10

15

20

25

Parallel gridded simulation framework for DSSAT-CSM (version
4.7.5.21) using MPI and NetCDF

Phillip D. Alderman'!
1Depalr‘[ment of Plant and Soil Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
Correspondence: Phillip D. Alderman (phillip.alderman @ okstate.edu)

Abstract. The Decision Support System for Agrotechnology Transfer Cropping Systems Model (DSSAT-CSM) is a widely
used crop modeling system that has been integrated into large-scale modeling frameworks. Existing frameworks generate
spatially-explicit simulated outputs at grid points through an inefficient process of translation from binary, spatially-referenced
inputs to point-specific text input files followed by translation and aggregation back from point-specific, text output files to
binary, spatially-referenced outputs. The main objective of this paper was to document the design and implementation of
a parallel gridded simulation framework for DSSAT-CSM. A secondary objective was to provide preliminary analysis of
execution time and scaling of the new parallel gridded framework. The parallel gridded framework includes improved code for
model-internal data transfer, gridded input/output with the Network Common Data Form (NetCDF) library, and parallelization
of simulations using the Message Passing Interface (MPI). Validation simulations with the DSSAT-CSM-CROPSIM-CERES-
Wheat model revealed subtle discrepancies in simulated yield due to the rounding of soil parameters in the input routines of
the standard DSSAT-CSM. Utilizing NetCDF for direct input/output produced a 3.7- to 4-fold reduction in execution time
compared to R/text-based input/output. Parallelization improved execution time for both versions with between 12.2- (standard
version) and 13.4-fold (parallel gridded version) speedup when comparing 1 to 16 compute cores. Estimates of parallelization
of computation ranged between 99.2 (standard version) and 97.3 percent (parallel gridded version) indicating potential for

scaling to higher numbers of compute cores.

1 Introduction

The Decision Support System for Agrotechnology Transfer Cropping Systems Model BSSAT-CSM;Jones-et-al-(2003); Hoogenboom-—etal:

DSSAT-CSM; Jones et al., 2003; Hoogenboom et al., 2019) is a widely used crop modeling system with cumulatively more
than 14,000 users across-over150-countries-worldwide since its inception (DSSAT Foundation, 2019) and ever7500-dewnloads

of-the-mostrecent-version-13,625 downloads of version 4.7.5 across 179 countries since November 2017 (G. Hoogenboom,
personal communication, Nevember-152049August 5, 2021). Traditional applications of this system have involved field-scale
simulations of agricultural experiments across varied agroclimatic conditions. However, it is increasingly being integrated into
large-scale modeling frameworks such as the International Model for Policy Analysis of Agricultural Commodities and Trade
IMPACT; Robinson-et-al(2045)H{IMPACT; Robinson et al., 2015) developed by the International Food Policy Research Insti-
tute and the parallel system for integrating impact models and sectors pSEMS;-Eliettet-al-(20+401(pSIMS; Elliott et al., 2014)

10

15

20

25

30

. The key interest in these applications is in providing gridded inputs (i.e. input data across a grid of spatially-referenced
points) to a model and receiving back from the model corresponding gridded outputs (i.e. spatially-explicit simulated outputs
at the same grid points). At the core of these frameworks is a process of translation from binary, spatially-referenced inputs to
point-specific, DSSAT-format text input files followed by translation and aggregation back from point-specific, DSSAT-format
text output files to binary, spatially-referenced outputs. File input/output operations are widely known to increase execution
time and conversion from floating point to text and back are inefficient from memory-use and computation perspectives. Thus,
the conversion from spatial format to point-specific text inputs and from point-specific text outputs to spatial format presents
a bottleneck for large-scale simulations. Heretofore, this bottleneck has been overcome largely by use of high-performance
computing (HPC) clusters or cloud computing resources, while comparatively little effort has been invested in improving
the efficiency of the IO process. Designing flexible parallel gridded input-output libraries for DSSAT-CSM would improve
the computational efficiency and reduce execution time thereby allowing more efficient utilization of available computing
resources.

As noted by Kang et al. (2015) and Jang et al. (2019), examples of improving execution time for agricultural systems
models being applied at large scales using HPC are limited. Nevertheless, considerable increases in speed of execution have
been documented in some models by leveraging parallel execution and linking to gridded input-output libraries. For example,
Nichols et al. (2011) found a 40-fold speed-up of simulations by porting the Erosion Productivity Impact Calculator (EPIC)
model from Windows to Linux and parallelizing simulations (i.e. running multiple instances of a model simultaneously) on a
HPC cluster. Subsequent improvements using the Message Passing Interface (MPI) have permitted up to 512-fold speed-up of
EPIC simulations (using 2048 parallel processes) with nearly linear scaling up to 128 parallel processes (Kang et al., 2015).
Zhao et al. (2013) reported an average of 20-fold speed up on multi-core Windows computers while running the Agricultural
Production Systems Simulator (APSIM) model using the HT Condor grid computing middleware. Much like the IMPACT
and pSIMS frameworks described above, all of these studies relied on text-based input and output. In contrast, Vital et al.
(2013) avoided use of text input files by linking the PaSim grassland model with the Network Common Data Form (NetCDF)
library (Unidata, 2017) for reading and writing gridded data files. They reported up to 200-fold speed-up with nearly linear
scaling of parallelized pasture simulations using MPI with up to 200 parallel processes. It was hypothesized that implementing
a parallel gridded simulation framework for DSSAT-CSM (i.e. one that runs simulations in parallel and reads/writes directly
from/to gridded input/output files) would permit performance gains similar to those reported by Vital et al. (2013). Thus, the
main objective of this paper was to document the design and implementation of a parallel gridded simulation framework for
DSSAT-CSM. A secondary objective was to provide preliminary analysis of execution time and scaling of the new parallel

gridded framework.

2 Interface Descriptions

Descriptions of the DSSAT-CSM and of the submodules contained therein have been published elsewhere (Jones et al.,

2003) and the code for the current release version of the standard DSSAT-CSM is now open source and can be found at

10

15

20

25

30

https://github.com/DSS AT/dssat-csm-os/tree/master. Thus, the description here will focus on modifications that were made to
the standard version to facilitate efficient parallelization and gridded input and output. The specific version of source code doc-
umented in this manuscript can be found at DOI: 10.5281/zenodo.4893438. The current version of source code can be found
in the gridded branch of a fork from the official DSSAT-CSM repository (https://github.com/palderman/dssat-csm-os/tree/
gridded). These modifications can be grouped in terms of internal data transfer, gridded I/O and parallelization of simulations.

A description of the required NetCDF file structures is also provided in this section.
2.1 Internal data transfer

The first category of code changes for DSSAT-CSM were made to support more efficient transfer of data between the internal
components of DSSAT-CSM. In the standard open source version (OS), the code from input subroutines reads data needed
for simulation from files (e.g. crop management details, cultivar parameters, and soil input data) and writes these data into
a consolidated input file (either DSSAT47.INP or DSSAT47.INH depending on the crop model being used for simulations).
The subsequent crop and soil modules then read the consolidated input file to access the required input data. The process is
illustrated in the OS-labeled portion of Figure 1. This procedure is a hold-over from legacy code developed when the input
routine existed as a separate executable run prior to calling crop and soil models. The input routine was subsequently merged
with the main DSSAT-CSM executable code, but, as of version 4.7.5.21, the overall structure of the input subroutines remains
largely unchanged. Additionally, this legacy code makes use of COMMON blocks for sharing data between subroutines within
the input code. These COMMON blocks are now generally considered poor programming practice due to the ease with which
data can be unintentionally corrupted if used improperly.

Consequently, a Fortran module (csm_io) implementing a flexible data structure and associated functions and subroutines
was developed to replace the consolidated input file and provide a structured way of transferring data between subroutines
that does not rely on the use of COMMON blocks. The parallel-gridded (PG) version documented herein utilizes this in-memory
data structure in place of the intermediate files used by the OS version (i.e. DSSAT47.INP or DSSAT47.INH), as illustrated
in the PG-labeled portion of Figure 1. Code implementing the new csm_io module is in the csm_i0.f90 source file at https:
//github.com/palderman/dssat-csm-os/tree/gridded/FlexiblelO. An example program that illustrates the use of the csm_io
module is given in Appendix A. This example program sets the value for three variables of types real, integer, and character.
The type-bound subroutine csminp%add_sec () is used to add a new section to the data structure, and the type-bound
subroutine csminp%add_var () is used to add entries for the three variables. The type-bound subroutine csminp%put ()
is used to store the current values for the three variables. Finally, the type-bound subroutine csminp%get () is used to retrieve
the stored values for each of the three variables. In addition to scalar values, the structure can also handle one-dimensional
arrays of real, integer and character types. In the PG version of DSSAT-CSM, the csm_io module was used to replace
subroutines OPTEMPXY2K () and OPTEMPY2K (), all use of COMMON blocks, and all code that relied on writing to or reading
from DSSAT47.INP or DSSAT47.INH. This resulted in modifications to the main CSM program as well as modifications to a

number of subroutines, each of which is listed in Table 1.

https://github.com/DSSAT/dssat-csm-os/tree/master
https://www.doi.org/10.5281/zenodo.4893438
https://github.com/palderman/dssat-csm-os/tree/gridded
https://github.com/palderman/dssat-csm-os/tree/gridded
https://github.com/palderman/dssat-csm-os/tree/gridded
https://github.com/palderman/dssat-csm-os/tree/gridded/FlexibleIO
https://github.com/palderman/dssat-csm-os/tree/gridded/FlexibleIO
https://github.com/palderman/dssat-csm-os/tree/gridded/FlexibleIO

10

15

Input Files

Input Module Input Module
or csm_io Module
DSSAT47.INH

l

Crop/Soil Modules

v

Crop/Soil Modules

i
i
I
|
I
i
I
|
[
i
[
i
i

DSSAT47.INP :
|
|
I
|
[
|
[
I
I
i
|
|
i
I
|
|

Figure 1. Flowchart illustrating the data transfer processes implemented in the standard open-source (OS) and parallel-gridded (PG) versions
of the Decision Support System for Agrotechnology Transfer Cropping Systems Model. The folder shape indicates a step that involves

reading or writing a file. The cylinder shape indicates an in-memory data structure.

2.2 Griddded Input and Output

Gridded input and output for the PG version of DSSAT-CSM relies on an interface to Network Common Data Form (NetCDF),
a set of software libraries that define self-describing, portable data formats that support the creation, access, and sharing
of array-oriented scientific data (Unidata, 2017). The DSSAT-CSM NetCDF interface is defined in two Fortran modules:
nf90_file module and dssat_netcdf. The nf90_file module provides a derived type for NetCDF files that
contains type-dependent low-level utility functions/subroutines for creating and manipulating NetCDF files including reading
and writing scalar and array variables of real, integer, and character types. The dssat_netcdf module provides extensions
to this basic derived type and associated type-dependent utility functions/subroutines that are specific to the various types of
input files required for DSSAT-CSM. Thus, the dssat_netcdf operates as a higher-level interface that DSSAT-CSM model
developers would interact with, while leaving the more mundane details of communicating with the NetCDF libraries to be
handled by the nf90_file_module.

An example program using the dssat_netcdf module to read DSSAT-CSM FileX, soil, weather, and genotype-specific
parameter inputs from NetCDF files is given in Appendix B and is illustrated visually in Figure 2. This example program also
makes use of several other Fortran modules that implement a data structure (ordered_array) that stores its elements in

increasing order, various utility functions and subroutines related to reading command line arguments (dssat_cmd_arg), the

Table 1. Subroutines modified in the development of the parallel gridded version (PG) of the Decision Support System for Agrotechnology
Transfer Cropping Systems Model (DSSAT-CSM). Subroutines are listed according to category of code change: internal data transfer, gridded
input and output (Gridded I/O).

Code Change Category | Modified Subroutines

Gridded I/O CANOPY(), CSCER(), ESR_SoilEvap(), INCOMP(), INPUT_SUB(),
IPDMND(), IPEXP(), IPFLD(), IPGROW(), IPPHENOL(), IPPLNT_
Inp(), IPPLNT(), IPROOT(), IPSLIN(), IPSOIL_Inp(), IpWRec(),
IPWTH(), LAND(), MULCHWATER(), MZ_GROSUB(), MZ_
PHENOL(), NFIX(), NUPTAK(), PGINP(), PHOTIP(), PODCOMP(),
PODDET(), PODS(), RootSoilVol(), SENES(), SMREADRZ2(),
VEGGR()

Internal data transfer CSCER(), ESR_SoilEvap(), ETINP(), Fert_Place(), FILL_
ISWITCH(), FOR_IPROOT(), FOR_PHOTIP(), FOR_PODS(),
INCOMP(), INPUT_SUB(), INVRCE(), INVRCS(), INVRLE(),
IPAHAR(), IPAPLT(), IPDMND(), IPEXP(), IPGROW(), IPIBS(),
IPPHENOL(), IPPLNT(), IPSIM(), IPSLIN(), IPSOIL_Inp(),
IPVAR(), IPWBAL(), IPWTH(), IRRIG(), LAND(),
MULCHWATER(), MZ_GROSUB(), MZ_OPHARV(), MZ_
PHENOL(), NFIX(), OM_Place(), OPHARV(), OPHEAD(),
OPSTRESS(), OPVIEW(), PEST(), PGINP(), PHOTIP(), PODS(),
RootSoilVol(), SenLig_Ceres(), SENS(), SG_CERES(), SG_
OPHARV(), SMREADR2(), SoilCNPinit_C(), SOILDYN(), SoilNi_
init(), SoilOrg_init(), SOMFRAC_INIT(), SOMINIT_C(), STEMP(),
TILEDRAIN(), TILLAGE(), WTHMOD()

NetCDF FileX example : NetCDF soil example i NetCDF weather example NetCDF GSP example
| |
|

|
i Set file name:

Inc_gen%set_file_from_cmd_arg(),

Set file name:
Inc_wth%set_file_from_cmd_arg()|

Set file name:
nc_soil%set_file_from_cmd_arg()

Set file name:

Inc_filex%set_file_from_cmd_arg()
Open NetCDF weather file: Open NetCDF GSP file:
nc_wth%open() nc_gen%open()

d
Open FileX: | Initialize NetCDF soil file:
nc_filex%open() i init_nc_soil()
|]]

{
Read depth to base of layer;| | et latitude and longitude: et cultivar and ecotype]]
nc_soil%read() | nc_wth%set _lat_lon() nc_gen%set_cul_eco()

]]

Fet start date for weather Read cultivar parameter:|

Read from FileX:
nc_filex%read()

csminp%add_sec()

1

dd coordinates to *FIELDS section
csminp%add_var()

nc_wth%set_date() nc_gen%read_cul()

Read solar radiation: Read ecotype parameter;|
nc_wth%read() nc_gen%read_eco()

Store coordinates values: Read species parameter:
csminp%put() nc_gen%read_spe()

Figure 2. Flowchart illustrating the sequence of operations for reading from NetCDF FileX, soil, weather and genotype-specific parameter

’Create *FIELDS section with csm_io|

(GSP) files in the example program given in Appendix B and explained in Section 2.2.

