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Abstract. Sensitivity experiments with a numerical weather prediction (NWP) model and polarimetric radar forward operator

(FO) are conducted for a long-duration stratiform event over northwestern Germany, to evaluate uncertainties in the partition-

ing of the ice water content and assumptions of hydrometeor scattering properties in the NWP model and FO, respectively.

Polarimetric observations from X-band radar and retrievals of hydrometeor classifications are used for comparison with the

multiple experiments in radar and model space. Modifying the critical diameter of particles for ice-to-snow conversion by5

aggregation (Dice) and the threshold temperature responsible for graupel production by riming (Tgr), was found to improve the

synthetic polarimetric moments and simulated hydrometeor population, while keeping the difference in surface precipitation

statistically insignificant at model resolvable grid scales. However, the model still exhibited a low bias (lower magnitude than

observation) in simulated polarimetric moments at lower levels above the melting layer (-3 to -13◦C) where snow was found to

dominate. This necessitates further research into the missing microphysical processes in these lower levels (e.g., fragmentation10

due to ice-ice collisions), and use of more reliable snow scattering models to draw valid conclusions.

1 Introduction

Polarimetric radar networks provide an unprecedented database to evaluate and improve cloud microphysical parameteriza-

tions in numerical weather prediction (NWP) models. With the increasing availability and use of such modern remote sensing

observations (also satellites, radiometers etc.) for NWP model validation, evaluation, and data assimilation, there is an increas-15

ing demand for cloud microphysics parameterization schemes to realistically approximate cloud microphysical processes and

hydrometeor properties such as size distributions, partitioning into different classes/types, bulk densities, fall speeds etc. This

is key for consistent forward simulations of cloud-related quantities across different measurement platforms and different parts

of the electromagnetic spectrum, because these radiative transfer calculations depend critically on the particle properties and

their spatial distributions. Errors herein can lead to inconsistencies in simulated measurements for the same cloud, which may20
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cause adverse effects, for example, in data assimilation. Even with a single device like a polarimetric radar, there can be such

inconsistencies because different polarimetric parameters are related to different moments of the particle size distributions of

modeled hydrometeor species.

The aforementioned inconsistencies can be larger above the melting layer, where uncertainty exists, among other things,

in the partitioning of the total ice water content (IWC) across hydrometeor species—cloud ice, snow aggregates, graupel and25

hail—in cloud microphysics schemes (van Lier-Walqui et al., 2012; Morrison et al., 2020; Thompson et al., 2021). Morrison

and Milbrandt (2015) developed an alternative scheme called P3 with only a single frozen hydrometeor class but with explicit

prediction of size-dependent hydrometeor bulk densities and fall speeds, based on the prognostic rimed and deposited masses.

Such schemes are often tuned in NWP models to prioritize and ensure good quality of the simulated surface precipitation.

However, the simulated cloud microphysical processes aloft might deviate from reality (e.g., Lang et al., 2007; Fridlind et al.,30

2017; Han et al., 2019). Lang et al. (2007) showed that removing dry growth of graupel in the 3D Goddard cumulus ensemble

(GCE; Tao and Simpson, 1993) model reduced excess graupel production in the anvil and stratiform portions of the convective

storm. However, this led to excess snow production, which could be compensated for, by further decreasing the collection

efficiency of cloud water by snow. These changes led to more realistic hydrometeor profiles compared to aircraft estimates, with

smaller cloud ice particles dominating the upper portions and snow aggregates dominating near the melting layer. Similarly,35

Fridlind et al. (2017) also reported that model simulations with the NASA Unified Weather Research and Forecasting (NU-

WRF; Peters-Lidard et al., 2015) model underpredicted total ice number concentrations and overpredicted the peak of the mass

size distribution (due to snow domination) at 5 – 8 km height compared to aircraft observations for the stratiform outflow region

of a mid-latitude squall line. Han et al. (2019) also reported that for the stratiform region of a mid-latitude squall line, most

microphysical schemes in the Weather Research and Forecasting (WRF; Skamarock et al., 2008) model generally overestimate40

IWC above 7 km compared to aircraft retrievals, and underestimate IWC below 5 km, where it generally increases towards the

melting level in aircraft data. While in-situ measurements using aircraft are very valuable, these data are generally limited in

spatio-temporal context. However, the availability of continuous regional coverage of polarimetric radar data provides high-

resolution (e.g., X-band radar) insights into cloud microphysical processes, which can be used to evaluate and constrain cloud

microphysical parameterization schemes and further improve NWP models.45

In this study, we focus on the COSMO model (v5.1) at convection-permitting km-scale resolution in combination with

the two-moment bulk cloud microphysical scheme of Seifert and Beheng (2006). This scheme is currently a candidate for

operational implementation into the regional NWP model of the German Weather Service (DWD).

We follow two pathways to exploit the information content of polarimetric radar measurements for model evaluation and

improvement: (1) microphysical retrievals from radar, and (2) calculating simulated polarimetric radar fields from model data50

using a forward operator (Ryzhkov et al., 2020). For example, hydrometeor classification algorithms (HCA) exploit multi-

dimensional polarimetric radar measurements to indicate the dominant hydrometeor type in each radar bin (e.g. Straka et al.,

2000; Besic et al., 2016). HCA enable us to evaluate the representation of hydrometeors in numerical models and aid in tuning

the microphysical parameterizations to better match observations. Polarimetric radar forward operators, on the other hand,

generate synthetic observations from the models, which enable a direct comparison in observation space including signatures55

2



of microphysical processes (e.g. Andrić et al., 2013; Putnam et al., 2017; Snyder et al., 2017). However, uncertainty also exists

in the forward operators due to assumptions of hydrometeor scattering properties (e.g., liquid-ice phase partitioning, shape,

orientation, density) which are not available from the model. Therefore, the main goal of this study is to evaluate the synthetic

polarimetric observations from the model, and constrain/quantify the above uncertainties in the model and the forward operator

by exploiting the information content of polarimetric radar measurements.60

This study focuses on uncertainties regarding the 1) partitioning of ice water content among different hydrometeor types in

the cloud microphysics scheme and 2) assumptions of hydrometeor scattering properties in polarimetric radar forward operators

using a hindcast numerical experiment setup for a widespread wintertime stratiform precipitation event over northwestern

Germany. We argue that these types of questions benefit from a simultaneous look at forward operators, retrieval techniques

such as hydrometeor classification, and cloud microphysics by a team of members from both the numerical modeling and radar65

communities. Such horizontally uniform events facilitate the direct comparison of observations with numerical simulations and

offer additional pathways to reduce the noisiness of radar observations, especially for phase measurements (see Sect. 2.1).

The paper is structured as follows. Sect. 2 describes the observations and the case under investigation, the NWP model, the

forward operator (FO), and the radar retrievals used for this study. A first model evaluation with current default configurations

of microphysics and FO is presented in Sect. 3. Sensitivity studies with model and FO are discussed in Sect. 4. Finally, overall70

discussion and conclusions are presented in Sect. 5 and Sect. 6, respectively.

2 Data and Methods

2.1 Radar Observations

Spatially and temporally high-resolution polarimetric weather radar measurements provide the undisputed core information for

an in-depth evaluation of NWP models. In addition to improvements in quantitative precipitation estimation, polarimetric radars75

provide insights into precipitation microphysics and the 3D distribution of hydrometeors. This study exploits measurements

of the polarimetric X-band Doppler radar (BoXPol) in the city of Bonn, Germany. It is installed at 50.73052◦N, 7.0716638◦E

on a 30-m tall building next to the Institute for Geosciences, Department of Meteorology, University of Bonn at 99.9 m above

MSL (see also Diederich et al., 2015).

Trömel et al. (2014) and Ryzhkov et al. (2016) introduced so-called quasi-vertical profiles (QVPs) to present polarimetric80

radar observations in a time versus height format. To generate QVPs, the azimuthal median is calculated from standard conical

scans measured at higher elevation angles and the range coordinate is transformed into height. Here we use the 18◦ elevation

scan with 100 m range resolution. One key advantage is the inherent noise reduction from the averaging process which some-

times enables the detection and quantification of small but meaningful vertical gradients in the polarimetric radar variables.

Furthermore, QVPs are well suited to study the temporal evolution of processes and to directly compare with other mostly85

vertically pointing sensors and, in particular, with model simulations. QVPs represent the average conditions within the cone

spanned by the radar scan with decreasing resolution with height. If the precipitation is not uniform within the cone, errors
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from the averaging process are larger, but the advantage of a significant noise reduction clearly dominates for microphysical

studies of widespread stratiform rain as presented in this paper.

