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Abstract. Parametric geological models such as implicit or kinematic models provide low-dimensional, interpretable represen-

tations of 3-D geological structures. Combining these models with geophysical data in a probabilistic joint inversion framework

provides an opportunity to directly quantify uncertainty in geological interpretations. For best results, care must be taken with

the intermediate step of rendering parametric geology in a finite-resolution discrete basis for the geophysical calculation. Cal-

culating geophysics from naively voxelised geology, as exported from commonly used geological modeling tools, can produce5

a poor approximation to the true likelihood, degrading posterior inference for structural parameters. We develop a simple inte-

grated Bayesian inversion code, called Blockworlds, showcasing a numerical scheme to calculate anti-aliased rock properties

over regular meshes for use with gravity and magnetic sensors. We use Blockworlds to demonstrate anti-aliasing in the context

of an implicit model with kinematic action for simple tectonic histories, showing its impact on the structure of the likelihood

for gravity anomaly.10

1 Introduction

Geological modeling of subsurface structures is critical to decision-making across numerous application areas, including min-

ing, groundwater, resource exploration, natural hazard assessment, and engineering, yet is also subject to considerable uncer-

tainty (e.g. Pirot et al., 2015; Linde et al., 2017; Witter et al., 2019; Quigley et al., 2019; Wang et al., 2020). Uncertainty

arises in numerous places within the model-building workflow, including: sparse, noisy, and/or heterogeneous geological ob-15

servations and rock property measurements; the indirect nature of geophysical measurements; the non-uniqueness of inverse

problem solutions; and the ambiguity of geological interpretations (Lindsay et al., 2013). Rigorous quantification of uncer-

tainty is therefore critical to decision-making informed by models, and is becoming an increasingly active area of research in

geology and geophysics (Rawlinson et al., 2014; Bond, 2015; Jessell et al., 2018; Wellmann and Caumon, 2018).
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Bayesian methods provide a probabilistically coherent framework for reasoning about uncertainty (Tarantola and Valette,20

1982; Mosegaard and Tarantola, 1995; Mosegaard and Sambridge, 2002). Although not the only way to account for uncertainty

in earth science settings, Bayesian reasoning enables the natural integration of heterogeneous data and expert knowledge

(Jessell et al., 2010; Bosch, 2016; Beardsmore et al., 2016), guides the acquisition of additional data for maximum information

gain (e.g. Pirot et al., 2019b), enables selection among competing conceptual models (e.g. Brunetti et al., 2019; Pirot et al.,

2019a), and optimizes management of risk in decision-making over possible outcomes (e.g. Varouchakis et al., 2019).25

Bayesian methods are used in both geology and geophysics, but with different framing for inference problems. In the geo-

physics community, where quantitative inversion frameworks have been in use for decades (Backus and Gilbert, 1967, 1968,

1970), the core problem is framed as a non-parametric imaging of the subsurface. The model parameters directly define dis-

cretized spatial fields of rock properties, from which forward geophysics are calculated to reproduce observations. Model

structures rich enough to be useful are often very high-dimensional, and variations in spatial scales and resolutions make the30

full covariance matrix cumbersome and impractical to evaluate (Rawlinson et al., 2014). Although the discrete geophysical

image representation may naturally reflect the geological interpretation — for example, in the transdimensional inversions

reviewed in Sambridge et al. (2012) — this is not usually the case, and much effort goes into developing models with priors

or regularizing terms to constrain the outputs of geophysical inversions to be geologically reasonable. Examples include: the

hierarchical Bayesian "lithologic tomography" of Bosch (1999) and Bosch et al. (2001); structure-coupled multiphysics ap-35

proaches (Gallardo and Meju, 2011; de Pasquale et al., 2019); and flexible models based on Voronoi tessellations or multi-point

statistics (e.g. Cordua et al., 2012; Pirot et al., 2017). Level-set methods (Osher and Sethian, 1988; Santosa, 1996; Li et al.,

2017; Zheglova et al., 2018; Giraud et al., 2021a) solve for the boundaries of discrete rock units; these methods are more

parsimonious than traditional volumetric inversions, but still invert for a flexible, high-dimensional description of static 3-D

properties.40

In contrast, the core problem in geology is to interpret observations in terms of geological histories and processes (Frodeman,

1995). This becomes important in the structural geology of ore-forming systems, where details of the history become impor-

tant and flexible treatment of 3-D geological structures as random fields is inadequate (Wellmann et al., 2017). The mineral

exploration community has developed 3-D geological forward models that can capture much of the complexity of real systems

(e.g. Perrouty et al., 2014). Implicit models (Houlding, 1994) represent interfaces between geological units as isosurfaces of a45

scalar field defined over 3-D space. The popular industry software package 3D GeoModeller (Calcagno et al., 2008), and the

open-source code GemPy (de la Varga et al., 2018), interpolate this scalar field directly from structural geological observations

by co-kriging (Lajaunie et al., 1997). Kinematic models (Jessell, 1981) use a parametrized description of volume deformations

produced by tectonic events; the open-source package Noddy (Jessell and Valenta, 1993) is commonly used. The recently

released open-source package LoopStructural (Grose et al., 2020) combines elements of co-kriging and kinematic implicit50

models for additional geological richness and realism. For models with no constraints from geophysics, geological uncertainty

can be quantified by generating Monte Carlo realizations (Metropolis and Ulam, 1949) of geological datasets (Pakyuz-Charrier

et al., 2018a, b, 2019). In a Bayesian treatment, this amounts to drawing samples from the prior (Wellmann et al., 2017).
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Conditioning geological forward models on geophysical observations makes it tractable to perform full posterior inference in

an interpretable parameter space of reduced dimension. This can be done using sampling methods such as Markov chain Monte55

Carlo methods ("MCMC"; Metropolis et al., 1953; Hastings, 1970), which are becoming increasingly sophisticated and widely

used in geological and geophysical modeling (Mosegaard and Tarantola, 1995; Mosegaard and Sambridge, 2002; Sambridge

et al., 2012). Additionally, parametric geology naturally obeys constraints imposed by the forward geological process, and can

be used for inference over that process, unlike non-parametric geophysical inversions that incorporate a static, voxelized geo-

logical model as a prior mean (Giraud et al., 2017, 2018, 2019a, b; Ogarko et al., 2021; Giraud et al., 2021b). Kinematic models60

are especially well-suited for this approach since they represent geological hypotheses in terms of structural observations and

event histories, but avoid the full computational burden of dynamic process-based simulations. Performing Bayesian inference

over kinematic model parameters could open the door to more general Bayesian model selection over geological histories or

conceptual models.

Probabilistic inversion workflows that incorporate forward geophysics based on forward-modelled 3-D structural geology65

are, to date, still uncommon, owing in part to computational challenges faced by sampling algorithms. The pyNoddy code

(Wellmann et al., 2016) provided a wrapper to Noddy to enable Monte Carlo sampling of 3-D block models and potential fields,

but not posterior sampling of an inversion conditioned on gravity or magnetic data. The Obsidian distributed inversion code

(McCalman et al., 2014) implemented a geological model of a layered sedimentary basin with explicit unit boundaries to ex-

plore geothermal potential (Beardsmore et al., 2016); it featured multiple geophysical sensors and a parallel-tempered MCMC70

sampler for complete exploration of multi-modal posteriors. Obsidian has been extended with new within-chain MCMC pro-

posals inside the parallel-tempered framework (Scalzo et al., 2019) and a new sensor likelihood for field observations of

surface lithostratigraphy (Olierook et al., 2020); but the limitations of its geological model make it an unlikely engine for

general-purpose inversions. Wellmann et al. (2017) present a workflow using GeoModeller to render the geology, Noddy for

calculation of geophysical fields, and pymc2 (Patil et al., 2010) for MCMC sampling. GemPy’s support for information other75

than structural geological measurements is as yet fairly limited, but includes forward modeling of gravity sensors and topology.

This paper describes a simple Bayesian inversion framework, called Blockworlds, which to our knowledge is the first to

perform full posterior inference based on forward geophysics from an implicit geological model with kinematic elements.