10

15

20

25

30

csm_1io module (discussed in section 2.1), and the dssat_mpi module (discussed in section 2.3). The program begins with
several operations related to reading the NetCDF version of the FileX. For readers less familiar with DSSAT-CSM terminology,
the FileX is a file type that contains information about various aspects of crop management as well as configuration options
for running simulations. The first operation in the program sets the file name for the NetCDF FileX by calling the type-
bound subroutine nc_filex%set_file_from_cmd_arg (). This subroutine bound to the nc_filex variable, which
is of derived type nf90_file (defined in the n£f90_file_module), searches for a command-line argument matching the
provided flag ——nc_filex (e.g. ——nc_filex=filex.nc) and reads the associated file path and name. Command-line
arguments accessed using the dssat_cmd_arg module need not be provided in any particular order, but should come after
the standard DSSAT command line arguments for the run type (e.g. B for batch mode, N for seasonal mode, Q for sequence
mode, etc.) and batch file (typically DSSBatch.V47) in order not to interfere with other components of DSSAT-CSM that
expect these arguments to immediately follow the executable name. Once the file name is set, the NetCDF FileX is then
opened with the type-bound nc_filex%open (). The standard FileX format contains multiple “tables” of data stored within
sections of the file and connected via key values or “levels”. Each row of the TREATMENT table contains a unique combination
of key values that defines a given treatment. Further discussion of the NetCDF FileX file structure is provided in Section 2.4.
In the case of the example program, The value for the tenth row of the FL column is read into the variable field level
using the type-bound subroutine nc_filex%read (). This field_level is then used to read the corresponding values
of XCRD and YCRD from the FIELDS table into the variables 1ongitude and latitude. The program then creates a new
section (+xFIELDS), adds the XCRD and YCRD as real-type variables, and stores the longitude and latitude values in
the csminp data structure.

Next, the program reads the file name for the NetCDF soil data file from the command line using the type-bound subroutine
nc_soil%set_file_from_cmd_arg () and calls the init_nc_soil () subroutine that is defined in the dssat_
netcdf module (Appendix B). This subroutine retrieves the previously stored values for XCRD and YCRD from the csminp
data structure, opens the NetCDF soil file, and sets the latitude and longitude coordinates within the nc_soil variable. These
latitude and longitude values are used to determine the proper coordinates from which to subsequently read soil variables from.
The program then reads the array of values for the depth to base of layer (SLB) variable starting from index 1 and stores it in
the local 1-D array SLB using the type-bound subroutine nc_soil%read (). Other scalar and 1-D array variables can be
read using the same call. The NetCDF soil data file structure is discussed in greater detail in Section 2.4.

The example program proceeds by reading the NetCDF weather file by first setting the file name, opening the NetCDF
file and setting the spatial coordinates for the grid point (Appendix B). The start date for reading weather data is then set by
calling the type-bound subroutine nc_wth%set_date (), which sets the internal index based on the date specified. The date
argument is specified as an integer where the first four digits are the year and the last three digits are the julian day of year. This
internal index is then used in subsequent calls to the type-bound subroutine nc_wth%read () by including the nc_wth%z_
i variable as the starting index value. This is illustrated in the example program by reading the solar radiation (SRAD) variable.

The NetCDF weather data file structure is addressed in Section 2.4.

10

15

20

25

30

Following the weather file, an example of reading the NetCDF genotype parameter file is provided (Appendix B). Setting
the file name and opening the NetCDF file follows the same procedure as for the other file types. However, instead of setting
latitude and longitude coordinates (as is done for soil and weather files), the cultivar code is set by calling the type-bound
subroutine nc_gen%set_cul_eco (). Following this call, the cultivar parameter P1V is read from the file using the type-
bound subroutine nc_gen%read_cul (). Similarly, the ecotype parameter PARUE is read from the file using the type-bound
subroutine nc_gen%read_eco () and the species parameter TRLFG is read using the type-bound subroutine nc_gen$
read_spe (). More specifics on the NetCDF genotype parameter file structure is provided in Section 2.4.

In addition to the development of the DSSAT-CSM NetCDF interface, existing code was modified to ensure compatibility
with the new DSSAT-CSM NetCDF interface. Subroutines modified to use the NetCDF interface are given in Table 1. In
general, the code changes involved adding an i f construct that first checks command line flags to determine if the input type
(e.g. soil data) is to be read from the DSSAT standard format or from the NetCDF gridded format. If the former, the original OS
code is executed while new code calling the NetCDF interface is executed if the latter condition is met. Some subroutines were
not conducive to simple modification by use of an i f construct and therefore required implementation of a new version of the
subroutine compatible with the NetCDF interface. A list of these new subroutines and their original OS version counterparts
is given in Table 2. In general, for each pair of new and OS subroutines an if construct in each “parent” subroutine checks
command line flags to determine which subroutine should be called (i.e. either the OS version or the new NetCDF-compatible

one).
2.3 Parallelization

Parallelization for the PG version of DSSAT-CSM relies on the Message Passing Interface (MPI), a widely used specification
that follows a message-passing parallel programming model especially suitable for distributed memory systems (Message
Passing Interface Forum, 2015). The MPI specification was selected primarily due to its wide-spread usage and suitability
for distributed memory systems (e.g. HPC clusters). Specifically, MPI has been used successfully in other applications for
parallelizing crop models (Nichols et al., 2011; Kang et al., 2015; Jang et al., 2019; Vital et al., 2013). The message-passing
parallel programming model allows multiple independent DSSAT-CSM instances to run concurrently, each of which manages
its own memory and most of its input and output. This approach reduces the number of required modifications to the core
DSSAT-CSM model code and thereby eases the burden in maintaining synchronization between the PG version and the model
code maintained by the DSSAT core developer team.

Overall, the DSSAT MPI interface consists of a Fortran module (dssat_mpi) and a control program (“parent” process)
that spawns multiple instances of the DSSAT-CSM (“child” processes), assigns a range of treatment numbers to each instance,
receives simulated results from each instance, and writes a NetCDF format output file. Several changes were made to the
DSSAT-CSM main program to open an MPI connection with the parent process, store simulated output for subsequent trans-
fer, and transfer simulated output to the parent process. All communication between the parent process and each spawned
child process is mediated through two derived types defined in the dssat_mpi module, namely mpi_parent and mpi_

child. An example program illustrating the parent process is given in Appendix C and a corresponding example child pro-

Parent Process

Set up NetCDF output file DSSAT-CSM Child Processes

Initialize MPI connection: Set coordinate values Initialize MPI connection:
mpi_parent%init() : mpi_child%connect()
: A
: Y
4 : |Insert coordinate values :
. - into ordered array: : Set up variable regsitry:
Set control variables longitude%insert() : seasonal_registry%csv_to_registry()

latitude%insert()

. Y Y
Y - - - :
Spawn DSSAT-CSM child processes: : Set coordmate |°nd_e>< values: : Store memory a_ddreS§es
mpi_parent%spawn_dssat_children() Iongltude@ﬂnd() M for targgt variables:
= = = latitude%find() - seasonal_registry%set_target()
Create NetCDF output file: : Run simulations and store variables:|
nf90_output%create() : seasonal_registry%store()

- n K Add coordinate dimensions N)
Receive simulated data: to NetCDF output file: Send simulated output:

mpi_parent%receive_registries() nfa0_output¥%add_dim() mpi_child%send_registry()
A - it - i
5 - |

Add coordinate variables
to NetCDF output file:
nf90_output%add_var()

Close MPI connection:
mpi_parent%close()

Close MPI connection:
mpi_child%close()

Clean up DSSAT-CSM child Write coordinate values

running directories: N to NetCDF output file: -
system() - [nf90_output%write_variable()| -

Write simulated data
to NetCDF output file:
nf90_output%write_netcdf()

Close NetCDF output file:
nf90_output%close()

Figure 3. Flowchart illustrating the points of communication and sequence of operations for the example parent and child programs given
in Appendices C and D and explained in Section 2.3. Solid gray borders indicate the boundary of a process. The dotted border indicates a
grouping of operations within a given process. Dashed arrows indicate communication between processes using Message Passing Interface
(MPI) protocols.

10

15

Table 2. New subroutines created in the development of the parallel gridded version (PG) of the Decision Support System for Agrotechnology
Transfer Cropping Systems Model (DSSAT-CSM). New subroutines are listed with the corresponding subroutine from the standard open-
source version (OS) of DSSAT-CSM.

New Subroutine OS Version Subroutine
read_nc_chem_sec() IPCHEM()
read_nc_env_sec() IPENV()
read_nc_fert_sec() IPFERT()
read_nc_fld_sec() IPFLD()
read_nc_gen() IPVAR()
read_nc_har_sec() IPHAR()
read_nc_ic_sec() IPSLIN()
read_nc_irr_sec() IPIRR()
read_nc_plt_sec() IPPLNT()
read_nc_res_sec() IPRES()
read_nc_sim_sec() IPSIM()
read_nc_soil() IPSOIL_Inp()
read_nc_till_sec() IPTILL()
read_nc_wth() IpWRec()

cess program is given in Appendix D. A visual illustration of the parent and child processes and communication between
them is provided in Figure 3. The parent program begins by defining a comma-delimited list of variables and storing it in
the mpi_parent%$varlist variable and defining an output file name. The program then calls the type-bound subroutine
mpi_parent%init (), which initiates an MPI connection by calling MPI_TInit () as defined in the MPI specification.
Thereafter, the parent program sets several local variables that are used to spawn the DSSAT-CSM child processes. In the PG
version of DSSAT-CSM, each of these variables, mpi_parent%varlist, and the output file name are supplied to the mas-
ter process program as command line arguments. The type-bound subroutine mpi_parent$spawn_dssat_children ()

is then called, which constructs working directory names, command line arguments, and commands for each of the children
DSSAT-CSM processes and calls MPTI_Comm_spawn_multiple (), the MPI specification for spawning multiple children
processes. The command line flag ——MPT is included in the argument list for each of the children DSSAT-CSM processes,
which signals to the executable to initiate an MPI connection and connect to the parent program. The mpi_parent$spawn_
dssat_children () subroutine also uses MPI_Send () (the MPI specification for performing a blocking send) to transfer
the treatments assigned to each DSSAT-CSM child process, the output variable list, the run mode, and the crop code for simu-
lation. These MPI data transfers are represented by a dashed arrow in Figure 3. After sending these data to each child process,

the subroutine allocates an array of data structures (one element per child process) in which to store the simulated output from

10

15

20

25

30

35

each child process. Each data structure (referred to as a variable registry) is then initialized using the comma-separated variable
list contained in mpi_parent%varlist.

Appendix D provides an example child process that mimics the action of a DSSAT-CSM child process in the way in which
it interacts with the parent process. The program begins by connecting to the parent process by calling the type-bound subrou-
tinempi_child%connect (), whichcallsMPI_Init (),MPI_Comm_rank () and MPI_Comm_get_parent () each
once and MPI_Recv () multiple times to receive the elements of data sent from the parent process. The subroutine then uses
the system () intrinsic subroutine to run the mkdir shell command with the path for the specific working directory assigned
to that child process. The chdir () intrinsic subroutine is then called to move the child process into that working directory to
begin running simulations.

The reliance upon the mkdir shell command and the non-standard, GNU gfortran extension chdir () subroutine makes
the code less portable, thus, a few words on the matter are warranted here. Assigning child processes to their own specific
working directories has been implemented to avoid competition between processes in simultaneously attempting to write to
identical output files. Although most direct writing of output to text files has been eliminated, occasional messages are still
generated by various components across the DSSAT-CSM and written to standard files (e.g. WARNING.OUT). With all child
processes running in the same directory, competition for these files can become problematic. The long-term intention is to
eventually account for these sources of output and remove the need for invoking shell commands and non-standard subroutines.
Nevertheless, because most HPC clusters run some form of *nix operating system, the shell command strategy should not be
problematic in most use cases. Likewise, the GNU compiler collection is available in most HPC environments. Users also have
the option of customizing these two lines of code within the connect_to_parent () subroutine to fit their own compiler
and operating system constraints.