The variables—horizontal reflectivity ZH, differential reflectivity ZDR, and cross-correlation coefficient ρhv are masked90

where ρhv < 0.7 to exclude clutter and bins without significant weather signal from the attendant QVP calculations. Calibration

offsets for ZH and ZDR are estimated following Diederich et al. (2015) and Pejcic et al. (2021b). After differential phase ΦDP

is masked where ρhv < 0.95 and ZH < 0 dBZ, the measurements are smoothed with a median filter using a 1.1 -km moving

window (i.e. including 11 range bins). The melting layer detection algorithm of Wolfensberger et al. (2016) is applied to each

ray of smoothed ΦDP and the identified bins are removed. A linear interpolation of ΦDP across the melting layer is performed95

that excludes the component of backscattering differential phase δ and enables the estimation of an average specific differential

phase KDP in this region. Least-squares fitting on a moving 3.1 -km window is used to estimate KDP based on the smoothed

ΦDP without melting layer contamination. Finally, the QVP of KDP is calculated using the same azimuthal median approach.

We study an event of widespread stratiform rain passing the Bonn area and monitored by BoXPol on 16 Nov 2014 between

00:00 and 10:00 UTC. Fig. 1 shows the QVPs during this time, illustrating only moderate reflectivities ZH around 20 to 25 dBZ100

near the surface and attendant ZDR values typical of rain. The melting layer is observed at around 1.5 km and significant ZH

values are observed up to 6 km. EnhancedZDR values up to 0.4 dB indicate pristine crystals near the cloud top, while decreasing

ZDR together with increasing ZH toward lower levels indicates ongoing aggregation or riming processes. EnhancedKDP values

above the melting layer are especially observed in the first half of the observation period, pointing towards enhanced number

concentrations of ice particles and thus ice water content (IWC), which is in line with higher ZH below the melting layer105

and thus higher rain rates in the first half of the observation period. ρhv is mostly close to 1 except for in the melting layer

where values decrease to 0.92 to 0.95, in line with statistics of polarimetric variables performed in stratiform precipitation

observations at X band (Trömel et al., 2019). Pristine crystals together with decreasing signal-to-noise ratio also results in a

ρhv reduction near the cloud top.

2.2 The COSMO Model (v5.1)110

This study evaluates the partitioning of total ice water content in the Consortium of Small-scale Modelling (COSMO) model

(Steppeler et al., 2003; Baldauf et al., 2011) with a 2-moment bulk microphysics scheme (Seifert and Beheng, 2006) (henceforth

SB2M). The extended version of the SB2M is used which includes a separate hail class described in Blahak (2008); Noppel

et al. (2010); van Weverberg et al. (2014). An additional dynamic saturation adjustment was turned on to reduce the time step

sensitivity of model microphysics and precipitation (Barrett et al., 2019). More details about the dynamical core and other115

physical schemes are available from Baldauf et al. (2011).

SB2M predicts the mass densities ρq and number densities ρn of cloud droplets, rain, cloud ice, snow, graupel and hail,

which are the zeroth and first moments of the particle mass distributions (PMD) that is assumed to follow a modified Gamma

distribution (MGD)

f(x) =N0x
µ exp(−λxν) (1)120
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with x being the particle mass and parameters µ and ν determining the shape of the distribution. The specific hydrometeor mass

q and specific number n can be derived by q = ρq/ρ and n= ρn/ρ with ρ being the total density (air, vapor and hydrometeors).

The size-mass and velocity-mass relations of different hydrometeors are parameterized by power laws

D = agx
bg (2)

vT = avx
bv (3)125

with (maximum) particle diameter D, terminal fall velocity vT and parameters ag , bg , av and bv .

Note that the PMD given in Eq. (1) is equivalent to the modified-gamma particle size distribution (PSD)
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when transformed to the diameter space using the power-law Eq. (2) (e.g, Petty and Huang, 2011).

The shape parameters µ and ν of the MGD remain constant for each hydrometeor class andN0 and λ can be diagnosed from130

the two prognostic moments. However, if rain is below cloud base in the sedimentation-evaporation regime, its µ depends on

the mean diameter (Seifert, 2008; van Weverberg et al., 2014) to better capture the strong effects of these two processes on the

shape of the rain size distribution.

To mitigate unphysical effects on the mean spectral particle mass x= q/n coming from the separate advection and sedimen-

tation of q and n, it is very important to impose some minimum and maximum allowable mass limits for x (xmin and xmax) at135

relevant places during the model time stepping. This is done by clipping n so that x stays within [xmin,xmax]. For reference,

all fixed parameters which were used in this study are summarized in Table 1.

The cloud droplet nucleation parameterization is based on the lookup table of Segal and Khain (2006), which parameterizes

the number of activated cloud droplets just above cloud base depending on the updraft speed w, ambient cloud nuclei (CN)

concentration, mean and standard deviation of an assumed log-normal dry CN size distribution, and aerosol solubility, based140

on 1D rising-parcel simulations with a very detailed bin microphysical scheme. For this study, continental aerosol with CN

concentration NCN = 1700× 106 m−3, log-normal standard deviation ln(σs) = 0.2, mean radius of aerosol size distribution

R2 = 0.03µm and solubility ε= 0.7 is used.w is chosen to be the prognostic grid scale updraft because the table values already

include subgrid effects of a disturbed turbulent flow. Similarly, the ice nucleation parameterization is based on Kärcher and

Lohmann (2002) and Kärcher et al. (2006). The large-scale concentration of aerosols of this parameterization for heterogeneous145

ice nucleation are chosen as Ndust = 162× 103 m−3, Nsoot = 15× 107 m−3, and Norganics = 177× 107 m−3.

For ice-phase processes, interactions between different hydrometeors involving collisions (e.g., riming, aggregation, ice-

multiplication) play an important role in the partitioning of the IWC. These interactions are parameterized using collision

integrals and collision/sticking efficiencies (Seifert and Beheng, 2006), which are activated according to certain particle mean

size and temperature thresholds. In this study, we focus on two of these parameters, motivated by the case study below.150

The first parameter is the critical mean diameter of cloud ice particles Dice for conversion to snow through aggregation of

cloud ice. If the mean cloud ice size

Di = agi(qi/ni)
bgi (5)
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is larger than Dice, self collection leads to the production of snow, otherwise ice remains as ice. agi and bgi are the size-mass

parameters for cloud ice and qi and ni are its specific mass and number, respectively. Perturbations in Dice affect the ice to155

snow partitioning and also the size of the resulting snow particles.

The second parameter is the temperature threshold Tgr below which the production of graupel by riming of cloud ice and

snow with supercooled rain is allowed. If T < Tgr, a certain part of the rimed cloud ice and snow particles are converted to the

graupel class, otherwise no cross-class transfer happens. This pathway for graupel production may also be slightly controlled

by Dice, because larger snow exhibits more riming.160

As with most bulk cloud microphysical schemes without a prognostic melted fraction, SB2M most likely systematically

underestimates the distances which melting particles may fall until melting completely (i.e., the melting layer thickness). This

is because SB2M instantaneously transfers the amount of meltwater formed during one model timestep from cloud ice, snow,

graupel, and hail to the rain class. As a consequence, the melting hydrometeors shrink too fast, fall too slowly, and completely

melt too quickly in the SB2M. We acknowledge this limitation in the SB2M scheme.165

2.3 Forward Operator

Evaluating output of NWP models with observations requires their data in a consistent and comparable parameter space,

typically either in model space (e.g., hydrometeor mass and number densities) or observation space (e.g., radar reflectivity and

further polarimetric radar variables). Conversion of the numerical model output into radar observables is done by means of

a polarimetric radar forward operator. Particularly for model evaluation, it is important that the model and forward operator170

(FO) are consistent regarding parameters that affect the forward modeled observables. Many of these, including the phase

partitioning of hydrometeors during melting, the shape and orientation of particles, and the heterogeneous microstructure of

frozen hydrometeors, are insufficiently constrained by the direct model output, and assumptions need to be made. When implicit

assumptions exist in the numerical model, it is advantageous to ensure that the FO makes use of equivalent assumptions.

In this study, we apply the Bonn Polarimetric Radar forward Operator (B-PRO v2.0) (Xie et al., 2016, 2021). B-PRO is a175

research-oriented polarimetric radar FO, which has been built onto an early, non-polarimetric version of EMVORADO (Zeng

et al., 2016), the German Weather service’s operational radar FO. Below we explicate the B-PRO implementation and settings

directly related to polarimetry. Further aspects are detailed in Appendix A.

B-PRO calculates and outputs polarimetric radar parameters on the spatial grid given by the numerical model field input.

That is, no beam integration and antenna pattern are taken into account, and hence the output ZH and ZDR are to be considered180

as unattenuated (or perfectly attenuation-corrected) variables. In addition, no simulated measurement errors are included,

making the output variables take on their intrinsic values. A software interface between the COSMO model and B-PRO ensures

consistent microphysics, specifically the same hydrometeor class–dependent particle size distributions and size-mass relations

used in the SB2M in Eq. (1) and Eq. (2) and Table 1.