Although not yet intended to serve as a production-ready geological modeling package, Blockworlds’ design addresses an

obstacle for inversion workflows that resample parametrized 3-D geometry of geological units onto a discrete volumetric mesh80

for geophysical calculations. Discontinuous changes in rock properties across unit interfaces may become undersampled unless

the mesh is chosen to align with those interfaces (Wellmann and Caumon, 2018); since implicit and kinematic geological mod-

els naturally represent geology volumetrically, this alignment is not easily made without first evaluating the model, incurring

additional computational overhead. Flexible geophysical inversions can adjust rock properties in individual boundary voxels

to partially compensate for loss of accuracy, but models that condition rock properties directly on geological parameters lose85

much of this freedom. This can result in artefacts in the likelihood that hinder convergence of estimation methods, degrade

posterior inference over structural parameters, and preclude the use of posterior derivative information.
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To address the issue of undersampled interfaces, Blockworlds incorporates numerical anti-aliasing into its discretization

step. Anti-aliasing to address undersampling has a long history in computer graphics (Crow, 1977; Catmull, 1978; Cook, 1986;

Öztireli, 2020) and in geophysics, for example finite-difference solutions of seismic wave equations (Backus, 1962; Muir et al.,90

1992; Moczo et al., 2002; Capdeville et al., 2010; Koene et al., 2021). Obsidian anti-aliases physical rock properties using

volume averages in voxels with partial unit membership, though this is not mentioned in associated publications (McCalman

et al., 2014; Beardsmore et al., 2016) and the implementation depends upon the Obsidian parametrization. Blockworlds’ pre-

scription is more general, operating on the scalar field values that define interface positions in all implicit models, and thus can

be straightforwardly implemented for implicit models using other types of interpolation schemes such as co-kriging.95

The paper is organized as follows. Section 2 explains the aliasing effect, including its influence on the likelihood, and

describes the algorithm used in Blockworlds to address it. Section 3 describes how Blockworlds evaluates kinematic event

histories, then introduces a set of synthetic kinematic geological models we use as benchmarks. Section 4 summarizes gravity

inversion experiments based on these models, demonstrating the influence of anti-aliasing on MCMC sampling. Section 5

discusses future directions, including use with other geophysical sensors and curvilinear coordinate systems, and we conclude100

in Section 6.

2 Methods

2.1 Chaining forward models in geophysics calculations from structural geology

The forward modeling of observations falls under the calculation of the likelihood p(d|θ), which describes the probability of

observing data d given that the causal process generating the data has true parameters θ. A Bayesian inversion proceeds by105

combining the likelihood with a prior p(θ) that describes the strength of belief, in terms of probability, that the causal process

has true parameters θ before any data are taken into account. In non-parametric geophysical inversions the prior includes

regularization terms that penalize undesirable solutions. In parametric inversions, the choice of parametrization corresponds

to a strong regularization on the discretized geology, with the prior distribution providing further constraints. The posterior

distribution p(θ|d), describing probabilistic beliefs about θ once the data have been taken into account, is then determined110

through Bayes’s theorem:

p(θ|d)∝ p(d|θ)p(θ). (1)

For parameter estimation, the unnormalized right-hand side can then be sampled using MCMC algorithms for full uncertainty

quantification.

While some measurements, such as structural observations, can be computed directly from a continuous functional form for115

the geological forward model, likelihoods based on simulation of geophysical sensors may require discretization of the geology

to calculate. The likelihood terms in this case each involve the composition of two forward models:

1. a mapping g : Θ→G from the parameter space Θ into a space G of discrete volumetric representations (such as block

models); and

4



2. a mapping f : G →D from the space of discretizations into the space of possible realizations of the data.120

Structural geology is chiefly concerned with the map g, and often reckons uncertainty not in terms of parameter variance, but

in terms of the properties of an ensemble of discrete voxelized models (e.g. Wellmann and Regenauer-Lieb, 2012; Lindsay

et al., 2012). Inversions of geophysical sensor data such as gravity, magnetism, conductivity, or seismic are chiefly concerned

with the map f . The accuracy of a parametric inversion will depend on the accuracy with which f ◦ g can be computed.

Although discretization methods such as adaptive meshes (Rawlinson et al., 2014) or basis functions aligned with geological125

features (Wellmann and Caumon, 2018) can improve the fidelity of g, these mappings are not guaranteed to be suitable for

efficient and accurate computation of f . Furthermore, existing geological engines frequently export to a simple fixed basis that

may be adequate for visualization in an interactive workflow, but cause trouble in automated inversion workflows, producing

the aliasing effects discussed in the next subsection.

2.2 Aliasing and its effects on the posterior130

To show a straightforward example, we calculate the posterior density for the parameters of a uniform-density spherical inclu-

sion (sphere radius and mass density) given the gravitational signal. An analytic solution exists, so we can compare directly

to the true posterior, and with only two parameters we can simply evaluate over a grid of parameter values rather than using

MCMC. We model a 1 km3 cubical volume, and fix the sphere’s position at the center. Gravity anomaly data were generated

from the analytic model on an evenly spaced 20× 20 survey grid at the surface (z = 0), with Gaussian measurement noise at135

the level of 10% of the signal amplitude added. We used the SimPEG library (Cockett et al., 2015) to generate meshes and

calculate the action of the forward model for the gravity sensor in the inversion loop. To emphasize the role of the likelihood in

a scenario with vague prior constraints, we use uniform priors on the mass density ρ (3.0+/−0.5) and radiusR (300±100 m)

of the sphere. Given spherical symmetry, the data constrain only the total mass M of the intrusion, and so the region of high

posterior probability density follows the curve140

ρ=
3M

4πR3
(2)

Figure 1 shows the results of this exercise. Four discretizations of the sphere are shown: a coarse mesh, with the rock density

for each cell queried from the true geology at the center of that cell; a higher-resolution mesh, with cell sizes refined by a factor

of 4 along each axis; a coarse mesh on which the rock density has been averaged throughout the cell, using the anti-aliasing

scheme described in the next section; and a high-resolution mesh using the same anti-aliasing scheme. The gravity fields are145

visually indistinguishable for all four versions, but the posteriors look very different.

When inverting on the coarse mesh with no anti-aliasing, the density in a given cell changes only when the sphere radius

crosses over the centre of one or more mesh cells, and then it changes discontinuously (see last row, first column of Figure 1).

This in turn induces spurious structure into the likelihood, and hence the posterior distribution of the inversion parameters. The

numerical posterior becomes a collection of isolated modes, scattered along the locus of degeneracy (red dashed line) between150

ρ (y-axis) and R (x-axis) on which the true parameters (red cross) lie, but none of which appropriately quantify the uncertainty

in the true analytic problem. These artefacts can be suppressed by refining the mesh, though at the cost of increasing the
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Figure 1. Calculation of posterior distribution for the radius and density of a uniform spherical inclusion from gravity inversion. Top row:

cross-section of 3-D rock density field for the true model from which the data are generated. 2nd row: Simulated gravity field at surface.

3rd row: Residuals of simulated gravity field from analytic solution. Bottom row: cross-section through the posterior for an independent

Gaussian likelihood. Discretization schemes shown (columns, left to right): coarse aliased mesh (153 cells), fine aliased mesh (603 cells),

coarse anti-aliased mesh, fine anti-aliased mesh. The true parameters are shown by the red cross, while the red dashed line indicates the

degeneracy relation in Eq. 2 that constitutes the maximum-likelihood ridge of the analytic solution.
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Figure 2. Influence of data error on the posterior distribution for the sphere inversion problem. The panels from left to right show the effects

of multiplying the standard deviation of Gaussian noise on gravity observations by factors of 1 (baseline), 2, 5, and 10.

number of voxels (and the computation time); in this case, by a factor of 43 = 64. Importantly, the underlying posterior for this

high-resolution mesh is not free of discontinuities, but takes on a terraced appearance.

The inversions with anti-aliased geology result in continuous, even smooth, posteriors that trace the analytic solution and155

run at nearly the same speed. A closer look reveals that the coarse-mesh anti-aliased posterior is slightly offset toward the

bottom-left relative to the analytic curve, while the fine-mesh posterior is not. This is a product of low mesh resolution, which

the anti-aliasing approximation only partially mitigates (see Sect. 2.4). Each anti-aliased interface is treated locally as a plane

surface. For a given gravity signal, spheres with higher density have smaller radius and thus higher curvature at the interface;

the departure from the true posterior will grow as the sphere radius approaches the voxel size. The bias amounts to ∼ 1%160

of the sphere’s mass at the true parameter values, which the data are just sufficient to detect. Thus, while anti-aliasing may

incidentally improve the accuracy of geophysical field calculations, its primary benefit is to reproduce the continuous structure

of the underlying likelihood.