Once the child process has connected with its parent, the child initializes a variable registry to contain seasonal simulated
output by calling the seasonal_registry%csv_to_registry () with the mpi_child$varlist argument (Ap-
pendix D). This initializes a variable registry with an entry for each of the variables listed in mpi_child%varlist. The
variable registry data structure is an instance of the derived type registry_type defined within the dssat_variable_
registry Fortran module. It is essentially an array of type registered_variable (also defined in the dssat_
variable_registry module), along with subroutines for initializing the variable list, adding new variables to the array,
associating elements with specific variables, and storing variable values. The registered_variable type is a derived
type with a character variable component for the variable name, allocatable array components of real and integer types, point-
ers of real and integer types, as well as subroutines for initializing the variable, reallocating the variable, and storing values.
When each variable is initialized, the allocatable array component used for storing data is allocated. If the variable to be stored
is of type real, then the real array is allocated. If the type is integer, then the integer array is allocated. To store values for a
given model variable, one of the pointers (real or integer depending on the type of the variable) must also be associated with the
address of the variable. In the example child program this is done by calling the seasonal_registry%set_target ()
subroutine first for a real variable rvar and then for an integer variable ivar (Appendix D). In the PG version of DSSAT-

CSM, the seasonal_registry%set_target () subroutine is called in each subroutine where a variable of interest

10

10

15

20

25

30

is defined. For example, within the CROPSIM-CERES-Wheat CSCER () subroutine there is a line that calls seasonal_
registry%set_target ('CWAM', CWAD), which associates the memory address of the CWAD state variable for above-
ground biomass with the CWAM name within the variable registry. Once the addresses for all variables has been stored in the
variable registry, the seasonal_registry%store () subroutine can be called at each iteration and the then current value
at each of the associated memory addresses will be stored. An example of this is shown in Appendix D. Once all simula-
tions are complete, the variable registry (seasonal_registry) is sent to the parent process through MPI by calling mpi__
child%$send_registry () and the MPI connection is terminated by calling mpi_child%close (). These operations
are summarized in the right portion of Figure 3. The strategy of storing memory addresses and retrieving values from them at
the end of each seasonal iteration is predicated upon the fact that all state variables in the DSSAT-CSM are statically allocated
by using the SAVE statement at the beginning of variable declarations in all subroutines. Thus, the address of state variables
is stable within a given run of the model. Moving away from static allocation of state variables would require an overhaul of
nearly every subroutine in DSSAT-CSM and, thus, is unlikely to occur in the foreseeable future.

While the children processes run simulations, the parent program creates the combined simulation output file (Appendix C).
It first defines dimensions for the NetCDF output file (nseasons, xcrd and ycrd) that, in the PG version of DSSAT-CSM,
are read from the NetCDF FileX. The name of the FileX is supplied as a command line argument. The xcrd and ycrd
values are inserted into ordered arrays (a custom data structure similar to the C++ Standard Template Library ordered set and
defined in the module ordered_array) for longitude and latitude. The ordered arrays do not contain duplicate
values, and the values are arranged in order from lowest to highest. Because of this the dimension and order of values in the
longitude and latitude ordered arrays do not match xcrd and ycrd and new indices for each xcrd and ycrd (xcrd__
i and ycrd_i) must be set based on searching for the corresponding value for xcrd (i) in longitude and for ycrd (1)
in latitude. Once this process is complete, the output NetCDF file is created by calling nf90_output%create ()
and calling nf90_output%add_dim(),nf90_output%add_var () and nf90_output$write_variable () for
each coordinate variable (1at, 1on, and season). These operations are summarized in the dashed box within the Parent Pro-
cess box in Figure 3. Once the output file is set up, the parent program calls the mpi_parent$receive_registries ()
type-bound subroutine, which listens for transfer of simulated output from the DSSAT-CSM children processes in the form of
a variable registry, as discussed above.

Once the DSSAT-CSM children processes complete all simulations and the parent program has received the simulated output,
the parent program closes the MPI connection and invokes the rm shell command using the system () intrinsic subroutine to
remove each of the directories previously created for the DSSAT-CSM children processes. The parent program then concludes
by calling the type-bound subroutine nf90_output$write_netcdf () to write the the values returned by the children
DSSAT-CSM processes to a single NetCDF output file and then closing the file.

11

10

15

20

25

2.4 Input file conventions

The NetCDF interface described in Section 2.2 is unusable without properly formatted input files. Thus, this section will
document the file structures required for use with the DSSAT-CSM NetCDF interface. Header information from the example

FileX, soil, weather and genotype-specific parameter input NetCDF files is presented in Appendices E, F, G and H.
24.1 FileX

As previously mentioned, the standard DSSAT FileX format contains multiple “tables” of data stored within sections of the file
and connected via key values. In the NetCDF version of the FileX the number of rows in each table is represented by the corre-
sponding dimension defined in the file. The tables defined in NetCDF FileX header given in Appendix E include STMULATION
CONTROLS, FIELDS, CULTIVARS, TREATMENTS, PLANTING DETAILS, FERTILIZERS, and HARVEST DETAILS.
The header also contains dimensions that correspond to the length of character vectors stored in the file (e.g. lenl, len2,
lené, etc.). After the definition of dimensions in the file comes the full list of variables defined in the file. For each integer-
(int) and real-type (f 1oat) variable, the dimension variable corresponds to the FileX table to which the variable belongs. For
each character-type (char) variable the first dimension denotes the FileX table to which the variable belongs and the second
dimension defines the length of the character variable. For example, the SIMULATION\ CONTROLS dimension in Appendix
E has size 20 indicating that there are 20 rows in the STMULATION CONTROLS table. Thus, for the variable SUMRY the first
dimension is SIMULATION\ CONTROLS and the second dimension is 1en1 indicating that it is a length-one character vari-
able in the SIMULATION CONTROLS table (i.e. with 20 values). Similarly, the FTIELDS dimension has size 7,208 indicating
that the FIELDS table contains 7,208 rows. Thus, the AREA variable (defined with the FIELDS dimension) is in the FIELDS

table and accordingly contains data for 7,208 grid points (“fields” in FileX parlance).
2.4.2 Soil inputs

The NetCDF soil data file has a much simpler structure with three dimensions: latitude, longitude, and layer (Ap-
pendix F). The 1lat itude and longitude dimensions represent the spatial dimensions of the soil data with the 1atitude
and longitude variables containing the coordinate values associated with each grid point. A third dimension (layer) is
defined for use with variables that contain layer-specific values (i.e. values that vary with soil depth) at each grid point. For
example, the SLB (depth to base of layer) variable is defined with the 1atitude, longitude, and layer dimensions
because SLB contains layer-specific values. In contrast, the SALB (soil surface albedo) variable only contains a single value
per grid point and is, thus, defined with only the latitude and longitude dimensions. Further details about these and
other variables following the DSSAT standard nomenclature for soils data are described in the SOIL.CDE file (available at
https://github.com/palderman/dssat-csm-os/tree/gridded/Data/SOIL.CDE).

12

https://github.com/palderman/dssat-csm-os/tree/gridded/Data/SOIL.CDE

10

15

20

25

30

2.4.3 Weather inputs

The NetCDF weather data file also has a relatively simple structure with the lat itude and longitude dimensions defined
in the same way as for the NetCDF soil data file (Appendix G). The NetCDF weather file also contains a third dimension
DATE which encodes the time dimension of the dataset. The coordinate values within this dimension are stored as integer
type and follow the internal encoding of the YEARDOY variable within the DSSAT-CSM, namely, that the left-most four digits
encode the four-digit year and the remaining three digits to the right encode the Julian day of year. For example, the value
2020001 would encode January 1, 2020 and the value 2020366 would encode December 31, 2020. Just as for the soil data,
some weather variables have a single value per grid point (e.g. TAV, average annual temperature) and are defined with only
the latitude and longitude dimensions. Other variables have daily values at each grid point and are defined with the
latitude, longitude and DATE dimensions (e.g. RHUM, average daily relative humidity). Further details about these
and other variables following the DSSAT standard nomenclature for weather data are described in the WEATHER.CDE file
(available at https://github.com/palderman/dssat-csm-os/tree/gridded/Data/WEATHER.CDE).

2.4.4 Genotype-specific parameters

Finally, the genotype-specific parameter (GSP) NetCDF file structure is slightly more complex than the NetCDF soil and
weather data files although less so than the FileX. At present, the GSP NetCDF file is the only NetCDF input file that does
not contain any spatial coordinates (Appendix H). The dimensions of the file are set based on the number of cultivars and
ecotypes included in the file as well as the dimensions of species parameter arrays. For example, the cultivar parameter P 1V
(vernalization requirement) is defined with dimension 112 (with length 12) because there are 12 cultivars in the file. Likewise,
the ecotype parameter P1 (duration of phase from end of juvenile to terminal spikelet) is defined with dimension 111 (with
length 11) because there are 11 ecotypes defined in the file. Finally, PGERM (germination phase duration) is a species parameter
defined with dimension 11 (with length 1) because that parameter is a scalar value and LAFS (leaf area senesced; also a
species parameter) is defined with dimension 1 6 because it contains values for each of 6 growth stages. Cultivar and ecotypes
in standard DSSAT format are specified using a unique 6-digit character code for each cultivar and ecotype. In the NetCDF
GSP file these 6-digit character codes are prepended with either CUL (cultivar) or ECO (ecotype) to generate unique name
for a scalar integer that stores the index value for that particular cultivar or ecotype. For example, the cultivar code IB0488
is used for the Newton wheat cultivar and, thus, the CULIB0488 variable in the NetCDF GSP file stores the index for the
Newton cultivar. When reading values for the Newton cultivar, the NetCDF interface uses this index value to retrieve the
correct value for any cultivar parameters (e.g. the fifth value from the P1V array). Correspondingly, the ECOUSWHO1 variable
in the NetCDF GSP file stores the index for the USWHOI1 ecotype. Because the ecotype associated with the Newton cultivar
is USWHOI, the NetCDF interface first reads the index value from ECOUSWHO1 and then uses it to retrieve the proper value
for ecotype parameters (e.g. the fifth value from the P1 array). Further details and definitions of all cultivar, ecotype, and
species parameters can be found in the WHCER047.CUL, WHCER047.ECO and WHCERO047.SPE files at https://github.com/
palderman/dssat-csm-os/tree/gridded/Data/Genotype/.

13

https://github.com/palderman/dssat-csm-os/tree/gridded/Data/WEATHER.CDE
https://github.com/palderman/dssat-csm-os/tree/gridded/Data/Genotype/
https://github.com/palderman/dssat-csm-os/tree/gridded/Data/Genotype/
https://github.com/palderman/dssat-csm-os/tree/gridded/Data/Genotype/

10

15

20

25

30

3 Methods for Interface Validation
3.1 Software versions

Simulations from three versions of the DSSAT-CSM were compared for validating the parallel gridded interface described in
section 2. The first version was the standard open source version 4.7.5.21 of DSSAT-CSM (abbreviated OS; https://github.
com/dssat/dssat-csm-os), which uses standard DSSAT-format text files for input and output. The second version was the par-
allel gridded version 4.7.5.21 of DSSAT-CSM (abbreviated PG) which contains the changes documented in section 2. Ini-
tial comparison of simulated results from the PG and OS versions revealed discrepancies that will be discussed below (see
Section 4.1). In order to investigate these discrepancies, a third version (referred to as PG-MI) was implemented as an ex-
tension from the PG version in order to mimic the way in which the OS version rounds soil input data when writing the
DSSAT47.INP/DSSAT47.INH file (see Section 2.1). The code added for the PG-MI version can be found on lines 651 to 712
at https://github.com/palderman/dssat-csm-os/tree/gridded/InputModule/IPSOIL_Inp.for. In the current PG source code, the
PG-MI version can be invoked by using the ——mimic_inp command line flag when calling the DSSAT-CSM executable.

In order to compare performance of the text-based OS version to the PG version, a set of wrapper functions were written
for the OS version in the R statistical programming language utilizing the ncdf4 (Pierce, 2019), Rmpi (Yu, 2002), and
DSSAT (Alderman, 2020b, a) R packages. The code for these wrapper functions is available at https://github.com/palderman/
GridDSSAT.

All code for this analysis was built with the GNU compiler collection (gcc) version 5.5.0. The MPI library used in this
study was OpenMPI (Gabriel et al., 2004) version 2.1.6. The NetCDF (Unidata, 2017) Fortran library used was version 4.5.3
linked against the NetCDF-C version 4.7.4, which itself was linked against the HDFS5 library version 1.12.0 (The HDF Group,
1997-2020). The R statistical programming environment version 4.0.3 (R Core Team, 2020) was used for running simulations
and performing data analysis. The tidyverse R package (Wickham et al., 2019) was used for data manipulation, and the
DiagrammeR (Iannone, 2020), ggplot2 (Wickham, 2016), raster (Hijmans, 2020) R packages were used to generate

figures. Curves for analyzing execution time were fit using function nls () from the stats R package (R Core Team, 2020).
3.2 Input data sources

The grid used for simulations in this study was a 0.05° grid matching that of the climate hazards infrared precipitation with
stations (CHIRPS) dataset (Funk et al., 2015) clipped to the boundaries of the state of Oklahoma, USA. The Oklahoma state
boundary used for clipping was extracted from the TIGER/Line® database (United States Census Bureau, 2016).

