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Abstract. The photolysis module in Environment and Climate Change Canada’s on-line chemical transport model GEM-
MACH (GEM: Global Environmental Multi-scale — MACH: Modelling Air quality and Chemistry) was improved, to make
use of the on-line size and composition-resolved representation of atmospheric aerosols and relative humidity in GEM-MACH,
to account for aerosol attenuation of radiation in the photolysis calculation. We coupled both the GEM-MACH aerosol module
and the MESSy-JVAL (Modular Earth Sub-Model System) photolysis module, through the use of the on-line aerosol modelled
data and a new Mie lookup table for the model-generated extinction efficiency, absorption and scattering cross sections of
each aerosol type. The new algorithm applies a lensing correction factor to the black carbon absorption efficiency (core-shell
parameterization) and calculates the scattering and absorption optical depth and asymmetry factor of black carbon, sea-salt,
dust, and other internally mixed components.

We carried out a series of simulations with the improved version of MESSy-JVAL and wildfire emission inputs from the
Canadian Forest Fire Emissions Prediction System (CFFEPS) for two months, compared the model aerosol optical depth
(AOD) output to the previous version of MESSy-JVAL, satellite data, ground-based measurements and re-analysis products,
and evaluated the effects of AOD calculations and the interactive aerosol feedback on the performance of the GEM-MACH
model. The comparison of the improved version of MESSy-JVAL with the previous version showed significant improvements
in the model performance with the implementation of the new photolysis module, and with adopting the online interactive
aerosol concentrations in GEM-MACH. Incorporating these changes to the model resulted in an increase in the correlation
coefficient from 0.17 to 0.37 between the GEM-MACH model AOD one-month hourly output and AERONET (Aerosol
Robotic Network) measurements across all the North American sites. Comparisons of the updated model AOD with
AERONET measurements for selected Canadian urban and industrial sites specifically, showed better correlation coefficients
for urban AERONET sites, and for stations located further south in the domain for both simulation periods (June and January
2018). The predicted monthly averaged AOD using the improved photolysis module followed the spatial patterns of MERRA-

2 re-analysis (Modern-Era Retrospective analysis for Research and Applications - Version 2), with an overall under-prediction
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of AOD over the common domain for both seasons. Our study also suggests that the domain-wide impact of direct and indirect
effect aerosol feedbacks on the photolysis rates from meteorological changes, are considerably greater (3 to 4 times) than the

direct aerosol optical effect on the photolysis rate calculations.

1 Introduction

Atmospheric aerosols are very small solid, aqueous or mixed-state particles suspended in the atmosphere, typically ranging
from 10 um to 10 pm in size, which affect Earth’s radiative balance (Bond and Bergstrom, 2006). Photolysis or photo-
dissociation reactions are those for which molecules break down by absorbing sunlight. Aerosol particles scatter and absorb
solar radiation, and can thus change the actinic fluxes, or the flux of spherically integrated spectral radiance of the sun, and
hence the rate coefficients of photolysis reactions, also known as J-values (Jacobson, 2005). The latter are the rates of the
molecular dissociation of the gaseous species by sunlight and depend on the attenuation of the radiation stream as a function
of the particle size, composition and morphology (arrangement of the components within the particle), on gases’ effective size
(molecular cross-section), and on the fraction of molecules broken apart per incoming photon (quantum yield). One way of
quantifying the effects of aerosols on radiative transfer processes, including photolysis, is through the use of the aerosol optical
depth (hereafter AOD). AOD is a dimensionless quantity, a measure of the extinction of the solar light by aerosols in the
atmosphere and provides a measure of the amount of aerosols in a vertical column from the surface to the top of the atmosphere.
Aerosol mixing state within a population of aerosol particles is defined as the distribution of chemical species in each aerosol
particle (Riemer et al., 2019), and can also be referred to as the particle morphology in the aerosol population (Stevens and
Dastoor, 2019). When all the species are homogeneously mixed within an aerosol particle, the population is known to be
“internally mixed”, whereas an “externally mixed” population of particles consists of each particle being of only one chemical
species. Internal mixtures can also be described as homogeneous populations of homogeneous particles, and external mixtures
as heterogeneous populations of homogeneous particles (Bond and Bergstrom, 2006). In reality, completely internally and
externally mixed aerosol populations are rare in the atmosphere, and aerosol particles are complex mixtures of different
chemical species (Bond et al., 2006; Riemer et al., 2019; Healy et al., 2014).

