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Abstract. WOMBAT (the WOllongong Methodology for Bayesian Assimilation of Trace-gases) is a fully Bayesian hierarchi-

cal statistical framework for flux inversion of trace gases from flask, in situ, and remotely sensed data. WOMBAT extends the

conventional Bayesian-synthesis framework through the consideration of a correlated error term, the capacity for online bias

correction, and the provision of uncertainty quantification on all unknowns that appear in the Bayesian statistical model. We

show, in an observing system simulation experiment (OSSE), that these extensions are crucial when the data are indeed bi-5

ased and have errors that are spatio-temporally correlated. Using the GEOS-Chem atmospheric transport model, we show that

WOMBAT is able to obtain posterior means and variances on non-fossil-fuel CO2 fluxes from Orbiting Carbon Observatory-2

(OCO-2) data that are comparable to those from the Model Intercomparison Project (MIP) reported in Crowell et al. (2019,

Atmos. Chem. Phys., vol. 19). We also find that WOMBAT’s predictions of out-of-sample retrievals obtained from the Total

Column Carbon Observing Network are, for the most part, more accurate than those made by the MIP participants.10

1 Introduction

Atmospheric carbon dioxide (CO2) is a leading driver of global warming (e.g., Peters et al., 2013). If left unchecked, the rise

in global temperatures will have a substantial negative impact on society and the environment (e.g., Edenhofer et al., 2014). As

part of the worldwide effort to limit these impacts, the 2015 Paris Agreement under the United Nations Framework Convention

on Climate Change, COP 21, called for a global stocktake of the sources and sinks of CO2 and other greenhouse gases, with the15

first evaluation planned for 2023 (UNFCCC, 2015). The rate at which CO2 is emitted (from sources) or absorbed (at sinks) per

unit space and time is known as the CO2 flux, which itself varies spatio-temporally in a substantial manner. Despite the fact that

it is human emissions that are driving the rise in atmospheric CO2 concentrations, the most uncertain aspects of quantifying

CO2 fluxes at Earth’s surface centre around natural processes. For example, while we know that the land and oceans absorb

more than half of the CO2 emitted by human activities (e.g., Dlugokencky and Tans, 2020), the geographical and temporal20

patterns of these sinks remain unclear (e.g., Crowell et al., 2019).

Monitoring the progression of CO2 in our atmosphere is thus of utmost importance, and billions of dollars have been spent

over the last few decades on research, development, and deployment of instruments for measuring CO2 mole fraction (defined
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here as the proportion of CO2 molecules in a given parcel of dry air) throughout the globe (e.g., Burrows et al., 1995; Kuze

et al., 2009; Wunch et al., 2011a; Masarie et al., 2014; Eldering et al., 2017, 2019). However, CO2 mole fraction is only25

indirectly related to the key quantity of interest, namely the geographic distribution of the CO2 fluxes over time, which cannot

be observed directly on regional scales. Identifying these sources and sinks spatially and temporally is an ill-posed inverse

problem, often called a trace-gas flux-inversion problem, whose solution requires the use of both an atmospheric transport

model and a spatio-temporal model for the fluxes (e.g., Enting, 2002). In this paper, we present version 1.0 of a global flux-

inversion system for the solution of this problem, which we call the WOllongong Methodology for Bayesian Assimilation of30

Trace-gases (WOMBAT).

A global trace-gas flux-inversion system is designed to infer fluxes from observational data, which are generally available

either as point-referenced (flask or in situ) measurements or column-averaged remote-sensing retrievals. The underlying model

in an inversion system is usually a state-space model, where the fluxes, or a reduced representation thereof, are the latent

states that need to be inferred from data via the use of an atmospheric chemical transport model (CTM). Computationally, flux35

estimation is done within a standard optimisation framework (e.g., Chevallier et al., 2005; Baker et al., 2006), either via full

Bayesian synthesis (e.g., Enting 2002, Chapter 3; Mukherjee et al. 2011; Schuh et al. 2019) or via ensemble Kalman filtering

(e.g., Peters et al., 2005; Feng et al., 2009). Inversion systems rely, to various extents, on realistic bottom-up estimates of

fluxes for the elicitation of an informative prior distribution; an accurate CTM that provides the link between the fluxes and the

observed mole fraction; high-quality unbiased measurements; and reliable uncertainty measures on each model component.40

The complexity of all modelled processes, from fluxes right up to satellite retrieval errors, inevitably leads to model misspec-

ification (e.g., Engelen et al., 2002). The main causes of misspecification are (i) flux-process dimension-reduction error (e.g.,

Kaminski et al., 2001), which is a consequence of using a spatio-temporal model for the flux field that is low-dimensional and

inflexible; (ii) an inaccurate prior flux mean, variance, and covariance (e.g., Philip et al., 2019); (iii) transport-model errors (e.g.,

Houweling et al., 2010; Basu et al., 2018; Schuh et al., 2019) arising from the underlying assumed physics, meteorology, and45

discretisation schemes used (e.g., Lauvaux et al., 2019; McNorton et al., 2020); (iv) retrieval biases (e.g., O’Dell et al., 2018)

and incorrect associated measurement-error statistics (e.g., Worden et al., 2017); and (v) measurement-error spatio-temporal

correlations that are not fully accounted for (e.g., Chevallier, 2007; Ciais et al., 2010). Two other causes of model misspecifi-

cation worth noting are an incorrectly specified initial global mole-fraction field, and flux components assumed known in the

inversion (i.e., assumed degenerate at their prior mean), such as anthropogenic emissions (e.g., Feng et al., 2019). The latter50

can be seen as a special case of (i) above, while the effect of the former can generally be minimised by using a realistic initial

condition (e.g., Basu et al., 2013) and incorporating a burn-in (or spin-up) period, in which early flux estimates are discarded.

In Sect. 2, we present the underlying statistical framework of WOMBAT, which addresses the implications of model mis-

specification in four ways: first, by using prior distributions to encode uncertainty over prior beliefs on the fluxes (sometimes

referred to as hyperprior distributions; see, e.g., Ganesan et al., 2014; Zammit-Mangion et al., 2016); second, by adding a55

spatio-temporally correlated component of variability to the mole-fraction data model to address some of this (typically un-

modelled) correlated model–data discrepancy (Brynjarsdóttir and O’Hagan, 2014); third, by explicitly modelling biases in the

mole-fraction data model (generalising the approach of Basu et al., 2013); and fourth, by propagating uncertainty on all un-
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knowns within a fully Bayesian statistical framework wherein inference is made using Markov chain Monte Carlo (MCMC).

We note that while the benefits of MCMC are becoming increasingly apparent in regional trace-gas inversions (e.g., Mukherjee60

et al., 2011; Ganesan et al., 2014; Miller et al., 2014; Zammit-Mangion et al., 2016), its use is still the exception rather than the

rule in global trace-gas inversions. The use of a spatio-temporally correlated component of variability leads to computational

challenges, which are addressed in Sect. 3. We also note that our MCMC framework allows the uncertainties over the fluxes to

be affected by uncertainties over all unknown parameters in the model, and it is thus different from the Monte Carlo approach

to estimating flux uncertainty used by, for example, Chevallier et al. (2007) and Liu et al. (2014).65

The fully Bayesian nature of the model, coupled with the introduction of a correlated process in modelling the mole-fraction

field, leads to computational challenges. Section 3 details how we deal with these by defining a specific type of stochastic

process on the irregularly located spatio-temporal errors, one that leads to a sparse precision matrix (e.g., Vecchia, 1988; Datta

et al., 2016). Details on how this facilitates the MCMC scheme we implement are deferred to Appendix A. Section 4 discusses

the experimental setup used for running, validating, and implementing WOMBAT on the satellite data analysed in this article.70

In Sect. 5, we first conduct an observing system simulation experiment (OSSE) in which the true fluxes are assumed known.

Results from the OSSE demonstrate WOMBAT’s validity and also illustrate the importance of modelling biases and correlated

error terms when these are indeed present in the data. We then use WOMBAT to perform flux inversion using the Orbiting

Carbon Observatory-2 (OCO-2) Version 7 retrospective (V7r) dataset as used in the model intercomparison project (MIP) of

Crowell et al. (2019). Our model fitting reveals that about 80% of the total error variance associated with the OCO-2 data used75

for the MIP can be explained with a correlated model–data discrepancy term. WOMBAT accounts for this, which results in

posterior distributions over the fluxes that, for the most part, corroborate the results from the ensemble inversions, both on a

regional and on a global scale. In Sect. 5, we also show the utility of WOMBAT in carrying out online bias correction. Section 6

summarises the features of WOMBAT and discusses avenues for future work.

2 Bayesian hierarchical model for global flux inversion of trace gases80

In this section we outline the spatio-temporal Bayesian hierarchical statistical model (e.g., Wikle et al., 2019, Sect. 1.3) that

WOMBAT uses for global flux inversion. The model consists of four sub-models: (1) a flux process model, (2) a mole-fraction

process model, (3) a mole-fraction data model, and (4) a parameter model.

2.1 The flux process model

Let Y 0
1 (s, t) denote the prior mean of the trace-gas surface flux at spatial location s ∈ S2 and time t ∈ T , where S2 is the surface85

of Earth, and T ≡ [t0, tf ] is some time interval of interest. The field Y 0
1 (· , ·) could, for example, be treated as a linear regression

(e.g., Michalak et al., 2004) or could be constructed using bottom-up estimates of biospheric and/or anthropogenic fluxes (e.g.,

Basu et al., 2013).

In the same vein as conventional Bayesian-synthesis frameworks (e.g., Enting, 2002), we model the true flux, Y1(· , ·), as

Y 0
1 (· , ·) plus a spatio-temporal field constructed through a sum of r spatio-temporal basis functions. These basis functions90
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could be space-time step functions, as typically found in variational inversion systems (e.g., Chevallier et al., 2005), discretised

flux “patterns” (e.g., Fan et al., 1998), or they could be a general-purpose basis such as a Fourier basis (e.g., Crowell et al.,

2019, Appendix A4).

Denote the set of pre-specified flux basis functions as {φj(·, ·) : j = 1, . . . , r}. Our flux process model is a spatio-temporal

stochastic process given by,95

Y1(s, t) = Y 0
1 (s, t)+

r∑
j=1

φj(s, t)αj , s ∈ S2, t ∈ T , (1)

where the scaling factors {αj : j = 1, . . . , r} are unknown, are assigned a multivariate probability distribution, and need to be

inferred in the inversion framework. Since we assume that E(Y1(· , ·)) = Y 0
1 (· , ·), we let E(αj) = 0 for j = 1, . . . , r. For a given

set of basis functions, the prior belief on the covariance structure of Y1(· , ·) is fully determined by that on α≡ (α1, . . . ,αr)
′.

When the flux is modelled on a space-time grid and space-time step functions are used as basis functions, a prior distribution100

on α that correlates the flux a priori in space and time is natural (Michalak et al., 2004; Chevallier et al., 2007; Basu et al.,

2018). On the other hand, when using large spatial flux “patterns” that have temporally-limited scope, it is generally reasonable

to assume that the αj’s corresponding to basis functions in different spatial regions are uncorrelated, but that those associated

with the same spatial region are temporally correlated.

