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Abstract. Land-atmosphere carbon and water exchanges have large uncertainty in terrestrial biosphere models (TBMs). Using 15 

observations to reduce TBM structural and parametric errors and uncertainty are critical priorities for both understanding and 

accurately predicting carbon and water fluxes. Recent implementations of the Bayesian CARDAMOM model-data fusion 

framework have yielded key insights into ecosystem carbon and water cycling. CARDAMOM estimates parameters for an 

associated TBM of intermediate complexity (DALEC). These CARDAMOM analyses—informed by co-located C and H2O 

flux observations—have exhibited considerable skill in both representing the variability of assimilated observations and 20 

predicting withheld observations. CARDAMOM and DALEC have been continuously developed to accommodate new 

scientific challenges and an expanding variety of observational constraints. However, so far there has been no concerted effort 

to globally and systematically validate CARDAMOM performance across individual model-data fusion configurations. Here 

we use the FLUXNET-2015 dataset—an ensemble of 200+ eddy covariance flux tower sites—to formulate a concerted 

benchmarking framework for CARDAMOM carbon (photosynthesis and net C exchange) and water (evapotranspiration) flux 25 

estimates (CARDAMOM-FLUXVal version 1.0). We present a concise set of skill metrics to evaluate CARDAMOM 

performance against both assimilated and withheld FLUXNET-2015 photosynthesis, net CO2 exchange and 

evapotranspiration estimates. We further demonstrate the potential for tailored CARDAMOM evaluations by categorizing 

performance in terms of (i) individual land cover types, (ii) monthly, annual and mean fluxes, and (iii) length of assimilation 

data. The CARDAMOM benchmarking system—along with CARDAMOM driver files provided—can be readily repeated to 30 
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support both the intercomparison between existing CARDAMOM model configurations and the formulation, development 

and testing of new CARDAMOM model structures. 

 

1 Introduction: 

Terrestrial biosphere models (TBMs) are a key tool to understanding and resolving the state of terrestrial ecosystems and their 35 

sensitivity to climate. Of particular importance are land-atmosphere CO2 fluxes; as the land biosphere is currently a net sink 

absorbing nearly a third of anthropogenically emitted CO2 (Friedlingstein et al., 2020). However, despite the importance of 

TBMs in understanding the role of terrestrial ecosystems in the earth system, model structural and parametric uncertainty 

remain major sources of error and bias impacting terrestrial carbon cycle modeling (Bonan et al., 2019; Quetin et al., 2020), 

presenting a major challenge to robust prediction of the magnitude of the land sink in coming decades (Booth et al., 2012; 40 

Arora et al., 2020). Improved representation and expression of the ecosystem processes of carbon, water and energy exchanges 

from and to the atmosphere can improve empirical modelling or data-driven predictions of the key components of the land 

surface and Earth system and reduce uncertainties (Jung et al., 2020, 2019; Reich, 2010; Tramontana et al., 2016). Model-data 

fusion (MDF) approaches merging terrestrial biosphere models with observations (Fox et al., 2009; Hill et al., 2012; Keenan 

et al., 2012; MacBean et al., 2016; Xiao et al., 2014) improve biogeochemical model accuracy and skill by incorporating data 45 

from field-based measurements and satellite based remote sensing observations and their associated uncertainties into model 

calibration. MDF hence offers a much-needed capability to reconcile uncertain model processes with the ever-increasing 

volume of Earth Observation datasets (Caldararu et al., 2012; Quetin et al., 2020; Richardson et al., 2011; Rowland et al., 

2014; Smallman et al., 2017). Specifically, data constrained processes should improve the accuracy of estimates of global plant 

and soil C dynamics, their exchanges with each other and with the atmosphere, and enable quantification of their uncertainty 50 

(Bloom et al., 2016). MDF representations of terrestrial ecosystem C cycling combines the advantage of having a process-

based, mathematically refined expression of the ecosystem C budget, and parameter estimation that takes external constraints 

with their uncertainties into consideration. Contingent on the accuracy of particular model’s C cycle mechanisms, MDF can 

improve simulation results – relative to both assimilated datasets and withheld data from validation – due to improved 

parameter estimates of biogeochemical processes that may be introduced or influenced by external forcing (Bloom et al., 2020). 55 

 

The CARbon DAta-MOdel fraMework (CARDAMOM) MDF system approach has been applied to a range of scales and with 

a wide range of in-situ and satellite datasets to (i) constrain terrestrial C cycle states and processes within a Bayesian model-

data fusion framework, and (ii) diagnose these analyses to address questions or test hypotheses on the current and evolving 

state of the terrestrial C balance (Bloom et al., 2016; Smallman et al., 2017; Yin et al., 2019; Exbrayat et al., 2019; Quetin et 60 

al., 2020; Bloom et al., 2020, amongst others). The Data Assimilation Linked Ecosystem Carbon (DALEC; (Williams et al., 