Black Carbon (a widely used term for light-absorbing carbon) from fossil fuel and biomass burning is known to have a large
positive radiative forcing in the atmosphere due to its highly absorptive properties and strong extinction (Jacobson, 2000; Bond
and Bergstrom, 2006). Black carbon is generally modelled using different assumptions on its mixing state: externally mixed,
where black carbon and other aerosols are in separate particles, volume-averaged internally mixed, where each particle contains
a mixture of black carbon and other aerosols, and a core-shell structure, in which each particle consists of a black carbon core
surrounded by a mixture of other aerosols through condensation and coagulation or aging processes (Jacobson, 2001). When
black carbon is coated with other aerosols, the light absorbing properties of black carbon may be enhanced (absorption
enhancement) by 50 to 60% through a lensing effect (Liu et al., 2017). Since absorption, and therefore the radiative forcing in

the atmosphere, is influenced by different assumptions of the mixing state of particles, the representation of aerosol size and
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the mixing state of black carbon is essential to have a realistic estimation of radiative forcing in atmospheric models (Bond et
al., 2006). Bond et al. (2006), calculated the absorption amplification (ratio of absorption by core-shell black carbon to pure
black carbon with the same carbon mass) for a wide range of core-shell thickness, using an implementation of the Bohren and
Huffman (1983) Mie scattering algorithm in MatLab (Métzler, 2002) at 550 nm. They identified five distinct geometric regimes
for different black carbon (core) and shell sizes, and calculated the best fit for the absorption amplification for each individual
regime (Bond et al. (2006), Table 2).

To date, the estimates of AOD in atmospheric models have been based on one or a combination of different mixing states of
aerosols. The variation in the resulting aerosol optical properties from the atmospheric models is associated with the
assumptions regarding the methods used in AOD calculations, aerosol mixing states, density, refractive index and hygroscopic
growth, with the most important factor being the choice of the mixing states of aerosols (Curci et al., 2015). The latter accounts
for 30 to 35% of the uncertainty in estimation of AOD and single scattering albedo (Curci et al., 2015). Other studies, e.g.,
Barnaba et al. (2010), found different spatial patterns in AOD versus surface particulate matter, highlighting the sensitivity of
calculated AOD to aerosol vertical profile rather than the aerosol surface concentrations.

The radiative transfer module in chemical transport models contains parameterizations for extinction efficiency (the sum of
scattering and absorption efficiencies), single scattering albedo (the ratio of scattering efficiency to total extinction efficiency)
and asymmetry factor (the angular direction of the scattered radiation by particles or gases) for each particle type, and calculates
scattering and absorption coefficients (a measure of photon scattering and absorption by particles) to predict the radiative state
of the atmosphere. AOD is calculated by integrating the extinction of the solar beam due to aerosols over the vertical column.
These optical effects of aerosols may also influence the shorter wavelengths associated with atmospheric gas photolysis,
influencing atmospheric reactivity. These processes may be harmonized in an on-line chemical transport model, such as
Environment and Climate Change Canada’s (ECCC) online-coupled meteorology and chemical transport model, GEM-MACH
(GEM: Global Environmental Multi-scale — MACH: Modelling Air quality and Chemistry). Chemical transport models such
as GEM-MACH have been used in past works, investigating AOD and evaluating different aerosol light attenuation methods
and mixing states of black carbon.

Gan et al. (2015) performed a long-term simulation of aerosol concentration and optical depth for 16 years (1995 to 2010),
using the coupled Weather Research and Forecasting—-Community Multi-scale Air Quality (WRFv3.4 and CMAQV5.0.2) over
the continental US (CONUS). For model evaluation, they used 16 years (1995 to 2010) of observation data, and 14 years of
AOD data (1997 to 2010) from several measurement networks including SURFRAD (Surface Radiation Budget Network),
ARM (Atmospheric Radiation Measurement), CASTNET (Clean Air Status and Trend Network), and IMPROVE (Interagency
Monitoring of Protection Visual Environments) observations (Gan et al., 2014a; Gan et al., 2015). The aerosol light attenuation
method in their model was based on Mie and core-shell scattering (Gan et al., 2014b), and the model used online aerosol
feedback on radiation and photolysis (sulfate, nitrate, ammonium, dust and organic aerosols) (Gan et al., 2015). Although their
simulations showed the overall observed trends of AOD from SURFRAD, the magnitude of simulated AOD was

underestimated compared to the observations. For instance, the 1997-2010 annual mean AOD time series over eastern US
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showed the model AOD values ranging from a minimum of ~0.06 to a maximum of ~0.09, while SURFRAD observations had
a minimum of ~0.125 and maximum of ~0.175.

