
Review (round 2) gmd-2021-175

Author: Benoît Pasquier

I have found the responses and revisions of the authors appropriate and recommend publication after

some minor revisions, listed below. (Apologies for the likely frustrating notation comments.)

I should have been clearer in my first review point 38:

Eq. (30) + many lines: "fglobal". Usually non-variable subscripts are typeset upright.

This comment should have mentioned all non-variable subscript and superscript. E.g., I would replace

f^{Base}_\textrm{T} and r^{Base}_{qj} with f^\textrm{base}_\textrm{T} and

r^\textrm{base}_{qj} (i.e., fBase and rBase with fbase and rbase) where I also avoided having a

capital "B" for consistency. The authors should check the entire manuscript for any non-variable

subscript/superscript and correct them.

As per GMD's guidelines (https://www.geoscientific-model-development.net/submission.html#math)

vectors such as x, which I guess was LaTeX'd from \mathbf{x} (first appearance l. 117) should be

typeset "in boldface italics", i.e., x. This is easily done using the \vec{x} command provided by the

Copernicus LaTeX template.

Units are missing in almost every figure and should be added.

l. 178: Eq. (2): the sums should not start at i=1. They should be written as \sum_{i\in j} instead of

\sum_{i=1}^{i\in j} (∑i∈j instead of ∑i=1i∈j).

l. 132: Mathematical symbol D should be in italics, i.e., D. (Use "D".)

l. 168: "the length of the vector r" should be spelled out for clarity with maybe something like "d, the

number of ri terms". (Also note that otherwise the vector r, which should be boldface italic, is not

even defined.)

Table 1: In retrospect, my suggestions for experiment names were not great. For readability, I think it

might be better to have shorter names and avoid underscores. What about:

"CTL" for the CMA-ES run (the control run),

"SMOOTH1" for the "D_smooth_1 run" and so on,

"NOISY1" for the "D_noise_rand1" run and so on, and

"SPARSE1" for the "D_smooth_sparse_1" run and so on?

l. 221: Use the \times symbol ("×") rather than the letter "x".

Fig. 4:

Maybe a line for the target value could be added in the background? (and a ±5% band?)

Maybe show the 10 CTL (C_smooth) starting points as tiny dots?

There is a lot of unused vertical space in each panel. Maybe the y-axis limits can be tightened a

bit? E.g., Fig. 4c shows maximum K_PHY values of about 0.2, but the y-axis goes up to 0.5.

https://www.geoscientific-model-development.net/submission.html#math

The legend could be simplified to only say that circles are starting points and crosses are

optimized values? (Maybe use black for the legend and then give a different color than black

for the smooth values.

Speaking of color, a color-blind-friendly palette could be used here instead of plain black, red,

and blue (e.g., colorbrewer's qualitative colors

(https://colorbrewer2.org/#type=qualitative&scheme=Dark2&n=3), but there are many others!)

The legend could be placed at the bottom rather than in the middle to avoid visually breaking

the x-axis alignments of top and bottom panels.

Fig. 5: This is a key figure that was added in response to the 1st round of review to replace the now

Table C. Yet, the main message — that DFO-LS requires much less evaluations than CMA-ES — is

now obfuscated by the use of different scales and 2 y-axes. Better to show both on the same scale

and let the visual speak for itself! The broken-axis suggestion (from the 1st review round) was not

used, although it would make this much clearer in my opinion. Here is what I had in mind, e.g., for Fig.

5a (The red dashed line shows the imposed limit on evaluations for DFO-LS runs.):

I understand MATLAB is not suited for broken-axis plots, so to be helpful I have provided below the

python code that produces the broken-axis plot shown above. This code can easily be used as a

template to reproduce each panel in Fig. 5. Python code:

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(19680801)

experiment_names = ["CTL", "SMOOTH1", "SMOOTH2", "NOISY1", "NOISY2",
"NOISY3", "SPARSE1", "SPARSE2"]
nevals_to_basline_misfits = [309,20,35,70,70,70,21,29]

If we were to simply plot pts, we'd lose most of the interesting
details due to the outliers. So let's 'break' or 'cut-out' the y-

https://colorbrewer2.org/#type=qualitative&scheme=Dark2&n=3

axis
into two portions - use the top (ax1) for the outliers, and the
bottom
(ax2) for the details of the majority of our data
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
fig.subplots_adjust(hspace=0.1) # adjust space between axes

plot the same data on both axes
ax1.bar(experiment_names, nevals_to_basline_misfits)
ax2.bar(experiment_names, nevals_to_basline_misfits)

zoom-in / limit the view to different portions of the data
ax1.set_ylim(85, 350) # outliers only
ax2.set_ylim(0, 85) # most of the data

hide the spines between ax and ax2
ax1.spines.bottom.set_visible(False)
ax2.spines.top.set_visible(False)
ax1.xaxis.tick_top()
ax1.tick_params(labeltop=False) # don't put tick labels at the top
ax2.xaxis.tick_bottom()

Now, let's turn towards the cut-out slanted lines.
We create line objects in axes coordinates, in which (0,0), (0,1),
(1,0), and (1,1) are the four corners of the axes.
The slanted lines themselves are markers at those locations, such
that the
lines keep their angle and position, independent of the axes size or
scale
Finally, we need to disable clipping.

d = .5 # proportion of vertical to horizontal extent of the slanted
line
kwargs = dict(marker=[(-1, -d), (1, d)], markersize=12,
 linestyle="none", color='k', mec='k', mew=1,
clip_on=False)
ax1.plot([0, 1], [0, 0], transform=ax1.transAxes, **kwargs)
ax2.plot([0, 1], [1, 1], transform=ax2.transAxes, **kwargs)

plt.axhline(y=70, linestyle=":", color="red")

plt.xticks(rotation=90, ha='center', va='top')

plt.suptitle("Number of evaluations to baseline misfit")

plt.show()

Note 1: Do not pay too much attention to the code comments in the snippet above because

they are from the matplotlib broken-axis example

(https://matplotlib.org/stable/gallery/subplots_axes_and_figures/broken_axis.html) from which

this code was slightly edited.

https://matplotlib.org/stable/gallery/subplots_axes_and_figures/broken_axis.html

Note 2: No local python installation is needded: To produce the plot above this code was edited

and ran online using Binder (https://mybinder.org/)).

https://mybinder.org/