The shape and orientation of the hydrometeors, which are the primary properties that characterize anisotropic scattering,185

are not at all constrained by the COSMO model. Instead, different parameterizations are applied by the FO. Apart from the

cloud liquid class, hydrometeors are modeled as homogeneous oblate spheroids. Their shape is described by the aspect ratio
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(AR), defined here as the ratio of the semi-minor and semi-major axes of the spheroids (following Ryzhkov et al., 2011).

The spheroids are assumed to have no preferential orientation, with their maximum cross section parallel to the horizon on

average, and with canting angles α out of the horizontal following a Gaussian distribution with a specified width σcanting,190

i.e. µα = 0◦ and σα = σcanting (see Ryzhkov et al., 2011). The applied hydrometeor class–dependent parameterizations for

the frozen hydrometeors are given in Table 2. For rain, the AR parameterization of Brandes et al. (2002) and σcanting = 10◦

is used following Ryzhkov et al. (2011). The shapes and orientations of melting particles are derived as melting fraction–

dependent weighted mean values of the respective frozen hydrometeor and rain (see Appendix A for details on the melting

model). Scattering properties of the spheroids are calculated applying the T-matrix method for particles with a fixed orientation195

(Mishchenko, 2000) for canting angle α= 0◦, with the properties of particles with an orientation distribution then derived

using the angular moments method of Ryzhkov et al. (2011, 2013a).

Compared to Xie et al. (2016), several modifications to B-PRO have been implemented within this study. Melting particle

shape and orientation calculations have been adapted to consistently follow the approach of Ryzhkov et al. (2011). For cloud

ice, the fairly spherical and unoriented crystals (AR = 0.9 – 0.7, σcanting = 40°) resulting in insignificant polarimetric signatures200

have been replaced by more oriented (σcanting = 12°) and more non-spherical particles following a shape parameterization by

Andrić et al. (2013). Also, the range of sizes considered for cloud ice, representing single crystal particles in COSMO, has

been largely extended (from the original upper integration limit, Dupper
int , of 200 µm to 4 mm) consistent with COSMO (mean)

size limits of cloud ice and providing a better coverage of particle sizes contributing to the cloud ice bulk properties. The

considered size range of snow, representing aggregated ice particles in COSMO, was also found to not sufficiently cover205

the sizes contributing significantly to bulk scattering (both regarding single particle scattering properties as well as the PSD-

predicted number density). Therefore, the size ranges of snow, graupel, and hail were extended. The calculation of effective

density and volume-equivalent diameter of the spheroids, which are inputs to the particle effective refractive index and T-matrix

calculations, respectively, from D, x, and AR have been revised and corrected for both frozen and melting hydrometeors.

A summary of the shape and orientation parameterizations used as a baseline in this study (B-PROdef) is given in Table 2.210

The table further details implementations or choices for further FO parameters like the melting scheme, effective medium

approximation (EMA; see also Appendix A), and particle size ranges.

2.4 Hydrometeor Classification Algorithm (HCA)

In this study we use the HCA of Pejcic et al. (2021a), hereafter referred to as HCA-Pejcic. In this two-step method, agglom-

erative hierarchical clustering (Ward, 1963; Grazioli et al., 2015; Ribaud et al., 2019) is first applied to the polarimetric radar215

observations and ∆z (i.e., the difference between observation height and 0°C level). With the sigmoid transformation used

in Besic et al. (2016), ∆z separates liquid and solid regions with a smooth transition around the freezing level height. The

resulting clusters are identified based on state of the art HCAs (Dolan and Rutledge, 2009; Dolan et al., 2013; Zrnic et al.,

2001; Straka et al., 2000; Evaristo et al., 2013) and merged into categories comparable to the model hydrometeor classes for

rain, snow, cloud ice, graupel, hail, and wet snow. In the second step, a modified method of Besic et al. (2018) is used to derive220

hydrometeor percentage (HP). Here, we use not only the centroids (mean values of the polarimetric moments) of the clusters
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as done originally, but we also calculate the covariance of the five dimensional observations. Instead of the exponential distri-

bution used by Besic et al. (2018), we use a multivariate normal distribution for the determination of the HP. This allows us to

use the calculated centroids and covariances to determine the shape of the individual hydrometeor probability functions in five

dimensions without parameterization. Furthermore, the membership function–based HCA of Zrnic et al. (2001) and adapted225

by Evaristo et al. (2013) (HCA-Zrnic) and Dolan et al. (2013) (HCA-Dolan) are also used for comparison. HCA-Zrnic uses

hydrometeor categories of vertically aligned crystals, horizontally aligned crystals, wet snow, dry snow, graupel/hail, rain/hail,

hail, large drops, heavy rain, moderate rain and light rain. HCA-Dolan uses categories of big drops/melting hail, hail, high

density graupel, low density graupel, vertically aligned ice, wet snow, aggregates, ice crystals, rain, and drizzle. In these two

methods, theoretically calculated membership functions are determined for each hydrometeor type and for each polarimetric230

variable and a temperature variable. As explained in Zrnic et al. (2001) and Dolan and Rutledge (2009), the dominant classes

are then determined by the highest score calculated over the membership functions.

3 Case description

The study is set up over the Bonn radar domain (Shrestha, 2021). With BoXPol at the center of the domain, it encompasses the

northwestern part of Germany bordering the Netherlands, Luxembourg, Belgium and France. The topography is dominated by235

the Rhine Massif, the Rhine valley and the northwest lowlands (Fig. 2). The model domain covers an area of approximately

340 km x 340 km with a km-scale horizontal grid resolution. Eighty levels are used in the vertically stretched layers with a near-

surface-layer depth of 20 m. The COSMO-DE analysis data from DWD at 2.8 km horizontal resolution is used to process the

initial and lateral boundary conditions at hourly intervals. The diurnal scale simulation is initialized at 15 Nov 2014 00:00 UTC

and integrated for 35 hours with a time step of 6 s. The model output generated at 5 min interval from 16 Nov 2014 00:00 UTC240

to 10:00 UTC is used for the analysis. The control run (CTRL) uses the default model parameters with the prescribed cloud/ice

nucleation parameters (discussed in Sect. 2.2).

For consistent comparison to the QVPs from the radar observations, the outputs of the model and FO are also postprocessed

to obtain synthetic QVPs using conical scans with 18◦ elevation angle along the vertically stretched model grid. This is achieved

by generating a one grid cell–wide circular mask for each model level, whose diameter increases with height as a function of245

elevation angle, and using this mask (each containing a minimum of eight grid cells) to estimate the median value of the model

or FO data at that level.

Fig. 3a-c shows the QVPs of modeled ice hydrometeors from the CTRL run of COSMO. The hydrometeor population here

is dominated by snow, which is primarily produced by self-collection of cloud ice that grows rapidly via aggregation. As the

hydrometeors fall downwards, the mixing ratio of cloud ice (qi) decrease gradually, while the snow mixing ratio (qs) increases250

rapidly until the melting layer. The melting layer here is defined as the region around the 0°C isotherm located around 1.5 km.

At this height, the cloud ice and snow aggregates in the presence of cloud water and rain also produce considerable amounts of

graupel via riming. The graupel mixing ratio (qg) peaks at this height and then gradually decreases as it melts producing rain,

while falling downwards to the surface. The QVPs of modeled rain for the CTRL run are shown in Fig. 4a . The rain mixing
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ratio (qr) increases gradually below the melting layer towards the surface as the meltwater fraction from graupel is transferred255

directly to rain.

3.1 Evaluation of synthetic radar observations

Synthetic radar observations of the CTRL run are derived by running the FO with the B-PROdef setup using the model outputs.

To minimize the FO computational cost, the domain was cropped to only cover the QVP extent, which is simply governed by

the maximum diameter of the conical mask near the top of the precipitating system. FO calculations were performed for each260

5 min step during 00:00 – 10:00 UTC, and QVPs were produced from the FO radar variable fields using a conical mask (see

above). The resulting QVPs are shown in Fig. 5.

The cloud ice-dominated upper levels show reflectivities up to 10 dBZ, similar to the observations (see Fig. 1a). The increase

of ZH with decreasing height through the snow-dominated layers and towards the melting layer is somewhat stronger compared

to the observations, with ZH reaching up to 30 dBZ just above the melting layer compared to ≤25 dBZ in the observations.265

The maximum ZH in the melting layer agrees fairly well with the observations, but the melting layer appears wider in the

model-simulated radar data compared to the observations. This pattern continues below the melting layer, where the synthetic

ZH is significantly higher and high ZH appear over much longer times.