Latimar et al. (2019) performed a 10-year simulation of aerosol mass scattering efficiency and AOD using the GEOS-Chem
(Goddard Earth Observing System of the NASA Global Modeling and Assimilation Office, version 11-02, http://geos-
chem.org) chemical transport model. Their simulations of aerosol mass scattering efficiency, from an aerosol speciation
including sulfate, ammonium, nitrate, primary and secondary organic carbon, mineral dust and sea-salt, were evaluated using
data from the North American IMPROVE (Interagency Monitoring of Protected Visual Environments) monitoring network
between 2000 to 2010; the global AERONET network data was used for AOD evaluation. Aerosol optical properties were
generated using a GEOS-Chem default optical lookup table. They examined the impact of secondary inorganic aerosol and
organic aerosol size and hygroscopicity, excluding sites dominated by dust, and those with a high degree of internal sub-grid
scale elevation variability, in order to focus on the composition/size issues. The revised hygroscopicity assumptions resulted
in an increase of 19% in global mean simulated AOD with the revised aerosol optical properties. Despite improvements to
simulated AOD on a global scale, those values were still underestimated at most North American sites (Latimar et al.,2019),
with a correlation relation (R) of 0.78 and root mean square error (RMSE) of 0.1 for measured versus the revised simulated
AOD at all AERONET sites in 2006.

Alvarado et al. (2016) used measurements of aerosol scattering and absorption gathered during the 2008 Arctic Research of
the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign to evaluate the aerosol optical properties
from global numerical models. The NASA ARCTAS campaign (Jacob et al., 2010) was conducted over Alaska in April 2008
(ARCTAS-A) and over western Canada during June-July 2008 (ARCTAS-B). ARCTAS-CARB (“sponsored by the California
Air Resources Board (CARB)”), was conducted over California, one week prior to ARCTAS-B. These evaluations examined
the effects of different mixing states of black carbon (volume-averaged, core-shell, and externally mixed, as well as the
Maxwell-Garnet mixing rule, in which black carbon is assumed to be present in randomly distributed inclusions) on aerosol
scattering and absorption properties, for wavelengths between 250 and 700 nm, using an off-line approach of the Aerosol
Simulation Program (ASP v2.1, Alvarado et al., 2015). ASP is a single-box aerosol model, with modules to calculate aerosol
thermodynamics, gas-to-aerosol mass transfer (condensation/evaporation), coagulation of aerosols, and aerosol optical
properties (Alvarado et al., 2016). Using the instruments of the NASA Langley Aerosol Research Group (LARGE; Anderson
et al., 1998), they showed that the use of a core-shell mixing state for black carbon, especially for fresh biomass burning
episodes, led to the overestimation of aerosol absorption by 29% to 35%, with insignificant dependence on the wavelength,
while an external mixture assumption led to the underestimation of aerosol absorption, with a strong dependence on
wavelength. Their collected observations suggested using an externally mixed black carbon for the fresh smoke observations,
and an internally mixed core-shell approach for the aged Arctic haze and the anthropogenic pollution. Their implementation
of a variable mixing state resulted in an average overestimation of aerosol absorption of 10% at 470 nm, 17% at 532 nm and
23% at 660 nm.
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The mixing state of aerosols has a key impact on radiative transfer, with black carbon’s ability to absorb significant amounts
of incoming short wavelength light and re-emit this energy as longer wavelengths, resulting in its identification as a short-term
climate forcer (IPCC, 2018). However, the mixing state of black carbon, and the impact of that mixing state on the radiative
properties of atmospheric aerosols, varies in the literature. Tombette et al. (2008) suggested that the mixing state of black
carbon presents an insignificant effect on aerosol optical thickness (AOT) calculations (RMSE difference < 104). Liu et al.
(2017) recommended using an absorption enhancement in order to account for optical lensing associated with biomass-burning
emissions, and no-absorption enhancement for fresh traffic sources. In another study, over 10 European AERONET sites, Péré
et al. (2009) found the mean modelled core-shell single scattering albedo (SSA) provided the closest match to the
corresponding measurements, with the spatio-temporal correlation coefficient of 0.51 (compared to 0.04 and 0.35 for the
internally homogeneous and externally mixed particles respectively), and therefore is the best representation for simulating
anthropogenic and/or biomass burning emissions.