2005) model is a key component of CARDAMOM framework describing the ecosystem carbon and water cycles. The DALEC 
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model has multiple versions varying in structural complexity and process representation(Famiglietti et al., 2021), including 

alternate forms of climate sensitive phenology (Smallman et al., 2017), time dependent autotrophic respiration processes 

(Rowland et al., 2014), an array of hydrological representations (Bloom et al., 2016; Bloom and Williams, 2015; Exbrayat et 65 

al., 2019; Fox et al., 2009; Quetin et al., 2020; Rowland et al., 2014; Smallman and Williams, 2019; Spadavecchia et al., 2011), 

expanded representation of heterotrophic respiration sensitivity to climate and explicit representations of ecosystem level 

water-use efficiency (Bloom et al., 2020) among other model structures.  

 

Invariably, observations play a critical role in (i) informing uncertain processes and reducing model error, (ii) providing a 70 

quantitative metric for validating model performance, and (iii) motivate subsequent model process representations. In 

particular, FLUXNET—an ensemble of C and H2O flux estimates from 200+ eddy covariance flux tower sites—has been 

instrumental in the calibration and validation of land surface models (Williams et al., 2009). As one of the most complete and 

sophisticated field-based databases of land surface fluxes, FLUXNET provides gap-filled measurements of tower-based 

micrometeorology and eddy covariance estimates of exchanges of carbon dioxide, water vapor, and energy between the 75 

biosphere and atmosphere (Schwalm et al., 2010; Pastorello et al., 2020). With the increasing availability (in terms of both 

spatial coverage and record length) of eddy covariance measurements over participating FLUXNET sites, data-driven methods, 

or data-assimilation models have become popular and delivered progressively more accurate retrieval results with the aid of 

remote sensing data for large-scale studies (Anderson et al., 2007; Gonsamo et al., 2012; Velpuri et al., 2013). Gross primary 

productivity (GPP) and net ecosystem exchange (NEE) are two of the key fluxes in the terrestrial C cycle related to plant 80 

growth and the net C sink through vegetation, but they are difficult to measure due to the complications between processes in 

the biosphere (Gilmanov et al., 2003; Wang et al., 2006). Evapotranspiration (ET) is another key measure related to water, 

energy and carbon fluxes quantifying the combined process of transpiration, soil evaporation and canopy intercepted rainfall 

evaporation. The FLUXNET dataset in its entirety is particularly well suited for benchmarking and validating CARDAMOM 

C and H2O flux estimates, and number of CARDAMOM-DALEC implementations across FLUXNET sites have demonstrated 85 

the scientific and technical merits of assimilating and predicting withheld observations (Bloom and Williams, 2015; Famiglietti 

et al., 2021; Smallman et al., 2017). 

 

Overall, systemically challenging existing CARDAMOM model structures against observations—and using these outcomes 

to formulate new model structures—is a necessary process for advancing understanding and prediction of terrestrial C and 90 

H2O fluxes. Among some of the key questions motivating CARDAMOM model-data fusion development decisions are: when 

trained with observations, do CARDAMOM models improve representation of principal carbon and water dynamics across 

terrestrial ecosystems? Which CARDAMOM model structures or model-data fusion configurations exhibit optimal predictive 

skill against withheld flux observations? For a given CARDAMOM model structure, is predictive skill constant, regardless of 

the training/prediction window, or the length of calibration period correlated with prediction error? Which model parameters 95 

or processes are key to the improvement of predictive skill? These questions have continually motivated—and will continue 
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to motivate—the development of CARDAMOM model structures and associated model-data fusion configurations. 

Consequently, systematic and easily repeatable evaluations of CARDAMOM outputs against a broad set of C and H2O fluxes 

observation would amount to an indispensable strategy for supporting CARDAMOM model developments. 

 100 

Here, we present “CARDAMOM-FluxVal version 1.0”, a concerted FLUXNET-based validation framework to support a 

global evaluation of CARDAMOM model-data fusion approaches. CARDAMOM-FluxVal provides a validation test-bed for 

benchmarking CARDAMOM model structures against FLUXNET-2015 GPP, NEE and ET datasets. To demonstrate the 

operation of the validation framework, we present quantitative assessments of the performance of two example CARDAMOM 

model configurations—one solely trained by satellite and inventory datasets, and the other trained with an additional constraint 105 

using observations from FLUXNET sites. The methodology is described in section 2. In section 3, we present a concise set of 

validation metrics (against assimilated and withheld FLUXNET observations), and further evaluate performance sensitivity to 

the choice of constraining variables, temporal length of data assimilation, and particular land cover types. Finally, in section 4 

we summarize the strengths and limitations of our CARDAMOM validation approach and outline its potential applications for 

(i) benchmarking and inter-comparing current and future CARDAMOM configurations, and (ii) provide recommendations and 110 

guidance to conduct scientific investigations.  