Irrespective of the choice of basis functions, in WOMBAT, one expresses prior judgement on α through the model α∼105

Gau(0,Σα), where Gau(µ,Σ) is a Gaussian probability density function of a random vector with mean µ and covariance

matrix Σ. The covariance matrix Σα is parameterised through a parameter vector θα, which typically contains variances

and spatio-temporal length scales in the covariances. Expert elicitation can be used to construct prior distributions on these

parameters too; we describe possible prior distributions when discussing the parameter model in the Bayesian hierarchical

model in Sect. 2.4.110

The flux model of Eq. (1) may be improved by introducing a dimension-reduction error, also known as aggregation error, on

the right-hand side. This error accounts for the fact that the structured basis functions typically span a small (function) space and

that, therefore, they cannot reproduce fluxes perfectly. However, since we are unable to deconvolve dimension-reduction error

from other sources of error (e.g., transport-model error) in our mole-fraction data, we model the spatio-temporal variability it

introduces collectively with other sources of error (Sect. 2.2).115

2.2 The mole-fraction process model

Denote the true mole-fraction process at space-height-time location (s,h, t), as Y2(s,h, t). We only model the mole fraction

within our time interval of interest T , starting at time t0, and therefore we express the true mole-fraction field within T as a

function of the initial mole-fraction process at t0 and the exogenous flux-process inputs in T . Specifically, define Tt ≡ [t0, t],

for t0 ≤ t≤ tf , as the set of all time points in T up to and including t. The field Y2(· , · , ·) is related to the flux process through120

the relationship,

Y2(s,h, t) =H(Y2(· , · , t0),Y1(· ,Tt);s,h, t), s ∈ S2, h ∈ R+, t ∈ T , (2)
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where Y2(· , · , t0) is the mole-fraction field at time t0, Y1(· ,Tt) is the flux field evolving over the whole time period Tt, and H
is an operator that solves the underlying chemical transport equations (that are approximately linear for long-lived species such

as CO2; see, e.g., Enting, 2002, Chapter 2). In practice, H is not known perfectly, but we usually have at hand a reasonable125

approximation to it, Ĥ, which is often referred to as the chemical transport model (CTM) or simply as the transport model.

Similarly, we will usually have a reasonable approximation to Y2(· , · , t0), which we call Ŷ2(· , ·, , t0). The use of Ŷ2(· , · , t0)
instead of Y2(· , · , t0), and of Ĥ instead of H, leads to a residual term v2(· , · , ·) that will inevitably be spatio-temporally

correlated (Enting, 2002, Chapter 9). In particular,

Y2(s,h, t) = Ĥ(Ŷ2(· , · , t0),Y1(· ,Tt);s,h, t)+ v2(s,h, t), s ∈ S2, h ∈ R+, t ∈ T , (3)130

where v2(· , · , ·) is the residual mole-fraction process arising from the use of an approximate initial mole-fraction field, imperfect

meteorology inside the transport model, imperfect transport-model parameters and physics, and potentially sub-grid-scale

variation in the mole-fraction field when Ĥ is a numerical model evaluated at a coarse resolution. It is difficult to place

prior beliefs on the structure of v2(· , · , ·), which we model as statistical error, but it is known that using the approximation

Ĥ introduces errors that could span hundreds of kilometres and several days (Lauvaux et al., 2019; McNorton et al., 2020).135

Transport-model implementations tend to differ considerably in their vertical and inter-hemispheric mixing behaviour, and

flux-inversion estimates are known to be particularly sensitive to transport-model choice (Gurney et al., 2002; Schuh et al.,

2019). Note that v2(· , · , ·) is also likely to depend on Y1(· , ·), and that we ignore this dependence for model simplicity in what

follows.

The assumed linear behaviour of the underlying dynamics for CO2 is important. First, it allows us to model the effect of the140

approximate initial mole-fraction field, Ŷ2(· , ·, t0), separately from that of the fluxes (e.g., Enting, 2002, Chapter 10), so that

Eq. (3) is of the form

Y2(s,h, t) = Ĥ(Ŷ2(· , · , t0),0;s,h, t)+ Ĥ(0,Y1(· ,Tt);s,h, t)+ v2(s,h, t), (4)

for s ∈ S2, h ∈ R+, and t ∈ T . Second, it allows us to express the mole-fraction field as a linear combination of the individual

responses from the basis functions used to construct Y1(· , ·), as we now show. Substituting Eq. (1) into Eq. (4), we have that145

Y2(s,h, t) = Y 0
2 (s,h, t)+

r∑
j=1

ψ̂j(s,h, t)αj + v2(s,h, t), (5)

for s ∈ S2, h ∈ R+, and t ∈ T , where Y 0
2 (s,h, t)≡ Ĥ(Ŷ2(· , · , t0),0;s,h, t)+ Ĥ(0,Y 0

1 (· ,Tt);s,h, t); ψ̂j(s,h, t)≡
Ĥ(0,φj(·,Tt);s,h, t), for j = 1, . . . , r, are basis functions in mole-fraction space, often termed response functions (e.g.,

Saeki et al., 2013); and v2(s,h, t) is the residual term given in Eq. (3). We assume that E(v2(· , · , ·)) = 0, so that Y 0
2 (s,h, t) can

be seen as the prior expectation of the mole-fraction field at (s,h, t) under Ĥ and Ŷ2(· , ·, t0). That is, it is the mole-fraction150

field generated by running our CTM with the input fluxes set to the prior expected flux, and with the mole-fraction field at t0

set to Ŷ2(· , ·, t0).
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2.3 The mole-fraction data model

Fluxes cannot be observed directly at the spatial and temporal scales of interest. Flux inversion therefore proceeds by “con-

straining” the flux field using column-averaged retrievals or point-referenced measurements of mole fraction. We use Z2,i to155

denote the ith mole-fraction measurement or retrieval, where i ∈ {1, . . . ,m} indexes the datum used in the inversion, and m is

the number of data used in the inversion.

Point-referenced (PR) measurements of mole fraction are generally made at or near Earth’s surface, using instruments on

towers or in aircraft. The mole-fraction data model for these measurements is therefore given by

Z2,i = Y2(si,hi, ti)+ εi, if Z2,i is from a point-referenced instrument, (6)160

where Z2,i is the observed mole fraction at (si,hi, ti), and εi is mean-zero Gaussian measurement error with a model for

its variance parameter presented below in Sect. 2.4. Measurement errors associated with point-referenced instruments are

generally small and (usually) not correlated in space and time. Despite this, such data are not immune to the effects of spatio-

temporal correlations induced by the CTM in the process model, and they may even be more susceptible than column-averaged

retrievals due to the combined effect of their usual proximity to the surface and the discretisations employed when simulating165

approximate transport (Rayner and O’Brien, 2001; Basu et al., 2018).

Column-averaged (CA) retrievals, such as XCO2 (where “X” refers to the column averaged nature of the retrievals) from the

OCO-2 satellite or the TCCON sites, are noisier than PR measurements, although TCCON less so. In particular, since the raw

spectral information collected for the retrieval is affected by environmental factors such as aerosols (O’Dell et al., 2012), the

errors can contain biases as well as exhibit spatio-temporal correlations. These biases can also be instrument-mode dependent170

(e.g., land glint [LG] vs land nadir [LN] retrievals for OCO-2; see Sect. 4.4.1). The vertical averaging operation also involves

an averaging kernel and an a priori bias correction, which are both specific to the retrieval, and which arise from the algorithm

used for the retrieval. In general, this relationship can be expressed as

Z2,i = Âi(Y2(si, · , ti))+ bi+ vZ2,i
+ εi, if Z2,i is a column-averaged retrieval, (7)

where (si, ti) is the space-time location of the retrieval, Âi is the assumed (but necessarily approximate) observation operator175

of the ith retrieval that column-averages the mole fraction field via an averaging kernel; bi is bias; vZ2,i
is mean-zero spatio-

temporally correlated random error; and εi is mean-zero uncorrelated random error. The bias and error terms arise from the

use of an approximate observation operator. Surface-based or remotely sensed CA retrievals are sometimes provided as “bias-

corrected”. In this case, the data model for these retrievals is identical to Eq. (7), but with the bias component omitted.

Substituting Eq. (5) into Eq. (6) and Eq. (7) we see that, in general, we have that180

Z2,i = Ẑ0
2,i+

r∑
j=1

ψ̂j,iαj + bi+ ξi+ εi, (8)

where, for a PR measurement, Ẑ0
2,i ≡ Y 0

2 (si,hi, ti), ψ̂j,i ≡ ψ̂j(si,hi, ti), for j = 1, . . . , r, bi = 0; and ξi ≡ v2(si,hi, ti); while

for a CA retrieval, Ẑ0
2,i ≡ Âi(Y 0

2 (si, · , ti)), ψ̂j,i ≡ Âi(ψ̂j(si, · , ti)), for j = 1, . . . , r; and ξi ≡ Âi(v2(si, · , ti))+ vZ2,i
. Bias-
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corrected retrievals are given by Eq. (8) but with the bias component bi omitted. Note that, for identifiability reasons, we have

modelled all the possibly correlated error terms using one component, {ξi}.185

Flux inversions can make use of both PR measurements and CA retrievals simultaneously, and hence it is convenient to

provide a data model that encapsulates both types of measurements. It is also often the case that measurements from the same

instrument type can be divided into groups that can be expected to have similar characteristics, such as group-specific bias and

error properties. A given group could contain, for example, PR data from the same in situ instrument, or CA retrievals from

a particular remote sensing instrument under a specific retrieval mode (e.g., land nadir). Hence, we consider the following190

general data model, where different groups have different terms, but the overall structure is the same:

Z2,g = Ẑ0
2,g + Ψ̂gα+bg + ξg + εg, g = 1, . . . ,ng, (9)

where ng is the number of groups; Z2,g contains the data in group g; Ẑ0
2,g are the prior expected mole fractions in group g

under the approximate transport model, the approximate mole-fraction field at t0 and, if the groups consist of CA retrievals,

under the approximate observation operators; Ψ̂g are the response functions in group g evaluated at either the PR locations195

(in the case of PR measurements) or averaged over a column via an approximate observation operator (in the case of CA

retrievals); bg ≡ Agβg are group-specific biases, with Ag a group-specific design matrix and βg the corresponding weights;

ξg is the group g’s vector of correlated errors; and εg is the group’s vector of uncorrelated errors. When the data in group

g are considered to be unbiased (or already bias-corrected), the term Agβg = 0. The variables constituting βg and εg, for

g = 1, . . . ,ng, are mutually independent within and across groups.200

The correlation between elements of ξg associated with measurements that are proximal in space and time is stronger than

between those that are farther apart. Yet, while spatio-temporal correlation in model–data discrepancies is widely acknowledged

(Chevallier, 2007; Ciais et al., 2010; Mukherjee et al., 2011; Miller et al., 2020), the general consensus is that using just the

variance of ξg to add to the variance of the uncorrelated component is sufficient (e.g., Michalak et al., 2005; Basu et al., 2013;

Deng et al., 2016). However, as we show in our OSSE in Sect. 5.1, even when a measurement-error variance inflation factor is205

estimated, predictions of the flux worsen under the assumption of uncorrelated errors if the errors truly are correlated. The main

reason not to routinely model spatio-temporal correlations in global flux inversion appears to be computational; we discuss a

way to rectify this bottleneck in Sect. 3.

2.4 The parameter model

The parameter model (i.e., prior distributions on parameters) is dependent on the specification of the flux process model, the210

mole-fraction process model, and the mole-fraction data model. Here, we describe the parameter model we use in the OSSE

and in the MIP comparison in Sect. 5.

Parameters of the flux process model: In the experiments given below in Sect. 5, our flux basis functions are from bottom-

up inventories that are divided into rs spatial regions and rt time spans. This construction yields r = rs× rt basis functions,

and it naturally suggests a temporal partitioning of α into (α′1, . . . ,α
′
rt)
′, where each αk ∈ Rrs , for k = 1, . . . , rt. This, in215

turn, suggests that a suitable model for α is the vector-autoregressive process, similar to that used by Peters et al. (2005)
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and Dahlén et al. (2020). Specifically, αk+1 = M(κ)αk +wk, for k = 1, . . . , rt, where, in our examples, we constrain the

matrix M(κ) to be diagonal with non-zero elements equal to κ≡ (κ1, . . . ,κrs)
′; and we let wk ∼Gau(0,Σw), where the

precision matrix Qw ≡Σ−1
w is diagonal with positive elements τw ≡ (τw,j : j = 1, . . . , rs)

′. The flux-process parameters are

therefore θα ≡ (κ′,τ ′w)
′, which in turn govern the covariance matrix of α, notated as Σα ≡ var(α). There is an ordering of220

α for which Σ−1
α is block diagonal with each block a tridiagonal matrix (see Appendix A). Either sequential estimation (e.g.,

Kalman filtering/smoothing) or batch Bayesian updating can be used to make inference on α. In our case we use the latter, and

we take advantage of efficient algorithms that are available for sparse-linear-algebraic computations.