In the work which follows, we make use of the Global Environmental Multiscale — Modelling Air-quality and Chemistry
(GEM-MACH) model. The atmospheric chemistry module in GEM-MACH has been included as an on-line component of
the core weather-forecast model (GEM) (C6té et al., 1998a, b; Girard et al., 2014; Charron et al., 2012), and consists of air-
quality processes, including computationally-efficient ADOM-II (Acid Deposition and Oxidant Model, version 2) gas-phase
chemistry mechanism with 47 species (Lurmann et al., 1986; Fung et al., 1991), aqueous phase and heterogeneous chemistry,
wet and dry deposition, aerosol-cloud processes, and aerosol microphysics (Gong et al., 2003a, b; Moran et al., 2010; Makar
etal., 20153, b). The model’s aerosol distribution is based on 12 particle size bins. The aerosol species in GEM-MACH consist
of eight components within each size bin: ammonium, sulfate, nitrate, sea salt, crustal material, black carbon, primary organic
aerosol (POA) and secondary organic aerosol (SOA). The aerosol and microphysical parameterizations include particle
nucleation, condensation and coagulation (Gong et al., 2003a, b), gas and particle dry deposition (Zhang et al., 2001; Makar
et al., 2018), cloud processing and in-cloud aqueous-phase chemistry (Gong et al., 2006), direct and indirect feedback options
(Makar et al., 2015a, b; Gong et al., 2015) and equilibrium inorganic gas-aerosol partitioning (Makar et al., 2003). The model
can be used with either one-way coupling (meteorology drives the chemistry) or with two-way coupling (which enables the
model-generated aerosols’ impact on radiative transfer — aerosol direct effect, and on radiative transfer via cloud formation —
aerosol indirect effect; Makar et al., 2015 a,b). However, the default configuration of GEM-MACH’s photolysis calculations
makes use of an a priori lookup table as a function of solar zenith angle and height. Here, we update this module, examine the
effects of photolysis on the aerosol feedbacks, and show their relative importance to model performance.

Table 1 represents the different options for aerosol optical calculations in the current version of GEM-MACH. The original,
pre-calculated, clear-sky J-value lookup table in GEM-MACH is a function of solar zenith angle and height. The photolysis
rates are calculated using the input data of Peterson (1976) and the radiative transfer model of Dave (1972), with cross-sections
and quantum yields taken from DeMore et al. (1988) (Kelly et al., 2012). The model uses the online cloud fraction and liquid
water content from the GEM model to scale the pre-calculated clear-sky J-values, based on an algorithm by Chang et al. (1987).

The size distribution and number density profile of aerosols used in the lookup table generation were based on Braslau and

5



165

170

Dave (1973), and the refractive index of the aerosols were assumed to be independent of height and wavelength, with a single

uniform value of 1.5-0.01i (Yamamoto and Tanaka, 1972). The resultant optical depth at 500 nm wavelength is 0.25.

Aerosol Size | Aerosol Ozone Aerosol Lensing | Surface Albedo
Chemistry Column Mixing State | Effect
Base J-value | Climatology | Climatology | Constant Homogeneous | No 290-400 nm (0.05)
lookup table Climatology | Mixture  for 400-450 nm (0.06)
in MACH Aerosols 450-500 nm (0.08)
(Peterson, 500-550 nm (0.1)
1976) 550-600 nm (0.11)
600-640 nm (0.12)
640-660 nm (0.135)
660-700 nm (0.15)
(Peterson, 1976)
Base Climatology | Climatology( | Online Homogeneous | No Online
MESSy- (Chen et al., | Chen et al, Mixture  for
JVAL in | 2020) 2020) Aerosols
MACH
Revised Online (This | Online (This | Online Externally Yes Online
MESSy- Work) Work) Mixed + (This
JVAL in Internally Work)
MACH Mixed
Aerosols +
Core-Shell
Black Carbon
(This Work)
Base Climatology | Climatology | Online Homogeneous | No Online
radiative Mixture  for
transfer in Aerosols
GEM
Revised Online Online Online Homogeneous | No Online
radiative (Makar et al., | (Makar et al., Mixture  for
transfer in | 2015 a, b) 2015 a, b) Aerosols
GEM

Table 1: Aerosol optical calculations in GEM and MACH.

