 2.67 sigma of a normal
distribution Note that values on thegxis are thestandardizedalues(calculated withEg. 5) but not the absolute valuses
shown in Fig.1in order to do a proper classification withrkeans and to compare species with different units and sédlles
aerosolpropertieswithin cluster O(polar regiony showlower valuesthanin the other clustersmeaning thathis can be
consideredas aerosol backgrounds denoted also in Figure.dcbw values are found also iHustels 6 and 8 with the
exception of sea salt, which has enhanced values: we therefore mark these two slostaia aerosdClustes 6 and 8 are
very similar whichexplains why thg aremergednto oneclusterif a 9-cluster classificatiofis used The difference between
them arethe slightly highewalues of aerosgiropertiesother than sea satbncentrationsvithin cluster 6 which points to a
more polluted marine regime than in cluster 8, which represemibte oceanic regionSlusterl and 5cover themajorforess
and savannas Africa and South Americand downwind areaandare charactéedby enhancedOM, BC andNxe, which
are all typical indicators adtrongbiomass burning and biogenic activifyhe differencebetween the two clusteis thatthe
enhancement of these quantitiesnisre pronounced ioluster 5 compared to cluster This differencesugges that fresh
biomass burningndbiogenic aerosotharacterizecluster 5 while more aged particles are foummdcluster las a result of
long-range transporand thesubsequentispersionof the affected air mass&s combination withparticle wet and dry
deposition Cluster 9 and cluster I3othshowenhanced mineral dust values which agreigh their locationsn large deserts
or in close proximity to desert regior@luster 9showsmuch largemineral dust valueandmuch lower values fathe other
aerosopropertieqin particularSNA andNan) than cluster 3This suggestshatcluster 9covers the regionsf localizedstrong
dust emissions, whileluster 3includes dust dominated air masses which are mixedpaiiaition from other regionsThe
dominance oBC andSNA in cluster 7matches well with the large pollution characterizing the south and east Asian regions
covered by this clusteCluster 7also showsnhanced®OM and number concentratisin both aitken andaccumulaion
modes.We therefore namé the enhanced polluted Asian clust&lustes 2 and4 cover large pastof the Eurasian and
American continental region€luster 4 is more polluted than clusterBut both arerelatively cleancompared d other
continental clustersearby(e.g, the strongly polluted Asian regiondyVe refer to these clusters awderatelypolluted
continental andveakly pollutedcontinental, respectivelyAnotherimportantaspectworth notingis that continental aerosol
clusterdrequentlypropagate into oceanic reg®ishowing that this method is also able to capture thetange transport of
pollutants from the emission regions to the relatively clean marnimgonmentFor example, clusterl, 2,and3 cover also
parts ofthemiddle Atlantic Ocean, clusterd?soappeas overthePacific Ocean nedhewestcoast of theAmerican continent

and cluster 4 extends over the north western Pacific
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3.2 Middle troposphere clusters
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Figure 3: The same as Figure 1 but for the middle troposphere (from ~ 700hPa to ~300hPa).
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The clustering analysis for the middle tropospheric layer uses global aerosol data from about 700 hPa to 300 hPa. As depicte
in Fig. 3, this altitude range shows lower valder the column mass and number concentrations (Fig. 1). For example, the
column mass of middle troposphere mineral dust (Fig. 3a) ranges from 2 x 103 pg/m2 to 3.4 x X0ih pgéas with
prominent dust impact, compared to a range of 100 fi/rh x 1@ pg/n? in the lower troposphere (Fig. 1a). This is caused

by the decrease of air density during upward transport, by the dilution of the dust load due to mixing itle duisthnasses

as well as by possible sinks due to wet deposition. A similar riedustalso evident in the other aerosol properties. The spatial
distribution patterns, however, remain the same between middle troposphere and lower troposphere. However, the overa
patterns, in many cases, show a larger spatial extension, caused Hbgrigagransport and dispersion of the respective air

masses.