We will later directly test the influence of aliasing on the performance of MCMC, since the capacity for full posterior

inference is one of the major advantages of parametric geological inversions. However, aliasing will cause problems for a165

broad variety of estimation algorithms. Even for fine mesh resolution, the likelihood is piecewise constant along spatially

aliased geological parameters, and so components of the likelihood gradient in those directions are zero almost everywhere, in

a measure-theoretic sense. Methods such as Nelder-Mead (for optimization) and Metropolis random walk (for sampling) that

do not rely on posterior gradient information will seem to work with a fine enough mesh, although at greater computational cost

and with no warning of the extent of aliasing effects unless run multiple times from different starting points. Gradient-based170

methods, such as stochastic gradient descent or Hamiltonian Monte Carlo, will fail catastrophically, since the zero gradient

of an aliased likelihood will not reflect its geometry. The covariance matrix used to estimate local uncertainty in the fit from
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an optimization algorithm will be singular, since the components of the Hessian along aliased directions will be zero. Finally,

while the gravity inverse problems we consider in this paper are linear, an attempt to invert for parametric geology based on

a nonlinear sensor would face discontinuous change s in the sensitivity kernel with parameters, with unpredictable effects on175

parameter estimation.

One could argue that the likelihood might be less badly aliased if the data constraints were weaker. Inflating the data errors

can be viewed as a form of tempering, which we would expect to merge the multiple aliased modes. Figure 2 shows the results

of inflating the errors in the "coarse aliased" discretization of the sphere problem by various factors until the isolated modes in

the original problem have merged. The distribution becomes fully navigable only for data errors a factor of 5–10 times larger180

than our original problem — that is, for data errors comparable to the amplitude of the signal itself. Furthermore, the blockiness

or terracing is a function of the discretization scale only, so that any estimation methods relying on gradients will break down

along the aliased spatial parameters in the same way as before.

This kind of catastrophic breakdown occurs because of the restrictive conditioning of rock properties on parametric geology,

so we do not expect the same kind of effect to arise in flexible geophysical inversions that derive their priors from discretized185

geological models (e.g. Giraud et al., 2021b). The geophysical sensor model is a smooth function of the rock properties, and so

when the rock properties are the primary model parameters, the likelihood remains smooth. Highly restrictive model error terms

that are inconsistent with the data may still hamper performance or inference. While it would be interesting to examine non-

zero voxelization model errors for the kind of parametric inversion we investigate in this paper, this is a technically complex

issue that we defer to future work. For now we note simply that aliasing still arises even in a parametric model that is in other190

respects perfectly specified, and that treating it explicitly will remove aliasing contributions to model errors in future parametric

inversions.

While our example may seem artificial, widely used geological modeling tools such as Noddy and GeoModeller usually

export on rectangular meshes, with lithology or rock properties evaluated at the center of each mesh cell precisely as described

above. Any ongoing development or support of geological modeling tools intended for use in probabilistic workflows should195

keep examples like this in mind. Complex structure imparted by faults, folding, dykes and sills is highly sensitive to discretiza-

tion. The situation may arise where the causative body for a strong geophysical anomaly, such as a thin and relatively magnetic

or remanently magnetised dyke, is removed from the geological prior due to overly coarse discretization parameters, while

a resulting strong magnetic response remains. Inversion schemes are not intended to address situations where the target is

unintentionally removed from the data.200

2.3 Fitting an anti-aliasing function

The main idea behind anti-aliasing is to produce rock property values in each mesh cell such that the response of a sensor to the

anti-aliased model best approximates the action of the same sensor on the same geology exported to a higher-resolution mesh.

In this section we will develop an anti-aliasing prescription for gravity anomaly, which responds linearly to mass density. We

frame the problem as a regression that uses the position of a geological interface within a mesh cell to predict what the mean205

mass density would be for that cell in a high-resolution model.
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Figure 3. (a) Numerical approach to calculating partial volumes. The interface is approximated by a plane running through the voxel. A

cloud of points is generated in a regular grid, and the partial volume is then the fraction of these points that satisfy u⊥ = (r−r0) ·n/h= 0,

where r0 = (rx, ry, rz)0 is a point on the interface and n= (nx,ny,nz) is a unit normal vector. (b) Regression models for fast evaluation of

partial volumes using data generated from the approximate numerical scheme (gray curves): a piecewise linear interpolation over u⊥ (red), a

generalized linear model with up to third-order terms (blue), and a Gaussian process that also includes features associated with the orientation

of the interface (green). (c) Precision of partial volume models. The piecewise model reaches 2% RMS accuracy. A linear regression reaches

1% accuracy, as does a Gaussian process regression with a single feature u⊥. A GP with three features that captures the directionality of the

interface with respect to the cube boundaries reaches 0.3% accuracy.

The top panel of Figure 3 shows the geometry of the problem. For simplicity, we assume constant rock density within each

unit, which reduces the problem to predicting the fraction of the cell’s volume lying to either side of the interface. We further

assume that the interface is flat at the spatial scale of a single mesh cell, so that it can be approximated by a plane surface defined

by a point r = (rx, ry, rz) and a unit normal n= (nx,ny,nz). Due to the translational symmetry of a plane, the influence of210

r can be reduced to the projected distance u⊥ of the plane from the voxel centre r0. The unit normal n can be described in

terms of two angles in spherical coordinates; due to the rotational symmetries of a cubical voxel, it is enough to specify the

polar angle with respect to the normal to the cube face that a ray drawn from r0 along n intersects, and the azimuthal angle

with respect to a coordinate system projected onto that cube face. Expressing the angles in terms of ratios of components of n

results in three main predictive features:215

u⊥ = (r− r0) ·n/h (3)

η =
√

1−n2max/nmax (4)

ξ = nmin/
√

1−n2max (5)
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where h is the voxel size, nmin = min{nx,ny,nz}, nmax = max{nx,ny,nz}, and r0 is the voxel center.

To train the regression, we generate a synthetic dataset of 1000 (r,n) pairs with which a plane interface might intersect a220

generic voxel. In each pair, r is distributed uniformly in space, and n uniformly in solid angle. We calculate the partial voxel

volume beneath the plane numerically by mesh refinement to 20× higher resolution.

Figure 3 shows three different possible functional forms for the regression: a piecewise linear function of u⊥ alone; a linear

regression model including interaction terms up to third order, where the regressors have been transformed by a hyperbolic

tangent function to maintain boundary conditions and keep fractional volumes between 0 and 1; and a Gaussian process225

regression. A linear regression model based on the single feature u⊥ — the normal distance to the plane from the voxel center

— can provide smooth anti-aliasing to 1% RMS accuracy (5% worst-case); the optimized form is

v(u⊥) =
1

2

[
1 + tanh(2.2u⊥+ 3.2u3⊥)

]
(6)

This functional form provides negligible computational overhead in our implementation as part of a MCMC inversion loop,

and has derivatives of all orders. Including orientation features in the linear regression results in negligible improvements in230

accuracy while increasing computation time. The Gaussian process does not provide meaningful improvement over the linear

regression using u⊥ alone; it attains accuracy of 0.3% RMS (3% worst-case) using three features, but is many times slower to

evaluate. We use Eq. 6 for further experiments in this paper.

2.4 Potential limitations of anti-aliasing

Since the anti-aliasing approximation amounts to a strong prior on sub-mesh structure, understanding its limitations is critical235

in practical modeling. The approximation giving rise to Eq. 3 and Eq. 6 will break down when interface curvature becomes

significant. Common sense suggests that no length scale parameter in the inference problem should ever be less than the voxel

size h. These situations can be difficult to detect from inside the inversion. Spatial scale parameters, such as fold wavelengths,

may produce high-curvature interfaces only in some regions of parameter space. Curvature measured using the Hessian adds

computational overhead and may miss structures beneath the Nyquist limit if evaluated on the same mesh as the inversion240

itself. However, as shown in Fig. 1, departures from the true posterior can occur even at higher resolution, depending upon the

resolving power of the data and the structure of the likelihood.

Another drawback in anti-aliasing is that it ignores the relative orientations of interfaces in voxels spanning multiple inter-

faces. If only one interface passes through a voxel, Eq. 6 should result in a faithful representation of its density. If, however,

that voxel is later faulted or brought up against an unconformity, the true mean density in the voxel depends on which of the245

two formations is preferentially replaced by the new obtruding unit; Eq. 6 will only give some mean value roughly correct

when the two interfaces intersect at right angles. Anti-aliasing will thus become increasingly inaccurate with each successive

application to a voxel. This effect can cause biases even in geologies with exactly flat interfaces; we expect it to be more

pronounced in models with multiply-faulted interfaces in regions where the geophysical sensitivity is the highest, for example

near the surface. Such regions of complexity can be identified by flagging voxels within a projected distance u⊥ < h of an250
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interface, and the additional uncertainty in the lithology can be treated explicitly — for example, by assigning latent variables

in the statistical model to account for it.