The calculations of aerosol optical depth, single-scattering albedo, and asymmetry factor used by the GEM weather forecast
model, also used in the offline version of the radiative transfer module in GEM-MACH (Li and Barker, 2005) with no-feedback
configuration, are based on a climatology produced by Toon and Pollack (1976), with specified aerosol loading for continents
and oceans, a maximum value at the Equator and a decrease towards the poles. The solar absorption properties are only
assumed to be affected by aerosols in the clear-sky atmosphere (Markovic et al., 2008). In contrast, the on-line version of the

radiative transfer module in the feedback-enabled version of GEM-MACH makes use of a homogeneous aerosol mixture Mie
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scattering (Bohren and Huffman, 1983) code for meteorological radiative transfer calculations, and the model-generated
aerosols in the feedback mode (Makar et al., 2015 a, b) are used for radiative transfer calculations.

The new photolysis module in GEM-MACH (MESSy-JVAL) is based on JVAL14-MESSy of Sander et al. (2014). The
photolysis module JVAL was adapted by Sander et al. as a module inside the Modular Earth Sub-model System (MESSy)
interface of Jockel et al. (2005). The original formulation of photolysis rates calculations was developed by Landgraf and
Crutzen (1998) and has been since adopted in several atmospheric models (Sander et al., 2014). The actinic flux calculations
include the effects of aerosols and clouds on photolysis rates. The optical data for cloud scattering and absorption are adopted
from Slingo (1989) (Sander et al., 2011a). The previous off-line application of MESSy-JVAL in GEM-MACH (Chen et al.,
2020), made use of a climatology of aerosol concentration (a constant aerosol vertical profile above land and a different vertical
profile over water). Cloud radiative properties and cloud fraction were calculated online at runtime (Chen et al., 2020). The
focus of this study is to improve the representation of aerosol optical properties in MESSy-JVAL, and to determine their impact
on model performance.

In the following sections, we describe the methods we used to improve the representation of aerosol optical properties in
MESSy-JVAL, followed by the evaluations of the improved photolysis module and the limitations of the model in photolysis
rate calculations. Section 2 provides a description of the model configuration, simulation setup and the observations used to
evaluate the model output, calculations of the new lookup table for aerosol optical properties, and a description of the revised
photolysis rate calculations in GEM-MACH. The comparison of the updated MESSy-JVAL with the base off-line version is
presented in section 3, followed by the results of different evaluations of the improved photolysis module: comparisons with
observations, evaluations of the impacts of AOD calculations and model-generated aerosols on the photolysis rates
calculations, and a case study of photolysis calculations under high pollutant flux emissions conditions. Summary and

conclusions of this study are presented in Section 4.

2 Methods
2.1 Overview

In order to improve the photolysis module and calculate aerosol feedbacks more accurately, we developed a new Mie lookup
table for aerosol optical properties which was accessed within the improved version of MESSy-JVAL. An initial lookup table
was calculated using the refractive indices of seven representative aerosol components and the Mie scattering code within the
VECTOR model (McLinden et al., 2002). Using the hygroscopic growth factor of each aerosol type, we calculated the dry size
parameter (Section 2.2, equation 1) of the initial lookup table, which was then interpolated into GEM-MACH dry size
parameter. The final lookup table which was implemented into GEM-MACH is a function of GEM-MACH dry size parameters
and wavelengths. The calculated aerosol composition and size in GEM-MACH was used as input for photolysis rate
calculations, and a hybrid aerosol mixing state was assumed for size bins containing different concentrations of black carbon