3.2.1 Soil data

Gridded soil data were derived from the STATSGO2 soil database (Soil Survey Staff, 2017), the National Elevation Dataset
(NED; Gesch et al., 2018), and the 2017 Wheat Frequency Layer from the Cropland Data Layer dataset (CDL; National

Agricultural Statistics Service, 2017). The CDL data were used to construct a 30m-resolution mask layer of potential wheat-

14

https://github.com/dssat/dssat-csm-os
https://github.com/dssat/dssat-csm-os
https://github.com/dssat/dssat-csm-os
https://github.com/palderman/dssat-csm-os/tree/gridded/InputModule/IPSOIL_Inp.for
https://github.com/palderman/GridDSSAT
https://github.com/palderman/GridDSSAT
https://github.com/palderman/GridDSSAT

10

15

20

25

30

growing areas by using the gdal_translate command-line utility (GDAL/OGR contributors, 2020) to convert the Wheat
Frequency Layer from 8-bit integer to 32-bit integer and the gda lwarp utility to reproject the data into the Albers Equal-Area
projection (the same projection as the STATSGO?2 spatial data). The map unit key (MUKEY) for each grid point was extracted
from the STATSGO?2 database using the gdal_ rasterize utility and the gdal_translate utility was used to mark
water land cover (STATSGO2 MUKEY 657964) as missing data. The gdal_calc.py utility was then used to apply the
reprojected Wheat Frequency Layer as a mask to the rasterized map unit key data producing a wheat-specific raster layer of
map unit keys. The wheat-specific map unit keys were then reprojected to the World Geodetic System 84 (WGS84) coordinate
system and spatially resampled to the 0.05° CHIRPS grid described above using gdalwarp. The spatial resampling was done
using the mode resampling method, whereby the map unit key assigned to a given grid box was determined based on the most
frequent map unit key within that grid box. The map unit key for each grid box was then used to extract the soil component and
associated layer specific data for each grid point from STATSGO2. Slope was calculated from the NED 1/3 second resolution
using the terrain () function in the raster R package (Hijmans, 2020). The resulting slope data were then resampled
to the 0.05° CHIRPS grid using the aggregate () function in the raster R package (Hijmans, 2020). The point-specific
slope was combined with hydrologic soil group from STATSGO?2 to determine the antecedent moisture condition II curve
number (SLRO) following Ritchie et al. (1990). As mentioned above, header information for the final NetCDF soil file can be
found in Appendix F.

3.2.2 Weather data

The gridded weather data used for simulations were derived from data measured by the Oklahoma Mesonet (DOI: 10.15763/
dbs.mesonet). The Oklahoma Mesonet, commissioned in 1994, is an automated network of 120 remote, meteorological stations
across Oklahoma (Brock et al., 1995; McPherson et al., 2007). Mesonet data are collected and transmitted to a central facility
every 5 min where they are quality controlled, distributed, and archived (Shafer et al., 2000). Daily summaries of near-surface
cumulative solar radiation (MJ m~2 d~') and rainfall (mm d '), average relative humidity (percent) and windspeed (km d 1),
and maximum and minimum temperature (°C) were calculated from 5-min data for each station. The daily summaries were
merged with coordinates for each station as provided by the updatestn () function of the okmesonet R package (Allred
etal., 2014) and the spatially-referenced daily data were interpolated by inverse distance weighting (IDW) to the 0.05° CHIRPS
using the idw () function of the gstat R package (Pebesma, 2004; Griler et al., 2016). Interpolation for a given grid point
was performed using the nearest 5 Mesonet stations with an IDW power of 2. As mentioned above, header information for the

final NetCDF soil file can be found in Appendix G.
3.2.3 Genotype-specific parameters

Genotype-specific parameter values for the DSSAT-CSM-CROPSIM-CERES-Wheat model were extracted from the standard
cultivar (WHCERO047.CUL), ecotype (WHCER047.ECO), and species (WHCERO047.SPE) DSSAT format parameter files (re-
lease version 4.7.5) and combined into a single NetCDF file using the ncdf4 R package (Pierce, 2019). Header information
for the GSP file is provided in Appendix H.

15

https://www.doi.org/10.15763/dbs.mesonet
https://www.doi.org/10.15763/dbs.mesonet
https://www.doi.org/10.15763/dbs.mesonet

10

15

20

25

30

3.3 Validation and benchmark simulations

A set of validation simulations were run for the entire CHIRPS grid for Oklahoma (7,208 grid points) for the three versions of
DSSAT-CSM (OS, PG, and PG-MI). The purpose of the validation simulations was to ensure that simulated output from the
PG version matched that of the standard OS version. Execution time and parallel scalability for different versions was assessed
using benchmark simulations, which consisted of running the OS and PG versions for the same subset of 512 grid points. Runs
were completed with varying numbers of compute cores (1, 2, 4, 8, and 16 cores) each repeated four times. Curves were fitted

to execution time as a function of number of compute cores according to the following equation:

T
L= +T (1)

where T; is the total measured execution time, T, is the estimated time spent in parallelized code, N, is the specified number
of compute cores, and T is the estimated time spent in serial code.

All simulations in this study used the DSSAT-CSM-CROPSIM-CERES-Wheat model with the standard parameter values for
the wheat cultivar Newton. Planting date was set to October 15 of each year with a planting density of 173 plantsm ™2 and a
row spacing of 19 cm. Each seasonal simulation was initialized at three months prior to planting. Crop growth was simulated as
rainfed, water-limited production with nitrogen stress disabled. Automatic harvest was set to trigger at simulated crop maturity.
All simulations were run in DSSAT-CSM “seasonal” run mode (i.e. state variables were reinitialized for each season) for 20
seasons from 1997 to 2018. Simulations were run at the Oklahoma State University High-Performance Computing Center
(OSU-HPCC) on the Pete supercomputer. Each repetition of each compute core number was run independently on its own

compute node, each of which had dual Intel “Skylake” 6130 CPUs (total 32 cores per node) and 96 GB RAM.

4 Results and Discussion
4.1 Interface validation

The top panel of Figure 4 shows the difference in simulated winter wheat yield between the OS and PG versions of DSSAT-
CSM for one simulated year. Although the majority of grid points had values at or near zero, deviations ranging from approx-
imately -150 to 150 kg ha—! were readily evident in the simulated output. The grid points at which these deviations occurred
varied depending on the season of simulation, but the magnitude of deviations was on the same order of magnitude. In in-
vestigating possible sources of this discrepancy, the PG-MI version of DSSAT-CSM was implemented and run for the same
simulation set. The lower panel of Figure 4 shows the difference between simulated yield between the OS and PG-MI versions.
The fact that all PG-MI simulated yields were within 0.5 kg ha—! of the OS simulated yields indicates that the rounding of soil
data was the primary cause of the differences in yield observed in the top panel. The DSSAT-CSM has several options for how
soil profile data are handled for simulation. When the FileX variable MESOL is set to 1 (as was the case in this study), fixed
depths for soil layers are used. If the depths for soil layers in the soil input file do not match these soil layers, the data from

the input file are interpolated to the fixed depths via a weighted average. In the case of the OS version, these values are then

16

10

15

Yield Difference

L I 100
' 50
0
L
~100

50

OS vs. PG

OS vs. PG-MI

Figure 4. Difference in simulated winter wheat yield (kg ha™') for the 2008-2009 growing season in Oklahoma, USA when comparing
the standard open source version of DSSAT-CSM (OS) (top panel) to the parallel gridded version (PG) documented in this article or (lower
panel) to the PG version with additional code to mimic the rounding of soil input data as occurs in the OS version (PG-MI). Positive values

indicate that OS simulated higher yield than PG or PG-MI, while negative values indicate that OS simulated lower values than PG or PG-ML.

rounded when the variables are written into the intermediate DSSAT47.INP file. For the PG version, the calculated values are
kept in the original floating point precision because they are stored in memory rather than being written to an intermediate file.
This subtle difference in values for soil variables does not generally result in large effects on the simulated output. However,
in some seasons at some grid points when limited rainfall occurred, the differences in soil variables were large enough to
cause detectable differences in simulated yield. Once modifications are made to DSSAT-CSM that avoid writing soil inputs
to intermediate text files (such as those documented in Section 2.1), these differences will be resolved. However, at present
simulations run with the PG version in some study areas may differ from the OS version depending on input data and which

MESOL option is selected.
4.2 Benchmark Simulations

Figure 5 shows the execution time for running the 512-grid-point benchmark simulations with the NetCDF-based PG version of
DSSAT-CSM compared to that of the text-based OS versten-with R code version (OS-R) for varying numbers of compute cores.
On average, the text-based-OS-OS-R version required approximately 24 minutes on one compute core, while the NetCDF-
based PG version required approximately 6 minutes. This amounted to a 4-fold speedup by switching to the NetCDF-based
PG version from the text-based-OS-R version, an advantage that persisted with a 3.7-fold speedup when increasing to using
16 compute cores. The slight difference in speedup indicated that the text-based-OS-R version benefited slightly more from

17

10

15

30-
Version

—— OS-R

& PG

Simulation Time

Number of Compute Cores

Figure 5. Simulation time (minutes) for 512 grid points simulated with the Decision Support System for Agrotechnology Transfer Cropping

System Model (DSSAT-CSM) using R code and text-file-based input/output (FextOS-R) and the parallel gridded version (PG), which uses
Network Common Data Form (NetCDF) file-formats-files, for varying numbers of compute cores.

parallelization than did the Net€DF-based-PG version. This phenomenon was also evident when comparing 1 to 16 cores within
each version with 12.2 times faster execution time for the Net€BF-based-PG version compared to 13.4 times faster execution
time for the text-based-OS-R version. The fitted curve for the text-based-OS-R version estimated parallel execution time (73,)
at 23.4 minutes while serial execution time (7) was estimated at 11.1 seconds indicating that approximately 99.2 percent of
computation was parallelized. Similarly, the T}, estimate for the Net€DF-PG version was 5.7 minutes and the T, estimate was
0.2 seconds indicating that 97.3 percent of computation was parallelized. Although a thorough evaluation of parallel efficiency
is beyond the scope of this study, these numbers suggest a relatively high potential for further scaling to higher numbers of

compute cores.

Overall, the PG version performed well for the benchmark simulations used for this study. An important caveat is that the
speedup when comparing PG to OS-R was not solely due to the speed with which DSSAT-CSM can read different input file
formats (i.e. text vs NetCDEF). The comparisons in this study were made based on the whole process from gridded inputs to
gridded outputs. For the PG version, this was direct, but, for the OS-R version, execution time necessarily included generating
the text input files needed to run DSSAT-CSM and reading the text output files. Thus, it is possible that a large share of the slow.
performance may have been related to the speed with which the R code produced the inputs and read the simulation outputs.
The somewhat naive implementation used in this study could be ported to a compiled language or otherwise optimized to
enhance performance, but optimizing text-based input was considered beyond the scope of this study.

18

10

15

20

25

30

More generally, it is worth noting that any type of parallelization or optimization strategy is necessarily tied to the form
of the problem and the nature of the computing resources available for use. The choices made in the design of the PG
version may not be suitable all situations. For example, the use of MPI for parallelization comes with a degree of overhead
in establishing communication between processes. In some cases it may be more efficient to distribute simulations across a
number of independent jobs the results of which might be aggregated in a subsequent step after DSSAT-CSM simulations are
complete. Similarly, running simulations for an irregular spatial grid may not naturally fit the NetCDF file format, in which
case it may be easier on the modeler to revert to DSSAT text file formats. Nevertheless, based on the results of the benchmark
simulations the PG version is well-suited to the set of use-cases represented therein and merits further testing on a wider range
of research problems and computing environments.

5 Summary and Conclusions

This article documented the design and implementation of a parallel simulation framework with gridded input and output for
the DSSAT-CSM using MPI and NetCDF libraries. This framework was demonstrated with simulations of wheat yield across
Oklahoma, USA using the CROPSIM-CERES-Wheat model. Validation simulations revealed subtle variations in simulated
yields between the PG version and the standard OS version as a result of how soil input data are handled. The benchmark
simulations showed substantial speedup as-a-result-of-using-when comparing the NetCDF-based input-compared-to-version
to a version which used R code and text-based input/output. Comparing execution time across a numbers of compute cores
indicated potential for efficient parallel scaling. Relevant future work should include validation of simulations with other
crops and simulation configurations. Given the expected use of the framework in high-performance computing contexts, a
more comprehensive evaluation of computational efficiency and parallel scalability with different compilers, hardware, and file

systems is warranted.

Code availability. All source code for the parallel gridded version of DSSAT-CSM documented in this manuscript is available at DOI:
10.5281/zen0d0.4893438 under the 3-Clause BSD License. The current version of source code is available on the gridded branch of a
fork from the official DSSAT-CSM repository (https://github.com/palderman/dssat-csm-os). Source code for the wrapper functions used to
parallelize the standard text-based version of DSSAT-CSM is available at https://github.com/palderman/GridDSSAT.