Cloud ice, located at heights>5 km, shows a clear polarimetric signature with ZDR from 0.2 up to 2 dB,KDP up to 0.2◦/km,

and ρhv slightly decreased below 1. This is qualitatively in agreement with the observations; quantitative comparisons are not270

meaningful at these heights due to significant uncertainties in the observations. The snow-dominated layers are characterized

by an evident lack of polarimetric signals in the synthetic observations, in clear disagreement with the observations showing

KDP values of 0.1 – 0.2◦/km and ZDR values ranging from 0.2 – 0.5 dB. Within and below the melting layer, synthetic ZDR

reaches a clearly higher maxima (2 to <3 dB) compared to observations, although the range and frequency of KDP values

agree fairly well there. Synthetic ρhv are by far not similarly reduced in the melting layer as in the observations, but show275

similar qualitative patterns. Below the melting layer, ρhv exhibits clearly lower values than in the observations.

The matter of synthetic ρhv in most regions being very close to 1 while observations show reduced values can likely be

explained by shortcomings in the FO assumptions on hydrometeor shape and orientation. ρhv describes the correlation between

the horizontally and vertically polarized returned radar signals and is sensitive to particle shape, composition, and orientation;

hence, it provides information about the diversity of the scattering particles within the observed radar volumes (Kumjian,280

2018). That is, overestimating ρhv indicates too little variability of assumed hydrometeor shapes and orientations in the FO.

Assuming hydrometeors of all categories and sizes to be homogeneous spheroids, with identical shapes at least for all particles

of one category and size, as is the state of the art for the majority of polarimetric radar FOs, is clearly a simplification of

the shape and microstructure variability of real-world hydrometeors. Simplifications are typical and necessary in modeling,

however, the persistent overestimation of ρhv suggests that the current assumptions oversimplify and produce too little variety285

in the structure of particles, and therefore fail to sufficiently reproduce observed ρhv levels. Similar issues have been identified,

e.g., by Ryzhkov et al. (2013b). This current lack of forward modeling ability regarding ρhv limits the applicability of synthetic

ρhv in data assimilation and in observation-equivalent based model evaluation.
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The lack of polarimetric signatures at the snow-dominated heights may be due to issues with the partitioning of cloud ice

and snow in these layers, but also due to the forward operator struggling to correctly model the scattering properties of snow290

aggregates. This is analyzed in depth in Sect. 4.1 and Sect. 4.2, respectively.

Large regions of high ZH together with extremely high ZDR and comparably low ρhv (breaking the general pattern of syn-

thetic values overestimating the observed one) below the melting layer suggest issues with the underlying COSMO modeled

hydrometeor fields. Comparison to Fig. 4a indicates that the “curtains” of high ZH and ZDR do not coincide with high rain

mixing ratios, and hence are likely not due to rain. Instead, as suggested by the frozen hydrometeor mixing ratios (Fig. 3a-c)295

and their mean sizes (not shown), these are caused by graupel. This has also been confirmed by no-graupel runs of the FO (not

shown) and has been observed during testing to occur independently of the choice of melting scheme settings in B-PRO. That

is, the FO results strongly suggest an overestimation of the graupel occurrence below the ML.

3.2 Comparison of model-predicted and retrieved hydrometeors

Fig. 6 shows the retrieved dominant hydrometeor types with HCA-Pejcic, HCA-Dolan and HCA-Zrnic. The HCA retrievals are300

only available up to an altitude of about 4.5 km (Fig. 6), because KDP values became too uncertain at altitudes above (Fig. 1).

When comparing the dominant hydrometeor types, it can be seen that mainly snow is identified at temperatures above zero

degrees. HCA-Zrnic and HCA-Pejcic show predominantly cloud ice at the upper edges of the precipitation and only between

06:00 and 07:00 UTC; from 09:00 UTC onward, cloud ice is also classified down to the height of the melting layer. HCA-

Dolan classifies no cloud ice except for very small isolated areas between 05:00 UTC and 07:00 UTC at approx. 2.5 km. In305

contrast to snow, only very small amounts of graupel are classified. Thereby, HCA-Pejcic shows between 01:00 and 04:00 UTC

and 07:00 and 09:00 UTC, graupel occurred directly above the melting layer, which can be only partially confirmed with the

sagging of the melting layer (very visible in Fig. 1 at ρhv and ZDR) as an indicator of aggregation and riming. At the same time

steps, smaller portions of graupel are classified by HCA-Zrnic. HCA-Dolan classifies rain above the 0°C isotherm in these

areas and HCA-Zrnic in the middle of the melting layer. Considering the scores calculated via the membership function in310

HCA-Zrnic and HCA-Dolan (not shown here), there are only minor differences between the scores for graupel, rain and wet

snow in the same areas. Fig. 7 shows the hydrometeor percentages derived from the HCA-Pejcic. Below the melting layer, all

HCA classify rain and the hydrometeor percentage for rain is constant at 100% and changes with height to wet snow. Graupel

reaches up to 3 km altitude at 01:00 UTC, but with only small proportions below 40%. The proportions of cloud ice reach

down to 3 km altitude between 01:00 and 03:00 UTC. In general, the different HCA indicate the dominance of cloud ice above315

4 km, snow aggregates from 1.5 km to 4 km (with sporadic appearances of cloud ice), wet snow in the melting layer, and rain

drops below the melting layer. Comparison between the above radar retrievals and the CTRL simulations (Fig. 3) show two

main differences in the partitioning of the IWC above the melting layer: 1) Excessive graupel production above the melting

layer which extends from 1 to 2 km, and 2) a low concentration of cloud ice above 4 km and an absence of sporadic increases

in cloud ice concentration above the melting layer. While the above deficiencies in the modeled hydrometeors in the CTRL run320

can be also observed in the synthetic radar variables compared to radar observations, with a thick bright band in the melting

layer, stronger reflectivity above the melting layer, and a lack of polarimetric signatures in the snow-dominated region, the
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contribution of possible errors in the assumptions used in the FO can also not be neglected. So, additional sensitivity studies

with the model and FO are conducted to better understand the uncertainties in the model and the FO, which are discussed in

detail in the following sections.325

4 Sensitivity studies

4.1 Model sensitivity

4.1.1 Setup

Table 3 summarizes the list of sensitivity experiments conducted to account for uncertainties in the partitioning of the IWC.

The experiments include using different combinations of Dice and Tgr. In the SB2M scheme, Dice controls the aggregation of330

cloud ice, thereby affecting the production of snow and depletion of cloud ice. Aggregation of cloud ice is the primary source

of snow production above 6 km, which then further grows in size by aggregation of snow or between snow and cloud ice

below. Similarly, Tgr controls the riming of cloud ice and snow with supercooled rain drops, and hence affects the production

of graupel and depletion of snow above the melting layer.

For the cloud ice aggregation threshold, we conducted a sensitivity study using multiple values of Dice (e.g., 5, 50, 150, 400,335

800 µm), the default value being 50 µm. For brevity, we only report on the results from one lower and one upper value as well as

the default value. From these experiments,Dice = 400 µm showed the best improvement in the synthetic polarimetric signatures

and is used as the upper Dice value in this study. Similarly, we varied Tgr from the default 0 ◦C by reducing it by 5 and 3 ◦C

respectively, to check the sensitivity of graupel production near the melting layer. The four experiments together constitute

different combinations of aggregation (ice/snow partitioning) and riming (graupel production and rain gradient below melting340

layer).

4.1.2 Results

First, the model precipitation from the sensitivity runs was compared to the rain gauges available over Bonn, Germany. In

general, the 10-hour accumulated model precipitation for all runs is similar compared to the gauge measurements (see Fig. 8).

However, it is important to note that any perturbations in the model parameters can influence the spatial pattern of the precip-345

itation. This can strongly influence the grid-scale comparison of precipitation between model and point observations. So, the

domain average precipitation is also shown in Fig. 8a. A t-test was also conducted to check whether the difference in domain

average precipitation between the CTRL and sensitivity runs were statistically significant (see Table 4). At native grid reso-

lution, the difference is statistically significant (p < 0.05), while at actual model resolvable scales (e.g, 10 ∆x used here), the

difference is statistically insignificant (p > 0.05). However, both similarities and differences in the microphysical processes for350

rain production in the sensitivity runs can be observed. For example, CTRL and EXP1 do not show the sharp gradient in qr near

the melting layer as simulated for EXP2 and EXP3 (Fig. 4). For CTRL and EXP1, qr increases gradually below the melting

layer, but differ in peak values.
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Fig. 3d-i shows the QVPs of modeled frozen hydrometeors for model sensitivity experiments EXP1 and EXP3. The increase

in Dice for cloud ice self-collection, as used in EXP1 and EXP3, substantially alters the hydrometeor population above 4 km.355

Cloud ice now dominates above this height, while snow aggregates dominate below until the melting layer. The change in

the partitioning of cloud ice and snow aggregates in the mid-levels (>4 km), however, has no significant effect on the graupel

mixing ratio below (Fig. 3f). The decrease in Tgr for graupel production, as applied in EXP2 and EXP3, only prohibits most of

the graupel formation near the melting layer (Fig. 3i). Subsequently, the snow hydrometeors stretch further downward relative

to the CTRL and EXP1 run and below the melting layer, eventually melting and producing rain. The absence of graupel360

production also has no effect on the hydrometeor partitioning in the upper layers. However, the change in the source of ice

hydrometeors to form rain drops via melting directly modulates the qr profiles below the melting layer (see Fig. 4). This could

be attributed to the differences in the sedimentation velocity and time-scales of melting for graupel and snow.