to calculate the optical properties of four aerosol categories: black carbon, sea-salt, dust and other internally mixed components.
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Figure 1: Steps and methods in calculating the new Mie lookup table for photolysis rates in GEM-MACH. RH represents the
relative humidity and A is the wavelength.
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Currently, there is a size-resolved (sectional) representation of atmospheric aerosol particles in GEM-MACH, which may be
used for determining the impact of aerosol feedbacks on radiation and photolysis. When GEM-MACH’s aerosol feedbacks
are enabled, the aerosol direct effect makes use of a Mie scattering approach and the assumption of a binary mixture between
dry aerosols and water for the complex refractive index (Makar et al., 2015a). For photolysis calculations as carried out here,
we made use of GEM-MACH’s calculated aerosol compaosition and size as input for photolysis rate calculations. The new
algorithm uses the eight dry chemical components of GEM-MACH aerosol (sulfate, nitrate, ammonium, primary organic
matter, secondary organic matter, black carbon, dust and sea-salt) and reads in the data from the updated lookup table (see
sections 2.2, 2.3, following) to calculate the scattering and absorption optical depth and asymmetry factor of black carbon, sea-
salt, dust and other internally mixed components. We used the black carbon particle size in GEM-MACH as an indicator of
the mixing state of the internally mixed particles. For each GEM-MACH size bin, the mass fraction of black carbon to the total
mass of all the other particles in that bin was calculated. Since the externally-mixed black carbon particles are most common
near combustion sources, if a GEM-MACH particle size bin contains a black carbon mass fraction that is near or larger than
that of a typical combustion emission particle (“the black carbon mass fraction of more than 40% (Stevens and Dastoor, 2019),
the particle bin was considered to be mostly black carbon, no absorption amplification factor was applied to black carbon
photolysis rate calculations, and an external particle mixing state for that size bin was assumed (i.e., black carbon as a separate
particle, and a volume-averaged homogeneously mixture of ammonium sulfate, ammonium nitrate, primary and secondary
organics). If the black carbon mass fraction for a particle size bin was less than 40%, we assumed that black carbon is coated
with other internal particle components, and a core-shell configuration was used for that size bin; the black carbon forms a
core and other internal particle components (primary and secondary organic matter, ammonium sulfate, and ammonium
nitrate), form a shell. In this case, the black carbon is mixed with other condensed or coagulated components, the bin is more
aged, and we apply a lensing correction factor to the black carbon absorption efficiency recommended by Bond et al. (2006).
It should be noted that sea salt and dust were not included in the assumptions of the internally mixed particles, and in both
cases mentioned above, those aerosols were considered as separate particles. These underlying assumptions were used for the
calculations of the aerosol optical properties for four independent aerosol groups: sea-salt, dust, black carbon and the internally

mixed particles (See Fig. 1). We describe our methodology in more detail in the following sections.

2.2 Developing a new aerosol optical properties look-up table for MESSy

In order to update the aerosol effects in the MESSy photolysis module in GEM-MACH, we calculated a new lookup table
using the Mie scattering code within the VECTOR model (McLinden et al., 2002) for extinction efficiency, single scatter
albedo and asymmetry factor for seven aerosol types, which within the lookup table are treated as pure-composition particles
of sea-salt, black carbon, dust, ammonium sulfate, ammonium nitrate, organic carbon, and pure water. The initial version of
the new lookup table was calculated for single components, each with its own water uptake properties derived from the
literature. One dimension of the table is the wet particle radius range for a logarithmically expanding set of cut-sizes of the
aerosol distribution of GEM-MACH (0-10, 10-20, 20-40, 40-80, 80-160, 160-320, 320-640, 640-1280, 1280-2560, 2560-5120,
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5120-10240, and 10240-20480 nm), five wavelengths (200, 300, 400, 600, 1000 nm) and seven different relative humidity
levels (0%, 50%, 70%, 80%, 90%, 95%, 98%, 99%) for all aerosols except dust, which was assumed to have no water uptake.
The effective wet particle radii were calculated based on a power-law distribution (Hansen and Travis, 1974) of each particle
range. The relative humidity determines the water fraction for all other aerosol types. The selection of wider spacing at lower
relative humidity and longer wavelength was due to the growing dependency of optical properties to increasing relative
humidity and decreasing wavelengths. We assumed a flat distribution of aerosol radii within each bin size. The complex
refractive indices of the water-soluble inorganic aerosols, namely ammonium sulfate, ammonium nitrate and sea salt were
calculated using the FORTRAN software developed by Andrew Lacis
(https://www.giss.nasa.gov/staff/mmishchenko/ftpcode/lacis/lacis_refrac.rhwmri.f) which has been used in many recent
studies (Jeong, 2020; Bozzo et al., 2020; Escribano et al., 2014; Schuster et al., 2009). In this model, all aerosols are treated
as homogeneous mixtures. Parametric formulas are derived for the changes in the real part of the refractive index, specific
density, size, and water activity as functions of mass fraction. These formulas are used to interpolate spectrally between the
refractive indices of dry ammonium sulfate, sea salt, and ammonium nitrate and those of water. For ammonium sulfate, the
complex refractive index is from Toon et al. (1976). The water activity for this aerosol type is based on Tang and Munkelwitz
(1994). For ammonium nitrate, the real and imaginary parts of the refractive index are from Tang et al. (1981) and Gosse et al.
(1997), and the water uptake is from Tang (1996). The complex refractive index of sea salt is based on Shettle and Fenn (1979),
which relies on Dorsey (1940).