Due to his dispersiona less complex clustieg is required tharin the lower tropospherdn general we can expeck to
decrease with increasiragtitude,due to the more uniforrepatial aeosol distributiors in the upperatmosphdc layers For
the middle troposphere, we evaluhte-means classificatiawith k=2 tok=8 using the same metriasapplied abovéFig.4
a and b)As for the lower tropospheric casBSE decreases with increasitg but more slowlyalreadyfor kO 6 The SC
decrease$o a minimum fork=4 and increases again to a stable |datlveenk=6 andk=8. The distribution othe major
aerosolregimes becomes very robugtk=6, while only minor regime are introduced dtigher valuesvhich do not show
prominentfeatures We thereforechoose a €luster classification for theniddle tropospherg¢See alsdrigure S2 in the
supplementary material)

In the middle troposphere, the aerosol regimes are naoraly uniform than lower down but the lower troposphere has still
a very strong influence on the pattéfig. 4c) The zonal uniformityparticularlyoccurs inthe casef clusters 0, 2 and &nd
appeas to berelated to théncreasing prevalence of zonaind patterrs in the middle troposphereClustes 1, 3 and 4on the
other handshow a strongeinfluence of the distribution of the emission sources and the transport patiéthe lower
troposphereThe statistical analysisf the aerosopropertieswithin each cluster allows to broadly clasdifie clustes 2 and

5 asmiddle troposphée background clusteyand clustes 1, 3,and4 asmiddle troposphec polluted clusters (Figdd). The
lowest values of all aerosol properties fvend in cluster 5 which can belassifiedas middle troposphier background
(relatively cleanpnd covers large fractisiof the southern hemispheric oceans and the polar redituster As characterized

by enhanced sea salhlues while the values ofotheraerosol specieemainlow as in cluster 5Hence tle cluster includes
background air enriched with sea salt due to enhamdéed-driven emissions Cluster 2mainly covess the intertropical
convergence zongetween 20°S and 20°Nyith its strong updrafteindthe southern hemispheric storm traakeaaround
60°S which isalsoanuplift region betweethe mid-latitude cell andhepolar cell ofthe mainatmospheric circulatiopattern

Due to the strong upwatdansportn these regions, sea salt is liftedm the sea surface to the middle troposphere. Cluster 0
is mainly locatedin the Northern Hemisphere and abowhe continents it is characterizedy mildly enhancedBC, SNA,

POM, Nan, and Nge. Similar enhancementsf some of these aerosol propertigs evident irclustes 1, 3,and4, but with
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much larger valuesThese tustets showsimilar aerosol characteriss@nd coversimilar regiors as tleir counterparts in the
lower tropospher (note however that the algorithm assigns differelaster index numbersfor the lower and middle
tropospherease} These three polluted clusters nicely identify thitetinctsourcescluster 1 ignostly affected by the strong
emission regions in south and east Ami@ southern Europe/Mediterrangaluster 3presents a mixture ehineraldust and
other pollutions sources, with an evident prominence above large desexthjsted4 isanenhancedarbonaceoubiogenic
cluster with significant coverage over the biomass burning and biogenic saugcesSouth America and Africalt occurs
also over East Asia with its high anthropogenic emissions of carbonaceous pattitdethat the scaled valuesFig. 2d and
Fig. 4d should not be compared directly among difeerentatmosphdc layers, because the impdatafor K-meansanalyses

are scaled individually based on the data witkachlayer.
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Figure 5: The same as Figure 1 but for the tropopause region (fr8@dkPa to ~100hPa).
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3.3 Tropopause regionclusters

The dustering analysis for thigopopause regioconsidergylobal aerosotiatafrom about 300 hPa to 100 hF&e degree of

410 spatialdispergon again increases when compared to the Idayars.Thereforethe distributiondrecome more homogeneous
than in the middle and lower troposphere (FiglBje maximumvalues of thefive aerosol massolumns(mineral dustBC,
seasalt,POM, SNA) are lowelin thetropopause regiofFig. 5)than their background value in the lower troposphere (Fig.1).
For examplethemaximum mineral dust masslumnin the tropopause regi@mounts tabout 1x 10 pg/m?, which is close
to the minimum value of mineral dust in the lower troposphalthoughaerosol massolumnsin thetropopause regioare