The change in the partitioning of frozen hydrometeors also leads to changes in the partitioning of cloud water and rain near

the melting layer. Fig. 9 shows half-hourly averaged QVPs of hydrometeor mixing ratios at 0400 UTC for the CTRL and the365

sensitivity experiments. For EXP2 and EXP3, there is a general decrease in cloud water mixing ratio (qc) with reference to the

CTRL run. In the absence of graupel production, the sharp increase in qr near the melting layer due to melting of snow can also

be clearly observed for EXP2 and EXP3. In the time-averaged QVPs, the change in the partitioning of the cloud ice and snow

aggregates in the mid-levels is also clearly visible between the CTRL and the sensitivity experiments. For the QVPs in Fig. 9,

the mean size of graupel around the vicinity of the melting layer is around 1.5 – 2 mm for CTRL and EXP1 (not shown here).370

The mean size of rain is qualitatively similar in all runs (<1 mm), except that it increases rapidly near the melting layer for

EXP2 and EXP3. Also, in these experiments snow aggregates stretch further downward below the melting layer as discussed

above, with further increase in mean size (from 2 to 3.5 mm).

4.1.3 Effects in FO output

QVPs of synthetic radar observations for model experiment run EXP3 using the B-PROdef setup are shown in Fig. 10. Since375

the effects of Dice and Tgr changes are mostly independent and occur at different heights, their individual effects on the FO

modeled observations can be, and are in the following, discussed for the FO output from the combined model experiment EXP3

only.

The change of the dominant hydrometeor from snow to cloud ice in the mid-levels resulting from the increase in Dice

between the CTRL and EXP1/3 runs leads to very little changes in ZH. However, the change in partitioning of cloud ice and380

snow above 4 km (increased amounts of cloud ice and reduction of snow) cause significantly intensified polarimetric signals

with large regions of ZDR > 2 dB and KDP > 0.4◦/km.

The reduction (or removal) of graupel resulting from the changes in Tgr largely remediates the “curtains” of high ZH, extreme

ZDR, and depressed ρhv below the melting layer. It leads to a more well-defined, distinct melting layer signature and only leaves

streaks of enhanced polarimetric signals, now exclusively resulting from rain, both much better in line with the observations.385

However, it also eliminates the melting layer signal inKDP. The latter might be a result of too little graupel now existing around

the 0◦C level. It can, though, also be due to the already discussed lack of polarimetric signals from snow.
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4.2 FO sensitivity

4.2.1 Setup

Weakly or unconstrained assumptions in the FO introduce uncertainties in the forward modeled observation parameters, also390

known as forward model error and are considered as one type of representation error in data assimilation (Janjić et al., 2018).

Forward operator errors translate into errors and biases of the simulated radar variables, challenging the use of FOs in both

model evaluation and data assimilation. In order to study the forward operator uncertainty, specifically with respect to the

polarimetric radar parameters, we set up a variety of B-PRO runs with perturbed assumptions in the polarimetry-relevant

microphysics, i.e. the shape and orientation parameterizations.395

The shape and orientation of rain drops are considered to be comparably well known, hence rain is not considered in this

polarimetry sensitivity study. Also, the studied case does not contain any significant amounts of hail (neither in CTRL nor the

different experiment model run setups), therefore analysis of hail sensitivity is also skipped. For the remaining ice hydrometeor

classes both shape and orientation have been varied, described by the parameterizations of the oblate spheroid aspect ratios

and the canting angle distribution width, respectively. For all three classes of ice, the shapes and orientation reported in the400

literature, derived from a range of methods, including in-situ imaging of particles (e.g. Garrett et al., 2012), and over different

atmospheric situations, vary strongly. From the literature, we have compiled a set of AR and σcanting values that cover these

reported ranges. For AR, we have selected three parameterizations providing a high, medium, and low AR (i.e. high(er) to

low(er) sphericity) case for each hydrometeor class. While AR is often parameterized as a function of particle size, σcanting is

mostly estimated as a constant value (one exception is Wolfensberger and Berne (2018), who described the σcanting of snow405

and graupel slightly decreasing with size). Here, we use a set of two constant σcanting per hydrometeor class, a high and a low

value, corresponding to weaker or stronger degrees of orientation. Polarimetric FO calculations have been performed for each

combination of AR and σcanting. A summary of all setups is given in Table 5.

In contrast to the synthetic QVP for the CTRL and EXP3 cases shown above, where B-PRO was run over the QVP extent,

the sensitivity B-PRO calculations have only been performed for a single model column at the grid point location of the410

BoXPol radar, due to the high computational costs of the polarimetric FO. Since the precipitation system for this case study is

horizontally homogeneous, the resulting single-column profiles are in general in good agreement with the full-domain QVPs

(compare both for the B-PROdef setup in Figs. 11 and 12), and conclusions drawn from comparing single-column FO results

with QVPs can be considered robust.

4.2.2 Results415

Results of the B-PRO sensitivity calculations are shown in Fig. 11 and Fig. 12 based on the CTRL and EXP3 model experiment

output, respectively. For an easier comparison of the sensitivity, results are presented as median profiles over the time 00:00 –

10:00 UTC. In addition to the B-PRO sensitivity run profiles, corresponding median QVPs from the full-domain run using the

B-PROdef setup (in grey) and from the BoXPol observations (in black) are included. Full-domain median QVPs closely follow

the single-column profiles of the B-PROdef setup (bold lines) demonstrating the suitability of the single-column approximation.420
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Reflectivities ZH are found to be insensitive to the changes in all of the hydrometeor classes shape and orientation assump-

tions. As expected from scattering theory, polarimetric signals increase with increasing non-sphericity (i.e. lower AR) and

higher degree of orientation (i.e. lower σcanting). Shape and orientation effects on the radar variables used here are difficult

to disentangle since both decreasing AR (increasing non-sphericity) and decreasing σcanting (i.e. higher degree of orientation)

generally lead to an increase in ZDR and KDP. This renders independent evaluations or retrievals of shape and orientation425

challenging. Besides, the combined effects of AR and σcanting are not necessarily linear, but might instead amplify each other.

This is, for example, observed in the case of snow (Fig. 11, middle row and Fig. 12, bottom row), where the change in ZDR

and KDP between the ARmid +σhigh case and the ARlow +σlow case (orange solid to green dashed) are clearly higher than the

changes from ARmid +σhigh to ARlow +σhigh (orange solid to green solid) and ARmid +σhigh to the ARmid +σlow (orange solid

to orange dashed) combined. The ZDR and KDP for the snow ARlow +σlow case are significantly higher than for all other snow430

sensitivity setups, which cluster closely together.

The range of effects from variations of AR and σcanting within observed limits are very different between the different

hydrometeors. Cloud ice exhibits nearly no polarimetric signals for the ARhigh cases, but provides almost excessive values

compared to observations with ZDR > 1 dB and KDP > 0.1◦/km for the ARlow +σlow case, which corresponds to the B-PROdef

setting. The effect of AR and σcanting variations on snow polarimetric signals is rather small. Solely, the ARlow +σlow provides435

somewhat enhanced signals (ZDR ≈ 0.2 dB, KDP ≈ 0.05◦/km), but still remaining clearly below the observed polarimetric

signals (ZDR ≈ 0.3 dB, KDP ≈ 0.1◦/km) at heights where snow is expected to be the dominating hydrometeor class.