Appendix A: Example program using the csm_io module

program csm_io_example

use csm_io

implicit none

19

https://www.doi.org/10.5281/zenodo.4893438
https://github.com/palderman/dssat-csm-os/tree/gridded
https://github.com/palderman/GridDSSAT

10

15

20

25

real real_var
integer int_var

character (len=5) char_var

real_var = 1.
int_var = 2

char_var = "three"

! Create new section xTEST

call csminp%add_sec (' *TEST’)

! Add new variables to section *TEST

call csminp%add_var (! *xTEST’, &

real _name=(/"real_var’/), &

int_name=(/’int_var’/), &

char_name=(/’char_var’/))

! Store the current values for real_var,

int_var,

call csminp%put (' *TEST’,’ real_var’,real_var)

call csminp%put (' *TEST’,’int_var’, int_var)
psp

call csminp$%$put (' *TEST’, " char_var’,char_var)
psp

and char_var

! Retrieve the previously stored values for real_var, int_var,

call csminp%get (' *TEST’,’ real_var’,real_var)

call csminp$%get (' *TEST’, " int_var’,int_var)
pPsg

call csminp%get (' *TEST’,’char_var’,char_var)

end program

30 Appendix B: Example program reading Network Common Data Form (NetCDF) input files

program dssat_netcdf_example

use csm_io

20

and char_var

10

15

20

25

30

35

use dssat_cmd_arg
use dssat_mpi
use dssat_netcdf

use ordered_array

implicit none

integer i,ntrt,len_arg,nlayers,time_i,field_level

real,dimension(8) :: SLB, SRAD
real :: latitude, longitude
real :: P1lV, PARUE
real,dimension(4) :: TRLEG

!**********************

! NetCDF FileX example

!**********************

! Set FileX name

call nc_filex%set_file_from_cmd_arg("--nc_filex")

! Open FileX

call nc_filex%open/()

! Read field level for treatment 10

call nc_filex%$read ("FL",10,field_level)
! Read coordinates for field level
call nc_filex%read("XCRD", field_ level, longitude)

call nc_filex%$read ("YCRD", field_level, latitude)

! Create section *FIELDS

call csminp%add_sec ("+xFIELDS")

21

10

15

20

25

30

35

! Add coordinate variables to section *FIELDS

call csminp%add_var ("«FIELDS", real_name=(/"XCRD","YCRD"/))

! Store coordinate variables in csminp
call csminp%put ("«FIELDS", "XCRD", longitude)
call csminp%put ("«FIELDS", "YCRD", latitude)

!**************************

! NetCDF soil file example

!**************************

! Set soil file name

call nc_soil%set_file_from cmd_arg("--nc_soil")

! Initialize NetCDF soil file

call init_nc_soil ()

! Read depth to base of layer at specified coordinates

call nc_soil%read("SLB", 1, SLB)
!*****************************

! NetCDF weather file example

!*****************************

! Set weather file name

call nc_wth%set_file_ from_cmd_arg("--nc_wth")

! Open weather file

call nc_wth%open ()

! Set coordinates for weather file

call nc_wth%set_lat_lon(latitude, longitude)

! Set start date for weather data as 150th day of 2015
call nc_wth%set_date (2015150)

22

10

15

20

25

! Read solar radiation starting with 150th day of 2015

call nc_wth%read ("SRAD",nc_wth%z_i, SRAD)

!**

! NetCDF genotype parameter file example

!**

! Set genotype parameter file name

call nc_gen$%$set_file_from_cmd_arg("--nc_gen")

! Open genotype parameter file

call nc_gen%open ()

! Set cultivar and ecotype indices to IB0488 (number for wheat cultivar Newton)

call nc_gen%$set_cul_eco("IB0488")

! Read cultivar parameter P1lV (vernalization sensitivity)

call nc_gen%read_cul ("P1V",P1V)

! Read ecotype parameter PARUE (Photosynthetically Active Radiation Use Efficiency)

call nc_gen%read_eco ("PARUE", PARUE)

! Read species parameter vector TRLFG (cardinal temperatures for leaf growth)

call nc_gen%$read_spe ("TRLFG", TRLFG)

end program

Appendix C: Example program for parent process that spawns DSSAT-CSM child processes
program dssat_mpi_parent_example
use mpi

use dssat_mpi

use dssat_cmd_arg

23

10

15

20

25

30

35

use dssat_netcdf

use ordered_array

implicit none

integer i,ntrt,len_arg

! Variables for MPI_Spawn_Multiple

integer n_dssat,trt_start,trt_end, sim,nseasons

character (len=1) :: rnmode

character (len=2) :: crop_code

character (len=3) :: rank_buff

character (len=25):: cmd

character (len=1) :: dssat_args

character (len=120) :: out_file_name

character (len=120) :: work_dir

real,dimension (9) :: xcrd,ycrd

integer,dimension(9) :: xcrd_i,ycrd_i

type (real_ordered_array) :: latitude, longitude

type (nf90_file) nf90_output

mpi_parent%varlist = "rvar,ivar"
out_file_name = "output.nc"

! Tnitialize MPI connection

call mpi_parent$%$init ()

!*************k*k*‘k*********k**k********************************

! Set control variables and spawn DSSAT-CSM child processes

!***

n_dssat = 2 ! Number of DSSAT-CSM children to spawn

24

trt_start = 1 ! Beginning of range for treatment levels to simulate

trt_end = 9 ! End of range for treatment levels to simulate
rnmode = "B" ! DSSAT-CSM run mode

crop_code = "WH" ! DSSAT-CSM crop code

dssat_args = " " ! Additional arguments passed to DSSAT-CSM
work_dir = "." ! Working directory

! Name of executable for DSSAT-CSM child process

cmd = "./dssat_mpi_child_example"

! Spawn DSSAT-CSM child processes
call mpi_parent%spawn_dssat_children(n_dssat,trt_start,trt_end, rnmode, &

crop_code, cmd, dssat_args,work_dir)

!**~k*~k**k*k**k*k******k*k******************************

! Set up NetCDF output file for simulated output

!**

nseasons = 10 ! Number of seasons to store simulated output

! Longitude values for output file

xcrd = (/-97.06, -97.06, -97.06,&
-97.07, -97.07, -97.07,&
-97.08, -97.08, -97.08/)

! Latitude values for output file

ycrd = (/36.11, 36.12, 36.13,%&
36.11, 36.12, 36.13,%&
36.11, 36.12, 36.13/)

! Insert coordinate variables into ordered array
do i=1,size (xcrd)

call longitude%insert (xcrd(i))

call latitude%$insert (ycrd(i))
end do

25

10

15

20

25

30

35

! Set corresponding ordered array index value for coordinates

do i=1, size (xcrd)

xcrd_1(i) = longitude%find(xcrd(i))
ycrd_1i(i) = latitude%$find(ycrd(i))
end do

! Create NetCDF output file

call nf90_output%create (out_file_name,overwrite=.TRUE.)

! Add coordinate and season dimensions
call nf90_output%add_dim("lat",latitude%curr_end)
call nf90_output%add_dim("lon", longitude%curr_end)

call nf90_output%add_dim("season",nseasons)

! Add coordinate and season variables
call nf90_output%add_var ("lat", (/"lat"/),nf90_float)
call nf90_output%add_var ("lon", (/"lon"/),nf90_float)

call nf90_output%add_var ("season", (/"season"/),nf90_int)

! Write values for coordinate and season variables

call nf90_output$write_variable("lat", (/1/), (/latitude%curr_end/), &
latitude%values)

call nf90_output%$write_variable ("lon", (/1/), (/longitude%curr_end/), &
longitude%values)

call nf90_output$write_variable ("season", (/1/), (/nseasons/), &

(/(i,1i=1,nseasons)/))
!‘k********************‘k*‘k********************

! Write simulated data to NetCDF output file

!****‘k*********k******************************

! Receive simulated data from DSSAT-CSM child processes

call mpi_parent%receive_registries()

26

10

15

20

25

30

! Close MPI connection

call mpi_parent%close ()
! Clean up DSSAT-CSM child process running directories (*nix OS specific)
do i=1,n_dssat
write (rank_buff," (i3)") i-1
call system("rm -r "//trim(adjustl (work_dir))//&
"/dssat_"//trim(adjustl (rank_buff)))

end do

! Write simulated data to NetCDF output file

call nf90_output%write_netcdf (mpi_parent,nseasons,xcrd_i,ycrd_1i)

! Close NetCDF output file

call nf90_output%close ()

end program dssat_mpi_parent_example

Appendix D: Example program that mimics a DSSAT-CSM child process

program dssat_mpi_child_example

use dssat_mpi

implicit none

integer 1i,season

real rvar

integer ivar

! Open MPI connection with parent process

call mpi_child%connect ()

! Set up seasonal registry with variable list from parent process

27

call seasonal_registry%csv_to_registry (mpi_child%varlist)
! Set address targets for rvar and ivar in seasonal_registry
call seasonal_registry%$set_target ("rvar", rvar)

5 call seasonal_registry%$set_target ("ivar", ivar)

! Mimic DSSAT-CSM simulations by calculating and storing values
! for rvar and ivar at each iteration
do i=1,size (mpi_child%trtno)
10 do season=1,10
rvar = mpi_child%trtno(i)*100. + seasonx10.
ivar = mpi_child%trtno(i)*100 + season
call seasonal_registry%$store()
end do
15 end do

! Send registry to parent process through MPI

call mpi_child%$send_registry(seasonal_registry)

20 ! Close down MPI connection with parent process

call mpi_child%close ()

end program

Appendix E: Header of Network Common Data Form (NetCDF) FileX

25 netcdf filex {
dimensions:
SIMULATION\ CONTROLS = 20 ;
lenl =1 ;
FIELDS = 7208 ;
30 CULTIVARS = 1 ;
len6 = 6 ;
len2 = 2 ;
TREATMENTS = 144160 ;

28

10

15

20

25

30

35

PLANTING\ DETAILS = 20 ;
FERTILIZERS = 20 ;

len5 = 5 ;
len0 = 2 ;
len3 = 3 ;
len7 = 7 ;

HARVEST\ DETAILS = 1 ;
len8 = 8 ;

lenl0 = 10 ;

lenl7 = 17 ;

variables:

char SUMRY (SIMULATION\ CONTROLS,
SUMRY:_FillValue =" " ;
char MESOL (SIMULATION\ CONTROLS,
MESOL:_Fillvalue = " " ;
float AREA (FIELDS) ;
AREA:_Fillvalue = -99.f ;
char CAOUT (SIMULATION\ CONTROLS,
CAQOUT:_Fillvalue = " " ;
char CHEM (SIMULATION\ CONTROLS,
CHEM:_Fillvalue = " " ;
char CHOUT (SIMULATION\ CONTROLS,
CHOUT:_FillValue = " " ;
char CNAME (CULTIVARS, len6) ;

CNAME: Fillvalue = " " ;

lenl)

lenl)

lenl)

lenl)

lenl)

char CO2 (SIMULATION\ CONTROLS, lenl) ;

CO2:_Fillvalue =" " ;
char CR(CULTIVARS, len2) ;

CR:_Fillvalue =" " ;
int CU(TREATMENTS) ;

CU:_FillValue = -99 ;
int CULTIVARS (CULTIVARS) ;

CULTIVARS:units = "count" ;

CULTIVARS:long_name = "CULTIVARS"

char DIOUT (SIMULATION\ CONTROLS,

lenl)

4

4

14

14

14

4

29

10

15

20

25

30

35

DIOUT:_Fillvalue =" " ;
char DISES (SIMULATION\ CONTROLS, lenl)
DISES:_Fillvalue =" " ;
int EDATE (PLANTING\ DETAILS) ;
EDATE:_FillValue = -99 ;
float ELEV (FIELDS) ;
ELEV:_ FillValue = -99.f ;
char EVAPO (SIMULATION\ CONTROLS, lenl)
EVAPO:_FillValue = " " ;
char FACD (FERTILIZERS, lenb) ;
FACD:_FillValue = " " ;
float FAMC (FERTILIZERS) ;
FAMC:_FillValue = -99.f ;
float FAMK (FERTILIZERS) ;
FAMK: FillValue = -99.f ;
float FAMN(FERTILIZERS) ;
FAMN:_FillValue = -99.f ;
float FAMO (FERTILIZERS) ;
FAMO:_FillValue = -99.f ;
float FAMP (FERTILIZERS) ;
FAMP:_FillValue = -99.f ;
int FDATE (FERTILIZERS) ;
FDATE:_FillValue = -99 ;
float FDEP (FERTILIZERS) ;

FDEP: FillValue = -99.f ;
char FERNAME (FERTILIZERS, len0) ;
FERNAME: _FillValue = " " ;
char FERTI (SIMULATION\ CONTROLS, lenl)

FERTI: _Fillvalue = " " ;
int FERTILIZERS (FERTILIZERS) ;
FERTILIZERS:units = "count"

FERTILIZERS:long_name = "FERTILIZERS"

float FHDUR(FIELDS) ;
FHDUR:_FillvValue = -99.f ;
int FIELDS (FIELDS) ;

10

15

20

25

30

35

FIELDS:units = "count"”
FIELDS:long_name = "FIELDS"
int FL(TREATMENTS) ;
FL:_FillValue = -99 ;
float FLDD (FIELDS) ;

FLDD:_FillValue = -99.f ;
float FLDS (FIELDS) ;
FILDS:_FillValue = -99.f ;

char FLDT(FIELDS, len3) ;
FLDT:_FillValue = " " ;

char FLHST (FIELDS, len3) ;
FLHST: _Fillvalue =" " ;

char FLNAME (FIELDS, len7) ;
FLNAME:_ _Fillvalue = " " ;

float FLOB(FIELDS) ;

FLOB:_FillValue = -99.f ;
float FLSA (FIELDS) ;
FLSA:_FillValue = -99.f ;
char FLST(FIELDS, len3) ;
FLST:_FillValue = " " ;
float FLWR(FIELDS) ;
FLWR:_FillValue = -99.f ;

char FMCD (FERTILIZERS, lenb) ;
FMCD:_FillValue = " " ;

char FNAME (SIMULATION\ CONTROLS, 1lenl) ;
FNAME: Fillvalue =" " ;

char FOCD (FERTILIZERS, len0) ;
FOCD:_FillValue = " " ;

int FROPT (SIMULATION\ CONTROLS) ;
FROPT:_FillValue = -99 ;

char GROUT (SIMULATION\ CONTROLS, lenl) ;
GROUT:_Fillvalue =" " ;

int HARVEST\ DETAILS (HARVEST\ DETAILS) ;

HARVEST\ DETAILS:units = "count"

HARVEST\ DETAILS:long_name = "HARVEST DETAILS"

31

10

15

20

25

30

35

char HARVS (SIMULATION\ CONTROLS,
HARVS:_ _Fillvalue =" " ;

float HBPC (HARVEST\ DETAILS) ;
HBPC:_FillValue = -99.f ;

float HCOM (HARVEST\ DETAILS) ;
HCOM:_FillValue = -99.f ;

float HDATE (HARVEST\ DETAILS) ;
HDATE:_FillValue = -99.f ;

int HFRST (SIMULATION\ CONTROLS) ;
HFRST:_FillvValue = -99 ;

int HLAST (SIMULATION\ CONTROLS) ;
HLAST:_FillValue = -99 ;

lenl)

char HNAME (HARVEST\ DETAILS, len5) ;