Once an inversion has been performed, the best practice to assess bias will still be to repeat it with a different cell size. In

the next section we will discuss metrics to evaluate the global agreement of posteriors based on different mesh sizes, allowing

quantitative evaluation, online or offline, of the value to the user of running at a given mesh resolution.255

3 Experiments with kinematic models

To illustrate how anti-aliasing interacts with more realistic geological structures, Blockworlds implements a simplified kine-

matic model inspired by Noddy (Jessell, 1981; Jessell and Valenta, 1993). We chose to write our own demonstration code

rather than modifying Noddy both for ease of prototyping, and to demonstrate how anti-aliasing interacts with the kinematic

calculations. We construct a range of 3-D models and visualize slices through each Bayesian model posterior to demonstrate260

the influence of anti-aliasing on the calculations.

3.1 Kinematic model events

The action of kinematic events in Blockworlds is recursive, with each new event modifying the geology resulting from the

events before it. Since the notation describing this action is complex, we include a summary of symbols defined in this subsec-

tion in Table 1.265

Each event is parametrized by a collection of parameters θi, with Θi = {θ0,θ1, . . . ,θi} denoting the collection of parameters

for all events up to event i. We denote the function that renders 3-D rock properties based on all events up to event i by gi(r|Θi).

Although geology can be evaluated on a mesh of any desired resolution, in practice the recursive evaluation means that each

event modifies rock properties as rendered on the same discrete mesh as the previous event.

The calculation begins with a basement layer of uniform density, g0(r|ρ0) = ρ0, which has no interfaces and thus requires270

no anti-aliasing. The action of the anti-aliasing operatorA for an interface between two sub-volumes with spatial rock property

fields g+ and g−, at projected distance u⊥ from the voxel centre, is given by

A[u⊥;g+,g−] = g−+ (g+− g−)v(u⊥) (7)

where u⊥ and v(u⊥) are given by Eq. 3 and Eq. 6. The anti-aliasing must be applied in the co-moving coordinate frame of

each event, so that rock properties stored on the discrete rock property mesh are recursively averaged or transported by later275

events (see Figure 4). Note also that u⊥, and thus A, depend on the mesh spacing.

The Blockworlds code covers four elementary event types, each parametrized by its own scalar field that takes a zero value

at the relevant interface:

– Stratigraphic layer — θi = (∆zi,ρi) for a layer with thickness ∆zi i and mass density ρi, which has the effect of

laying a new layer down on top of the existing geology:280

gi(r|Θi) =A[r ·uz −∆zi;gi−1(r−∆ziuz|Θi−1),ρi] (8)
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Table 1. Table of symbols for kinematic event notation.

General notation

θi Geological parameters defining event i (generic)

Θi Geological parameters defining events {0,1,2, . . . , i}

g Rock property field given geological parameters

r Position vector (x,y,z)

A Anti-aliasing operator

v Anti-aliasing fitting formula (see Equation 6)

u⊥ Projected normal distance to interface, e.g. fault plane

uz Unit vector in positive z-direction

Stratigraphic layers

∆zi Thickness of stratigraphic layer i

ρi Rock properties (mass density) of stratigraphic layer i

Faults

r0,i Point on fault plane for fault i

ni Normal vector to fault plane for fault i

vi Unit vector in slip direction for fault i

si Slip magnitude for fault i

Folds

ni Unit vector defining direction of phase increase for fold i

ψi Pitch angle for fold i

φi Phase angle for fold i

Li Wavelength for fold i (full cycle)

Bi Amplitude for fold i (measured from baseline)

Spherical intrusions

r0,i Position of sphere centre for intrusion i

Ri Radius of sphere for intrusion i

ρi Rock properties (mass density) of sphere for intrusion i

– Fault — θi = (r0,i,ni,si) for a fault passing through a point r0,i with unit normal ni and dip-slip displacement si.

Our parametrization constrains r = (x,y,0) to lie on the surface, and uses a polar representation for n derived from dip

and dip direction (Pakyuz-Charrier et al., 2018b). Given these elements, we calculate v = (uz×n)×n
|(uz×n)×n| resulting in a unit
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vector pointing in the dip-slip direction parallel to the fault plane, with no strike-slip component. Then:285

gi(r|Θi) =A[(r− r0,i) ·ni;gi−1(r+ sv|Θi−1),gi−1(r|Θi−1)] (9)

which has the effect of displacing the geology in the half-space u⊥ > 0 by the slip vector sv.

– Fold — θi = (ni,ψi,φi,Li,Bi) for a fold defined by a unit vector ni, pitch angle ψi, phase angle φi, wavelength Li

and amplitude Bi. Given ni, we generate two unit vectors v0 = uz×n
|uz×n| and v1 = (uz×n)×n

|(uz×n)×n| , defining an orthonormal

structural frame {v0,v1,ni}. Rock elements are displaced laterally by a vector field290

∆r = Bi sin(2π(r ·ni)/L+φ)

× (sin(ψi)v0 + cos(ψ)v1) (10)

so that the rock properties after the fold are given by

gi(r|Θi) = gi−1(r+ ∆r|Θi−1) (11)

– Spherical intrusion — θi = (r0,i,Ri,ρi) for a sphere of radius Ri and uniform density ρi centered at r0,i:295

gi(r|Θi) =A[|r− r0,i| −Ri;ρi,gi−1(r|Θi−1)] (12)

Figure 4 shows the action of the kinematic elements of the model alongside an anti-aliased version of the voxelized density

volume, calculated over a 1 km3 rectilinear mesh 15× 15× 15 voxels on a side.

3.2 Setup of specific 3-D models

We construct a series of fifteen kinematic models, with true configurations shown in Fig. 5. Each model occupies a 1 km3 cubi-300

cal volume, and is discretized on a rectilinear mesh with cubical voxels. All have three stratigraphic layers and two additional

tectonic events, varying in order and positioning.

The first set of models focus on planar dip-slip faults, with final configurations as follows.

– Model 1: a typical graben structure with two intersecting faults, both exhibiting normal movement.

– Model 2: a negative flower structure resulting from trans-tension, where both a sub-vertical fault and high-angle fault305

exhibit normal movement.

– Model 3: two reverse faults dipping at the same angle and away from each other.

– Model 4: two parallel sub-vertical faults of opposing displacement: the left fault with left-side-up movement, the right

fault with right-side-up movement.

– Model 5: a positive flower structure resulting from transpression, where both a sub-vertical fault and high-angle fault310

exhibit reverse movement.
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Figure 4. Calculation of forward geology for Models 1 and 8 through a sequence of tectonic events: the addition of two stratigraphic layers

and two faults. Top: geology; bottom: anti-aliased, voxelised rendering.

– Model 6: two high-angle faults, the left displaying thrust movement and the right displaying normal movement.

– Model 7: a similar scenario to Model 6, except the movement for both faults is reverse.

We also include some additional folded configurations, selected to test the anticipated limitations of anti-aliasing described

in Section 2.4. These use the same stratigraphic history as the two-fault events except when parameter changes are explicitly315

noted.

– Model 8: an upright, open fold of 500 m wavelength, with a west-dipping, high-angle reverse fault offsetting the fold

limbs.
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Figure 5. Voxelized final states of all models in suite, displaying 3-D geology in cross section.

– Model 9: a tighter fold of wavelength 300 m, cut across by a low-angle reverse fault to create near-surface voxels in the

block model traversed by multiple interfaces.320

– Model 10: a more extreme version of Model 9 created by reducing the fold wavelength to 150 m, near the Nyquist

sampling limit for the coarse voxel size.

– Model 11: similar to Model 10, but with a deeper surface layer to create aliased voxels farther beneath the surface.

– Model 12: a folded fold, with two folds of wavelength 300 m and with the second upright fold at a 70-degree azimuthal

with respect to the first.325

– Model 13: two upright folds of different wavelengths (300 m and 500 m) with axes aligned.

– Model 14: a version of Model 13 with thinner surface stratigraphic layers (75 m each) to create near-surface voxels with

multiple parallel interfaces.

– Model 15: a stratigraphy with a thinner surface layer (150 m) and a low-angle reverse fault that has been folded, again

to create a final state with high complexity in near-surface voxels.330
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Table 2. Parameter true values and prior distributions for fault-focused kinematic models, labeled M1 to M7. The prior mean is set to the

true value for each parameter.