415 generallysmalland a high degree of dispersion is reaghieelspatialpatternsfor mineral dustBC, POM and SNA arestill
relatedto thosein thelower tropospherelhisdemonstrates thédcal upward transport @ferosasfromt he Ear tthds s
the tropopause regiois efficient in areashowing enhanced dust concentratiddsewever, thisdoes noffully apply to sea
salt which reaches high values only in the troptogresponding ta@egions of strong convectioover the oceanmto the
tropopause regiofFig. 59. With regard to the aerosol number columns, the effects of veastickzonatransport appear to

420 be more compx While the accumulation mode particle number shows a similar behaviour as the mass loadings, the Aitken
mode particle number column appears to be strongly influenced by new particle formatiotitopapause regiorHotspots
of the particle number occyparticularly over regions of enhanced gaseous pollution which provides aerosol precursor gases,

such as Sg@) leading to aerosol nucleation and growth favoured by the clean environmentroptigause region

425 As mentioned above arfdvouredby the homogneousharacteristis of aerosoin the tropopause regi®hown in Fig. 5, a
more simplifiedclustering can be applied in this layer, redudirtg less than 6Aerosol cluster distributions for a range of
different k are shown in Fig. S$upplementary aterial) The SSE oK-mean<lusteringfor the tropopause regidfig. 6a)
shows a similastructureas in the middle troposphere (Fig. Aajth noticeable convergence framboutk=6. The SCreaches
a maximumfor k=4 andk=5 (Fig. 6b) The combination othese twometricssuggestk=5 as the properchoicefor the K-

430 means classificatiofor the tropopause regiomheresulting5 clustersare shown in Figure 6targe partsof thetropopause
regionbelongto cluster 1 which covers the wholpolar regions and most of tleeuthernextra-tropics The second largest
clusteris cluster 2which covers a large part tife northernextra-tropics and about half of the tropicadearregions, with the
other half mostly coverely cluster 3. @Qister 0 and £overa small portion of the continenitiscluding central Africa the
Saharan regioas wel as tropical and subtropical Asigigure 6dhighlights theaerosolcharacteristic$or each clusteof the

435 tropopause regiorCluste 1 showsthelowestvalues for allaerosol properties whictuggests to characterizeagtropopause
regionbackgroundNote that in the palr regions, the pressure levels considered here are mostly located in the stratosphere,
and therefore contain comparably clean @iuster 3showsimilarly low values for all species excefor sea salt, which is
significantly enhancedue to upward transpin the intertropical convergence zoneende we denoteit as thetropopause
regionenhanced sea salt clust&he sightly enhanced B. in cluster3 relative to the clustet is probably causelly new

440 particle formationCluster 2 showslight increaesfor all aerosol properties relative to clusiebutbeingstill lower than in
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the otherclustes. We thereforedefine cluster 2 athe tropopause regiamildly polluted clusterCluster0 features strongly
increasedmineral dustaccompanied bglight increases iBBC and SNA. Thereforg it can betermedtropopause region
dust/polluted clustefThis isalso supported by its geographical location over the Sahara ahtidtie Eastwhere mixtures
of desert dust with anthropogenic pollution coutddxpectedCluster 4shows stronglyenhanced3C, SNA andPOM, and
mildly enhanced mineral dust which suggédettermthis regme tropopause regiopolluted/mixed clustetOn the one hand,
it is strongly influencedy the biomass burning and biogeairosolsources over central Africand South AmericaOn the
other hand, it shows also relevaatverageover East Asiayesulting fromthe strong pollution sources in these regidiste
that there are many similaritidsetweenthe aerosol regimes of theopopause regioand the mid tropospherdFig. 4),
especially for clustexr3 and 4 which are largely controlled by efficient updraftience these clusters correspond alsd teel

lower tropospheri@erosol regimesf similar characteristics occurring the same regior(&ig. 2)
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Figure 6: The same as Figure 2 but for the tropopause region (from ~ 300hPa to ~100hPa).
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