The modified shape and orientation assumptions do not noticeably affect ZH, and general differences between synthetic and

real observations in ZH remain. While the bright band and below-ML ZH are matched fairly well, the FO clearly overestimates

reflectivities in the dendritic growth and aggregation layers and underestimates them in the layers where cloud ice, i.e., pristine440

crystals dominate. In the upper levels, both the observed ZDR and KDP in the cloud ice–dominated layers fall within the range

covered by the different cloud ice shape and orientation parameterizations, with the best fit to the ARmid+σlow and ARlow+σhigh

case (as far as can be judged extrapolating by eye). However, all cloud ice paramaterizations largely overestimate ρhv with

noticeable ρhv reductions only for both ARlow cases (though not for the σlow variant in EXP3). The snow-dominated lower levels

(-3 to -13◦C, approximately corresponding here to heights of 2.0 to 4.0 km) are characterized by a strong underestimation of445

ZDR and an even stronger underestimation ofKDP. Only the snow’s ARlow+σlow setup raises the polarimetric signals somewhat,

but it is still insufficient to get close to the observed value. The ρhv in lower levels also remain very close to 1 for all snow

AR and σcanting settings. At the heights just above the ML, where graupel exists (i.e. in CTRL only), assuming a lower AR and

especially a lower σcanting can raise ZDR andKDP towards or beyond the observed values. Specifically the graupel ARmid +σhigh

and ARlow +σhigh setups provide ZDR that is in good agreement with the observations, but still underestimate KDP strongly,450

while ARlow +σlow provides KDP close to the observations but also largely overestimates ZDR.

The ZH bright band signature agrees well between the real and synthetic observations. For the CTRL case (Fig. 11) in

particular, the absolute values ofZH match well while the width of the layer is wider in the synthetic data. On the other hand, the

bright band is equally narrow in the observations and synthetic data for the EXP3 case (Fig. 12), but the synthetic observations

overestimate the bright band peak by about 5 dBZ. In the polarimetric variables, generally the ML-related peak occurs slightly455

14



below where the observations show it. For EXP3, i.e. where practically no graupel occurs, the ZDR ML signature matches

well with the observation apart from the placement at slightly lower height. Also, the below-ML ZDR values are in satisfactory

agreement with the observations independent of the snow AR and σcanting applied. Synthetic KDP in general underestimates the

observed value, but the snow ARlow +σhigh setup provides at least a well-pronounced ML signature. An ML signature is also

seen in ρhv, but is clearly too weak independent of the applied AR and σcanting parameterizations. For the CTRL case, the ML460

signatures are dominated by the polarimetric signals of graupel. The flank of increasing ZDR with decreasing height is matched

well for setups using graupel σhigh. However, the ZDR increase continues to lower heights than in the observations, leading to

significantly stronger ZDR ML peaks (2 dB compared to observed 1 dB). Setups using graupel σlow even peak at 3 dB. The

synthetic KDP ML values are overestimated for σlow setups, but fit comparatively well for the σhigh setups. The differences in

ρhv are small between the AR and σcanting settings. Despite a more pronounced ρhv decrease compared to the EXP3 case, ρhv465

remains too high compared to the observations.

Below about 1 km, no more differences occur in the radar variables of the different shape and orientation settings. This

is because the FO’s melting scheme predicts all ice hydrometeors to have melted there and having taken on the shape and

orientation properties of rain drops. These melted hydrometeors, however, still follow the size distributions of their original

hydrometeor categories. That is, in the CTRL case, where the model still predicts significant amounts of fairly large-sized470

graupel, the FO models scattering properties of large liquid-graupel drops (with rain-like AR and σcanting) that would not exist

in reality, but would break up and form smaller drops. These large virtual drops dominate the polarimetric signals below the

ML, causing values of ZDR that are far too high and values of ρhv that are clearly too low.

5 Discussion

At model-resolvable grid scales, the difference in domain average precipitation in the sensitivity runs with reference to control475

runs were found to be statistically insignificant. However, the partitioning of the IWC and the source of rain drops was found to

vary, with EXP3 matching qualitatively well with the retrieved hydrometeor classification from the BoXPol. The low amount

of cloud ice simulated above 4 km in the CTRL run is consistent with the earlier findings from Fridlind et al. (2017). This could

be compensated for the SB2M scheme by increasingDice (EXP1,3), but this change was found to have negligible effects on the

microphysical processes below (aggregation and riming). An increase in the temperature threshold for riming of ice and snow480

in the presence of supercooled raindrops independently reduced the graupel production (EXP2,3) near the melting layer. This

also had no effect on the dominating aggregation process above. Hence, EXP3 is qualitatively similar to a linear combination

of EXP1 and EXP2.

In the radar space, EXP3 also produced polarimetric moments much closer to the observations; i.e. the melting layer signature

is better represented and the curtains of high ZH and ZDR values below the melting layer are prevented. However, EXP3 also485

produces high ZDR and KDP above 4 km, indicating that mid to high values of cloud ice AR would better approximate the

observed polarimetric moments at this level. Regarding the excessive polarimetric signals below the ML for the CTRL run, it

is possible that the FO melting scheme could be partly responsible as it virtually produces huge, physically impossible, rain-
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like drops of melted graupel. However, preliminary tests with varied melting scheme setups (not shown) have not provided

significantly better results. Rather, delayed melting by increasing the Tmax parameter leads to a widening or smearing out of the490

melting layer signatures. Other sources of uncertainty are the shape and orientation assumptions of melting graupel. Instead

of a linear transition towards the description for rain drops, independent parameterizations could be developed for melting

graupel, e.g., assuming more spherical and less oriented graupel particles albeit without a physical basis. The problem lies in

the prediction of significant graupel amounts of large mean sizes by the model that survive as graupel far below the expected

and observed melting layer.495

Both the CTRL and sensitivity runs, however, produced a low bias in the polarimetric signal at lower levels (2.5 to 4.5 km,

i.e. -3 to -13◦C), where snow aggregates dominate. The observed KDP and ZDR at this level are around 0.1 – 0.4◦/km and

0.3 – 0.5 dB, while the synthetic KDP and ZDR range from 0 – 0.05◦/km and 0 – 0.1 dB, respectively. None of the alternative

shape and orientation setups for snow could provide sufficiently strong polarimetric signals to reproduce the observed signals

at these heights. Snow particles could be assumed to take on even more non-spherical shapes and higher degrees of orientation500

to create stronger signals and tune them closer to the observed values. However, this would require going clearly outside

of the reasonable and in-situ observed range of AR and σcanting. Also, it is not possible to find consistent tunings that are

valid for different wavelengths and observation techniques. Concerning the effective medium approximation (EMA) for the

ice-air mixture material of dry snowflakes, Bohren and Huffman (1983) showed that for mixtures of weakly (like ice) and

non-dielectric (like air) substances, many different EMA formulas agree to first order, i.e., variations of the EMA are not505

expected to have a significant effect here. Applying methods like the Discrete Dipole Approximation (DDA) that solve for the

scattering properties of irregularly shaped and heterogeneously structured particles, it has been demonstrated that internally

homogeneous particles like (soft) spheroids, plates, or columns are not suitable proxies for fluffy, low-density hydrometeors

like dendritic crystals or aggregates (Schrom and Kumjian, 2018). That is, to improve snow polarimetric signals predicted by

forward operators, more realistic, less homogeneous particle models, and hence other scattering methods than the T-Matrix,510

need to be applied. The forward simulated variable biases of ZH (too high) and ZDR and KDP (too low) are consistent with

Ori et al. 2020, who found that aggregated snowflakes become too large above the melting layer in the SB2M microphysics

scheme. Another cause of the low bias in the synthetic polarimetric signals at lower levels could lie in missing cloud ice that

also appears sporadically as the dominant hydrometeor in the radar retrievals. The observed high KDP values with modest ZDR

have also been reported for dendritic growth layer (between -10 to -20◦C) for tall clouds with colder tops (-40 C) and identified515

to be dominated by isometric ice crystals with AR around 0.6 (Griffin et al., 2018). However, here we observe high KDP at

a relatively warmer temperature regime (-3 to -13◦C), also probably associated with isometric ice crystals (as evidenced by

high ρhv). Such a peak in ice crystal concentration near -5◦C was also reported earlier by Stewart et al. (1984) for stratiform

clouds. Hence, the low bias in the model simulated synthetic polarimetric signals could be possibly due to missing additional

secondary ice production (SIP) parameterizations in SB2M (e.g.,Takahashi et al. 1995; Fridlind et al. 2007; Korolev et al.520

2020; Korolev and Leisner 2020; Trömel et al. 2021). Of the identified possible SIP mechanisms, ice hydrometeor collision

and breakup (leading to increase in cloud ice and reduction in snow aggregates) appears to be one of the probable missing

mechanism for SIP in the absence of supercooled water in the lower levels.
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Finally, as discussed in the Appendix, an additional source of outstanding uncertainty not examined in these sensitivity

tests is the chosen EMA and resultant dielectric constant. Varying the topology of the constituent phases, particularly for525

three-component (i.e., air–ice–water) particles within the melting layer, has been shown to have a dramatic impact on the

simulated reflectivity (Fabry and Szyrmer, 1999; Battaglia et al., 2003) as well as ZDR and KDP (Carlin, 2018). These effects

can act in concert with the aforementioned variability due to AR and σcanting, and while some topologies are more physically

plausible than others, it is not always clear which mixing formula best approximates the scattering properties of melting ice

hydrometeors. Future work should further explore these sensitivities in an effort to constrain the degrees of freedom of the530

simulated polarimetric variables.