Parameter M1 M2 M3 M4 M5 M6 M7 Prior

Basement Density (g cm−3) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Lognormal (σ = 0.1 g cm−3)

Layer 1 Thickness (m) 350 350 350 350 350 350 350 Lognormal (σ = 50 m)

Layer 1 Density (g cm−3) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 Lognormal (σ = 0.1 g cm−3)

Layer 2 Thickness (m) 190 190 190 190 190 190 190 Lognormal (σ = 50 m)

Layer 2 Density (g cm−3) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lognormal (σ = 0.1 g cm−3)

Fault 1 Contact X Position (m) −400 −450 −50 −250 −450 −400 −400 Normal (σ = 1 m)

Fault 1 Contact Y Position (m) 0 0 0 0 0 0 0 Normal (σ = 1 m)

Fault 1 Polar Elevation (deg) 45 45 −20 0 30 20 20 vMF (κ= 25)

Fault 1 Polar Azimuth (deg) 0 0 0 0 0 0 0 vMF (κ= 25)

Fault 1 Dip-Direction Slip (m) −220 −220 −220 −220 220 220 140 Normal (σ = 150 m)

Fault 2 Contact X Position (m) 400 50 50 250 50 −300 −300 Normal (σ = 1 m)

Fault 2 Contact Y Position (m) 0 0 0 0 0 0 0 Normal (σ = 1 m)

Fault 2 Polar Elevation (deg) −45 20 20 0 10 40 40 vMF (κ= 25)

Fault 2 Polar Azimuth (deg) 0 0 0 0 0 0 0 vMF (κ= 25)

Fault 2 Dip-Direction Slip (m) 220 220 220 220 −220 −220 80 Normal (σ = 150 m)

We choose prior distributions for the parameters to simulate the realistic incorporation of structural geological knowledge,

as shown in Table 2 and Table 3. We use normal and lognormal distributions over non-negative quantities, and von-Mises-

Fisher distributions over angular quantities, for simplicity and interpretability in terms of scale parameters, which reflect the

precision of available structural information. The positions of the anchor points lying on the fault planes have very narrow priors

(σ = 1 m), appropriate for surface observation localized by GPS. The fault slip parameters reflect rough estimates (σ = 150 m),335

an extent comparable to the true slip value for each fault. The polar representations of the fault directions are constrained by a

von Mises-Fisher (vMF) distribution with κ= 25, corresponding to a full width at half maximum of about 16 degrees (Pakyuz-

Charrier et al., 2018b). In each case the prior mode rests at the true parameter values, to ensure that mis-specification of the

prior does not complicate the aliasing effects we set out to examine.

For each model, we examine four regimes of resolution and aliasing. We consider a "coarse" 15×15×15 mesh (h= 66.6 m)340

as well as a "fine" 75× 75× 75 mesh (h= 13.3 m), both with and without anti-aliasing. The anti-aliased model on the fine

mesh is taken to be the true model for the purposes of calculating a common synthetic forward gravity dataset against which

to evaluate the likelihood.

We generate synthetic geophysics data based on the true model parameters, with measurements spaced evenly in a 20× 20

grid at the surface (grid spacing of 50 m), and add independent Gaussian noise with a standard deviation σ0 of 5% of the345
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Table 3. Parameter true values and prior distributions for fold-focused kinematic models, labeled M8 to M15.
∗ In M15, the stratigraphy is faulted first, then folded.

Parameter M8 M9 M10 M11 M12 M13 M14 M15∗ Prior

Basement Density (g cm−3) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Lognormal (σ = 0.1 g cm−3)

Layer 1 Thickness (m) 350 350 350 350 350 350 75 150 Lognormal (σ = 50 m)

Layer 1 Density (g cm−3) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 Lognormal (σ = 0.1 g cm−3)

Layer 2 Thickness (m) 190 190 190 390 190 190 75 190 Lognormal (σ = 50 m)

Layer 2 Density (g cm−3) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lognormal (σ = 0.1 g cm−3)

Fold 1 Axis Elevation (deg) 0 0 0 0 0 0 0 0 vMF (κ= 25)

Fold 1 Axis Azimuth (deg) 0 0 0 0 0 0 0 0 vMF (κ= 25)

Fold 1 Pitch Angle (deg) 0 0 0 0 0 0 0 0 Normal (σ = 1 deg)

Fold 1 Phase Angle (deg) 0 0 0 0 0 0 0 0 Normal (σ = 1 deg)

Fold 1 Wavelength (m) 1000 300 150 150 300 300 300 300 Lognormal (σ = 100 m)

Fold 1 Amplitude (m) 100 100 100 100 100 100 200 200 Lognormal (σ = 15 m)

Fold 2 Axis Elevation (deg) — — — — 0 0 0 — vMF (κ= 25)

Fold 2 Axis Azimuth (deg) — — — — 70 0 0 — vMF (κ= 25)

Fold 2 Pitch Angle (deg) — — — — 0 0 0 — Normal (σ = 1 deg)

Fold 2 Phase Angle (deg) — — — — 0 0 0 — Normal (σ = 1 deg)

Fold 2 Wavelength (m) — — — — 300 500 500 — Lognormal (σ = 100 m)

Fold 2 Amplitude (m) — — — — 100 100 200 — Lognormal (σ = 15 m)

Fault 1 Contact X Position (m) 250 450 450 450 — — — 450 Normal (σ = 1 m)

Fault 1 Contact Y Position (m) 0 0 0 0 — — — 0 Normal (σ = 1 m)

Fault 1 Polar Elevation (deg) −205 −255 −255 −245 — — — −245 vMF (κ= 25)

Fault 1 Polar Azimuth (deg) 0 0 0 0 — — — 0 vMF (κ= 25)

Fault 1 Dip-Direction Slip (m) 200 200 200 200 — — — 200 Normal (σ = 150 m)

sample standard deviation of the data across the survey. Each data point yj is thus generated according to

p(yj |θ,σ2) =
1√

2πσ2
exp

[
− (yj − fj(θ))2

2σ2

]
, (13)

where fj(θ) is the forward model for the geophysical measurement yj given the geological parameters θ. In a realistic situation,

we may not know the noise variance σ2 exactly, but we can account for our uncertain knowledge over it by including a

hierarchical prior for σ2. If we choose this prior to be an inverse gamma distribution,350

p(σ2|α,β) =
βα

Γ(α)
σ−2(α+1) exp

(
− β

σ2

)
, (14)
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the integral over σ2 can be solved analytically, saving the computational expense of sampling over σ2 by MCMC (see McCal-

man et al., 2014; Scalzo et al., 2019):

p(yj |θ,α,β) =

∞∫
0

p(yj |θ,σ2)p(σ2|α,β)dσ2

=
Γ
(
α+ 1

2

)
Γ(α)

√
2πβ

[
(yj − fj(θ))2

2β
+ 1

]−(α+ 1
2 )

(15)355

so that the likelihood has the form of a t-distribution with ν = 2α degrees of freedom and scale parameter
√
β/α. For our

experiments we choose α= 2.5, β = 2.5×σ2
0 , a weakly informative prior with mean and mode close to the true variance used

to generate the data. The full likelihood is then the product of the likelihoods for independent data points,

p(d|θ,α,β) =

N∏
j=1

p(yj |θ,α,β). (16)

As with the earlier synthetic examples for a spherical intrusion, we used SimPEG (Cockett et al., 2015) for calculation of360

forward gravity. The SimPEG Simulation3DIntegral class uses a closed-form integral expression for the contribution

to the gravitational field from a rectangular prism of constant density (Okabe, 1979; Li and Oldenburg, 1998): for example, for

the z-component,

gz(r) = −Gρ0
∑2
i=1

∑2
j=1

∑2
k=1µijk

×
[
x′i ln(y′i + r′ijk) + y′j ln(y′j + r′ijk)365

+ 2z′k arctan
(
x′
iy

′
j

z′kr
′
ijk

)]
(17)

where r = (x,y,z) is the location of the gravity sensor, rijk = (xi,yj ,zk) runs over each corner of the prism, and r′ = r− rijk
with r′ = |r′|. This form is widely used in geophysics and is one of the benefits of working over rectangular meshes. The total

gravity signal is then the sum of the contributions for each mesh cell. Since the expression is linear in the density for each mesh

cell, the forward model sensitivities can be cached for fast likelihood evaluation.370