We expect that {αk} are positively correlated in time. Therefore, for the prior distributions for {κj}, we use the beta

distribution, which has support on the interval [0,1]: Independently, κj ∼ Beta(aκ,j , bκ,j), for j = 1, . . . , rs, where {aκ,j}225

and {bκ,j} are fixed and assumed known. For prior distributions on the precision parameters {τw,j}, we use gamma dis-

tributions with shape parameters {νw,j} and rate parameters {ωw,j}, which are fixed and assumed known: Independently,

τw,j ∼Ga(νw,j ,ωw,j), for j = 1, . . . , rs.

Michalak et al. (2005) suggested that variance parameters could be estimated directly in a maximum-likelihood framework.

The use of prior distributions on κ and τw adds an extra level of flexibility and allows the modeller to express the “uncertainty230

on the uncertainties” in an inversion framework (e.g., Ganesan et al., 2014). A related advantage is that the prior distributions

can be used to provide information on the variance parameters even when the mole-fraction observations are not informative

of the parameters. One could even configure these prior distributions to be extremely informative and, effectively, fix the prior

model for the flux. The choice of prior distribution can be made on a region-by-region basis, as is the case in our experiments

(Sect. 4.5), where land regions are given largely uninformative priors, and ocean regions are given informative ones.235

CA mole-fraction retrieval bias parameters: In Sect. 5, we consider OCO-2 retrievals and a different set of bias parameters

for each instrument mode. In this context, βg is associated with a particular instrument mode and a single element of βg
captures the bias arising from, for example, aerosol presence. Experiments (see Sect. 5.3) reveal that these bias parameters

are quite easily constrained in an inversion framework. When constructing the model for each βg , we first standardise each

row in Ag so that the covariates have unit marginal empirical variance. Then we model {βg} as follows: Independently,240

βg ∼Gau(0,σ2
βI), for g = 1, . . . ,ng, with σ2

β = 100 and where I is the identity matrix. This choice for σ2
β renders the prior

distribution uninformative for the data-set sizes we consider in our experiments.

Model–data discrepancy and measurement-error parameters: The retrievals used to perform inversions often come with

prescribed variances, vps
g , that account for both retrieval error, correlated or otherwise, and CTM error. For example, the MIP

protocol of Crowell et al. (2019) prespecified these variances. We therefore let the total marginal variance of ξg + εg be245

equal to γg · vps
g , where the inflation-factor parameter γg accounts for the possibility of misspecified variances (Worden et al.,

2017). To deconvolve ξg and εg , we first construct the correlation matrix Rξg ≡ corr(ξg) using a spatio-temporal correlation

function Rξg (· , · ;`ξg ), where `ξg are length scales that need to be inferred from data. We then enforce the total marginal

variance constraint by defining the covariance matrices of ξg and εg to be Σξg ≡ var(ξg) = diag(ρgγg ·vps
g )1/2Rξgdiag(ρgγg ·

vps
g )1/2 and Σεg ≡ var(εg) = diag((1−ρg)γg·vps

g ). The parameter ρg represents the relative contribution of the correlated-error250

variance (comprising both CTM error and, if present, correlated measurement error) to the total inflated prescribed variance.
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We model the inflation factors {γg} using inverse-gamma distributions: Independently, γg ∼ IG(νγg ,ωγg ), g = 1, . . . ,ng,

where the shape and rate parameters, {νγg} and {ωγg}, are fixed and assumed known. We model the relative-contribution fac-

tors {ρg} using standard uniform distributions: Independently, ρg ∼Unif(0,1), for g = 1, . . . ,ng . We use gamma prior distribu-

tions to model the length scales {`g} in the correlation function: Independently, `g,j ∼Ga(ν`g,j ,ω`g,j), for j = 1, . . . ,n`g ; g =255

1, . . . ,ng. We collect together the unknown parameters that determine the variances and covariances of the correlated compo-

nent of the error into θξg ≡ (ρg,`
′
g)
′, for g = 1, . . . ,ng .

2.5 Summary of the Bayesian hierarchical model and computation

The Bayesian hierarchical model, which we use in Sect. 5, can be written succinctly as follows: Independently,

Flux autoregressive parameters: κj ∼ Beta(aκ,j , bκ,j), j = 1, . . . , rs,260

Flux innovation precisions: τw,j ∼Ga(νw,j ,ωw,j), j = 1, . . . , rs,

Flux scaling factors: α | κ,τw ∼Gau(0,Σα),

Measurement-bias coefficients: βg ∼Gau(0,σ2
βI), g = 1, . . . ,ng,

Error variance inflation factors: γg ∼ IG(νγg ,ωγg ), g = 1, . . . ,ng,

Error length scales: `g,j ∼Ga(ν`g,j ,ω`g,j), j = 1, . . . ,n`g ; g = 1, . . . ,ng,265

Error proportion: ρg ∼Unif(0,1), g = 1, . . . ,ng,

Likelihood: Z2 | β,α,θξ,ε ∼Gau(Ẑ0
2 + Ψ̂α+Aβ,Σξ +Σε),

where Z2 ≡ (Z′2,1, . . . ,Z
′
2,ng )

′, Ẑ0
2 ≡ (Ẑ0′

2,1, . . . , Ẑ
0′

2,ng )
′, Ψ̂≡ (Ψ̂′1, . . . ,Ψ̂

′
ng )
′, A≡ bdiag(A1, . . . ,Ang ), β ≡ (β′1, . . . ,β

′
ng )
′,

Σξ ≡ bdiag(Σξ1 , . . . ,Σξng
), Σε ≡ bdiag(Σε1 , . . . ,Σεng

), and θξ,ε ≡ ((θ′ξg ,γg) : g = 1, . . . ,ng)
′. Here, bdiag(·) constructs a

block-diagonal matrix from its arguments. A graphical model summarising the relationships between the variables is given in270

Fig. 1.

The joint posterior distribution over all quantities can be estimated using a Gibbs sampler, which successively “updates”

parameters using their full conditional distributions. When the conditional distributions cannot be sampled from directly (in

particular, for the parameters κ,`g, and ρg , for g = 1, . . . ,ng), we employ a slice sampler (Neal, 2003) to obtain samples.

Details are given in Appendix A.275

3 The model–data discrepancy term

The posterior distribution over all the unknown parameters in our model is given by

p(α,β,κ,τw,θξ,ε | Z2)∝ p(Z2 | β,α,θξ,ε)p(α | κ,τw)p(β)p(θξ,ε)p(κ)p(τw). (10)
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κ

τw

α Y1 Y2 Z2,g

βg

ρg

`g

γg

Flux autoregressive
parameters

Flux innovation
precisions

Flux scaling
factors

Flux process

Mole fraction
process

Grouped data Error length
scales

Error
proportion

Measurement-bias
coefficients

Error variance
inflation factors g = 1, . . . , ng

Figure 1. Graphical model summarising the relationship between the variables, processes, parameters to be inferred, and the grouped data

{Z2,g : g = 1, . . . ,ng}.

The log of the first two terms on the right-hand side of Eq. (10) are expressions that are commonly seen in optimisation-based

flux-inversion frameworks. In particular, we have that280

logp(Z2 | β,α,θξ,ε)p(α | κ,τw) =−
1

2
log |Σξ +Σε| −

1

2
(Z2−Z2,p(β,α))

′(Σξ +Σε)
−1(Z2−Z2,p(β,α))

− 1

2
log |Σα| −

1

2
(α−αp)′Σ−1

α (α−αp)+ const.,

where Z2,p(β,α)≡ Ẑ0
2 + Ψ̂α+Aβ; in our case we set αp = 0; and “const.” denotes a constant. The primary differences

between our framework and the usual optimisation-based flux-inversion frameworks are the presence of the log-determinants,

which penalise covariance matrices that have large determinants (large correlations and/or large variances), and the presence of285

off-diagonal elements in the matrix Σξ+Σε. Note that the log-determinants can only be omitted when all covariance matrices

are considered known a priori.

The computational complexity of the Gibbs sampler is dominated by that of the log-likelihood function, logp(Z2 |
β,α,θξ,ε), which is the sum of the group-wise log-likelihood functions, logp(Z2,g | β,α,θξ,ε), for g = 1, . . . ,ng . For compu-

tationally efficient inference, we must ensure that each group-wise log-likelihood function is simple to evaluate. From Eq. (9),290

the group-wise log-likelihood is given by,

logp(Z2,g | β,α,θξ,ε) =−
mg

2
log2π− 1

2
log |Σg|

− 1

2
(Z2,g − Ẑ0

2,g − Ψ̂gα−Agβg)
′Σ−1

g (Z2,g − Ẑ0
2,g − Ψ̂gα−Agβg), (11)

for g = 1, . . . ,ng , where Σg ≡Σξg +Σεg , and mg is the number of observations and/or retrievals in group g. From a com-

putational perspective there are two components in Eq. (11) that can present difficulties. The first component is the matrix

Ψ̂g; this matrix is dense, and its number of elements scales linearly with both the number of data points and the number of295

basis functions, r. Fortunately, this matrix only needs to be evaluated once using the CTM, and it can typically be generated
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efficiently on a large parallel computing infrastructure. The second component is the matrix Σg , which is of size mg×mg and

generally dense. Recall from Sect. 2.4 that this covariance matrix is constructed from γg,`ξg , and ρg , which are sampled within

the Gibbs sampler. Therefore, this covariance matrix needs to be re-constructed at each sampler iteration. This is infeasible for

the mg ≈ 100,000 retrievals used in this study.300

We deal with the denseness of Σg by using an approximation first proposed by Vecchia (1988). Here, one first orders the

elements of ξg . Then one approximates the joint distribution of ξg as,

p(ξg) = p(ξg,1)

mg∏
i=2

p(ξg,i | ξg,1:(i−1))≈ p(ξg,1)
mg∏
i=2

p(ξg,i | ξg,Ng,i), (12)

whereNg,i is the “past” neighbour set of the ith datum in group g, which contains a (very small) subset of the integers between,

and including, 1 and (i−1). It can be shown that this formulation leads to a valid distribution for ξg that approximates the true305

joint distribution. The approximate distribution is Gaussian with mean 0 and a sparse precision matrix, Σ−1
ξg

, with the degree

of sparsity closely connected to the sizes of the sets {Ng,i : i= 1, . . . ,mg}.
In the version of WOMBAT presented here, we consider a special case of Eq. (12), where the observations are ordered

in time and where the correlation function Rξg (·, · ;`ξg ) is simply an exponential function of temporal separation. In this

case, one only needs to consider one (temporal) length-scale parameter per group, `g,1, for g = 1, . . . ,ng . The motivations310

for this simplification are twofold. First, the remote-sensing instrument we consider in Sect. 5 flies on a satellite that is in

a sun-synchronous orbit, so that correlation in time is a proxy for along-track correlations. This model for characterising

correlation in the errors was suggested and used by Chevallier (2007). Second, the use of an exponential correlation function

allows the approximation in Eq. (12) to become an equality, where Ng,i = i− 1. This is a manifestation of the so-called

“screening effect”, where the exponential correlation function induces a first-order conditional-independence structure. Now,315

Σ−1
g = (Σξg +Σεg )

−1 and |Σg|= |Σξg +Σεg | , where Σ−1
ξg

is very sparse and Σ−1
εg is diagonal. Efficient computations

of Eq. (11) therefore follows by expressing Σ−1
g and |Σg| in terms of these sparse matrices. Specifically, Σ−1

g and |Σg|
are evaluated through the use of the Sherman–Morrison–Woodbury matrix identity and a matrix-determinant lemma (e.g.,

Henderson and Searle, 1981, and Appendix A).