HNAME: Fillvalue =" " ;
float HPC (HARVEST\ DETAILS) ;
HPC:_FillValue = -99.f ;
float HPCNP (SIMULATION\ CONTROLS)
HPCNP:_FillValue = -99.f ;
float HPCNR (SIMULATION\ CONTROLS)
HPCNR:_FillValue = -99.f ;
float HSIZE (HARVEST\ DETAILS) ;
HSIZE:_FillValue = -99.f ;
char HSTG (HARVEST\ DETAILS, lenb)
HSTG:_FillValue = " " ;
char HYDRO (SIMULATION\ CONTROLS,
HYDRO:_Fillvalue =" " ;
int IC(TREATMENTS) ;
IC:_FillValue = -99 ;
char ID_FIELD (FIELDS, len8) ;
ID_FIELD:_FillValue =" " ;
char ID_SOIL(FIELDS, 1lenl0O) ;
ID_SOIL:_Fillvalue =" " ;
float IMDEP (SIMULATION\ CONTROLS)
IMDEP:_FillValue = -99.f ;
char IMETH (SIMULATION\ CONTROLS,

4

4

4

lenl)

4

lenb)

4

14

4

32

10

15

20

25

30

35

IMETH:_Fillvalue = " " ;

char INCON (SIMULATION\ CONTROLS, lenl)
INCON:_Fillvalue =" " ;

char INFIL(SIMULATION\ CONTROLS, lenl)
INFIL: _FillValue =" " ;

char INGENO (CULTIVARS, len6) ;
INGENO:_FillValue = " " ;

float IRAMT (SIMULATION\ CONTROLS) ;
IRAMT:_FillValue = -99.f ;

float IREFF (SIMULATION\ CONTROLS) ;
IREFF:_FillvValue = -99.f ;

char IROFF (SIMULATION\ CONTROLS, lenb)
IROFF:_FillValue = " " ;

char IRRIG(SIMULATION\ CONTROLS, lenl)
IRRIG: _Fillvalue =" " ;

float ITHRL (SIMULATION\ CONTROLS) ;
ITHRL: _FillValue = -99.f ;

float ITHRU(SIMULATION\ CONTROLS) ;
ITHRU:_FillValue = -99.f ;

char LIGHT (SIMULATION\ CONTROLS, lenl)
LIGHT:_FillValue =" " ;

float LNFER(FERTILIZERS) ;
LNFER:_FillValue = -99.f ;

float LNHAR (HARVEST\ DETAILS) ;
LNHAR: Fillvalue = -99.f ;

char LONG (SIMULATION\ CONTROLS, lenl) ;
LONG:_FillValue = " " ;

int MC (TREATMENTS) ;
MC:_Fillvalue = -99 ;

int ME (TREATMENTS) ;
ME:_FillValue = -99 ;

char MESEV (SIMULATION\ CONTROLS, lenl)
MESEV:_ FillValue = " " ;

char MESOM (SIMULATION\ CONTROLS, lenl)
MESOM:_FillValue = " " ;

10

15

20

25

30

35

int MF (TREATMENTS) ;

MF: _FillvValue = -99 ;
int MH(TREATMENTS) ;

MH: FillValue = -99 ;
int MI (TREATMENTS) ;

MI: _Fillvalue = -99 ;
char MIOUT (SIMULATION\ CONTROLS,

MIOUT:_FillValue =" " ;
int MP (TREATMENTS) ;

MP: FillvValue = -99 ;
int MR (TREATMENTS) ;

MR:_FillValue = -99 ;
int MT (TREATMENTS) ;

MT:_FillvValue = -99 ;

float NAMNT (SIMULATION\ CONTROLS)

NAMNT:_FillValue = -99.f ;
char NAOFF (SIMULATION\ CONTROLS,
NAOFF:_Fillvalue = " " ;
char NCODE (SIMULATION\ CONTROLS,
NCODE:_Fillvalue = " " ;
char NIOUT (SIMULATION\ CONTROLS,
NIOUT:_ Fillvalue = " " ;
char NITRO(SIMULATION\ CONTROLS,
NITRO:_Fillvalue = " " ;

float NMDEP (SIMULATION\ CONTROLS)

NMDEP:_FillValue = -99.f ;

float NMTHR (SIMULATION\ CONTROLS)

NMTHR:_FillValue = -99.f ;
int NREPS (SIMULATION\ CONTROLS)
NREPS:_FillvValue = -99 ;
int NSWIT (SIMULATION\ CONTROLS)
NSWIT:_ _FillValue = -99 ;
int NYERS (SIMULATION\ CONTROLS)
NYERS:_Fillvalue = -99 ;
char OPOUT (SIMULATION\ CONTROLS,

4

4

4

lenl)

4

lenb)

lenb)

lenl)

lenl)

4

4

lenl)

14

14

14

14

14

4

34

10

15

20

25

30

35

OPOUT:_Fillvalue =" " ;

char OVVEW (SIMULATION\ CONTROLS, 1lenl) ;
OVVEW:_FillValue = " " ;

float PAGE (PLANTING\ DETAILS) ;
PAGE:_FillValue = -99.f ;

int PDATE (PLANTING\ DETAILS) ;
PDATE:_FillValue = -99 ;

float PENV (PLANTING\ DETAILS) ;
PENV:_FillValue = -99.f ;

int PFRST (SIMULATION\ CONTROLS) ;
PFRST:_FillValue = -99 ;

float PH20D (SIMULATION\ CONTROLS) ;
PH20D:_FillValue = -99.f ;

float PH20L (SIMULATION\ CONTROLS) ;
PH20L:_FillvValue = -99.f ;

float PH20U (SIMULATION\ CONTROLS) ;
PH20U:_FillValue = -99.f ;

char PHOSP (SIMULATION\ CONTROLS, 1lenl) ;
PHOSP:_Fillvalue =" " ;

char PHOTO (SIMULATION\ CONTROLS, lenl) ;
PHOTO:_FillvValue = " " ;

char PLANT (SIMULATION\ CONTROLS, 1lenl) ;
PLANT: _Fillvalue =" " ;

int PLANTING\ DETAILS (PLANTING\ DETAILS) ;
PLANTING\ DETAILS:units = "count" ;
PLANTING\ DETAILS:long_name = "PLANTING DETAILS"

int PLAST (SIMULATION\ CONTROLS) ;
PLAST: _FillValue = -99 ;

float PLDP (PLANTING\ DETAILS) ;
PLDP:_FillValue = -99.f ;

char PLDS (PLANTING\ DETAILS, lenl) ;
PLDS:_FillValue = " " ;

char PLME (PLANTING\ DETAILS, lenl) ;
PLME:_FillValue = " " ;

char PLNAME (PLANTING\ DETAILS, len0) ;

35

10

15

20

25

30

35

PLNAME:_FillValue =" " ;
float PLPH(PLANTING\ DETAILS) ;
PLPH: FillValue = -99.f ;
float PLRD (PLANTING\ DETAILS) ;
PLRD:_FillValue = -99.f ;
float PLRS (PLANTING\ DETAILS) ;
PLRS:_FillValue = -99.f ;
float PLWT (PLANTING\ DETAILS) ;
PLWT:_FillValue = -99.f ;
char POTAS (SIMULATION\ CONTROLS,
POTAS:_Fillvalue =" " ;
float PPOE (PLANTING\ DETAILS) ;
PPOE:_FillValue = -99.f ;
float PPOP (PLANTING\ DETAILS) ;
PPOP:_FillValue = -99.f ;
float PSTMN (SIMULATION\ CONTROLS
PSTMN:_ FillValue = —-99.f ;
float PSTMX (SIMULATION\ CONTROLS
PSTMX:_FillValue = -99.f ;
char RESID (SIMULATION\ CONTROLS,
RESID:_Fillvalue =" " ;
float RIDEP (SIMULATION\ CONTROLS
RIDEP:_FillValue = -99.f ;
float RIPCN(SIMULATION\ CONTROLS
RIPCN:_FillValue = -99.f ;
int RSEED (SIMULATION\ CONTROLS)
RSEED:_FillValue = -99 ;
int RTIME (SIMULATION\ CONTROLS)
RTIME:_FillvValue = -99 ;
int SA (TREATMENTS) ;
SA:_FillvValue = -99 ;
int SDATE (SIMULATION\ CONTROLS)
SDATE:_FillvValue = -99 ;

int SIMULATION\ CONTROLS (SIMULATION\ CONTROLS)

SIMULATION\ CONTROLS:units =

)

)

)

)

14

4

4

lenl) ;

4

4

lenl) ;

4

4

"count"

36

4

10

15

20

25

30

35

SIMULATION\ CONTROLS:long_name = "SIMULATION
float SLAS(FIELDS) ;

SLAS:_Fillvalue = -99.f ;
float SLDP (FIELDS) ;

SLDP:_FillValue = -99.f ;
float SLEN(FIELDS) ;

SLEN:_FillvValue = -99.f ;

char SLTX(FIELDS, len2) ;
SLTX:_ FillValue =" " ;

int SM(TREATMENTS) ;
SM:_FillvValue = -99 ;

char SMODEL (SIMULATION\ CONTROLS, lenO) ;
SMODEL:_FillValue = " " ;

char SNAME (SIMULATION\ CONTROLS, lenl7) ;
SNAME:_FillValue = " " ;

float SPRL(PLANTING\ DETAILS) ;
SPRL:_FillValue = —-99.f ;

char START (SIMULATION\ CONTROLS, lenl) ;
START:_FillvValue =" " ;

char SYMBI (SIMULATION\ CONTROLS, lenl) ;
SYMBI: FillValue = " " ;

char TILL(SIMULATION\ CONTROLS, lenl) ;
TILL: FillValue =" " ;

char TNAME (TREATMENTS, lenO) ;
TNAME:_FillValue = " " ;

int TREATMENTS (TREATMENTS) ;
TREATMENTS:units = "count"
TREATMENTS:long_name = "TREATMENTS"

char WAOUT (SIMULATION\ CONTROLS, 1lenl) ;
WAOUT:_FillValue =" " ;

char WATER (SIMULATION\ CONTROLS, lenl) ;
WATER:_FillValue = " " ;

char WSTA(FIELDS, len8) ;
WSTA:_FillValue = " " ;

char WTHER (SIMULATION\ CONTROLS, lenl) ;

37

CONTROLS"

4

10

15

20

25

30

35

WTHER:_Fillvalue = " " ;

float XCRD (FIELDS) ;

XCRD:_FillValue = -99.f ;
float YCRD (FIELDS) ;

YCRD:_FillValue = -99.f ;
int lenO (lenO) ;

lenO:units = "count"

lenO:long_name = "lenO" ;
int lenl (lenl) ;

lenl:units = "count"

lenl:long_name = "lenl"
int lenlO (lenlO) ;

lenlO:units = "count" ;

lenl0:1long_name = "lenlO"
int lenl7 (lenl?7) ;

lenl7:units = "count" ;

lenl7:1long_name = "lenl7"
int len2(len2) ;

len2:units = "count"

len2:1long_name = "len2" ;
int len3(len3) ;

len3:units = "count"

len3:1long_name = "len3" ;
int len5(len5) ;

len5:units = "count" ;

len5:1long_name = "lenb" ;
int len6(len6) ;

len6:units = "count"

len6:1long_name = "lené6" ;
int len7(len7) ;

len7:units = "count"

len7:1long_name = "len7" ;
int len8(len8) ;

len8:units = "count"

len8:1long_name = "len8" ;

14

7

38

10

15

20

25

30

Appendix F: Header of Network Common Data Form (NetCDF) soil input file

netcdf soil {
dimensions:
latitude = 67 ;
longitude = 171 ;
layer = UNLIMITED ; // (6 currently)
variables:
float latitude (latitude) ;
latitude:units = "degrees_north"
latitude:long_name = "latitude"
float longitude (longitude) ;
longitude:units = "degrees_east"
longitude:long_name = "longitude"
int layer (layer) ;
layer:units = "unknown" ;
layer:long _name = "layer" ;

float SLB(layer, latitude, longitude)

SLB:_FillValue = -99.f ;
SLB:missing_value = -99.f ;
SLB:long_name = "SLB" ;

float SALB(latitude, longitude) ;

SALB:_Fillvalue = -99.f ;
SALB:missing_value = -99.f ;
SALB:long_name = "SALB" ;

float slope_r(latitude, longitude) ;

slope_r:_FillValue = -99.f ;
slope_r:missing_value = -99.f ;
slope_r:long_name = "slope_xr"

float SLDR(latitude, longitude) ;
SLDR:_FillvValue = -99.f ;

SLDR:missing_value = -99.f ;

4

14

14

39

10

15

20

25

30

35

SLDR:long_name =

float SLLL(layer, latitude, longitude)
SLLL:_FillValue
SLLL:missing_value
SLLL:long_name =
float SDUL (layer, latitude, longitude)
SDUL:_FillValue
SDUL:missing_value
SDUL:long_name =
float SSAT (layer, latitude, longitude)
SSAT:_FillValue
SSAT:missing_value
SSAT:long_name = "SSAT"
float SSKS(layer, latitude, longitude)
SSKS:_FillValue
SSKS:missing_value
SSKS:long_name = "SSKS"
float SBDM(layer, latitude, longitude)
SBDM:_FillValue
SBDM:missing_value
SBDM:long_name = "SBDM"
float SLOC (layer, latitude, longitude)
SLOC:_FillValue
SLOC:missing_value
SLOC:long_name = "SLOC"
float SLCL(layer, latitude, longitude)
SLCL:_FillValue
SLCL:missing_value
SLCL:long_name = "SLCL"
float SLSI(layer, latitude, longitude)
SLSI: FillValue
SLSI:missing_value
SLSI:long_name = "SLSI"
float SLCF (layer,

latitude, longitude)

SLCF:_FillValue

40

SLCF:missing_value = -99.f ;
SLCF:long_name = "SLCE"
float SRGF (layer, latitude, longitude) ;

SRGF:_Fillvalue = -99.f ;
5 SRGF:missing_value = -99.f ;
SRGF:long_name = "SRGE"

float SLRO(latitude, longitude) ;

SLRO:_FillValue = -99.f ;
SLRO:missing_value = -99.f ;
10 SLRO:long_name = "SLRO"

float SLUl (latitude, longitude) ;