6 Conclusions

The model was generally found to underestimate the polarimetric signals in the lower levels (-3 to -13◦C), where snow ag-

gregates dominated the simulated hydrometeor population. Sensitivity studies with different combinations of aspect ratios and

widths of each hydrometeor’s canting angle distribution in the FO could also not explain this model bias, indicating 1) short-535

comings in the FO and requirement of more reliable snow scattering models to draw valid conclusions from that, and/or 2)

missing additional secondary ice production parameterization in the model.

In the absence of in-situ measurements using aircraft, this study shows the potential of polarimetric radar observations

and radar retrievals based on high-resolution X-band radars for evaluating and improving the simulated cloud microphysical

process by NWP models. For the model used in this study, improvements in the synthetic polarimetric signatures were found540

to be sensitive to uncertainty in the prescribed Dice and Tgr, while still constraining the accumulated precipitation at model

resolvable scales. The latter is an important achievement for operational weather forecasting models to improve the simulated

cloud microphysical processes in the model, without further degrading the forecast surface precipitation.

Future studies should make additional use of multi-frequency spectral radar polarimetric observations, which would further

allow us to investigate the evolution of the ice particle size distributions (Trömel et al., 2021), along with numerical modeling545

to better understand the biases in modeled IWC partitioning.

Code and data availability. The COSMO model is distributed to research institutions free of charge under an institutional license issued by

the Consortium COSMO and administered by DWD. For more information see http://www.cosmo-model.org/content/consortium/licencing.html.

The COSMO license also includes access to lateral boundary data data provided by DWD. COSMO-DE analysis data used for the ini-

tial and lateral boundary conditions data for the COSMO model experiments in this study can be downloaded from the DWD database550

(https://www.dwd.de/DE/leistungen/pamore/pamore.html). The radar forward operator B-PRO is based on source code derived from the

COSMO model, hence redistribution is limited by the COSMO license. B-PRO v2.0 used in this study is available to registered collaborators

from https://git2.meteo.uni-bonn.de/git/pfo.

Modifications to the COSMO and B-PRO source codes for the sensitivity studies along with the scripts used to setup, run, and process out-

put of COSMO and B-PRO as well as processed COSMO and B-PRO data, rain-gauge data, polarimetric radar data from BoXPol, retrievals555
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of hydrometeor classification and scripts to produce the figures in this work are available from https://doi.org/10.5281/zenodo.5218717

(Shrestha et al., 2021).

Appendix A: Forward Operator Details

While focusing on polarimetry, radar FOs also require additional assumptions regarding non-polarimetric factors like the

melting parameterization and the EMA applied. These are already known to impact modeled reflectivities, but can also affect560

the polarimetric parameters.

In B-PRO, frozen hydrometeors (i.e., cloud ice, snow, graupel, hail) are modeled as ice-air mixtures, where the air fraction

is derived from the model-provided size-mass relation and the hydrometeor shape assumptions applied in the FO. B-PRO

includes a melting model: above a given, hydrometeor class–specific temperature Tmeltbegin, ice hydrometeors start to melt

and turn into water-ice-air mixtures. For the modeling of the effective refractive index of the ice-air and water-ice-air mixture565

particles, a selection of effective medium approximations (EMA) are available, namely 2- and 3-component Maxwell Garnett,

Bruggemann, and Debye mixing rules which are popular in the meteorological radar community (see Blahak, 2016). Note that

different EMAs have been theoretically derived under widely different assumptions and for different scattering phenomena

(Bohren and Huffman, 1983) and lead to a widespread range of possible solutions for radar signals for the same hydrometeors

(see Blahak, 2016, for effects on reflectivity). Because it is often unclear which EMA “best” suits which situation and which570

radar parameter(s), it should perhaps be treated in the sense of an ensemble based on many different EMA choices.

As explained in Sect. 2.2, the COSMO model and its SB2M scheme instantaneously transfer meltwater from the ice hy-

drometeor classes into rain. Taken literally, that implies that ice class hydrometeors are always (completely) frozen, and no

mixed-phase hydrometeors exist. When only assuming pure phase hydrometeors, however, radar forward operators have issues

producing realistic melting layer signatures. Some FOs try to compensate for the instantaneous meltwater shedding by artifi-575

cially redistributing the rain present in a grid box back to the melting hydrometeors, assuming that all of the rain in the grid

box comes from melting and no shedding occurs until melting is complete (Wolfensberger and Berne, 2018; Jung et al., 2008).

While being an attractive and modern concept, this might systematically overestimate the mean sizes of melting particles and

lead to artificial discontinuities of the polarimetric parameters at the lower edge of the melting layer (Wolfensberger and Berne,

2018). B-PRO instead assumes a mass fraction of the ice hydrometeors to be melted, i.e. turns a part of what the model predicts580

as unmelted ice into (unshedded) liquid water. In contrast to the redistribution approach above, this ensures continuity of the

radar signals over the melting layer edges but might lead to an underestimation of the mean sizes, and hence of the radar sig-

nals, of the melting hydrometeors. For practical purposes, a possible lack of “bright-band” may be artificially compensated by

choosing an EMA from the available options which produces stronger melting signatures. The B-PRO melting model, inherited

from EMVORADO (see Blahak, 2016), predicts a temperature- and particle size-dependent meltwater mass fraction for the ice585

hydrometeor classes once the ambient temperature exceeds a specified class threshold Tmeltbegin. The melt fraction decreases

with increasing D for constant T and grows exponentially with T at constant D. All particles of a given hydrometeor class are
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considered completely melted once a given temperature Tmax is reached. By default, the melting scheme is dynamic, i.e., Tmax

is within specifiable limits determined from the model temperature and hydrometeor fields in each model column.

Hydrometeor scattering properties are calculated for single particles over a range of sizes per hydrometeor class, applying the590

size-dependent shape and melting fraction values. Bulk scattering properties per hydrometeor class are obtained by integrating

the monodisperse scattering properties over the particle size distribution provided by COSMO applying the Simpson quadrature

rule.

The temperature thresholds governing the degree of melting of the particles as well as the EMA for each hydrometeor type

can be controlled by the user through a (FORTRAN) namelist file. For this study, we defined a FO setup as a baseline, B-595

PROdef, using reflectivity observations from BoXPol as well as synthetic reflectivities from EMVORADO (Zeng et al., 2016)

as reference. The B-PRO default melting scheme parameters (see Blahak, 2016) are more suitable for convective situations.

For example, the default Tmeltbegin for graupel and hail are -10◦C to reflect the effects of wet growth in convective updrafts,

but would not be suitable for stratiform clouds. Hence, for the study baseline setup in the present study the melting model

parameters have been adapted for stratiform situations. Tmeltbegin for all hydrometeors is set to 0◦C. Also, the dynamic melting600

fraction scheme has been switched off, and Tmax is replaced by a fixed, hydrometeor-class specific value, except for snow.

Snow applies the dynamic scheme, but in the case studied here it practically behaves as if T snow
max was set to 3◦C. In addition,

the EMA of dry and wet snow, which are modeled as a homogeneous single-layer spheroid in B-PRO but as a 2-layered sphere

in EMVORADO, has been chosen to roughly reproduce the melting snow reflectivities as predicted by EMVORADO. All