4 Setup of flux-inversion framework320

This section gives the setup needed for Sect. 5, where we compare the inversions from WOMBAT v1.0 to those from the OCO-

2 MIP (Crowell et al., 2019). In the MIP, inversions followed a predefined protocol; we therefore configured WOMBAT to

follow the same protocol. The MIP prescribed the data to be used, including both preprocessed point referenced and remotely

sensed data from OCO-2 between 06 September 2014 and 01 April 2017. Participants were tasked to provide flux estimates for

the years 2015 and 2016. The protocol also specified a fossil-fuel flux field that had to be assumed fixed and known, in order325

to facilitate the interpretation of the differences in flux estimates obtained by the different participants. All other modelling

choices (e.g., transport model, prior fluxes) were left to individual participants.
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4.1 Prior expected flux

Our prior expectation of the spatio-temporal flux process, Y 0
1 (· , ·), is constructed from inventories of different types of fluxes

through the decomposition330

Y 0
1 (s, ·) =

Y
0,ff
1 (s, ·)+Y 0,bio

1 (s, ·)+Y 0,bf
1 (s, ·)+Y 0,fire

1 (s, ·), if s is over land,

Y 0,ff
1 (s, ·)+Y 0,ocn

1 (s, ·), if s is over ocean,
(13)

where Y 0,ff
1 (· , ·) corresponds to fossil fuel emissions, Y 0,bio

1 (· , ·) to terrestrial biospheric fluxes, Y 0,bf
1 (· , ·) to biofuel emissions,

Y 0,fire
1 (· , ·) to fire emissions, and Y 0,ocn

1 (· , ·) to ocean-air exchange fluxes. We now describe these components in more detail:

– Fossil-fuel emissions: For Y 0,ff
1 (· , ·) we use the Open-source Data Inventory for Anthropogenic CO2 monthly fossil-

fuel emissions (ODIAC2016; Oda and Maksyutov, 2011; Oda et al., 2018) with Temporal Improvements for Modeling335

Emissions by Scaling (TIMES) weekly scaling factors (Nassar et al., 2013). This term also includes emissions from

international aviation and shipping. The fossil-fuel fluxes are prescribed by the MIP protocol.

– Biospheric flux: This flux is a result of the interaction between the atmosphere and trees, shrubs, grasses, soils, dead

wood, leaf litter, and other biota. It is defined by the formula GPP−RA−RH , where GPP stands for gross primary

production and represents the uptake of carbon by plants due to photosynthesis;RA is autotrophic respiration, the release340

of carbon through respiration by plants; and RH is heterotrophic respiration, the release of carbon through the metabolic

action of bacteria, fungi, and animals. For Y 0,bio
1 (· , ·) we use one of the two priors used in CarbonTracker 2019 (Jacobson

et al., 2020), specifically that based on the Carnegie–Ames–Stanford Approach (CASA) biogeochemical model (Potter

et al., 1993; Giglio et al., 2013).

– Biofuel emissions: These emissions result from the burning of wood, charcoal, and agricultural waste for energy, as well345

as the burning of agricultural fields. For Y 0,bf
1 (· , ·) we use the estimates of Yevich and Logan (2003) that in turn were

based on data from 1985.

– Fire emissions: These emissions correspond to those from vegetative fires (wildfires), which may start either naturally

or by humans. For Y 0,fire
1 (· , ·) we use the Quick Fire Emissions Dataset, version 2 (QFED2; Darmenov and da Silva,

2015).350

– Ocean–air exchange: These fluxes are a result of ocean–air differences in partial pressure of CO2. For Y 0,ocn
1 (· , ·) we

use the estimates of Takahashi et al. (2002), with annual scalings reflecting increasing uptake of CO2 as described by

Takahashi et al. (2009).

A summary of these components is provided in Table 1.

12



Table 1. Components of the flux prior Y 0
1 (s, t) used in Eq. (13).

Symbol Type Inventory name Resolution Reference(s)

Y 0,ff
1 (· , ·) Fossil fuel Open-source Data Inventory

for Anthropogenic CO2 2016

(ODIAC2016)

& Temporal Improvements for

Modeling Emissions by Scaling

(TIMES)

Monthly +

hourly scaling

Oda and Maksyutov (2011);

Nassar et al. (2013);

Oda et al. (2018)

Y 0,bio
1 (· , ·) Biospheric CarbonTracker 2019, based on

the Carnegie-Ames Stanford

Approach (CASA) biogeo-

chemical model

3 hourly Potter et al. (1993);

Giglio et al. (2013);

Jacobson et al. (2020)

Y 0,bf
1 (· , ·) Biofuels Yevich & Logan Constant Yevich and Logan (2003)

Y 0,fire
1 (· , ·) Fires Quick Fire Emissions Dataset,

version 2 (QFED2)

Hourly Darmenov and da Silva (2015)

Y 0,ocn
1 (· , ·) Ocean Scaled Takahashi Monthly Takahashi et al. (2002);

Takahashi et al. (2009)

4.2 Basis functions355

We divided the globe into the rs = 22 disjoint TransCom3 regions (Gurney et al., 2002), and time into the rt = 31 months be-

tween (and including) September 2014 and March 2017, and then we constructed one flux basis function for each region/month

pair. This yielded r = rs× rt = 682 basis functions, each with non-zero support in a space-time volume spanning one month

in time, and one TransCom3 region in space. Half of the TransCom3 regions are land regions, and half are ocean regions, so

that half of our basis functions correspond to land areas, and half to ocean areas. We show the TransCom3 regions in Fig. S1,360

and their codes and labels in Table S1, both of which can be found in the supplement. Some areas of the globe, depicted in

white in Fig. S1, are assumed to have zero flux; all our basis functions are zero in these regions.

For φj(· , ·) a basis function corresponding to a land area, we have

φj(s, t) =

Y
0,bio
1 (s, t)+Y 0,bf

1 (s, t)+Y 0,fire
1 (s, t), (s′, t)′ ∈Dφ

j ,

0 otherwise,
(14)
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where Dφ
j is the space-time volume over which the jth basis function is defined to be non-zero. For φj(· , ·) a basis function365

corresponding to an ocean area, we have

φj(s, t) =

Y
0,ocn
1 (s, t), (s′, t)′ ∈Dφ

j ,

0 otherwise.
(15)

Both Eq. (14) and Eq. (15) exclude Y 0,ff
1 (· , ·). This is done to meet the MIP requirement that fossil-fuel fluxes are treated as

fixed and known (which is common practice in flux inversion; e.g., see Basu et al., 2013). The influence of fossil fuels on

the mole-fraction field is therefore present only as an invariant component of the prior expectation of the mole-fraction field.370

Note that we have used the same inventories to construct Y 0
1 (·, ·) and the basis functions φj(·, ·), j = 1, . . . , r; this was done for

convenience, and different inventories could be used if needed.

Since the spatio-temporal patterns of the fluxes within a region–month space-time volume are fixed, our construction is

quite restrictive. However, the space-time patterns are dictated by those in the inventories used to construct the basis functions.

Although there is a general lack of agreement between inventories targeting the same processes (e.g., Huntzinger et al., 2017),375

these spatio-temporal patterns would not be unreasonable and certainly more reasonable than those from generic basis functions

commonly used in spatial statistics (e.g., Wikle et al., 2019, Chapter 4). This underlying assumption is often made in flux-

inversion systems; for example, Jacobson et al. (2020) scale 3-hourly fluxes using weekly scale factors over 156 regions,

while Basu et al. (2013) use monthly scale factors for 3-hourly fluxes over 6◦×4◦ grid cells. Constraining the spatio-temporal

pattern is inferentially advantageous because it helps address the ill-posed nature of flux inversion. It is also computationally380

advantageous because it reduces the number of unknowns for which inference is needed. The disadvantage is that the reliance

on a priori structures increases the risk of dimension-reduction error because, while our basis functions allow the posterior

fluxes to vary at sub-TransCom3-region scales, variations that don’t follow the prescribed pattern are necessarily ignored.

Therefore, if one wishes to make inference at scales that are finer than those resolved by the scaling factors, one should

introduce additional basis functions for those regions and time spans. Moreover, for processes where there is disagreement385

(such as biogeochemical processes), one may consider running separate inversions with basis functions constructed from

different inventories and carry out a sensitivity analysis. We note that there is a considerable body of work tackling basis-

function choice in the context of inversion; see, for example, Turner and Jacob (2015).

As described in Sect. 2.2, for j = 1, . . . ,682, each flux basis function φj(· , ·) has a corresponding mole-fraction basis function

ψ̂j(· , · , ·), which may be constructed by running the transport model, Ĥ, under the flux Y 0
1 (· , ·)+φj(· , ·). Then the mole-390

fraction basis function ψ̂j(· , · , ·) is recovered through linearity by simply subtracting Y 0
2 (· , · , ·) from the output mole-fraction

field. For illustration, Fig. 2 shows examples of the flux basis functions (monthly averaged) for January 2016 and the regions

TransCom3 02 and TransCom3 06, and snapshots of the corresponding mole-fraction basis functions (daily and atmospheric-

column averaged) obtained using the transport model described next in Sect. 4.3.
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Figure 2. Examples of flux basis functions that have support in the month of January 2016 in the regions TransCom3 02 and TransCom3 06,

and the corresponding mole-fraction basis functions. The first row shows the values of the flux basis functions, φj(· , ·), averaged over the

whole month (these basis functions are zero outside January 2016). The next three rows show daily averages of the column-averaged CO2

for the corresponding mole-fraction basis functions on three days: the start of the month-long period where the flux is non-zero, 01 January

2016; the middle of the period, 15 January 2016; and 15 days after the end of the period, 15 February 2016.
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4.3 Transport model and initial condition395

For our approximate transport model, Ĥ, we used the GEOS-Chem global 3-D chemical transport model, version 12.3.2 (Bey

et al., 2001; Yantosca, 2019), driven by the GEOS-FP meteorological fields from NASA’s Goddard Earth Observing System

(Rienecker et al., 2008). We use the offline GEOS-Chem CO2 simulation (Nassar et al., 2010), with the native horizontal

resolution of 0.25◦×0.3125◦ and 72 vertical levels aggregated to 2◦×2.5◦ and 47 vertical levels for computational efficiency.

We use a transport time step of 10 minutes, and a flux time step of 20 minutes. All fluxes described in sections 4.1 and 4.2 were400

implemented in GEOS-Chem using the HEMCO emissions component (Keller et al., 2014). GEOS-Chem can be configured

to allow for a 3-D chemical source of CO2 due to oxidation of other trace gases, but this was disabled for compatibility with

the OCO-2 MIP.

The approximate initial condition, Ŷ2(· , ·, t0), specifies the mole-fraction field at the beginning of the study period on 01

September 2014. For our initial mole-fraction field, we used a modified version of that generated by Bukosa et al. (2019). This405

mole-fraction field was constructed using a spin-up period, starting on 01 January 2005, and ending on 01 September 2014,

with transport driven by inventory fluxes and meteorology (that in some cases differ from those we use here; see Bukosa et al.,

2019, for details). At the end of the spin-up period, the whole mole-fraction field on 01 September 2014 was scaled such that

the value in the surface grid cell containing the South Pole was equal to the monthly-averaged mole-fraction measurement

from surface flask measurements at the South Pole (Thoning et al., 2020) in September 2014. The South Pole was chosen as410

our calibration point due its physical isolation from strong sources and sinks.

4.4 Data

This study uses a subset of the data sources in the MIP (Crowell et al., 2019). These include retrievals of column-averaged

CO2 by NASA’s OCO-2 satellite (Eldering et al., 2017), and retrievals of column-averaged CO2 from TCCON (Wunch et al.,

2011a). As in the MIP, we use OCO-2 data to estimate CO2 fluxes, and TCCON data to validate the estimates.415

4.4.1 OCO-2

The OCO-2 satellite was launched in 2014 with the goal of retrieving atmospheric CO2 mole fractions. The on-board instrument

measures radiances in three near-infrared spectral bands, which in turn are used to retrieve the CO2 mole fraction on 20 vertical

levels via a retrieval algorithm based on Bayesian optimal estimation (Rodgers, 2000; O’Dell et al., 2012). The retrieved levels

are column-averaged, and then bias-corrected through comparison with TCCON retrievals (Wunch et al., 2011a). The OCO-2420

team releases regular revisions of the retrieval dataset.

OCO-2 radiance measurements are taken in three distinct pointing modes: nadir mode, where the satellite aims at the point

directly beneath it; glint mode, where the satellite points at the reflection of the sun on the surface; and target mode, where

the satellite aims at a specific target, typically a ground station that also measures CO2 mole fractions. Target observations are

generally excluded from flux inversions and used only for instrument calibration. Over the ocean, nadir measurements have425

insufficient signal-to-noise ratio to provide useful retrievals, while over land, both nadir and glint retrievals are made. There
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are therefore three retrieval modes to consider, land glint (LG), land nadir (LN), and ocean glint (OG). The error properties of

retrievals over land differ significantly from those over ocean; in particular, the OG retrievals in the V7r dataset (the dataset

used in the MIP) are not considered reliable, and were therefore excluded from the MIP (Crowell et al., 2019). We follow this

protocol, and only do inversions using LG and LN data.430

The MIP protocol dictated the use of a post-processed version of the V7r retrievals; this post-processing was done as follows.