 2 Methods 

The method section includes descriptions of the CARDAMOM implementation across FLUXNET-2015 sites (Section 2.1), 

satellite and inventory-based observations used for assimilation (Section 2.2), and the statistical measures used in model 

validation and extended evaluations (Section 2.3).  115 

2.1 CARDAMOM implementation across FLUXNET-2015 sites 

The components needed to configure CARDAMOM at each FLUXNET site namely include (a) time series of meteorological 

forcing variables for the DALEC model, (b) a collection of observational constraints on DALEC states and fluxes, and (c) 

additional attributes relating to CARDAMOM prior probability and likelihood functions (Bloom et al., 2020). At each site, we 

built standalone CARDAMOM “driver” files, which consist of (i) 2001-2015 ERA-interim meteorological forcings from the 120 

nearest 0.5 degree grid, based on each site’s latitude and longitude value, and (ii) FLUXNET and ancillary observations, 

including leaf area, and biomass (see section 2.2 and Fig. S1). We configured the CARDAMOM model across all FLUXNET-

2015 sites during the period of 2001-2015 (204 sites in total, see section 2.2). The observational timespan for each site is from 

a few months to 15 years, depending on the site characteristics. We chose to implement CARDAMOM for the entirety of the 

2001-2015 period at each site in order to exclude the effect of varying CARDAMOM simulation lengths in the subsequent 125 

CARDAMOM evaluations. A summary of all FLUXNET-2015 sites used in CARDAMOM-FluxVal here is included in the 
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supplement (Table S5). The aforementioned datasets amount to baseline datasets for the entire CARDAMOM-FluxVal 

(version 1.0) system. The CARDAMOM-FluxVal driver files are available in the manuscript supplement (Table S6). 

 

At each FLUXNET site, we used CARDAMOM Bayesian model-data fusion methodology (Bloom et al., 2020) to calibrate 130 

the DALEC model parameters and initial conditions, and to validate DALEC model simulations against a subset of withheld 

data. In particular, the observations assimilated into CARDAMOM were used to optimize DALEC model parameters and 

initial conditions in order to statistically minimize model-data mismatches. The observations withheld from CARDAMOM 

were used to validate DALEC carbon and water fluxes outside the training window, i.e., in the absence of data constraints. 

Depending on the scientific or technical objectives, the CARDAMOM-FluxVal analyses can be configured to exclude any 135 

subset of FLUXNET or ancillary data for validation purposes. To exemplify both the assimilation and validation aspects of 

CARDAMOM-FluxVal, we opted for two distinct CARDAMOM configurations (Fig. 1): 

CARDAMOM analysis A1: the CARDAMOM DALEC model is constrained by the first 50% of FLUXNET data at 

each site; 50% of FLUXNET data is withheld for validation. 

CARDAMOM analysis A2: the CARDAMOM DALEC model is constrained by 0% of FLUXNET data at each site; 140 

100% of FLUXNET data is withheld for validation. 

In both A1 and A2, we used the same ancillary data (satellite-based leaf area index, biomass), cost function configurations and 

DALEC model version. For the sake of brevity, the cost function and DALEC model version are described in the manuscript 

supplement. To configure the A1 scenario, we spilt the FLUXNET data from each of the site into two periods based on data 

acquisition time for tower sites with valid observations for the study period from 2001 to 2015.  145 

2.2 Observations 

A common set of observations are assimilated into both the A1 and A2 analyses; these consist of (1) timeseries of monthly 

Moderate Imaging Spectroradiometer (MODIS) leaf area index (LAI) from the MOD15A2H product (Myneni et al., 2015) for 

the period of 2001-2016, (2) a single estimate of the global above- and below-ground biomass (ABGB) in 2015 produced from 

a combination of field plots, airborne Lidar and satellite data using the machine learning approach (Yu, 2013). To find 150 

corresponding mapped values that match FLUXNET data measurements, we aggregated the mapping products (MODIS LAI 

and ABGB) from their original resolutions to 1-km spatial resolution and extract LAI and ABGB values at all FLUXNET 

locations.  

 

For the A1, we also included the gap-filled monthly flux measurements from the FLUXNET2015 Dataset (Pastorello et al., 155 

2020) that includes ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and 

other meteorological and biological measurements collected at sites from the multiple regional flux networks 

(https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). We used all 204 CC-BY-4.0 (Tier One) sites to study the data 

assimilation using GPP, NEE and ET together as inputs (Table S1). The pre-processing of FLUXNET tower measurements 
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includes a quality check to filter out bad-quality monthly data, and the removal of data points where the recorded measurements 160 

show constant values throughout the observational period. 