3.3 Posterior slices and MCMC sampling

To illustrate some of the effects caused by aliasing and some of the limits of anti-aliasing, we visualize a series of two-

dimensional slices through the posterior distribution. Pairs of free parameters are scanned on a regular 30× 30 grid centered

on their true values, with all other parameters held fixed at their true values. This produces a set of figures similar to Fig. 1 for

the kinematic models.375

We also perform MCMC over the parameters of the kinematic models to demonstrate the impact of anti-aliasing on chain

mixing. The aliased posterior has no useful derivative information for structural parameters, so we are limited to random walk

proposals. For our tests we choose the adaptive Metropolis random walk algorithm of Haario et al. (2001), which is used

in contemporary studies such as Wellmann et al. (2017) and is the simplest algorithm likely to give good performance on
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posteriors with the kind of strong covariances seen in the conditional posterior slices. This algorithm starts from an initial380

guess θ0 and proposes a new value θ′ at time step t from a multivariate normal distribution centered on the current state θt:

q(θ′|θt)∼N(θt,ηdΣt), (18)

where ηd is a global step size parameter depending only on the dimension of the space, and

Σt =

 Σ0 for t≤ t0
cov{θi} for t > t0

(19)

The covariance matrix of the proposal is estimated from the current chain history, so that after an initial non-adaptive random385

walk period of length t0 steps, the walk gradually transitions from an initial-guess covariance Σ0 to match the estimated pos-

terior covariance. States are accepted according to the usual Metropolis-Hastings criterion, setting θt+1 = θ′ with probability

α= min

{
1,
p(d|θ′)p(θ′)q(θ|θ′)
p(d|θ)p(θ)q(θ′|θ)

}
(20)

and θt+1 = θt with probability 1−α. We use an adaptation length of t0 = 1000 and an initial diagonal covariance matrix of390

step sizes set to 20% of the prior width for each parameter (0.02 g cm−3 for densities, 10 m for layer thicknesses, 30 m for

fault slips and 3 degrees for angular variables).

We use the coarse 15× 15× 15 mesh for calculations, since this will give much faster results for MCMC and highlight the

impact of aliasing on chain mixing. We run M = 4 chains for N = 105 samples from the posterior of each model, with and

without anti-aliasing. We initialize each chain with an independent prior draw, and discard the first 20% of samples as burn-in.395

Each chain took 6 minutes to run on an Intel Core i7 2.6 GHz processor.

We use the integrated autocorrelation time to measure MCMC efficiency within each chain, and the potential scale reduction

factor (PSRF; Gelman and Rubin, 1992) to estimate the extent of convergence to the true posterior. The autocorrelation time

τ is the approximate number of chain iterates required to produce a single independent sample from the posterior, so that the

chain length N divided by τ becomes one possible measure of effective sample size. The potential scale reduction factor R̂,400

formed from multiple chains, is the factor by which the posterior variance estimated from those chains could be further reduced

by continuing to sample. A PSRF near 1 suggests that multiple chains from different starting conditions have achieved similar

means and variances, and thus are sampling from a common stationary distribution; a large PSRF shows a residual dependence

on starting conditions. The PSRF is usually given for each parameter in a multi-dimensional chain; some dimensions may mix

quickly while others take a long time to converge.405

Finally, to quantify the overall accuracy of the posterior density calculation, we use the Kullback-Liebler divergence

DKL(p||q) =

∫
(logp(θ)− logq(θ))p(θ)dθ (21)

where p(θ) = plo(θ|y) represents the posterior based on a low-resolution mesh (with or without anti-aliasing), and q(θ) =

phi(θ|y) represents the high-resolution, anti-aliased posterior. DKL is a global measure sensitive to biases and covariances

19



across all parameters. Since it requires integration over the posterior, this metric is not available to check results of single-410

point optimization algorithms. We use the MCMC chain itself to calculate the integral, representing it as the difference in log

probability density averaged over samples from the low-resolution posterior.

4 Results

4.1 Posterior cross sections

Two-dimensional slices through the posterior distribution for selected variable pairs are shown for Model 1 (in Fig. 6) and415

Model 6 (in Fig. 7). Although we do not include similar figures for every model in the main text, equivalent sets of plots for all

models can be regenerated automatically by scripts in the Blockworlds repository.

Model 1 is relatively well-behaved; the aliased posterior has a single dominant mode near the true value. This is a situation in

which the aliasing effects function mainly to make the likelihood appear blocky and terraced. Although proposals that require

derivatives of the likelihood will fail on this posterior, it can still be navigated by appropriately tuned random walks, or by the420

discontinuous Hamiltonian Monte Carlo sampler of Nishimura et al. (2019).

Nevertheless, the benefits of anti-aliasing are still clear. Merely increasing the mesh resolution of the coarse aliased model

by a factor of 5 (and the computational cost by over 100×) is insufficient to completely suppress aliasing artefacts. The coarse

aliased model fails to capture the full extent of the very strong correlation between the dip-slips of the two faults, though the

fine aliased model does so reasonably well. The posteriors of the two anti-aliased models deviate only negligibly from each425

other for all parameters.

Model 6 presents a more challenging case where a coarse mesh does not fully resolve structures close to the surface, resulting

in bias for the low-resolution models. The layer thicknesses of the coarse aliased model are explicitly multi-modal as the

interfaces hover between depths, and the modes for several variables are significantly offset from their true values. These values

become sharp modes in a broader parameter space, easily missed by any inappropriately scaled MCMC proposal. The fine430

aliased model reproduces the overall posterior shapes, with some distortions relative to the fine anti-aliased reference model.

The coarse anti-aliased model produces a smooth posterior and recovers the correct overall correlations between parameters,

but are somewhat offset from the true values.

The differences between low and high resolution models are, predictably, more dramatic for folded models where the priors

do not exclude fold wavelengths close to the Nyquist limit for the coarse mesh scale, such as Models 10 and 11. Other models,435

such as Model 9, show that anti-aliasing gives much better results for fold wavelengths greater than the mesh scale. In Model 11,

where the undersampled structure is positioned farther beneath the surface, the apparent effects are less apparent than in Model

10, but still appear in directly linked variables such as the fold wavelength.

The biases caused by aliasing seem to be strongest in angular variables such as fault directions. For Model 6, the best-fit

dip-slip angles are offset from the true values by more than 10 degrees, corresponding to the extent through which the scan440

must sweep to obtain any difference in rock property for a few near-surface voxels in the coarse aliased model. Anti-aliasing
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the coarse-mesh model largely, but not completely, mitigates this bias. In Model 10 the layer thicknesses are the only model

parameters that can be robustly estimated without refining the mesh to resolve structure.

These results confirm that our algorithm can reproduce the continuous behavior in an underlying posterior distribution, and

can enable significant computational savings even for complex models as long as the interfaces are smooth on the mesh scale.445

It cannot — and is not intended to — recover more complex structures beneath the mesh scale that violate the core assumptions

under which it was derived.

4.2 MCMC sampling

Table 4 shows the average, best-case, and worst-case values of τ and R̂ across all model parameters, as well as the K-L

divergence DKL. The posterior is challenging to navigate and all chains have autocorrelation times of order hundreds to450

thousands of samples, comparable to the performance of Obsidian for the Moomba models (Scalzo et al., 2019). Chains for

anti-aliased models have shorter autocorrelation times by a factor of 2–10 than chains for aliased models, owing to the smoother,

more Gaussian structure of the posterior. Most dramatically, the aliased chains still have large PSRF for several variables even

after 105 samples. The anti-aliased chains converge more consistently to the same distribution, with final PSRF values close

to 1 for all variables for most models, and much closer to 1 than the aliased chains even on the more challenging, adversarial455

model configurations.

Models 5, 6, 10, 14, and 15 are challenging models for which the anti-aliased chain also has trouble mixing fully. An

example trace plot from Model 5 is shown in Fig. 8. One of the chains in the anti-aliased version has fallen into a different

mode from the other three, characterized by shifts in the thicknesses and densities of stratigraphic layers as well as a shift in the

dip angle of the fault. In contrast, none of the four traces in the aliased model seems to be sampling from the same distribution;460

each chain has learned a different proposal scaling, and chains occasionally jump between modes at adjacent parameter values

characteristic of the ones seen in lower-dimensional projections. Each chain, considered on its own, would give a very different

impression of the uncertainty in the inversion. This qualitative behavior is characteristic of sampling for the other models.