SLUl:_FillValue = -99.f ;

SLUl:grid_mapping = "crs" ;

SLUl:proj4 = "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0" ;
15 int crs ;

crs:proj4 = "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0" ;

// global attributes:

:crs = "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0" ;
20 :crs_format = "PROJ.4" ;

:Conventions = "CF-1.4" ;

Appendix G: Header of Network Common Data Form (NetCDF) weather input file

netcdf weather {
25 dimensions:
longitude = 171 ;
latitude = UNLIMITED ; // (67 currently)
DATE = 7670 ;
variables:
30 float longitude (longitude) ;
float latitude (latitude) ;
float TAMP (latitude, longitude) ;
TAMP:units = "degree C"

41

10

15

20

25

30

35

TAMP: FillValue

-3.4e+38f

TAMP:missing_value = -3.4e+3

TAMP:long_name = "TAMP"

float TAV (latitude,

1

ongitude) ;

TAV:units = "degree C"

TAV:_Fillvalue =

TAV:missing_valu

TAV:1long_name =
float ELEV (latitude,

e

—-3.4e+38f ;
= —-3.4e+38
TAV" ;

longitude)

ELEV:units = "meters"

ELEV:_FillValue

-3.4e+38f

ELEV:missing_value = -3.4e+3

ELEV:long_name = "ELEV" ;

float REFHT (latitude

4

longitude)

REFHT:units = "meters"

REFHT: _FillValue

= —-3.4e+38f

REFHT:missing_value = -3.4e+

REFHT:long_name

"REFHT" ;

float WINDHT (latitude, longitude

WINDHT :units = "meters" ;

WINDHT:_FillValu

e

= —-3.4e+38

WINDHT :missing_value = -3.4e

WINDHT:long_name = "WINDHT"

int DATE (DATE) ;
float RHUM (latitude,

longitude,

RHUM:units = "percent”

RHUM:_FillValue

-3.4e+38f

RHUM:missing_value = -3.4e+3

RHUM: long_name = "RELH" ;

float WIND (latitude,

longitude,

WIND:units = "km per day"

WIND:_ _FillValue

-3.4e+38f

WIND:missing_value = -3.4e+3

WIND:long_name = "WS2M"

float RAIN (latitude,

longitude,

4

8f ;

£

4

4

8f ;

4

4

38f ;

)

£

+38f

DATE)

4

8f ;

DATE)

4

8f ;

DATE)

4

14

14

14

42

RAIN:units = "mm"

RAIN:_FillValue = -3.4e+38f ;
RAIN:missing_value = -3.4e+38f ;
RAIN:long_name = "RAIN" ;

5 float TMIN (latitude, longitude, DATE) ;
TMIN:units = "degrees C"
TMIN:_FillValue = -3.4e+38f ;
TMIN:missing _value = -3.4e+38f ;
TMIN:long_name = "TMIN" ;

10 float TMAX (latitude, longitude, DATE) ;
TMAX:units = "degrees C" ;
TMAX:_FillValue = -3.4e+38f ;

TMAX :missing_value = -3.4e+38f ;
TMAX:long_name = "TMAX"

15 float SRAD (latitude, longitude, DATE) ;
SRAD:units = "MJ" ;
SRAD: _FillValue = —-3.4e+38f ;
SRAD:missing_value = -3.4e+38f ;
SRAD:long_name = "SRAD"

20

// global attributes:

:crs = "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0" ;
:crs_format = "PROJ.4" ;
:Conventions = "CF-1.4" ;

25 }

Appendix H: Header of Network Common Data Form (NetCDF) genotype specific parameter input file
netcdf genetic_parameters {
dimensions:
11 = 1 ;
30 16 = 6 ;
13 = 3 ;
110 = 10 ;
14 = 4 ;

43

5

10

15

20

25

30

35

18

111
118
112

8 ;
11
18 ;
12 ;

variables:

int

int

int

int

int

int

int

int

int

int

int

int

int

int

int

EC0999991
EC0999991
EC0999992
EC0999992
ECODFAULT
ECODFAULT
ECOCAWHO1
ECOCAWHO1
ECOUSWHO1
ECOUSWHO1
ECOUKWHO1
ECOUKWHO1
ECOAZWH18
ECOAZWH18
ECOCIO0001
ECOCIO0001
ECOASA001
ECOASA001
ECOG2P001
ECOG2P001
ECOG2P002
ECOG2P002
CUL999991
CUL999991
CUL999992
CUL999992
CULDFAULT
CULDFAULT
CULIB1500
CULIB1500

4

:_FillvValue

4

:_FillValue

4

:_FillvValue

4

:_FillValue

4

:_Fillvalue

4

:_Fillvalue

4

:_FillvValue

4

:_Fillvalue

4

:_FillvValue

4

:_Fillvalue

4

:_Fillvalue

4

:_Fillvalue

4

:_FillValue

14

:_FillvValue

4

:_FillValue

-99

-99

-99

-99

-99

-99

-99

-99

-99

-99

-99

-99

-99

-99

-99

44

10

15

20

25

30

35

int

int

int

int

int

int

int

int

int

CULIB0488

CULIB0488:_FillValue =
CULIB1015 ;
CULIB1015:_FillValue =
CULROTSO01 ;
CULROTS01l:_FillValue =
CULAWO071 ;
CULAWOO71:_FillValue =
CULCIOO001 ;
CULCIOO001:_FillvValue =
CULASAOOL ;
CULASAQOQ0l:_FillValue =
CULG2P001 ;
CULG2P001l:_FillValue =
CULG2P002 ;
CULG2P002:_FillValue =
11(11) ;

1l:units = "count" ;
1l1:long_name = "11" ;

4

float PGERM(11) ;

PGERM:_FillValue

float PEMRG(11l) ;

PEMRG:_FillValue

float PO (11)
PO:_Fillvalue =

float P6(11)

P6:_FillValue

float PPFPE(11) ;

PPFPE:_FillValue

float PPTHR(11l) ;

PPTHR: _FillValue

float PPEND(11) ;

PPEND:_FillValue

float RLIGS(11l) ;

RLIG%: _FillValue

99.

99.

-99.

-99.

-99.

-99.

-99.

-99.

-99

-99

-99

-99

-99

-99

-99

-99

45

10

15

20

25

30

35

float RLWR(11l) ;

RLWR:_FillvValue = -99.f
float RSEN(11l) ;

RSEN:_FillvValue = -99.f
float RRESP (11) ;

RRESP:_FillvValue = -99.f
float RLDGR(11l) ;

RLDGR:_FillValue = -99.f
float LLIG%(11l) ;

LLIG%:_FillValue = -99.f
float LAXS(11l) ;

LAXS: FillValue = -99.f
float LSHFR(11l) ;

LSHFR:_FillvValue = -99.f
float LSHAW(1l1l) ;

LSHAW: FillValue = -99.f
float PHL1 (11) ;

PHL1:_ _FillValue = -99.f
float PHF1(11) ;

PHF1l: FillValue = -99.f
float SLAMN(11l) ;

SLAMN:_FillValue = -99.f
float SLACF (11) ;

SLACF:_FillValue = -99.f
float LLIFE(11) ;

LLIFE:_FillValue = -99.f
float LWLOS (11) ;

LWLOS:_ _FillValue = -99.f
float LRPHS(11l) ;

LRPHS:_FillValue = -99.f
int 16(16) ;

l6:units = "count"

l6:1long_name = "16" ;
float LASF (16) ;

LASF: FillValue = -99.f

14

14

4

14

4

14

4

14

14

4

14

46

10

15

20

25

30

35

int 13(13) ;

13:units = "count"

13:1long_name = "13"

float CHTS%(13) ;
CHT%:_FillValue
float CLA%(13) ;
CLA%:_FillValue
float TPAR(1l1l) ;
TPAR:_FillValue
float TSRAD(11l) ;
TSRAD:_FillValue
float TGRO2(11) ;
TGRO2:_FillValue
float RS%X(11l) ;
RS%X:_FillvValue
float RSUSE (11) ;
RSUSE:_FillValue
float SLIG%(11) ;
SLIG%:_FillvValue
float SAWS (11) ;
SAWS:_FillvValue
float SGPHE (11) ;
SGPHE:_FillValue
float SSPHS(11) ;
SSPHS:_FillValue
float SSEN%(11) ;
SSEN%:_FillValue
float CHFR(11l) ;
CHFR:_FillValue
float CHSTG(11l) ;
CHSTG:_FillValue
float GLIG%(11l) ;
GLIGS%:_Fillvalue
float SDWT (11) ;
SDWT:_FillValue

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

14

14

4

14

14

14

14

14

14

14

14

14

14

14

14

47

10

15

20

25

30

35

float SDAFR(11) ;
SDAFR:_FillValue = -99.f ;
int 110(110) ;
110:units = "count" ;
110:1long_name = "110" ;
float CO2RF (110) ;

CO2RF:_FillValue = -99.f ;
float CO2F (110) ;
CO2F:_FillValue = -99.f ;
float PTFMX(11l) ;
PTFMX:_FillValue = -99.f ;
float PTFS(16) ;
PTFS:_FillValue = -99.f ;
float PTFA(16) ;
PTFA:_FillValue = -99.f ;
float STFR(16) ;
STFR:_FillValue = —-99.f ;
float TKUH(11l) ;
TKUH:_FillValue = -99.f ;
float HDUR(11l) ;
HDUR:_FillValue = -99.f ;
float TKLF (11) ;
TKLF:_FillValue = -99.f ;
int 14(14) ;
1l4:units = "count" ;
14:1long_name = "14"
float TRGEM(14) ;
TRGEM:_FillValue = -99.f ;
float TRDV1 (14) ;
TRDV1: FillValue = -99.f ;
float TRDV2 (14) ;
TRDV2:_FillValue = -99.f ;
float TRLEFG(14) ;
TRLFG:_FillValue = -99.f ;

float TRPHS (14) ;

48

10

15

20

25

30

35

TRPHS: FillValue =
float TRVRN(14) ;
TRVRN:_FillValue =
float TRHAR(14) ;
TRHAR: FillValue =
float TRGFW(14) ;
TRGFW:_FillValue =
float TRGEFN(14) ;
TRGFN:_FillValue =
float EORATIO(11l) ;
EORATIO:_FillValue
float RWUPM(11l) ;
RWUPM:_FillValue =
float RWUMX (11l) ;

RWUMX:_FillValue
float WFPU(11l) ;

WFPU:_FillValue =
float WFPGF (11) ;

WFPGF:_FillValue

float WFGU (11l) ;
WFGU:_FillValue =
float WEFTU(11) ;
WETU:_FillValue =
float WFTL(11) ;
WFTL:_FillValue =
float WEFSU(11l) ;
WESU:_FillValue =
float WEGEU(11l) ;
WFGEU:_FillValue =
float WFRGU (11l) ;
WFRGU:_FillValue =
float LLOSW(11l) ;
LLOSW:_FillvValue =
float NH4MN(11l) ;
NH4MN: _FillValue =

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

14

49

10

15

20

25

30

35

float NO3MN(11l) ;
NO3MN:_FillValue =
float RTNO3(11l) ;
RTNO3:_FillValue =
float RTNH4 (11) ;
RTNH4:_FillValue =
float NTUPF (11) ;
NTUPF:_FillValue =
float GNSMX(11l) ;
GN%MX:_FillValue =
float SDN%(11) ;
SDN%: FillValue =
int 18(18) ;
18:units = "count"
18:1long_name = "18
float LN%S(18) ;
LN%S:_FillValue =
float SN%S(18) ;
SN%S:_FillValue

float RN%S(18) ;
RN%S:_FillValue =

float LNSMN(18) ;
LNSMN:_FillValue

float SN$MN(18) ;
SN$MN:_ FillValue =

float RNSMN (18) ;

RN$MN:_FillValue
float NLAB%(11l) ;

NLAB%:_FillValue =
float NFPU(11) ;

NFPU:_FillValue

float NFPL(11) ;
NFPL:_FillValue =

float NFGU(11) ;
NFGU:_FillValue

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

14

14

14

14

14

14

50

10

15

20

25

30

35

float NFGL(11) ;

NFGL:_FillvValue = -99.f
float NFTU(11) ;
NEFTU:_FillValue = -99.f
float NFTL(11) ;
NFTL:_FillValue = -99.f
float NFSU(11l) ;
NFSU:_FillValue = -99.f
float NFSF(11) ;
NFSF:_FillvValue = -99.f
float NCRG(11l) ;
NCRG:_FillvValue = -99.f
float LLOSN(11l) ;
LLOSN:_FillvValue = -99.f
int 111(111) ;
111l:units = "count" ;
111:long_name = "111" ;
float P1(111) ;
Pl: _FillValue = -99.f ;
float P2FR1(111) ;
P2FR1:_FillValue = -99.f
float P2 (111) ;
P2:_FillvValue = -99.f ;
float P3(111) ;
P3:_Fillvalue = -99.f ;
float P4FR1(111) ;
P4FR1:_FillValue = -99.f
float P4FR2(111) ;
P4FR2:_FillValue = -99.f
float P4(111) ;
P4:_FillValue = -99.f ;
float VEFF (111) ;
VEFF:_FillValue = -99.f
float PARUE (111) ;
PARUE: FillValue = -99.f

14

14

14

14

14

10

15

20

25

30

35

float PARU2(111) ;
PARU2:_FillValue
float PHL2 (111) ;
PHL2:_FillValue
float PHF3(111) ;
PHF3:_FillValue
float LA1S(111) ;
LAl1S: FillValue
float LAFV(111l) ;
LAFV:_FillValue
float LAFR(111) ;
LAFR: _FillValue
float SLAS(111) ;
SLAS:_Fillvalue
float LSPHS(111) ;
LSPHS: FillValue
float LSPHE (111) ;
LSPHE:_FillValue
float TIL\#S(11l1l) ;
TIL\#S:_Fillvalu
float TIPHE (111) ;
TIPHE:_FillValue
float TIFAC(11l1l) ;
TIFAC: _FillValue
float TDPHS (111) ;
TDPHS:_FillValue
float TDPHE (111) ;
TDPHE: _FillValue
float TDFAC(111) ;
TDFAC:_FillValue
float RDGS(111) ;
RDGS:_FillValue
float HTSTD(111) ;
HTSTD:_FillValue
float AWNS (111) ;

e

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

-99.f

14

14

4

14

14

4

52

10

15

20

25

30

35

AWNS: FillValue = -99.f
float KCAN(111l) ;
KCAN:_Fillvalue = -99.f
float RS%S(111) ;
RS%S:_FillValue = -99.f
float GN%S(111) ;
GN%S:_FillValue = -99.f
float GN%MN(111) ;
GN%MN:_FillValue = -99.f
float TKFH(111l) ;
TKFH:_FillValue = -99.f
int 118 (118) ;
118:units = "count" ;
118:1long_name = "118" ;
int 112 (112) ;
112:units = "count" ;
112:1ong_name = "112" ;
char VAR-NAME (112, 118) ;

VAR-NAME:_ FillValue =

char EXP\# (112, 14)
EXP\#:_FillvValu
char ECONO (112, 16)
ECONO:_FillValu
float P1V(112) ;
P1V:_FillValue
float P1D(112) ;
P1D:_FillValue
float P5(112) ;
P5:_Fillvalue =
float G1(112) ;
Gl: _FillValue =
float G2 (112) ;
G2:_FillValue =
float G3(112) ;
G3:_FillvValue =

e

e

4

14

-99.