2.3 Summary metrics and extended validation 

Our summary metrics consist of GPP, ET and NEE evaluated on a monthly basis, annual basis, and at site level. We selected 

four statistical metrics to evaluate the model accuracy, parameter correlations, and residuals (Table S2). The Pearson’s linear 

correlation coefficient (R) is the ratio of covariance between the modelled simulations and observations to the product of 165 

standard deviations from model simulations and observations (0<R<1 represents a positive correlation between model output 

and observed values, while -1<R<0 means the model outputs have a negative correlation between model output and observed 

values). The Nash and Sutcliffe model efficiency (MEF) quantifies the model’s predictive capacity (Nash and Sutcliffe, 1970; 

Tramontana et al., 2016). A 0<MEF<1 indicates the model’s predictive capacity is better than the mean of observations, with 

a value of 1 meaning perfect predictions; while MEF<0 means the mean values of the observations is better than the model 170 

predictions. BIAS is defined as the mean of the residual values for model predictions and observed data. A value of BIAS near 

zero indicates an unbiased estimation for model predictions. The Root Mean Square Error (RMSE) is the square root of the 

average over squared residuals (prediction errors), and the model predictions are more accurate when RMSE is closer to 0. 

 

For the extended evaluation, we grouped the FLUXNET 2015 sites within 6 time-window categories: data with 1:1 175 

assimilation/prediction time ranges spanning from < 1 year, 1 - 2 years, 2 - 3 years, 3 - 4 years, 4-5 years and >5 years (all 

time ranges are either assimilation or prediction lengths). The number of sites varies from 17 to 67 for different categories 

(Table S3), with the most sites (67) having the range of 1~2 years, and the least sites (17) having the range of 4-5 years. We 

evaluated CARDAMOM performance across 12 land-cover types that comprise the FLUXNET2015 sites included in this 

study (Table S3). In summary, ENF (Evergreen Needleleaf Forest) and GRA (Grasslands) have more than 30 tower sites, 180 

while SNO (Snow) and CSH (Closed Shrublands) have only one and two sites globally. Assuming that the CARDAMOM 

model has valid outputs for GPP, NEE and ET across different land-cover types, we evaluated the influence of land-cover 

types on the prediction accuracies.  

 

We tested the importance of model parameters on the retrievals of GPP, NEE and ET, by calculating each parameters’ 185 

correlations with the model residuals. A total of 36 model parameters (model description in SI text) were tested and attributed 

into 6 groups based on their relative contributions to different biophysical processes (Table S4). We tested the correlations 

between model parameters and retrieval residuals using the R metric for independent validation data sets. 
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3 Results 

3.1 Summary metrics for CARDAMOM FLUXNET validation 190 

We found good agreements between median model outputs from CARDAMOM-DALEC and site-based FLUXNET 

observations (GPP, NEE and ET; Fig. 2) for the A1 scenario. Generally, data samples used in assimilation window show better 

agreements between observations and simulations (i.e., higher MEF and lower RMSE) than the data in the prediction window. 

Monthly-based comparisons, due to the seasonal variation in each variable, have a wider data range than the range of site-level 

data. The MEF metrics show GPP has the best simulation results in both the assimilation and prediction windows relative to 195 

NEE and ET. Furthermore, NEE presents a better MEF in the assimilation window than ET, but worse than ET in the prediction 

window. The same pattern is clearer in the site-level scatter plots when we only compare the long-term average observations 

for each FLUXNET site. In the A1 scenario, we obtained the highest MEF at the site-level comparison during the assimilation 

window (e.g., NEE; Fig. 2), but the lowest MEF during the prediction window, indicating the assimilation procedure may be 

overfitting to the observations. 200 

 

The model-data residual analysis show that it is possible to improve the cross-validated model outputs and reduce biases and 

structure errors with assimilation of FLUXNET observations (Figs. 3-4, S2-S4). Histograms of monthly-based residuals at the 

monthly timescales over all sites (Fig. 3) show A1 gives less-biased model residuals than the outputs of A2. In general, A1 

shows positive NEE bias of 0.36 gC m-2 per day, and negative GPP and ET biases of 0.36 gC m-2 per day and 0.09 gC mm per 205 

day, respectively, while A2 shows much big biases (NEE bias: +1.03 gC m-2 per day, GPP bias: -1.34 gC m-2 per day, ET 

biases: -0.55 mm per day). Annual-based distributions (Fig. S2) of model retrieval residuals show similar patterns to monthly 

residuals, except that A1 show tighter distributions around zero due to the average of seasonal variations. The temporal average 

of site level histograms (Fig. 4) preserves spatial characteristics of the model retrieval residuals. Unsurprisingly, A2 has more 

outliers than A1 at the site-level scale. Predicted absolute values (GPP, NEE and ET) instead of residual, show a wider range 210 

of distributions (Fig. S3) for A1 than A2, suggesting A1 runs capture more spatial and temporal variability, with higher 

accuracies and lower biases. The comparisons of second-order distribution (standard deviation of distribution) provide 

additional evidences that A1 have closer ranges to the observed distributions (Fig. S4). 