Complementing the trace plots and MCMC performance metrics as a global measure of posterior inference accuracy, the

K-L divergence shows that anti-aliasing usually improves correspondence with the reference posterior (the high-resolution,465

anti-aliased posterior) by a large margin. Anti-aliased models with large values of DKL correspond well with sub-Nyquist

structures or with regions of complexity close to the surface, confirming our intuition that inference in these models benefits

from finer mesh resolution. The aliased posteriors show differences with the high-resolution posteriors spanning many orders

of magnitude in probability density, averaged over those modes the chain was able to reach. Since the aliased chains did not

in general mix well, their values of DKL should be taken as indicative, whereas the anti-aliased chains with low R̂ represent470

more robust estimates of the true divergence.

To fully characterize uncertainty in truly multi-modal problems, parallel tempering should be used to sample from all modes

in proportion to their posterior probability. However, without anti-aliasing, the low-temperature chain in the tempering scheme

will mix poorly and will rely more heavily on swap proposals to explore the posterior. The modes that do appear in anti-aliased
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posteriors are also more likely to represent distinct interpretations, rather than poorly-resolved strong correlations between475

variables.

5 Discussion and Future Work

We have experimentally demonstrated the use and benefit of anti-aliasing only for kinematic models acting on a regular rect-

angular mesh. However, we see several natural extensions to this work that extend the range and impact of anti-aliasing for

parametric geological models. We describe these future directions in the following section.480

5.1 Anti-aliasing in terms of the implicit scalar field

Although Blockworlds forward-models geology through the action of parametrized tectonic events, it is still an implicit model

in the sense that the unit interfaces are defined to be level sets of a scalar field, which we parametrize simply in terms of

the distance to the interface. The mathematics of our anti-aliasing prescription generalizes to any differentiable scalar field,

including those used in co-kriging models that interpolate structural measurements (Lajaunie et al., 1997; Calcagno et al.,485

2008). These models will have different posterior geometries than kinematic models, since the modification of structural

parameters produces more localized changes in the block models. However, we see no intrinsic reason why the following

treatment for general scalar fields should not work just as well as for other types of implicit models, provided the interpolated

geological structures have minimal curvature on the mesh scale.

For implicit geological models, each interface is defined as the level set Φ(r) = Φ0 of some scalar field Φ. The value of Φ490

corresponds roughly to depth or to geological time, but has no intrinsic physical meaning except to ensure that the geologic

series of interfaces it defines are conformable. In interpolation models, the specific value Φ0 representing an interface is fixed

by observations (from surface measurements or boreholes). In this case, u⊥ can be calculated easily by locally calibrating

the scalar field to represent a physical distance in the neighborhood of an interface: for a voxel centered at r0, a first-order

approximation of Φ gives495

Φ(r) = Φ(r0) + (r− r0) · ∇Φ +O(r− r0)2 = Φ0, (22)

which, using Equation 3 and writing the interface unit normal as n=∇Φ/|∇Φ|, can be rearranged to give

u⊥ = (Φ0−Φ(r0))/|h∇Φ|. (23)

In this way, each voxel can be anti-aliased simply by evaluating the scalar field and its gradient at the voxel center. For co-

kriging models, the scalar field itself must be evaluated at the voxel centers to render it, and the field gradient can be evaluated500

straightforward using the same trained model by differentiating the kernel.

5.2 Anti-aliasing in curvilinear coordinates

The development of the anti-aliasing mapping in Section 2.3 and its generalization in 5.1 assume that each voxel is a cube.

However, mesh cells with varying aspect ratios are common in geophysical inversions, for example in dealing with varying
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sensitivity with depth or with boundary conditions where high resolution is less important. It may also be useful for some505

problems to work in curvilinear coordinates.

Another useful avenue of future work would be to extend Equation 23 to more general coordinate systems. Let J = ∂r/∂u

be the Jacobian of the transformation from dimensionless coordinates u on a unit voxel to physical coordinates r, so that to

first order u= J−1(r− r0). Equation 3, defining the projection of a reference point in the voxel onto an interface running

through the voxel, then becomes510

u⊥ = u · 1

|Jn|
Jn, (24)

and Equation 3, defining u⊥ in terms of scalar field values for an implicit model, becomes

u⊥ = (Φ0−Φ(r0))/|J∇Φ|. (25)

5.3 Anti-aliasing for other geophysical sensors

In this paper we have focused on gravity since it is among the most widely used geophysical sensors in an exploration context,515

and since its linear response makes an anti-aliasing treatment straightforward. All of our results extend immediately to magnetic

sensors given the strong mathematical equivalence, and may also be appropriate for linear forward models of other sensors such

as thermal or electric conductivity, or for the slowness in travel-time tomography.

Useful schemes to anti-alias forward-modeled geology may exist for other sensors, as long as the sensor action at scales

beneath the mesh spacing can be usefully approximated by a computationally simple function of the rock properties and the520

interface geometry. Frequency-dependent sensors that probe a range of physical scales may require a frequency-dependent anti-

aliasing function, and similarly for sensors with anisotropic interactions with interfaces. While there is nothing fundamental

that prevents anti-aliasing for sensors that respond non-linearly to rock properties, mesh refinement may be more important in

these cases to ensure the numerical accuracy, as well as the continuity, of the posterior. The framework in this paper treats only

quantities defined at mesh cell centers; while it may be possible to derive similar relations for quantities defined on mesh cell525

faces and edges, as in finite-volume treatments of electromagnetic sensors, this represents future work.

6 Conclusions

Our experiments show the potential pitfalls of using oversimplified projections of 3-D structural geology onto a volumetric

basis for calculation of synthetic geophysics, and demonstrate an intuitive, efficient solution. Anti-aliasing reproduces the

smooth behavior of the underlying posterior with respect to the geological parameters, to enhance convergence of optimization530

or mixing of sampling methods and to enable the use of derivative information in these methods. Anti-aliasing enables a fixed

volumetric basis to more faithfully represent sensor response to latent discrete geology with interfaces that are flat on the scale

of a mesh cell, reducing the computational burden of forward geophysics in an inversion loop. Our algorithm is also coordinate-

invariant and can be combined with curvilinear meshes, and with mesh refinement techniques such as octrees (e.g. Haber and

Heldmann, 2007), for even stronger results. Finally, the K-L divergence between versions of the log posterior using different535
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mesh resolutions can be calculated using MCMC samples, either online or in post-processing as a diagnostic, allowing the user

to determine how much the problem would benefit from additional mesh refinement.

We have focused on calculations over 3-D Cartesian volumetric meshes because implicit and kinematic models are naturally

volumetric, and because existing geological modeling codes already export rock properties onto meshes as block models.

Introducing anti-aliasing into these geological models is a minimally invasive modification to enhance their use in MCMC-540

based Bayesian inversions. Other discretization schemes built to align with geological interfaces, such as pillar grids (Wellmann

and Caumon, 2018), may mitigate aliasing along the pillar, but still suffer aliasing of features cutting across the pillar axis and

are more limited in their representational power. Alternate methods for calculating gravity and magnetics, such as the Cauchy

surface method (Zhdanov and Liu, 2013; Cai and Zhdanov, 2015) or finite-volume methods on tetrahedral meshes Götze and

Lahmeyer (1988); Schmidt et al. (2020) require many fewer discrete elements than a 3-D volumetric mesh to achieve a given545

accuracy, since they follow an explicit lower-dimensional discretization of each interface. These methods are most suitable

for geological models that already parametrize unit interfaces explicitly. Using them with implicit models, or with kinematic

models that work by deforming and transporting volumetric elements, would introduce additional computational overhead

in tracking the positions of interfaces and updating an associated lower-dimensional mesh. The sensor response coefficients

would then also have to be updated each time the model parameters are updated. There may still be geological use cases where550

tracking interfaces during the sampling process is more efficient than a finite volume solution involving every voxel, but we

defer examination of such cases to future work.

The accurate and efficient projection of these simple geological models onto meshes for geophysics calculations is a pre-

requisite to inversion for structural and kinematic parameters in more realistic situations. We can now take clear next steps

towards MCMC sampling of kinematic histories for richer, higher-dimensional models. In addition, we can now move towards555

sampling of hierarchical geophysical inversions that use a parametric structural model as a mean function. This will enable

voxel-space inversions for which the geological prior is expressed in terms of uncertain interpretable parameters, or inversions

for geology that include uncertainty due to residual rock property variations constrained by geophysics. These would represent

more complete probabilistic treatments of geological uncertainty in light of available constraints from geophysics.