settings are documented in Table 2.605
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Figure 1. Time series of quasi-vertical profiles measured with the polarimetric X-band radar in Bonn (BoXPol) on 16 Nov 2014. Panels
show (a) horizontal reflectivity ZH, (b) differential reflectivity ZDR, (c) specific differential phase KDP, and (d) cross-correlation coefficient
ρhv. Overlaid solid black contours depict the ZH field in 5-dBZ increments, while black dashed lines indicate the COSMO isotherms for the
radar location.
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Figure 2. Topography of the model domain showing the Rhine Massif, the Rhine Valley and the northwestern lowlands. The dash-dotted
box indicates the inner boundary (excluding the relaxation zone) used to compute domain average precipitation. The location of the X-band
polarimetric radar at Bonn (BoXPol) and the radial extent of its observations are shown as a blue X and red circle, respectively. The white
box around the BoXPol location indicates the location of the Bonn rain gauge network, and the inset map shows a zoomed in view of the
network area along with the locations of the rain gauges (black dots).
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Figure 3. QVPs of the model predicted hydrometeor mixing ratios of cloud ice (a,d,g), snow (b,e,h), and graupel (c,f,i) for the CTRL (top
row), EXP1 (middle row), and EXP3 (bottom row) runs. Overlaid dashed lines are contours of modeled air temperature QVPs.
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Figure 4. QVPs of modeled rain mixing ratio from the different model experiment runs. Dashed lines are contours of modeled air temperature
QVPs.
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Figure 5. Synthetic QVPs of horizontal reflectivity ZH, differential reflectivity ZDR, specific differential phase KDP, and cross-correlation
coefficient ρhv for the CTRL run and applying the B-PROdef setup. Radar variable color scales are identical to the ones applied in Fig. 1. Also
shown are contours of air temperature.
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Figure 6. Time series of dominant hydrometeor types retrieved from the observed QVPs. a) HCA-Pejcic with rain (RN), snow (SN), cloud
ice (IC), graupel (GR), wet snow (WS) and hail (HA). b) HCA-Dolan with no precipitation (NP), drizzle (DR), rain (RR), ice crystals (IC),
aggregates (AG), wet snow (WS), vertical aligned ice (VI), low density graupel (LG), high density graupel (HG), hail (HA), big drops/melting
snow (BD). c) HCA-Zrnic with light rain (LR), moderate rain (MR), heavy rain (HR), large drops (LD), hail (HL), rain/hail (RH), graupel/hail
(GH), dry snow (DS), wet snow (WS), horizontal ice (HC), vertical ice (VC) and no precipitation (NP).
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Figure 7. Time series of hydrometeor percentage retrieved from the observed QVPs with HCA-Pejcic for cloud ice (a), snow (b), graupel
(c), wet snow (d) and rain (e).
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Figure 8. (a) Comparison of mean accumulated precipitation (00:00 UTC – 10:00 UTC) as measured by 22 rain gauges around Bonn (cross),
as predicted by COSMO at the model grid points corresponding to the 22 gauge locations (circles) and over the inner model domain (squares)
for different model setups. The vertical bars indicate the standard deviation. (b) Scatter plot of precipitation totals between observations and
model for each rain gauges. Different colors are used for the multiple experiments.
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Figure 9. Half-hourly averaged QVPs of modeled hydrometeor mixing ratio around 04:00UTC on 16 Nov 2014. On the right axis, air
temperatures corresponding to the heights are denoted. Dashed gray lines indicate temperature thresholds of ± 0.5°C in the melting layer.

34



Figure 10. As Fig. 5, but for model experiment setup EXP3.
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Figure 11. Median synthetic profiles of (left) ZH, (middle-left) ZDR, (middle-right) KDP, and (right) ρhv with different shape and orientation
assumptions for (top) cloud ice, (middle) snow, and (bottom) graupel hydrometeor classes of the CTRL run. See Table 5 for the specific
shape and orientation parameterizations used. Thick lines denote results of the sensitivity runs for the B-PROdef setup. Equivalent median
QVP from the full experiment runs (grey lines) and observations (black lines) are added as reference.

36



Figure 12. As Fig. 11, but for model experiment EXP3. No graupel panel is shown here, since graupel mixing ratios in this experiment are
too low to produce noticeable contributions to the radar signal.
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Table 1. Parameters of the size-mass and velocity-mass relationships following Eq. (2) and Eq. (3) used in the SB2M. These refer to D in
units of m, x in kg, and vT in m s−1. The last two columns contain the shape parameters of the assumed mass distribution.Dx,min = agx

bg
min

and Dx,max = agx
bg
max are the diameters corresponding to the mass limits xmin, xmax and are added for better interpretation.

ageo bgeo av bv xmin xmax Dx,min Dx,max µ ν

Cloud Liquid 0.124 1/3 3.75 · 105 2/3 4.2 · 10−15 2.6 · 10−10 2.0 · 10−6 8.0 · 10−5 0 1/3

Rain 0.124 1/3 114.0 0.234 2.6 · 10−10 3.0 · 10−6 8.0 · 10−5 1.8 · 10−3 0 1/3

Cloud Ice 0.835 0.390 27.7 0.216 1.0 · 10−12 1.0 · 10−6 1.7 · 10−5 1.6 · 10−3 0 1/3

Snow 2.4 0.455 4.2 0.092 1.0 · 10−10 2.0 · 10−5 6.8 · 10−5 1.8 · 10−2 0 1/2

Graupel 0.142 0.314 86.89 0.268 1.0 · 10−9 5.0 · 10−4 2.1 · 10−4 1.3 · 10−2 1 1/3

Hail 0.1366 1/3 39.3 1/6 2.6 · 10−9 5.0 · 10−4 1.9 · 10−4 1.1 · 10−2 1 1/3
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Table 2. Overview of B-PRO settings used as the baseline setup B-PROdef in this study. This includes both hard-coded internal parameters
(marked by *) as well as parameters controllable by the user via a namelist file. For the dynamic melting schemes, Tmax gives the lower and
upper bounds that Tmax is permitted to exhibit. qmin and nmin are applicable in cases of the dynamic melting scheme only, giving the lower
limits of specific mass and number density of the respective hydrometeor category at a model grid point, respectively, to perform a Tmax

update. The detailed meaning of the EMA and a complete overview over all options is given in Blahak (2016). All three settings applied here
make use of the Maxwell-Garnett mixing rule (Maxwell Garnett, 1905). ’mas’: ice-air mixture with air as matrix and spheroidal inclusions
of ice. ’mis’: similar, but with ice as matrix and air as inclusions. ’mawsms’: a three-component (ice-water-air) mixture constructed as a two-
fold two-component mixture, where spheroidal air inclusions are suspended in an ice-water matrix, the latter with spheroidal ice inclusions
in a water matrix.

Parameter cloud ice snow graupel hail

Melting scheme

Tmeltbegin [◦C] 0.0 0.0 0.0 0.0

Tmin [◦C] 0.0 0.0 0.0 0.0

Tmax type fixed dynamic fixed fixed

Tmax [◦C] 5.0 3.0 – 10.0 5.0 20.0

qmin, nmin − 10−8, 100 − −

EMA

dry mas mas mis mis

wet mawsms mawsms mawsms mawsms

PSD integration*

Dmin, Dmax [mm] 0.02, 4.0 0.05, 30.0 0.01, 30.0 0.05, 100.0

Microphysics

AR ≈ 0.2 max(0.7− 10D, 0.5) max(1.0− 20D, 0.8) max(1.0− 20D, 0.8)

Andrić et al. (2013), plates Xie et al. (2016) Ryzhkov et al. (2011) Ryzhkov et al. (2011)

σcanting [◦] 12.0 40.0 40.0 40.0

Matrosov et al. (2005) Ryzhkov et al. (2011) Ryzhkov et al. (2011) Ryzhkov et al. (2011)
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Table 3. List of COSMO model simulations with perturbed parameters to account for uncertainty in the partitioning of the ice water content.

Description Dice Tgr

[µm] [◦C]

CTRL (default run) 50.0 0.0

EXP1 400.0 0.0

EXP2 5.0 -5.0

EXP3 400.0 -3.0
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Table 4. Student’s t-test for differences in domain average precipitation with reference to CTRL run. Calculated t-statistic and the p-values
for horizontal resolutions ∆x of 1.1 km and 11 km.

∆x= 1.1 km ∆x= 11.0 km

Exp t-stat p-values t-stat p-values

EXP1 12.9 2.8 · 10−38 1.3 0.2

EXP2 8.3 8.6 · 10−17 0.8 0.4

EXP3 12.0 6.6 · 10−33 1.2 0.2
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Table 5. Overview of settings for the FO sensitivity study. The first line of each entry gives the source and the second the parameterization or
value. Here, D is in terms of maximum diameter [m]. Entries typeset in bold denote the setup corresponding to B-PROdef for the respective
hydrometeor class. Cloud ice ARlow from Andrić et al. (2013) applies their density-size parameterization for plates calculating AR following
COSMO’s m-D relation from the resulting volume. Setting min(AR) = 0.2 in order to ensure a stable T-matrix solution leads to AR = 0.2
for all but the smallest crystals (also, the AR parameterizations for plates and dendrites are practically identical in this range).

cloud ice snow graupel

ARhigh Xie et al. (2016) Ryzhkov et al. (2011) Ryzhkov et al. (2011)
max(0.9− 103D, 0.7) max(1.0− 20D, 0.8) max(1.0− 20D, 0.8)

ARmid Matsui et al. (2019) Xie et al. (2016) Putnam et al. (2017)
0.35 max(0.7− 10D, 0.5) 0.75

ARlow Andrić et al. (2013) Dunnavan et al. (2019) Straka et al. (2000)
≈ 0.2 0.4 0.6

σhigh Xie et al. (2016) Ryzhkov et al. (2011) Ryzhkov et al. (2011)
40◦ 40◦ 40◦

σlow Carlin (pers. comm., 2020) Matsui et al. (2019) Putnam et al. (2017)
12◦ 20◦ 10◦
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