 

The constrained runs of CARDAMOM model (A1) show substantial improvements in both matching the FLUXNET 215 

observations and reducing the model output uncertainties (Fig. 1). In other words, the added value of data in A1—relative to 

A2—leads to more accurate predictions of GPP and ET, and reasonable NEE. Two well-studied long-term research sites (US-

Ha and US-UMB) in the United States show that the model outputs of A1 capture the stronger seasonality of NEE than the 

outputs of A2 (Fig. 1B and 1C), show the weaker seasonality patterns. Especially during the peak of growing seasons, NEE 

has a strong land C sink observed from tower sites, but model outputs of A2 are systematically lower in terms of C sink 220 

magnitudes. Both A1 and A2 can capture seasonal changes of GPP and ET within the model estimated confidence intervals 
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(CI). However, the CI bounds reduce significantly for A1 (e.g., the 90% CI bound of ET from A2 is ~±2.5 mm/day during the 

peak growing seasons, and it is reduced to ~±1.5 mm/day for A1 at the selected US tower sites) due to the data assimilation 

process using site-level observations.  

3.2 Extended assessment of CARDAMOM performance 225 

The CARDAMOM-simulated fluxes are more sensitive to certain ecosystem parameters than others (Fig. 5). Results show 

that the modelled GPP is mostly correlated with the model parameters C1 – canopy efficiency, A1 – autotropic respiration and 

W1 – underlying water-use efficiency (see manuscript supplement for parameter details); these 3 parameters stand out as they 

are positively related to GPP variation with Pearson’s R greater than 0.1, while the R values for all other parameters are near 

zero. For the NEE output, parameter I6 – soil organic carbon (SOM) is the most negatively correlated factor with NEE and 230 

parameter T6 – SOM turnover rate is the most positively correlated. However, none of the R values for NEE has a magnitude 

> 0.1. The output of ET is also correlated with 3 parameters, W1 (underlying water-use efficiency), W2 (runoff coefficient), 

and W5 (radiation coefficient), with W1 being negatively correlated with ET and the other two positively correlated. All three 

parameters stand out to be substantially different from all other model parameters, indicating the crucial impact of these 

parameters on the ET output. As expected, the A1 experiment shows reduced uncertainty in a few estimated parameters when 235 

compared to the A2 experiment, indicating the additional use of observational data imposes constraints on model parameters 

as well (Fig. S5).  

 

Based on the major land cover types classified at the FLUXNET tower sites, we investigated the effects of land cover on the 

performance of CARDAMOM model retrieval. Results show that the forest types, except the evergreen broadleaf forest, 240 

generally have more accurate predictions than non-forest types (Fig. 6). The three major types of forests – deciduous broadleaf 

forest (DBF), evergreen needleleaf forest (ENF) and mixed forest (MF), all have high R (> 0.8) and MEF (> 0.6) values. The 

relatively small uncertainty ranges (< 0.1 for R) also indicate the stable performance of these forest types. The evergreen 

broadleaf forest (EBF) in the tropics, though fewer sites are available (half of DBF and one third of ENF), exhibit the 

difficulties in retrievals with lower performance values and higher uncertainty ranges. 245 

 

For non-forest sites, the retrieval accuracy varies from site to site (Fig. 6) and have large uncertainties. In particular, savannas, 

woody savannas and closed shrublands are the three land cover types showing the least accuracies and highest uncertainty, 

and significantly in the NEE and ET retrievals (R ~ 0.6 and MEF being negative). Other herbaceous vegetation types, including 

grasslands and crops, have generally better retrievals than spatially heterogeneous land cover types such as savannas, but not 250 

as good as retrievals over extratropical forests (Smallman and Williams, 2019). 