Code and data availability. The version of the Blockworlds model code used in this paper is archived with Zenodo (DOI: 10.5281/zen-560

odo.5759225). The datasets used in the inversions are synthetic and can be reproduced exactly by running a set of scripts from the command

line that fix the random number seed used to generate those datasets, as described in the package manual.

Appendix A: MCMC performance metrics

In the definitions to follow, we follow notation introduced in Scalzo et al. (2019). Consider M Markov chains, each of length

N and with d-dimensional parameter vectors, are run independently or in parallel. Let θ[j]ki denote parameter k of d, drawn at565
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iteration [j] of N in chain i of M . Let

θ̂ki =
1

N
ΣNj=1θ

[j]
ki (A1)

denote the sample mean of parameter k over the N iterates of chain i, and

ski =
1

M − 1
ΣNj=1(θ

[j]
ki − θ̂ki) (A2)

denote the sample variance of parameter k over chain i. Let θ̃k =
∑

1M
∑M
i=1 θ̂ki denote the sample mean of θ̂ki across all570

chains. To summarize variation in parameter estimates across chains, let

Bk =
1

M − 1

M∑
i=1

(θ
[j]
ki − θ̂ki) (A3)

denote the sample variance in θ̂ki across chains, and

Wk =
1

M

M∑
i=1

s2ki (A4)

denote the sample mean of s2ki across chains. Thus Bk is a measure of the variance in parameter estimates made from the575

history of samples in any single chain on its own, and Wk is a measure of the overall variance of a parameter within any single

chain.

A1 Integrated autocorrelation time

The autocorrelation function, measuring the correlation between parameter draws separated by a lag l when treating each chain

as a time series, is580

ρlki =
1

(N − l)Wk
(θ

[j]
ki − θ̂ki)(θ

[j−l]
ki − θ̂ki). (A5)

The integrated autocorrelation time (IACT), the sum of the autocorrelation function over lags l gives an estimate of the number

of chain samples required to obtain an independent draw from the stationary distribution:

τki = 1 + 2

N∑
l=1

(
1− k

N

)
ρlki. (A6)

A2 Potential scale reduction factor585

The potential scale reduction factor (PSRF) was introduced as a metric for chain convergence by Gelman and Rubin (1992). It

measures the extent to which uncertainty in a parameter could be reduced by continuing to sample beyond the nominal chain

length N . A simple version often implemented is

V̂k
Wk

=
N − 1

N
+
M + 1

MN

Bk
Wk

(A7)
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The behavior of the metric is driven by the ratio Bk/Wk, or the variance in parameter means from different chains as a fraction590

of the overall marginal variance in that parameter. This can be large because of small number statistics in a unimodal problem,

but it can also be large because of poor mixing between modes in a multimodal problem, which increases the autocorrelation

between samples. Gelman and Rubin (1992) advocate searching for multiple modes in advance and drawing starting points for

MCMC from an overdispersed approximation to the posterior. They also account for sampling variability, including correlation

between samples, via the modified metric595

R̂=
V̂

W

ν

ν− 2
, (A8)

where ν = 2V̂ 2/v̂ar(V̂ ) represents the number of degrees of freedom in a t-distribution for θ̃k, with

v̂ar(V̂k) =

(
N − 1

N

)2
1

M
v̂ar(s2ki)

+

(
M + 1

MN

)2
2

M − 1
B2

+ 2
(M + 1)(N − 1)

MN2

N

M
600

×
[

ˆcov(s2ki, θ̂
2
ki)− 2θ̃k ˆcov(s2ki, θ̂ki)

]
. (A9)

We use the metric R̂ for our experiments, given that autocorrelation times can be quite long for our chains.
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Figure 6. The log posterior distribution of pairs of parameters, denoted by θ, in kinematic model 1, relative to the maximal value

log10[p(θ|d)/p(θ̂MAP|d), where θ̂MAP = argmaxθp(θ|d). In each slice, the true values of gridded parameters are marked with red crosses,

and parameters not plotted are fixed at their true values. Columns correspond to different discretization schemes, from left to right: coarse

mesh (153) with no anti-aliasing; fine mesh (753) with no anti-aliasing; coarse mesh with anti-aliasing; fine mesh with anti-aliasing. The top

row shows a vertical cross-section at y = 0 of the 3-D rock density field under each discretization scheme. Rows 2-5 correspond to different

pairs of parameters in θ; For row 2, θ consists of the two non-basement layer thicknesses; for row 3, θ consists of the dip direction angles of

the two faults; for row 4, θ consists of the fault slips; for row 5, θ consists of the dip of the first fault and the thickness of the top layer.
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Figure 7. The log posterior distribution of pairs of parameters for Model 6. All plot properties are the same as in Fig. 6.
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Table 4. Performance metrics for each MCMC run: mean (best-case, worst-case) integrated autocorrelation time τ in samples (×103);

mean (best-case, worst-case) potential scale reduction factor R̂ calculated across 4 runs starting from independent prior draws; and sample

Kullback-Liebler divergence DKL between the given model and the fine-mesh anti-aliased version, calculated by combining samples from

all 4 runs thinned by a factor of 1000. Runs marked with ’AA’ are coarse-mesh anti-aliased, while those marked with only a single-digit

model number have anti-aliasing turned off.

Model τmean (τmin, τmax) R̂mean (R̂min, R̂max) DKL

1 0.6 (0.3, 0.8) ×103 1.34 (1.00, 3.53) 14.78

1-AA 0.4 (0.2, 0.6) ×103 1.01 (1.00, 1.04) 0.12

2 2.3 (0.6, 5.3) ×103 1.59 (1.00, 5.83) 17.63

2-AA 0.2 (0.2, 0.3) ×103 1.00 (1.00, 1.01) −0.08

3 2.5 (0.3, 6.2) ×103 2.65 (1.00, 15.4) 21.65

3-AA 1.0 (0.2, 3.2) ×103 1.11 (1.00, 1.47) 0.01

4 3.5 (0.6, 6.9) ×103 3.03 (1.01, 21.6) 19.27

4-AA 0.6 (0.1, 1.9) ×103 1.01 (1.00, 1.06) −0.08

5 3.5 (0.8, 6.6) ×103 214 (1.04, 2720) 184.5

5-AA 0.3 (0.2, 0.3) ×103 19.9 (1.00, 120) −3.14

6 4.1 (0.4, 6.6) ×103 6.92 (1.01, 27.0) 27.94

6-AA 0.6 (0.2, 1.2) ×103 12.1 (1.00, 72.1) −8.71

7 2.0 (0.6, 5.6) ×103 2.39 (1.00, 8.48) 29.81

7-AA 0.3 (0.2, 0.4) ×103 1.00 (1.00, 1.01) −0.45

8 2.5 (0.3, 6.7) ×103 5.52 (1.00, 36.9) 29.76

8-AA 0.1 (0.1, 0.1) ×103 1.00 (1.00, 1.00) −1.74

9 1.9 (0.5, 4.0) ×103 13.0 (1.05, 89.5) 12.18

9-AA 0.3 (0.1, 0.6) ×103 4.97 (1.00, 25.0) 0.53

10 3.6 (1.3, 5.4) ×103 1.60 (1.02, 5.47) −2.78

10-AA 2.6 (2.1, 3.3) ×103 1.09 (1.00, 1.26) −10.76

11 0.2 (0.2, 0.2) ×103 1.00 (1.00, 1.01) 1.72

11-AA 0.1 (0.1, 0.1) ×103 1.00 (1.00, 1.01) 1.14

12 1.8 (0.4, 5.6) ×103 75.4 (1.03, 659) 4.33

12-AA 0.1 (0.1, 0.2) ×103 1.00 (1.00, 1.01) −5.38

13 2.4 (1.0, 3.7) ×103 17.0 (1.01, 89.9) 11.85

13-AA 0.2 (0.1, 0.3) ×103 1.00 (1.00, 1.02) −8.11

14 5.9 (1.5, 9.5) ×103 160 (1.37, 2350) 101.4

14-AA 1.1 (0.2, 1.7) ×103 16.5 (1.00, 133) 8.70

15 3.7 (0.5, 8.2) ×103 176 (1.20, 2180) 47.16

15-AA 2.0 (0.1, 6.2) ×103 1.73 (1.01, 7.09) −11.97
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Figure 8. Trace plots for Fault 1 basement density during MCMC sampling of Model 5 (coarse mesh). The four colors in each plot represent

four separate chains started from different prior draws. Traces begin at the end of burn-in and are thinned by a factor of 100 (every 100th

trace point is shown). Top: aliased model. Bottom: anti-aliased model.
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