First, an additional bias-correction term related to high-albedo measurements was applied to the XCO2 retrievals. The bias-

corrected retrievals were then grouped and averaged into 1 s bins, and then they were further grouped and averaged into 10

s bins. The 10 s spans correspond to ground swathes of approximately 67 km in length. The standard deviation for each 10 s

retrieval was computed as a function of the individual retrieval standard deviations, with an additional model–data mismatch435

term added to account for the expected differences arising from transport-model errors. For the MIP, the 10 s averages were

assumed to be independent but, following Sect. 2.4, we treat them as dependent. For more details on how the 10 s averages

were computed, including how the standard errors were derived, see Crowell et al. (2019).

The OCO-2 retrieval algorithm produces estimates of XCO2. In Eq. (7), we encapsulate the retrieval algorithm in the obser-

vation operator, Âi. Appendix B gives more details on this observation operator in the case of OCO-2 retrievals.440

4.4.2 TCCON

TCCON is a network of ground-based sites measuring solar radiances in the near-infrared spectral band (Wunch et al., 2011a).

Similar to the way OCO-2 retrievals are obtained, these measurements are converted to retrievals of column-averaged CO2 (and

other gases) using a retrieval algorithm. TCCON retrievals have been adjusted to agree with World Meteorological Organization

(WMO) trace-gas measurement scales, and validated using aircraft data (Wunch et al., 2010). As both TCCON and remote445

sensing instruments retrieve column-averaged mole fractions, the TCCON data are an important validation resource (Wunch

et al., 2011b). The MIP used TCCON column-averaged CO2 retrievals from the GGG2014 release as validation data, including

all retrievals available as of July 6, 2017. In the MIP, outliers and retrievals corresponding to soundings with high solar zenith

angle were removed. The remaining retrievals were then averaged over 30-minute intervals; further details are given by Crowell

et al. (2019). We note that the filtering procedure used in the MIP occasionally led to long periods of time for which data were450

considered missing. For consistency with the MIP, in this study we used the same retrievals and postprocessing methods; the

stations used are listed in Table 2.

Like OCO-2, TCCON retrievals also have an associated observation operator Âi. This has a similar form to the operator for

OCO-2, which is described in Appendix B. A detailed description of the TCCON observation operator is given by Wunch et al.

(2011b).455

4.5 Prior distributions over the parameters

The prior distributions for the parameters governing the scaling factors, α, are specified separately for the land and ocean

TransCom3 regions. The land regions, which are observed directly by OCO-2 when in LG or LN mode, are assigned a non-

informative prior, while the indirectly observed ocean regions (which also have relatively small fluxes over a given area) are
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Table 2. Names of the TCCON stations used in this study.

Name Reference

Ascension Island, Saint Helena Feist et al. (2014)

Bialystok, Poland Deutscher et al. (2015)

Bremen, Germany Notholt et al. (2014)

Caltech, Pasadena, CA, USA Wennberg et al. (2015)

Darwin, Australia Griffith et al. (2014a)

Edwards (Armstrong/Dryden), CA, USA Iraci et al. (2016)

Eureka, Canada Strong et al. (2016)

Izaña, Spain Blumenstock et al. (2014)

Karlsruhe, Germany Hase et al. (2015)

Lamont, OK, USA Wennberg et al. (2016)

Lauder, New Zealand Sherlock et al. (2014)

Manaus, Brasil Dubey et al. (2014)

Orléans, France Warneke et al. (2014)

Park Falls, WI, USA Wennberg et al. (2014)

Réunion Island, France De Mazière et al. (2014)

Saga, Japan Kawakami et al. (2014)

Sodankyla, Finland Kivi et al. (2014)

Tsukuba, Japan Morino et al. (2016)

Wollongong, Australia Griffith et al. (2014b)

assigned a relatively informative prior. Informative priors for ocean fluxes were deemed necessary following OSSEs performed460

by us, which revealed that it is often not possible to reliably constrain ocean fluxes from OCO-2 land data.

Specifically, for j corresponding to a land region, we assigned a prior to κj by letting aκ,j = bκ,j = 1 (resulting in a uniform

prior over [0,1]), and for τw,j we let νw,j = 0.354 and ωw,j = (1−κ2
j )/0.0153. This prior on τw,j implies that 1/τw,j , the

marginal variance of the elements of the scalings in α that correspond to land regions, has 5% and 95% percentiles of 0.01

and 10, respectively, which is reasonably uninformative. For j corresponding to an ocean region, we apply an independent and465

identically distributed Gaussian prior with mean zero and standard deviation 0.5 to αj . This is achieved by fixing κj = 0 and

τw,j = 4.

As described in Sect. 4.4.1, the OCO-2 MIP 10 s averages come with prescribed uncertainties that include both measurement

error and transport-model error. In our framework, the parameters governing these error processes are γg , ρg , and `g,1. For the

prior distribution of γg , we let νγg = 1.627 and ωγg = 2.171, which lead to 5% and 95% prior percentiles of 0.5 and 10,470

respectively, while we used a uniform prior distribution for ρg . For `g,1, we let ν`g,1 = 1 and ω`g,1 = 1 min−1. When doing

bias correction online, we used the prior on β described in Sect. 2.4.
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4.6 Computation

Computations were performed in two stages. In the first stage, the 682 mole-fraction basis functions were precomputed in the

manner described in Sect. 4.2. This is the most computationally demanding step, as each basis function requires the CTM to be475

run for several days of clock time, on average. Fortunately, since every basis function can be computed independently from all

others, computing them is an embarrassingly parallel problem. Furthermore, since the basis functions are shared between the

different inversions in this section, they only need to be computed once. Computation of the basis functions took seven days in

total using the Gadi supercomputer at the Australian National Computational Infrastructure.

The inversions were performed in the second stage. As mentioned in Sect. 2.5, the posterior distribution for each inversion480

was estimated using an MCMC sampling scheme, with details given in Appendix A. The sampling schemes in all cases were run

for 11,000 iterations, and the first 1,000 iterations were discarded as burn-in. Convergence of the MCMC chain was confirmed

by inspection of all the trace plots. In our studies, we found that the vast majority of posterior distributions were different from

the prior distributions, and this is not surprising. Although complex, the model used in WOMBAT is low-dimensional, and

in this setup the total number of unknowns is 732 (r = 682 of which are flux scaling factors), which is orders of magnitude485

less than the number of LG and LN data available for the inversion (114,808 and 129,203, respectively). Specifically, these

data prove to be highly informative of the unknown parameters in our model. Generally, one need not be overly concerned

if a parameter is poorly constrained by the data. In such cases, a Bayesian framework such as WOMBAT returns a posterior

distribution over the poorly constrained parameter that tends toward the prior distribution, which in turn encapsulates the a

priori belief on the plausible range of values the parameter can take.490

The MCMC scheme was implemented in the R programming language (R Core Team, 2020), with intensive linear algebraic

computations offloaded for performance to a graphics processing unit (GPU) using Tensorflow (Abadi et al., 2016). The total

running time of the sampler depended on which model assumptions were used; in particular, whether uncorrelated (15 minutes)

or correlated errors (two hours) were modelled. The bottleneck leading to a drastic increase in computing time when modelling

correlated errors is due to the term Ψ̂′g(Σξg+Σεg )
−1Ψ̂g in Eq. (A7), which needs to be re-evaluated at each MCMC iteration.495

This operation scales as O(r3 +nr2); on hardware current of the year 2021, r needs to be less than 10,000 for computations

to remain tractable. On the other hand, when the errors are assumed to be uncorrelated or the length scale parameters are

assumed known, many matrix computations can be done once (and not at each MCMC iteration); in this case the bottleneck

becomes memory, and on current state-of-the-art servers one may accommodate an order of magnitude more basis functions.

All inversions were performed on a machine with an 8-core Intel i9-9900K CPU running at 3.60 GHz and an NVIDIA RTX500

2080 GPU.

5 Results

In this section we evaluate WOMBAT, first in an OSSE, where the true fluxes are assumed known and data are simulated

from these true fluxes, then on actual satellite data via the MIP protocol of Crowell et al. (2019). Using an OSSE, described

in Sect. 5.1, serves two purposes: first, to show that WOMBAT can indeed recover the true fluxes in a controlled environment505
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where the “working model” is the “true model”; and second, to illustrate the importance of modelling measurement-error biases

and correlated errors when these are present in the true model from which the data are simulated. Then, in Sect. 5.2, we show

that WOMBAT gives similar flux estimates to those obtained by different MIP participants, and that it performs well relative

to the MIP participants in reproducing out-of-sample TCCON validation data. In Sect. 5.3 we show that WOMBAT is able to

estimate bias coefficients online, if needed.510

5.1 Observing system simulation experiment (OSSE)

In this section we illustrate the use of WOMBAT in an OSSE, where we randomly draw flux scaling factorsαs from a Gaussian

distribution with mean 0 and covariance matrix 0.09I, and assume that these are the true flux scaling factors. The (simulated)

true flux Y s1 (· , ·) is given by

Y s1 (· , ·) = Y 0
1 (· , ·)+

r∑
j=1

φj(· , ·)αsj , (16)515

where αsj is the jth element of αs. The (simulated) true mole-fraction field, Y s2 (· , · , ·), is then given by

Y s2 (· , · , ·) = Y 0
2 (· , · , ·)+

r∑
j=1

ψ̂j(· , · , ·)αsj . (17)

Finally, we simulate measurements from the mole-fraction data model in Eq. (9) at the same times and locations as the OCO-2

10 s average retrievals for the LN and LG modes, by passing Y s2 (· , · , ·) through the corresponding OCO-2 observation operators

(see Sect. 4.4.1).520

When simulating data via Eq. (9), we assume that both bg and ξg are present. For the bias term bg , we assume that the

OCO-2 retrieval biases are a linear combination of covariates that are associated with bias in the retrieval process:

– “dp”: The prior–retrieval surface pressure differential;

– “logDWS”: The logarithm of the total retrieved optical depth associated with the aerosol types dust, water cloud, and sea

salt; and525

– “co2_grad_del”: The difference between the retrieved CO2 mole fractions at the surface and retrieval vertical level 13

(corresponding to the height with air pressure equal to 63.2% of the surface pressure, around 520–650 hPa for most

retrievals).

The “official” V7r bias-correction parameters (regression coefficients) for the original Level 2 (L2) data release were obtained

through offline comparison of the raw L2 product with TCCON retrievals, and they are the same for both LG and LN observa-530

tions. They are equal to 0.3, 0.028, and 0.6, for the three variables, respectively. We construct our (simulated) true biases based

on these coefficients.

As discussed in Sect. 2.4, we assume that the prescribed variance of each retrieval needs to be inflated, and the inflated

variance is the sum of the variance from both the correlated (ξg) and uncorrelated (εg) error components. In our OSSE, we

20



assume that the inflation factor of the prescribed variances, vps
g , is γg = 1.25, and that the proportion of this variance allocated535

to the correlated error process is ρg = 0.8. We induce the correlations using the exponential covariance function described in

Sect. 3 with the single length scale of the correlated component set to `g,1 = 1 minute for all g = 1, . . . ,ng . We specify this

correlation structure to be the same for both LG and LN data.