 

The FLUXNET data set has various lengths of observations in time (Table S3). Separating the results by the length of 

assimilations, we show that the CARDAMOM model has slightly better predictions of GPP, NEE and ET when the assimilation 
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period is longer (Fig. 7). The metric MEF for GPP and NEE increases from values below zeros to the maximum positive when 255 

the assimilation period reaches 4-5 years. The median of MEF of ET always stays positive, but also has a maximum value at 

the length of 4-5 years for data assimilation. Meanwhile, the R values show relatively small changes for different lengths of 

data assimilation, and most values are above 0.8, indicating reasonable assimilations for GPP, NEE and ET in general. There 

is a slightly degraded performance in R (a decrease by < 0.1) and MEF (a decrease by 0.2-0.3) for the longest assimilation 

period (>5 years), probably due to the increased size of FLUXNET sites, resulting in the inclusion of certain sites (e.g., tropical 260 

forests and/or woody savannas) with known bad performances compared to others. For the sites with record lengths of 2-3 

years, the percentage of the non-forest PFT (grassland) is higher than other year ranges. The lack of nonforest sites could 

possibly be the cause of worst performance for this length of observations. With long assimilation windows, there is also a 

general trend of reduced uncertainty for both NEE and ET predictions. GPP has a reduction in uncertainty for longer training 

windows till 4-5 years, and increases for the longest assimilation period (>5 years).  265 

4 Discussion  

4.1 Assessing CARDAMOM performance  

The FLUXNET-based validation approach has provided some key insights on the skill of CARDAMOM-based C and H2O 

flux estimates. (1) The data assimilation using FLUXNET inputs (A1) captures missing seasonal variations in the original 

model with lower biases and less uncertainty, compared to the model solely constrained by satellite and inventory datasets 270 

(A2); (2) The increased lengths of data assimilation can progressively improve the model performance and reduce the 

predictive uncertainties in all tested flux variables; (3) Land cover types still exhibit influences on the model prediction 

accuracy, even though the parameters were locally adjusted in the assimilation process, consistent with earlier studies using 

global parametrization (Smallman and Williams, 2019); (4) Certain parameters (i.e. C1, A1 and W1) show more distinct 

correlations with model outputs, suggesting that improved prior constraints on a subset of parameters could further improve 275 

the retrieval accuracies of the corresponding outputs; (5) The validation results also highlight that more work should be focused 

on the tropical vegetation, where both the humid forests and savanna regions exhibit the worst performance; the lack of regular 

seasonal cycles may also hamper the accurate retrievals for CARDAMOM and other models (Quetin et al., 2020). 

 

The aforementioned insights are key for identifying seasonal and inter-annual limitations in CARDAMOM model 280 

performance, limitations (or lack thereof) in the ability of CARDAMOM model structures to predict C and H2O fluxes on a 

range of timescales, and limitations of CARDAMOM across specific biomes or land-cover types. The results can be further 

used to target future CARDAMOM model developments towards identifying weaknesses in improving predictive skill. With 

more spatially explicit products becoming available for assimilation into CARDAMOM—such as satellite-based constraints 

on GPP and NEE (Quetin et al., 2020)—this study based on FLUXNET sites can also provide a quantitative characterization 285 

of CARDAMOM model structure 
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4.2 Limitations of FLUXNET validation approach 

One noteworthy caveat is the spatial resolution representation errors in the DALEC meteorological forcing. Specifically, the 

meteorological data used in this study are from the ECMWF ERA-interim dataset, projected at a 0.5° resolution. The 

disagreement in spatial resolution may be a confounding factor for CARDAMOM FLUXNET predictions. Implementing 290 

CARMAMOM using a finer resolution meteorological forcing will help to reduce the uncertainty caused by spatial ambiguities 

(see SI text S2 for replacing meteorological forcing data). Potential approaches for future versions of CARDAMOM-FluxVal 

include (i) using gap-filled products from FLUXNET sites to configure CARDAMOM simulations, and/or (ii) transitioning to 

ERA5 meteorological forcing. However, the current version has not rigorously tested the new meteorological forcing data sets. 

And the improvement of all drivers to a finer resolution requires modification of other ancillary data sets that are used to 295 

determine variables such as CO2 concentration, burned area and VPD (Table S6), which is an ongoing effort for the new 

CARMAMOM version. 

 

We also note scarcity of tropical tower sites across the FLUXNET2015 dataset (Schimel et al., 2015) may ultimately lead to 

biased assessments of CARDAMOM model structures. The possible heterogeneity for nonforest tower sites also causes more 300 

uncertainty in observed variables as well as the meteorological forcing due to resolution issues. On the other hand, our PFT-

level analysis could also reveal potential model structure limitations in simulating certain PFT with reasonable assumptions, 

which needs further attention when the caveat due to observational uncertainty is ruled out.  While we advocate for the use of 

global summary metrics to assess model structure, we also recommend users of this validation approach recognize the variable 

representation of biomes and vegetation classes in the available observational datasets. In addition to extended analyses 305 

(section 3.2), we also recommend projecting validation assessments into climate space (Reichstein et al., 2003).  