-99.

-99.f

-99.f

-99.f

-99.f

14

n

53

float PHINT (112)

4

PHINT:_FillvValue = -99.f

14

Author contributions. Phillip D. Alderman performed all tasks described in this article.

Competing interests. The author declares no competing interests.

Acknowledgements. This work was supported in part by the USDA National Institute of Food and Agriculture, Hatch project OKL03023, and
by the National Science Foundation under Grant No. OIA-1301789. The computing for this project was performed at the High Performance
Computing Center at Oklahoma State University (OSU-HPCC) supported in part through the National Science Foundation grant OAC-
1531128. Technical support was provided by Jesse Schafer (Head of Operations OSU-HPCC).

54

10

15

20

25

30

35

References

Alderman, P. D.: A comprehensive R interface for the DSSAT Cropping Systems Model, Comput. Electron. Agr., 172, 105 325, 2020a.

Alderman, P. D.: DSSAT: A Comprehensive R Interface for the DSSAT Cropping Systems Model, R package version 0.0.2, 2020b.

Allred, B., Hovick, T., and Fuhlendorf, S.: okmesonet: Retrieve Oklahoma Mesonet climatological data, https://CRAN.R-project.org/
package=okmesonet, R package version 0.1.5, 2014.

Brock, F. V., Crawford, K. C., Elliott, R. L., Cuperus, G. W., Stadler, S. J., Johnson, H. L., and Eilts, M. D.: The Oklahoma Mesonet: a
technical overview, Journal of Atmospheric and Oceanic Technology, 12, 5-19, 1995.

DSSAT Foundation: DSSAT Overview, https://dssat.net/about, 2019.

Elliott, J., Kelly, D., Chryssanthacopoulos, J., Glotter, M., Jhunjhnuwala, K., Best, N., Wilde, M., and Foster, 1.: The par-
allel system for integrating impact models and sectors (pSIMS), Environmental Modelling & Software, 62, 509 — 516,
https://doi.org/10.1016/j.envsoft.2014.04.008, http://www.sciencedirect.com/science/article/pii/S1364815214001121, 2014.

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.:
The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes, Scientific Data, 2, 1-21,
2015.

Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A.,
Castain, R. H., Daniel, D. J., Graham, R. L., and Woodall, T. S.: Open MPI: Goals, Concept, and Design of a Next Generation MPI
Implementation, in: Proceedings, 11th European PVM/MPI Users’ Group Meeting, pp. 97-104, Budapest, Hungary, 2004.

GDAL/OGR contributors: GDAL/OGR Geospatial Data Abstraction software Library, Open Source Geospatial Foundation, https://gdal.org,
2020.

Gesch, D. B., Evans, G. A., Oimoen, M. J., and Arundel, S.: The National Elevation Dataset, in: Digital Elevation Model Technologies and
Applications: The DEM Users Manual 3rd Edition, edited by Maune, D. F. and Nayegandhi, A., chap. 4, pp. 83-110, American Society
for Photogrammetry and Remote Sensing, 2018.

Griler, B., Pebesma, E., and Heuvelink, G.: Spatio-Temporal Interpolation using gstat, The R Journal, 8, 204218, https://journal.r-project.
org/archive/2016/RJ-2016-014/index.html, 2016.

Hijmans, R. J.: raster: Geographic Data Analysis and Modeling, https://CRAN.R-project.org/package=raster, R package version 3.3-13,
2020.

Hoogenboom, G., Porter, C., Shelia, V., Boote, K., Singh, U., White, J., Hunt, L., Ogoshi, R., Lizaso, J., Koo, J., Asseng, S., Singels, A.,
Moreno, L., and Jones, J.: Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7.5, Gainesville, Florida, USA,
https://DSSAT.net, 2019.

Tannone, R.: DiagrammeR: Graph/Network Visualization, https://CRAN.R-project.org/package=DiagrammeR, R package version 1.0.6.1,
2020.

Jang, W. S., Lee, Y., Neff, J. C., Im, Y., Ha, S., and Doro, L.: Development of an EPIC parallel computing framework to facilitate re-
gional/global gridded crop modeling with multiple scenarios: A case study of the United States, Computers and Electronics in Agri-
culture, 158, 189 — 200, https://doi.org/https://doi.org/10.1016/j.compag.2019.02.004, http://www.sciencedirect.com/science/article/pii/
S0168169918315175, 2019.

Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L., Wilkens, P. W., Singh, U., Gijsman, A. J., and Ritchie,
J. T.: The DSSAT cropping system model, European Journal of Agronomy, 18, 235-265, 2003.

55

https://CRAN.R-project.org/package=okmesonet
https://CRAN.R-project.org/package=okmesonet
https://CRAN.R-project.org/package=okmesonet
https://dssat.net/about
https://doi.org/10.1016/j.envsoft.2014.04.008
http://www.sciencedirect.com/science/article/pii/S1364815214001121
https://gdal.org
https://journal.r-project.org/archive/2016/RJ-2016-014/index.html
https://journal.r-project.org/archive/2016/RJ-2016-014/index.html
https://journal.r-project.org/archive/2016/RJ-2016-014/index.html
https://CRAN.R-project.org/package=raster
https://DSSAT.net
https://CRAN.R-project.org/package=DiagrammeR
https://doi.org/https://doi.org/10.1016/j.compag.2019.02.004
http://www.sciencedirect.com/science/article/pii/S0168169918315175
http://www.sciencedirect.com/science/article/pii/S0168169918315175
http://www.sciencedirect.com/science/article/pii/S0168169918315175

10

15

20

25

30

35

Kang, S., Wang, D., Nichols, J., Schuchart, J., Kline, K., Wei, Y., Ricciuto, D., Wullschleger, S., Post, W., and Izaurralde, R.:
Development of mpi_EPIC model for global agroecosystem modeling, Computers and Electronics in Agriculture, 111, 48 —
54, https://doi.org/https://doi.org/10.1016/j.compag.2014.12.004, http://www.sciencedirect.com/science/article/pii/S0168169914003147,
2015.

McPherson, R. A, Fiebrich, C. A., Crawford, K. C., Kilby, J. R., Grimsley, D. L., Martinez, J. E., Basara, J. B., Illston, B. G., Morris, D. A,
Kloesel, K. A., Melvin, A. D., Shrivastava, H., Wolfinbarger, J. M., Bostic, J. P,, Demko, D. B., Elliott, R. L., Stadler, S. J., Carlson, J. D.,
and Sutherland, A. J.: Statewide Monitoring of the Mesoscale Environment: A Technical Update on the Oklahoma Mesonet, Journal of
Atmospheric and Oceanic Technology, 24, 301 — 321, https://doi.org/10.1175/JTECH1976.1, https://journals.ametsoc.org/view/journals/
atot/24/3/jtech1976_1.xml, 2007.

Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 3.1, Knoxville, Tennessee, USA, https://www.
mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf, 2015.

National Agricultural Statistics Service: Cropland Data Layer, United States Department of Agriculture, Washington, DC, https://
nassgeodata.gmu.edu/CropScape, 2017.

Nichols, J., Kang, S., Post, W., Wang, D., Bandaru, V., Manowitz, D., Zhang, X., and Izaurralde, R.: HPC-EPIC for high res-
olution simulations of environmental and sustainability assessment, Computers and Electronics in Agriculture, 79, 112 — 115,
https://doi.org/10.1016/j.compag.2011.08.012, http://www.sciencedirect.com/science/article/pii/S0168169911002018, 2011.

Pebesma, E. J.: Multivariable geostatistics in S: the gstat package, Computers & Geosciences, 30, 683-691, 2004.

Pierce, D.: ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files, https://CRAN.R-project.org/package=ncdf4, R
package version 1.17, 2019.

R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https:
/Iwww.R-project.org/, 2020.

Ritchie, J., Godwin, D., and Singh, U.: Soil and weather inputs for the IBSNAT crop models. International benchmark sites network for
agrotechnology transfer (IBSNAT) project., in: Proceedings of the IBSNAT Symposium: Decision Support System for Agrotechnology
Transfer. Part I. Symposium Proceedings. Las Vegas, NV. October 16-18, 1989., pp. 31-45, Department of Agronomy and Soil Science,
College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI, 1990.

Robinson, S., Mason-D’Croz, D., Sulser, T., Islam, S., Robertson, R., Zhu, T., Gueneau, A., Pitois, G., and Rosegrant, M. W.: The inter-
national model for policy analysis of agricultural commodities and trade (IMPACT): model description for version 3. IFPRI Discussion
Paper 1483, Tech. rep., Washington, DC, http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/129825, 2015.

Shafer, M. A., Fiebrich, C. A., Arndt, D. S., Fredrickson, S. E., and Hughes, T. W.: Quality assurance procedures in the Oklahoma Mesonet-
work, Journal of Atmospheric and Oceanic Technology, 17, 474-494, 2000.

Soil Survey Staff: U.S. General Soil Map (STATSGO?2), Natural Resources Conservation Service, United States Department of Agriculture,
https://sdmdataaccess.sc.egov.usda.gov, 2017.

The HDF Group: Hierarchical Data Format, version 5, https://www.hdfgroup.org/HDF5/, 1997-2020.

Unidata: Network Common Data Form (NetCDF), Boulder, CO, https://doi.org/10.5065/D6H70CW6, 2017.

United States Census Bureau: TIGER/Line® shapefiles and TIGER/Line® files, https://www.census.gov/geographies/mapping-files/
time-series/geo/tiger-line-file.html, accessed March 30, 2017, 2016.

56

https://doi.org/https://doi.org/10.1016/j.compag.2014.12.004
http://www.sciencedirect.com/science/article/pii/S0168169914003147
https://doi.org/10.1175/JTECH1976.1
https://journals.ametsoc.org/view/journals/atot/24/3/jtech1976_1.xml
https://journals.ametsoc.org/view/journals/atot/24/3/jtech1976_1.xml
https://journals.ametsoc.org/view/journals/atot/24/3/jtech1976_1.xml
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://nassgeodata.gmu.edu/CropScape
https://nassgeodata.gmu.edu/CropScape
https://nassgeodata.gmu.edu/CropScape
https://doi.org/10.1016/j.compag.2011.08.012
http://www.sciencedirect.com/science/article/pii/S0168169911002018
https://CRAN.R-project.org/package=ncdf4
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/129825
https://sdmdataaccess.sc.egov.usda.gov
https://doi.org/10.5065/D6H70CW6
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html

10

Vital, J.-A., Gaurut, M., Lardy, R., Viovy, N., Soussana, J.-F., Bellocchi, G., and Martin, R.: High-performance computing for
climate change impact studies with the Pasture Simulation model, Computers and Electronics in Agriculture, 98, 131 — 135,
https://doi.org/10.1016/j.compag.2013.08.004, http://www.sciencedirect.com/science/article/pii/S0168169913001725, 2013.

Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York, https://ggplot2.tidyverse.org, 2016.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., Francois, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M.,
Pedersen, T. L., Miller, E., Bache, S. M., Miiller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke,
C., Woo, K., and Yutani, H.: Welcome to the tidyverse, Journal of Open Source Software, 4, 1686, https://doi.org/10.21105/j0ss.01686,
2019.

Yu, H.: Rmpi: Parallel Statistical Computing in R, R News, 2, 10-14, https://cran.r-project.org/doc/Rnews/Rnews_2002-2.pdf, 2002.

Zhao, G., Bryan, B. A., King, D., Luo, Z., Wang, E., Bende-Michl, U., Song, X., and Yu, Q.: Large-scale, high-resolution agricultural systems
modeling using a hybrid approach combining grid computing and parallel processing, Environmental Modelling & Software, 41, 231 —

238, https://doi.org/10.1016/j.envsoft.2012.08.007, http://www.sciencedirect.com/science/article/pii/S1364815212002277, 2013.

57

https://doi.org/10.1016/j.compag.2013.08.004
http://www.sciencedirect.com/science/article/pii/S0168169913001725
https://ggplot2.tidyverse.org
https://doi.org/10.21105/joss.01686
https://cran.r-project.org/doc/Rnews/Rnews_2002-2.pdf
https://doi.org/10.1016/j.envsoft.2012.08.007
http://www.sciencedirect.com/science/article/pii/S1364815212002277