We ran five different setups in WOMBAT. In four of these setups, bias is assumed or not assumed to be present, and errors

are assumed or not assumed to be correlated, and all model hyperparameters are estimated. The fifth setup attempts to mimic540

a conventional flux inversion system based on scaling factors; here data is assumed to be unbiased, the errors uncorrelated,

and the hyperparameters are fixed to their true values. The known true flux, generated as described above, is the same between

the cases, and we evaluate the ability of WOMBAT to recover the truth under each of the setups. Table 3 gives the root-

mean-squared error (RMSE) and continuous ranked probability score (CRPS, Gneiting and Raftery, 2007) when estimating

monthly- and regionally-aggregated fluxes using these five setups. The regions on which these evaluations are based are the545

same TransCom3 regions that were used to construct the flux basis functions (see Sect. 4.2), and the quantities in the table

are averages across all combinations of the 31 months and 22 regions. The true data-generating process involves both bias

and correlated error. Therefore, as one would would expect, Table 3 shows that the WOMBAT setup that takes into account

both of these features performs the best in terms of both RMSE and CRPS, while the setups that assume that neither feature

is present perform the worst. For the two partially misspecified setups, the bias-corrected/uncorrelated setup outperforms550

the not-bias-corrected/correlated setup for LG data, while the opposite is true for LN data. Notably, despite the presence of

systematic biases in the simulated data, the WOMBAT setup that assumes no bias, but which takes into account correlated

errors, performs overwhelmingly better than the fully misspecified model that assumes no bias and uncorrelated errors, where

the hyperparameters are assumed to be unknown. The performance of the setup with hyperparameters fixed to their true values

is between those of the fully- and the partially-misspecified setups, illustrating the importance of modelling and estimating555

biases and correlations when these are indeed present.

Figure 3 shows the (simulated) true (black), prior mean (blue), and posterior distributions (red, purple, orange, light green,

and dark green), for the total flux in the tropics (latitude 23.5◦ S–23.5◦ N) in 2015 and 2016, from both LN and LG, split by

the southern and the northern components (latitudes 23.5◦ S–0◦ and 0◦–23.5◦ N, respectively). The five posterior distributions

depicted in each panel correspond to the five different WOMBAT setups. The interior of the ellipses represent the 95% credible560

regions. The grey dotted lines along the diagonal correspond to combinations of the southern and northern fluxes that yield the

true total flux in the tropics; if the dotted line is not within the ellipse for an inversion, the total flux is misestimated. All fluxes

shown in Fig. 3 are exclusive of fossil fuels which, recall, are held fixed in the inversions. Figure S2 in the supplement shows

the results on a global scale (land vs ocean), while Fig. S3 in the supplement shows the results on a regional scale (TransCom3

region 04 [South American Temperate] vs TransCom3 region 06 [Southern Africa]) .565

Collectively, the performances of the different models, as shown in Figs. 3, S2, and S3, align with the conclusions based on

the RMSE and CRPS statistics. In all the cases shown, the 95% credible regions for the WOMBAT configuration with both

bias correction and correlated error (red) contain the true value, while those for the configuration with neither feature (light

green and dark green) do so rarely. The orange credible regions, for the bias-corrected/uncorrelated variant, are always smaller
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Table 3. Root-mean-squared error (RMSE) and continuous ranked probability score (CRPS) when estimating monthly regional fluxes using

LG and LN data in the OSSE of Sect. 5.1. The lower the error or the score, the better the performance. Five setups in WOMBAT are evaluated,

and the regions and time periods over which these summaries (averages) are obtained are the same as those used for constructing flux basis

functions (see Sect. 4.2).

RMSE [PgC mo−1] CRPS

Setup LG LN LG LN

Bias correction/correlated errors 0.023 0.021 0.010 0.009

Bias correction/uncorrelated errors 0.038 0.038 0.015 0.016

No bias correction/correlated errors 0.045 0.026 0.016 0.011

No bias correction/uncorrelated errors 0.092 0.063 0.034 0.026

No bias correction/uncorrelated errors/fixed hyperparameters 0.052 0.039 0.022 0.017

Prior 0.036 0.036 0.018 0.019

than the red credible regions, indicating that the bias-corrected/uncorrelated variant is overconfident. In contrast, the purple570

credible regions, for the not-bias-corrected/correlated variant, are always larger, which may suggest that the correlated errors

are partially compensating for the lack of bias correction in this variant.

In summary, this OSSE shows that WOMBAT can recover the true flux when the assumed model is the true model. But, more

importantly, the OSSE also demonstrates the importance of modelling both bias and correlated errors in these flux inversions.

If the bias parameters are omitted, fluxes can be estimated incorrectly, although this may be partially mitigated by modelling575

correlated errors. If uncorrelated errors are assumed, estimation performance suffers, and flux estimates will likely be reported

with too small an uncertainty, even if the prescribed variances are allowed to be inflated when making inference. In a real-data

setting, any factors thought to introduce systematic biases should be taken into account, but this OSSE also suggests that the

use of correlated errors may provide some insurance against any remaining, unmitigated, spatio-temporal biases.

5.2 OCO-2 satellite data580

In this section we present results from WOMBAT applied to OCO-2 satellite data under the MIP protocol (Crowell et al.,

2019). The protocol mandates the use of OCO-2 retrievals with the TCCON-based offline bias correction. While WOMBAT

is capable of online bias correction (see Sect. 5.3), in this section we follow the MIP protocol and set the bias parameters in

WOMBAT equal to zero.

5.2.1 Flux comparison on a region–time basis with the MIP585

In the OCO-2 MIP, nine participants submitted fluxes based on inversions satisfying the MIP protocol. Each participant reported

to the MIP four sets of fluxes: their prior mean fluxes, and their fluxes from three inversions based respectively on point

referenced data, OCO-2 LG data, and OCO-2 LN data. Crowell et al. (2019) considered the different participants’ fluxes as an
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Figure 3. True, prior, and posterior, estimates of total flux in the northern tropics (0◦–23.5◦ N) versus the total flux in the southern tropics

(23.5◦ S–0◦) for the OSSE in Sect. 5.1. The columns correspond to the years 2015 and 2016, while the rows show which observation groups

were used, either OCO-2 land glint (LG) or land nadir (LN), noting that the prior and true flux are the same across rows. Points show the

posterior mean fluxes for each model configuration, as well as the prior mean in blue and the truth in black. The ellipses contain 95% of the

posterior probability for the true tropical fluxes in the southern and northern hemispheres. The grey dotted lines along the diagonal correspond

to combinations of southern and northern tropical fluxes that yield the true total flux in the tropics. All fluxes are exclusive of fossil fuels,

which are held fixed in the inversion.
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ensemble, reporting the ensemble mean, median, and standard deviation across a variety of temporal and spatial scales. Under

the same protocol and using OCO-2 LG and OCO-2 LN data, we compare WOMBAT’s posterior distribution over the fluxes590

to the corresponding results from the MIP ensemble.

Through its MCMC Bayesian computations, WOMBAT’s inversions generate samples from the posterior distribution of

all unknown quantities in the model, including the parameters discussed in Sect. 2.4. Section 5.2.3 discusses the inferred

parameters in detail for inversions corresponding to different satellite modes. Of note are the posterior distributions of the

parameters {ρg}, which are centred on values around 0.84. This is a strong indication that the majority of the combined model–595

data discrepancy/measurement-error process should indeed be attributed to the correlated component, ξg , given in Eq. (9).

Samples from the MCMC scheme enable estimation of functionals of the posterior distribution, including posterior means and

quantiles, of the flux process Y1(· , ·). While some individual MIP participants are able to produce probabilistic uncertainty

estimates for fluxes, these were not reported as part of the MIP; instead, the empirical distribution from the ensemble of fluxes

was used by the MIP for uncertainty quantification. Since it is difficult to make a quantitative comparison between WOMBAT’s600

posterior-based uncertainties and the ensemble uncertainties in the MIP, we opt here for a visual comparison of the posterior

means and standard deviations over the fluxes compared to the ensemble minimum, mean, and maximum. This comparison is

done at both annual and monthly temporal scales, and across spatial scales encompassing the whole globe, global land, global

ocean, and zonal bands.

Global totals: Figure 4 presents annual and monthly non-fossil-fuel fluxes for the globe, land regions, and ocean regions605

for inversions using the LG retrievals. Fluxes are shown for the MIP, split into prior and LG inversions and, for WOMBAT,

they are split into prior and posterior using LG data. Thick lines show the ensemble means for the MIP, and the (prior or

posterior) means for WOMBAT. Shaded areas and thin lines for the MIP denote the values between the ensemble minimum

and maximum, while for WOMBAT they denote values in the 95% fully Bayesian credible intervals. The corresponding figure

for LN inversions is given in Fig. S4 in the supplement.610

The global annual non-fossil-fuel fluxes estimated by posterior means from WOMBAT are very similar for both LG and

LN modes, with an overall posterior mean net sink in 2015 of 3.40/3.14 PgC yr−1 for LG/LN, respectively, and in 2016

of 4.14/4.27 PgC yr−1 for LG/LN, respectively. For 2015, these sinks are very similar to the MIP ensemble means (3.57/3.21

PgC yr−1 for LG/LN, respectively). However, for 2016, WOMBAT returns a larger posterior-mean sink than the MIP ensemble

means (3.82/3.78 PgC yr−1 for LG/LN, respectively), and its 95% credible intervals do not contain within them the ensemble615

means. At a monthly scale, WOMBAT reproduces a key feature of the MIP fluxes, wherein the seasonal cycle in the fluxes,

driven by the Northern Hemisphere growing season, begins and ends earlier than it does in the prior for both 2015 and 2016. In

agreement with the MIP, WOMBAT results indicate that the largest sink in the cycle is larger than that in the prior. However,

the sink estimated by WOMBAT is around 0.4 PgC mo−1 smaller than the MIP ensemble mean for both LG and LN and for

both 2015 and 2016.620

Global land and ocean: For global land fluxes, shown in the second row of Figs. 4 and S4, WOMBAT’s results agree

with those from the MIP for both LG and LN in that a source larger than that in the prior flux is estimated for October 2015.

However, while the source persists into November in the MIP ensemble mean, the WOMBAT posterior mean does not have the
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Figure 4. Annual (left column) and monthly (right column) fluxes for the globe (first row), land (second row), and ocean (third row).

Summaries of flux estimates from the MIP and the flux estimate from WOMBAT are shown, split into the prior and LG inversions. Thick

lines represent the ensemble means for the MIP and the (prior or posterior) means for WOMBAT. Shaded areas and thin lines for the MIP

represent values between the ensemble minimum and maximum, while for WOMBAT they represent values in the 95% credible intervals

(cred. int.). Fossil-fuel fluxes are excluded from all figures. Note that each row of plots has a different vertical scale.
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same persistence. For global ocean fluxes, shown in the third row of Figs. 4 and S4, the MIP LG-estimated and LN-estimated

fluxes differ little from the prior fluxes, and we observe the same for global oceans in the WOMBAT estimates for both LG625

and LN modes and in most months. The exceptions are September and October in both years, where WOMBAT estimates a

shallower sink, and even zero flux with the LN data. These features are not obvious in the MIP ensemble means, but they do

appear reasonable within the MIP ensemble spread.

Zonal bands: Figures S5 and S6 in the supplement show, for LG and LN inversions respectively, fluxes for zonal bands

covering the northern extratropics (23.5◦ N–90◦ N), northern tropics (0◦–23.5◦ N), southern tropics (23.5◦ S–0◦), and southern630

extratropics (90◦ S–23.5◦ S). For the MIP ensemble, Crowell et al. (2019) noted that inversions using LG data led to a smaller

net annual sink (averaged between 2015 and 2016) in the northern extratropics than those using LN data. WOMBAT also finds

this feature, with a 95% credible interval of the LG-minus-LN difference spanning 0.14–0.6 PgC yr−1. This is substantially

smaller than the difference between the MIP ensemble means for these modes, which is 0.7 PgC yr−1. Fluxes in the southern

extratropics, shown in the fourth row of Figs. S5 and S6 in the supplement, are dominated by ocean fluxes for which, as noted635

above, LG and LN data provide little information.

One of the most prominent features in the MIP inversion results is a seasonal cycle in the tropics that is larger than that in

both the prior mean and the in situ inversions (Crowell et al., 2019). From the second and third rows of Figs. S5 and S6 in

the supplement, which depict inferred tropical-zone fluxes, it can be seen that WOMBAT does not reproduce this feature for

both LG and LN inversions. In the northern tropics, the WOMBAT posterior means are similar to the prior means, and the640

credible intervals in the annual fluxes reflect high confidence. However, results from WOMBAT do corroborate those of the

MIP ensemble, in that non-fossil-fuel fluxes in the northern tropics were a net source of CO2 in 2016.