4.3 Applications  

The summary metrics (section 3.1) provide an easily reproducible set of statistics for the validation framework for monthly 

and inter-annual CARDAMOM carbon and water flux estimates. While our results show the importance of observational 

constraints (in this study, FLUXNET data), the CARDAMOM validation system can be readily applied to test additional 310 

configurations (alternative models, cost function parameters, datasets assimilated and assimilation: prediction configurations). 

With a number parametric and structural variations in existing CARDAMOM framework model structures (Famiglietti et al., 

2021)—as well as anticipated variations among ongoing CARDAMOM developments—we highlight the need for a concerted 

and easily repeatable validation system. In particular, we recommend the use of the CARDAMOM-FluxVal validation 

approach for three categories of CARDAMOM developments: 315 

1. DALEC model structures. The growing diversity of DALEC models (Famiglietti et al., 2021) provides a unique 

opportunity for determining which model structures and process representations best predict assimilated or withheld 

carbon and water fluxes. Further investigations can also be conducted with the exclusion and/or adaptation of 
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ecological & dynamic constraints (Bloom and Williams, 2015; Smallman et al., 2021). Models of similar complexity 

to DALEC can also be used.  320 

2. CARDAMOM cost function. Model-data error characterization in the CARDAMOM multi-objective optimization 

approach discussed in (Bloom et al., 2020) are inherently limited. The FLUXNET validation approach can be used 

(i) for quantitative characterization of DALEC (or alternate model) accuracy and precision based on error 

characterization choices, and (ii) test potential improvements in error characterizations, such as optimizable 

uncertainty coefficients and the error models (Norton and Uryasev, 2019; Schoups and Vrugt, 2010). These analyses 325 

can be further extended to quantify the added value of individual data streams (e.g., by sequential removal of 

individual observation types). 

3. CARDAMOM MDF algorithms. CARDAMOM employs an adaptive Metropolis-Hastings Markov-chain Monte 

Carlo. The validation framework can be used to quantify the effectiveness of DALEC predictions using faster methods 

(e.g., optimal estimation, Rodgers, 2000), or previously established optimization algorithms (Fox et al., 2009). 330 

Experiments could be expanded to include dedicated studies for comparing the effectiveness of CARDAMOM 

analyses against non-CARDAMOM model-data fusion efforts (Bacour et al., 2019; Liu et al., 2021; MacBean et al., 

2016) and machine learning methodologies (Jung et al., 2020, 2019, 2017; Tramontana et al., 2016). 

 

We anticipate that the CARDAMOM FLUXNET validation framework will provide a much-needed quantitative benchmark 335 

to support and inform future CARDAMOM framework developments. Specifically, validation and inter-comparison 

experiments can span well beyond the two CARDAMOM configurations presented in this study (A1 and A2), and can be 

adapted to suit the individual needs for CARDAMOM developments or scientific investigations.  
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 515 

Figure 1. Performance of CARDAMOM model simulations (with 50% of Fluxnet data (Analysis 1: A1) and No Fluxnet data 
(Analysis 2: A2)). (A) Spatial distribution of FLUXNET tower sites (Tier-1 data). (B) The same time series for the US-Ha site; Note 
that blue lines in GPP, NEE and ET time series are outputs from model simulations. (C) Time series of CARDAMOM simulations 
for the US-UMB site; The observed time series from Flux towers are also plotted for comparison. Black lines are the first 50% of 
FLUXNET observations used for data assimilation, while the red lines are the rest 50% of FLUXNET observations used for 520 
validation. The validation metrics in the tables are all from the prediction window for the selected two sites. 
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Figure 2. Scatter plots of CARDAMOM outputs (GPP, NEE and ET) versus observations from FLUXNET data (A1 scenario). 
Scatter plots in red are results from the assimilation window, and the scatter plots in blue are for the prediction window. We plotted 525 
both the data from monthly basis (top 2 panels) and at site level using the long-term averages (bottom 2 panels) for comparison. 
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Figure 3. Histogram of monthly-based residuals over all sites for the assimilation window (left panels) and prediction window (right 
panels). Residuals are the differences between model outputs (GPP, NEE and ET) and observations (GPP, NEE and ET measured 530 
at tower sites). Two different CARDAMOM runs are shown as “A1” and “A2” (“A1” means model simulations using 50% 
FLUXNET data as constraints; “A2” means baseline model simulations with no FLUXNET data). 
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Figure 4.  Histogram of site-level residuals over all sites for the assimilation window (left panels) and prediction window (right 535 
panels). Residuals are the differences between model outputs (GPP, NEE and ET) and observations (GPP, NEE and ET measured 
at tower sites). Two different CARDAMOM runs are shown as “A1” and “A2” (“A!” means model simulations using 50% 
FLUXNET data as constraints; “A2” means baseline model simulations with no FLUXNET constraints). 