5.2.2 TCCON comparison

To evaluate the estimated fluxes in the OCO-2 MIP, each participant was asked to use the 30-minute-average TCCON retrievals

of column-averaged CO2 (see Sect. 4.4.2) as validation data, and compare them to the column-averaged CO2 predicted values645

obtained by applying the process model to the estimated fluxes with the same CTM used for the inversion. Recall that, when

performing the inversions, only OCO-2 data were used, and the TCCON data were treated as unobserved and set aside for

validation. For WOMBAT, we repeated this validation exercise by examining the prior and posterior distributions of Z2,g ,

where each g corresponds to a different TCCON site. For each group g, we set bg = 0, since we assume that the TCCON

retrievals provided are free of bias. On the other hand, we assumed that ξg + εg has variance that is group-specific and that650

these errors are fully correlated. While this assumption is conservative, it is also reasonable, since the CTM does induce

errors that are highly correlated in time at a common spatial location, as it averages all variables on a rather coarse grid when

simulating atmospheric transport. We estimate the variance of these correlated errors in a group g as the average of the reported

variances of each TCCON retrieval within the g-th group.

In Fig. S7 in the supplement, we compare the time series of the TCCON retrievals with the predictions from WOMBAT655

under the prior-mean flux, the posterior distribution of flux from LG data, and the posterior distribution of flux from LN data.

Several things are of note from this figure: First, the posterior-mean estimates are a better match to the TCCON retrievals than
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Table 4. Mean-squared error (in ppm2) averaged across TCCON stations, for each MIP participant and for WOMBAT’s prior and posterior

mean predicted values.
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LN 1.36 2.09 1.74 1.24 2.12 1.58 1.71 2.72 1.37 1.57 3.56

the prior-mean estimates, which is evidence that OCO-2 data do allow for improved flux estimates to be obtained. Second,

discrepancies between TCCON and predicted retrievals persist for a long time, lending credence to our assumption that errors

are highly temporally correlated. Third, the 95% prediction intervals are appropriate, and largely contain the TCCON retrievals.660

In Fig. 5, we reproduce an augmented version of Fig. 8 of Crowell et al. (2019), which depicts the mean and standard

deviation of the differences between the TCCON retrievals and the predicted retrieval by TCCON site, MIP participant, and

observation mode (LG and LN) alongside the results from WOMBAT. The improvement of the WOMBAT posterior prediction

over the prior prediction is evident in the mean of the differences, and the posterior error means and standard deviations of

WOMBAT are in line with those of the MIP participants. WOMBAT’s predictive distributions from LG-inferred fluxes can665

be seen to be better than those of the MIP participants, even by straightforward visual inspection. In Table 4 we compute

mean-squared error, by participant and observation mode, averaged over the 19 TCCON stations used in the MIP. WOMBAT

outperforms all other participants when using this metric with LG data, and it is fourth-best when using this metric with LN

data. While these results are not conclusive on the validity of the WOMBAT fluxes globally, they are encouraging, especially

in light of the fact that our flux process has a relatively low-dimensional representation.670

5.2.3 The inferred parameters

One of the key features of WOMBAT is the use of a parameter prior distribution in the hierarchical Bayesian model, which ap-

plies to both the parameters governing the flux scaling factors and to the parameters governing the model–data discrepancy and

measurement-error processes. Figure 6 shows the estimated posterior means and 95% credible intervals for the autoregressive

parameters κ (top) and the innovation precisions τw (bottom), for the 11 land regions, and for inversions using LG and LN675

data. The inferred parameters are relatively consistent across the LG and LN modes, with the exception of TransCom3 region

02 (North American Temperate). Most regions have a posterior mean for κj that is approximately between 0.25 and 0.75, re-

flective of moderate autocorrelation in the scaling factors. The exception is TransCom3 region 03, for which the scaling factors

are estimated to be highly autocorrelated a priori. The innovation precisions, τw, have posterior means that lie approximately

between 1 and 10, for most regions.680
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Figure 5. Mean (top row) and standard deviation (bottom row) of the errors across TCCON stations for each MIP participant (refer to

Crowell et al., 2019, for details) as well as WOMBAT’s prior and posterior mean predicted values. The error statistics for inversions using

LG data are shown in the left column, while those for LN data are shown in the right column. This figure reproduces and extends Fig. 8 of

Crowell et al. (2019) with similar (but not identical) colour gradients.
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Figure 6. Posterior means and 95% credible intervals for κ (top) and τw (bottom, shown using a log scale), for the 11 land regions:

TransCom3 region 01 (T01) to TransCom3 region 11 (T11). Estimates are shown for inversions using LG data (yellow) and LN data (dark

green).

Table 5. Posterior means, 2.5% quantiles, and 97.5% quantiles, for the parameters `g,1, γg , and ρg , for the inversions using LG and LN

retrievals. Recall that the parameters associated with LG and LN are derived from different inversions, and not from using the two retrieval

groups in the same inversion.

LG LN

Variable Mean 2.5% 97.5% Mean 2.5% 97.5%

`g,1 1.221 1.183 1.261 1.106 1.072 1.137

γg 1.207 1.187 1.226 1.209 1.190 1.226

ρg 0.834 0.829 0.838 0.835 0.831 0.840

The parameters governing the model–data discrepancy and measurement-error processes are ρg , `g,1, and γg, for g =

1, . . . ,ng . Table 5 gives the posterior means, 2.5% quantiles, and 97.5% quantiles, for these parameters. Recall that the LG

and LN parameters are derived from different inversions; they are not two groups in the same inversion. Nonetheless, the in-

ferred parameters are similar between the inversions, which is reassuring. The values for γg are indicative of a 21% variance

inflation needed for both instrument modes. The length scales, `g , are 1.2 minutes for the LG data and 1.1 minutes for the LN685

data, which corresponds to around 700–800 km on the ground. Finally, the estimated values of ρg are around 0.835, indicat-

ing that the majority of the combined model–data discrepancy/measurement-error process should indeed be attributed to the

correlated component, ξg , given in Eq. (9).
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5.3 Online bias correction

The OSSE-based sensitivity study in Sect. 5.1 demonstrated that WOMBAT is able to perform online bias correction with690

simulated data, where biases are estimated while doing flux inversion. This is different to the typical offline approach to bias

correction, where retrieval biases are determined in a separate study (e.g., Wunch et al., 2011b). To comply with the MIP

protocol, the online bias-correction functionality of WOMBAT was disabled in the study of Sect. 5.2, and the TCCON-based

offline bias-corrected OCO-2 retrievals from the MIP were used. In order to investigate the prospect of online bias correction

with real data, we repeat the inversions with online bias correction enabled, using OCO-2 10 s average retrievals both with and695

without the TCCON-based offline corrections.

In Fig. 7, we show the posterior densities of the WOMBAT-estimated bias-correction coefficients when using the retrievals

without the offline correction. The posterior densities shown there are for inversions based on LG and LN retrievals, while the

TCCON-based offline bias-correction coefficients are given by the blue vertical lines. The WOMBAT-estimated coefficients

have the same sign and similar magnitudes to the offline corrections, suggesting that WOMBAT is picking up similar bias700

patterns while doing flux inversion. However, with the exception of the “dp” coefficient under the LN inversion, the offline

values are outside the plausible ranges estimated by WOMBAT. For “co2_grad_del”, WOMBAT favours a smaller correction

for both LG and LN, while for “logDWS” a larger correction is favoured. For “dp”, WOMBAT favours a smaller correction

under the LG inversion.

We repeated the online bias-correction procedure using retrievals retaining the TCCON-based offline bias correction. In this705

setting, if the retrievals are unbiased, bias coefficients equal to zero should be inferred. The posterior densities of the estimated

coefficients under this configuration are shown in the second row of Fig. 7. As expected, the magnitudes of the online-estimated

coefficients are close to zero, although the credible intervals do not always include zero. Naïvely, one might expect that the

coefficients would be approximately equal to the difference between the TCCON-based offline coefficients and the coefficients

estimated by WOMBAT when using uncorrected data. For “dp” and “co2_grad_del”, the estimated coefficients indeed have710

the expected sign, and the expected orders of magnitude. The inferred “logDWS” coefficients are surprising, however, with an

opposite sign to what was expected for the LG inversion, and with smaller magnitudes for both the LG and LN inversions. This

unexpected result is a reflection of the complex interplay, and nonlinear relationships, between the parameters and processes

in a regularised flux-inversion model.

Overall, the online-estimated bias correction is practically, if not statistically, similar to the TCCON-based offline correction.715

One possible explanation for the difference between the WOMBAT and the TCCON-based estimates is that different data are

used, because WOMBAT does not use TCCON data for the correction. Moreover, it is likely that the true bias coefficients are

spatio-temporally varying; if this is indeed the case, the estimated biases would be affected by the spatio-temporal locations of

the retrievals used to estimate them. Another reason may be that, for simplicity, we have used only a few of the most important

variables that are used for offline bias correction; a consideration of all the variables may lead to slightly different results.720

Despite this, our results show that online bias correction is possible and that further research into it as an attractive by-product

of flux inversion is warranted.
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Figure 7. Posterior densities of bias-correction coefficients from inversions using OCO-2 retrievals without bias corrections applied (top row),

and those from inversions using retrievals corrected using the TCCON-based offline bias coefficients (bottom row). Densities are shown for

inversions based on LG and LN retrievals in yellow and dark green, respectively. The TCCON-based offline bias correction coefficients are

shown as blue vertical lines for the panels in the top row. The grey vertical dashed lines in the bottom row mark zero, the value the coefficients

would take if the data were unbiased.

Figure 8 gives annual and monthly fluxes estimated from the inversions using the online bias correction applied to the

uncorrected retrievals. For comparison, the equivalent fluxes from Sect. 5.2.1, for the offline-corrected data and with the online

bias correction disabled, are also reported. The annual and monthly fluxes are similar between the offline-corrected and online-725

corrected inversions, with substantial overlap in the marginal posterior distributions for all time periods. This result gives

further evidence that online bias correction is a viable alternative to offline correction (here based on TCCON data) when

doing flux inversion.
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Figure 8. Annual and monthly fluxes for WOMBAT inversions using: TCCON-based offline bias-corrected retrievals (solid lines with

yellow for LG and dark green for LN; the fluxes are the same as in Figs. 4 and S4, respectively), and with online bias correction applied to

the uncorrected retrievals (dashed lines). The prior-mean fluxes are shown in blue. Solid lines depict prior/posterior means, and shaded areas

denote the 95% credible intervals (cred. int.). The top row depicts global fluxes, the middle row global land fluxes, and the bottom row global

ocean fluxes.
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6 Conclusion

The WOllongong Methodology for Bayesian Assimilation of Trace-gases (WOMBAT) extends the standard synthesis flux-730

inversion framework, which does not put prior distributions on all unknowns, to a framework based on a fully Bayesian

hierarchical statistical model. It incorporates physically motivated flux basis functions and follows the standard Bayesian

synthesis framework by using a CTM to compute the corresponding mole-fraction basis functions offline. The scaling factors

for the basis functions are inferred from mole-fraction satellite data. WOMBAT incorporates a correlated-error term, estimates

measurement biases and measurement-error scaling factors online, estimates variances and length scales of flux scaling factors,735

and uses an MCMC scheme that allows uncertainty quantification through posterior distributions on all unknowns in the model.

We have illustrated the importance of modelling correlation and bias within a flux-inversion system, and we have shown that

WOMBAT produces global and regional flux estimates from OCO-2 data that are comparable to those from the MIP participants

in Crowell et al. (2019). In particular, WOMBAT outperformed the other flux models in reproducing TCCON data when using

the OCO-2 LG retrievals to obtain the fluxes, and it was competitive when using fluxes obtained from the OCO-2 LN retrievals.740

When the fossil-fuel fluxes are included, we estimate a global carbon source of 6.11± 0.09 PgC yr−1 using the LG data, and

6.17± 0.07 PgC yr−1 using the LN data. These estimates corroborate those of the MIP within uncertainty.