  



   

21 
 

 540 

 

 

 
Figure 5. Correlations between the site-level model parameters and residuals of GPP (left column), NEE (central column) and ET 
(right column) over all sites in the prediction window. Parameters are described in Table S2. 545 
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Figure 6. Box plots of correlation metrics (R and MEF) for CARDAMOM outputs (GPP, NEE or ET) versus FLUXNET tower 
measurements with different landcover types (A1 scenario, prediction window). The full names of land cover types can be found in 
Table S3. The number in parenthesis (X-axis) indicates the total available tower sites for each land cover type. 550 
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Figure 7. Correlation metrics (R and MEF) changing with different assimilation periods for CARDAMOM outputs (GPP, NEE or 
ET) versus FLUXNET tower measurements. The solid lines are the 50-percentile of the R and MEF, and the dash lines represent 
the 25- and 75-percentiles. 555 
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Table 1. Monthly-based residuals in assimilation and prediction windows (Figure 1) 

Residuals GPP (gC/m2/d) NEE (gC/m2/d) ET (mm/d) 

 

A1 

 

Mean (Assimilation) -0.14 0.22 -0.06 

Std (Assimilation) 1.68 0.97 0.63 

Mean (Prediction) -0.36 0.36 -0.09 

Std (Prediction) 1.90 1.30 0.65 

A2 

 

Mean (Assimilation) -1.24 1.05 -0.55 

Std (Assimilation) 2.53 1.86 0.87 

Mean (Prediction) -1.34 1.03 -0.55 

Std (Prediction) 2.49 1.92 0.82 

 

 

Table 2. Annual-based residuals in assimilation and prediction windows (Figure 2) 560 

Residuals GPP (gC/m2/d) NEE (gC/m2/d) ET (mm/d) 

A1 

 

Mean (Assimilation) -0.19 0.22 -0.08 

Std (Assimilation) 1.04 0.50 0.48 

Mean (Prediction) -0.37 0.34 -0.10 

Std (Prediction) 1.16 0.73 0.45 

A2 Mean (Assimilation) -1.17 0.98 -0.56 

Std (Assimilation) 1.69 1.11 0.69 

Mean (Prediction) 0.94 0.94 -0.54 

Std (Prediction) 1.13 1.13 0.61 

 

 

 



   

25 
 

Table 3. Site-level residuals in assimilation and prediction windows (Figure 3) 

Residuals GPP (gC/m2/d) NEE (gC/m2/d) ET (mm/d) 

A1 Mean (Assimilation)    -0.21   0.26    -0.11 

Std (Assimilation)     1.09     0.34    0.51 

Mean (Prediction)    -0.39     0.40    -0.14 

Std (Prediction)     1.05     0.71     0.47 

A2 Mean (Assimilation)    -1.15     0.96    -0.59 

Std (Assimilation)    1.64     1.01     0.72 

Mean (Prediction)    -1.16     0.91    -0.57 

Std (Prediction)     1.52     1.03     0.63 

565 
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Table 4. The BIAS, MEF, R and RMSE of GPP (unit: gC/m2/d), NEE (unit: gC/m2/d) and ET (unit: mm/d) assimilation versus 

the flux tower data for different land cover types.  

LC BIAS MEF R RMSE 

GPP NEE ET GPP NEE ET GPP NEE ET GPP NEE ET 

CRO -0.951 0.380 -0.246 0.180 0.046 0.577 0.803 0.702 0.817 2.099 1.792 0.695 

CSH 0.274 0.334 0.014 0.495 0.336 0.605 0.789 0.769 0.804 0.879 0.566 0.489 

DBF -0.085 0.510 -0.007 0.830 0.771 0.800 0.914 0.914 0.898 1.875 1.101 0.527 

EBF 0.004 0.633 -0.149 0.524 -0.251 0.668 0.806 0.611 0.843 1.656 0.861 0.634 

ENF -0.400 0.454 -0.074 0.719 0.405 0.647 0.869 0.862 0.826 1.636 0.707 0.544 

GRA -0.322 0.050 0.005 0.802 0.063 0.642 0.917 0.719 0.809 1.378 0.750 0.675 

MF -0.212 0.303 0.019 0.788 0.533 0.772 0.898 0.879 0.880 1.567 0.750 0.555 

OSH -0.203 0.195 -0.101 0.525 -0.911 0.051 0.814 0.587 0.692 0.634 0.313 0.385 

SAV -0.505 0.500 -0.241 -0.181 -0.872 -0.193 0.807 0.536 0.704 0.814 0.381 0.518 

WET -0.010 0.026 -0.161 0.635 -3.034 -0.092 0.920 -0.819 0.985 0.026 0.005 0.008 

WSA -0.537 0.246 -0.205 0.649 0.322 0.373 0.872 0.753 0.777 1.326 0.841 0.702 

 