This paper presents the general, underlying Bayesian hierarchical framework for WOMBAT v1.0, which will serve as a

baseline for our flux inversions based on current and future versions of OCO-2 data. There are several potential extensions

being considered; here we discuss three of the most pertinent ones. First, WOMBAT, like most other flux-inversion systems,745

currently operates using a single CTM. This is problematic from a statistical modelling point of view, as it does not allow one

to attribute the correlated error either to the measurement-error process or to the mole-fraction process. If more than one CTM

is used, in principle one could statistically attribute at least part of the error due to transport. This will not necessarily solve the

problem though, since CTMs tend to share common features that induce similar correlations (e.g., due to unresolved sub-grid

variation). A possible way forward is to take results from offline OSSEs to estimate and fix the parameters characterising the750

CTM error, and then to attribute any residual observed correlation to the retrieval process.

Second, WOMBAT extends a traditional state-space approach to flux inversion, which competes with adjoint-based ap-

proaches that allow for a much higher flux dimensionality. In the current version of WOMBAT, one should use the largest

number of basis functions possible, given available hardware requirements, and find a compromise between the temporal and

spatial resolution of the flux basis functions, such that the chosen resolution is as close as possible, or finer, than that at which755

the flux estimates need to be produced (in our case, this was the TransCom3-by-month level). At this chosen resolution we

expect WOMBAT to perform well and give predictions that are valid within uncertainty: When one has broad spatial and tem-

poral data coverage of the response functions, as in the case of OCO-2 and a TransCom3-by-month flux resolution, Bayesian

synthesis can be expected to be reasonably robust to dimension-reduction error. Further, the WOMBAT posterior distributions

over the fluxes are non-Gaussian, and can accommodate skewness and long tails; this added flexibility mitigates the risk of760

under-fitting. Moreover, one may introduce additional scaling factors and corresponding basis functions in small “regions of

interest,” where the fine-scale fluxes are an inferential target, and this is something we are doing in a follow-up iteration of
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WOMBAT. However, it would be desirable to have global inversions yield valid inferences at fine spatio-temporal scales glob-

ally. Moving forward, WOMBAT will therefore seek to introduce higher dimensionality by using flux basis functions that are

at a finer scale than the TransCom3-by-month spatio-temporal basis functions that we have used here, or a fine-scale variation765

term in the flux process model that can be used to absorb variation in the flux that cannot be explained by the basis functions.

Finally, WOMBAT currently only considers along-track correlations when modelling the correlation-error term, ξg . How-

ever, the general framework we have proposed, based on a sparse-precision-matrix approximation, can be extended to model

full space-time correlations. Dedicated investigations will be required to assess the feasibility of the implementation and the

impact it will have on flux estimates.770

Code and data availability. The code associated with this article is available at https://doi.org/10.5281/zenodo.4886771 (Bertolacci et al.,

2021). This code repository includes scripts for reproducing the entire analysis in this paper, which can be applied to a variety of inverse

modelling problems. Re-running the entire analysis is computationally expensive due to the need to simulate atmospheric transport under

various perturbations. To help with this, we provide these outputs as a separate download at https://doi.org/10.5281/zenodo.4887044 (Berto-

lacci et al., 2021). These allow the inversions to be done, and for results to be generated, without the need to run the atmospheric transport775

model. Please see README.md in the code repository for more details.
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Appendix A: Markov chain Monte Carlo algorithm

As mentioned in Section 2.5, WOMBAT makes inference on the fluxes and the other parameters in the model using a Gibbs

sampler, wherein samples of subsets of the parameters are iteratively drawn from their full conditional distributions (e.g.,

Tierney, 1994). Recall that the target distribution is p(α,β,κ,τw,θξ,ε | Z2), as shown in Eq. (10).780

The Gibbs sampler in WOMBAT is as follows. Given the ith sample, {α[i], β[i], κ[i], τ [i]
w , θ[i]

ξ,ε}, the (i+1)th sample is

generated sequentially in the following manner.

1. Sample α[i+1] and β[i+1] jointly from p(α,β | κ[i],τ
[i]
w ,θ

[i]
ξ,ε,Z2).

2. Sample κ[i+1] from p(κ | τ [i]
w ,α[i+1]).

3. Sample τ [i+1]
w from p(τw | κ[i+1],α[i+1]).785

4. Sample θ[i+1]
ξ,ε from p(θξ,ε |α[i+1],β[i+1],Z2).

Below, in Appendices A1–A4, we give the details for Steps 1–4. In deriving the conditional distributions, we often make use

of the Sherman–Morrison–Woodbury matrix identity and a matrix-determinant lemma (e.g., Henderson and Searle, 1981). The

former identity states that, for conformable matrices A, U, C, and V,

(A+UCV)−1 = A−1−A−1U(C−1 +VA−1U)−1VA−1,790

whenever the required inverses exist, while the latter lemma states that

|A+UCV|= |C−1 +VA−1U||C||A|.

A1 Sampling α and β

Let B = (Ψ̂,A), x = (α′,β′)′, and Σx = bdiag(Σα,σ
2
βI). Then

p(α,β | κ,τw,θξ,ε,Z2)795

∝ exp

[
−1

2
(Z2− Ẑ0

2−Bx)′(Σξ +Σε)
−1(Z2− Ẑ0

2−Bx)− 1

2
x′Σ−1

x x
]
.

The log of this quantity is quadratic in x, and therefore the full conditional distribution of x is a multivariate Gaussian distribu-

tion; specifically,

x | κ,τw,θξ,ε,Z2 ∼Gau(µcx,Σ
c
x), (A1)

where800

(Σc
x)
−1 = B′(Σξ +Σε)

−1B+Σ−1
x ,
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and

µcx = Σc
xB′(Σξ +Σε)

−1(Z2− Ẑ0
2).

As described in Section 3, Σε is diagonal and, under Markov assumptions, Σξ has a sparse inverse. These properties allow

us to efficiently compute the required mean and covariance matrix through use of the Sherman–Morrison–Woodbury matrix805

identity. Once these are computed, sampling from Eq. (A1) is straightforward.

A2 Sampling κ

The full conditional distribution of κ is

p(κ | τw,α)∝ |Σα|−1/2 exp

(
−1

2
α′Σ−1

α α

)
p(κ), (A2)

where, recalling Section 2.4, p(κ) is a product of beta density functions. Since each κj and τw,j is associated with a spatial810

region, we also partition α by spatial region. That is, we define α≡ ((α1)′, . . . ,(αrs)′)′, where αj ∈ Rrt , j = 1, . . . , rs. For

j = 1, . . . , rs, the rt-dimensional vectorαj can therefore be associated with κj , τw,j , and a rt×rt sub-block of the matrix Σ−1
α ,

which we denote as Σ−1
α,j . Under the autoregressive model in Section 2.4, Σ−1

α,j = τw,jQα,j , where

Qα,j =



1 −κj

−κj 1+κ2
j

. . .
. . . . . . . . .

. . . 1+κ2
j −κj

−κj 1


, j = 1, . . . , rs.

Since the flux scaling factors in each spatial region are treated as independent a priori, Eq. (A2) may be written as p(κ |815

τw,α) =
∏rs
j=1 p(κj | τw,j ,αj), where

p(κj | τw,j ,αj)∝ |Qα,j |1/2 exp
(
−τw,j

2
(αj)′Qα,jα

j
)
κ
aκ,j−1
j (1−κj)bκ,j−1. (A3)

To generate samples from Eq. (A2), we therefore successively sample κj , j = 1, . . . , rs, from its full conditional distribution

(Eq. A3). Equation (A3) does not correspond to any standard distribution, so we use slice sampling (Neal, 2003) to sample

from it.820

A3 Sampling τw

Similar to κ, the conditional distribution of τw factorises across spatial regions, and it is therefore given by p(τw | κ,α) =∏rs
j=1 p(τw,j | κj ,αj), where

p(τw,j | κj ,αj)∝ τ rt/2w,j exp
(
−τw,j

2
(αj)′Qα,jα

j
)
τ
νw,j−1
w,j e−ωw,jτw,j . (A4)
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The density function in Eq. (A4) is a Gamma density function,825

τw,j | κj ,αj ∼Ga(νcw,j ,ω
c
w,j), (A5)

where νcw,j = νw,j+
1
2rt and ωcw,j = ωw,j+

1
2 (α

j)′Qα,jα
j . Therefore, we sample from the full conditional distribution of τw

by successively sampling τw,j , for j = 1, . . . , rs, directly from Eq. (A5).

A4 Sampling θξ,ε

Since we assume that the parameters governing the correlated and uncorrelated error terms are data-group specific, the full830

conditional distribution of θξ,ε is

p(θξ,ε |α,β,Z2)∝
ng∏
g=1

p(θξg ,γg |α,β,Z2,g), (A6)

where p(θξg ,γg |α,β,Z2,g)∝ p(Z2,g |α,β,θξg ,γg)p(θξg ,γg); p(θξg ,γg) is the joint prior over θξg and γg; and

p(Z2,g |α,β,θξg ,γg)∝ |Σξg +Σεg |−1/2 exp
[
− 1

2
(Z2,g − Ẑ0

2,g − Ψ̂gα−Agβg)
′(Σξg +Σεg )

−1

(Z2,g − Ẑ0
2,g − Ψ̂gα−Agβg)

]
. (A7)

The matrix operations in Eq. (A7) may be computed efficiently using the matrix identities given at the start of this section.835

Since Eq. (A7) does not correspond to any standard distribution, we use slice sampling to sample from it, for g = 1, . . . ,ng .

Appendix B: Observation operator for OCO-2 retrievals

The retrieval algorithm used for OCO-2 takes spectral data as input and returns CO2 mole fractions on 20 vertical levels as

output via an optimisation procedure. The CO2 mole fractions at these 20 vertical levels are subsequently used to compute

a column-averaged CO2 that we associate with a single retrieval. For the ith retrieval, denote the vector of retrieved mole840

fractions as Zr2,i. Following the argument given by Rodgers and Connor (2003) and Connor et al. (2008), the retrieved mole

fractions are given by

Zr2,i = Y0,r
2,i +Ai(Y2,i−Y0,r

2,i )+ ε
r
i ,

where Y0,r
2,i = (Y 0,r

2,i,1, . . . ,Y
0,r
2,i,20)

′ is the vector of prior-mean mole fractions used by the retrieval algorithm, specific to the ith

retrieval (these are unrelated to the prior mean of the mole-fraction field used in our inversion, Y 0
2 (· , · , ·)); Ai is the “averaging845

kernel matrix”; Y2,i ≡ (Y2(si,hi,k, ti))20
k=1 is the true mole fraction at the 20 vertical levels for the retrieval at geopotential

heights hi,k, k = 1, . . . ,20; and εri is a vector of measurement errors (which may also include systematic biases and errors

induced by nonlinearity in the inversion process). The column-averaged retrieval is then

Z2,i = c′iZ
r
2,i = Y 0,rc

2,i + c′iAi(Y2,i−Y0,r
2,i )+ c′iε

r
i , (B1)
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where ci ≡ (ci,1, . . . , ci,20)
′ are quadrature weights used to estimate the column average, and Y 0,rc

2,i ≡ c′iY
0,r
2,i is the retrieval850

prior mean column-averaged CO2. Define ai ≡ (ai,1, . . . ,ai,20)
′, where

ai,k ≡
1

ci,k
(c′iAi)k, k = 1, . . . ,20,

and (c′iAi)k denotes the kth element of c′iAi. The vector ai is the “averaging kernel vector” of the ith retrieval, which is

available in the official releases of the OCO-2 data. It follows that the observation operator in Eq. (7) is defined as

Âi(Y2(si, · , ti))≡ Y 0,rc
2,i +

20∑
k=1

ci,kai,k

(
Y2(si,hi,k, ti)−Y 0,r

2,i,k

)
. (B2)855

Note that we do not explicitly account for the error term c′iεri in our definition for Âi. This is because it will be absorbed by

the error terms we use in the data model (Eq. 8).

The averaging-kernel-vector elements {ai,k} are typically close in value to 1. They reflect the fact that the retrieval is not

equally sensitive to the mole fractions at all the vertical levels. At levels where there is less sensitivity (i.e., values < 1), the

retrieval prior-mean mole fraction will be assigned greater weight when producing the column-average CO2 estimate (Rodgers,860

2000).
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