Aerosol Density (kg m®) | Real part of the refractive Imaginary part of the refractive
index at 550 nm (at RH=0%) | index at 550 nm (at RH= 0%)

Ammonium sulfate 1.77 x 10*3 1.53 107

Ammonium nitrate 1.7 x 10% 1.56 10°

Dust 2.56 x 10*3 1.56 6x 103

Black carbon 1.8 x 103 1.75 0.44

Sea salt 2.17 x 10*3 1.49 0.006

Water 1.0 x 10*3 1.33 1.00023 x 10°®

Organics 1.4 x 103 1.53 1.96 x 10°°

Table2: Density and the refractive index of each aerosol type.

For dust, no water uptake has been assumed, and thus no dependency on the relative humidity. The complex refractive index
of dust is assumed to be independent of particle size and is obtained from the VECTOR model’s library of refractive indices
with the real part of the dust refractive index varying between 1.55 and 1.57 and the imaginary component increasing
monotonically from 0.004i at 1000 nm to 0.025i at 200 nm. For organic carbon, the complex refractive index is wavelength-
dependent for all relative humidities and was extracted from Fast-JX, the photolysis mechanism used in GEOS-CHEM
(Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation Office). Fast-JX v7.0 calculates
aerosol extinction efficiencies at five wavelengths, 200, 300, 400, 600 and 999nm. The file jv_spec_mie.dat
(http://rain.ucis.dal.ca/ctm/CHEM_INPUTS/FAST_JX/v2020-02/jv_spec_mie.dat) in Fast-JX v7.0 contains the quantum
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yields and aerosol cross sections for photolysis. Real and imaginary parts of the refractive index of organic carbon at 98%
were obtained by linear interpolation between the indices at RHs of 95 and 99%. For black carbon, the dependence on relative
humidity was based on hygroscopic growth factors (HGF; the ratio of the wet particle radius to the dry particle radius) obtained
from Lei et al. (2014) (Table 3). The RH-dependent refractive index (nrp) is a HGF3-weighted mean of refractive indices of
pure black carbon (nsc) and pure water (Nwater):

nga = [(HGFRy — Dnwater + Npcl/HGFRy 1)

with water having a spectrally constant refractive index of 1.333 (with no imaginary component over the relevant wavelength
range) and pure black carbon having a spectrally constant refractive index of 1.75 - 0.44i (Kou, 1996). The optical properties
of the primary organics were calculated using the optical properties of secondary organics and pure water droplets and the
hygroscopic growth factor of primary organics. The refractive index of each aerosol type can be found in Table2. In order to
employ the new lookup table in GEM-MACH, we developed a stand-alone FORTRAN code to interpolate the optical
properties of aerosols into GEM-MACH wavelengths and size bins. The output of this off-line program was used as the new
lookup table for the improved version of the photolysis code discussed in this study. Here we provide a brief description of
the methods we used in our calculations.

Since the initial version of the new lookup table was calculated based on wet particle sizes, we used the hygroscopic growth
factor of each aerosol type (Laskina et al., 2015, Ting et al., 2017, Zamora et al., 2013, and SOA is based on GEOS-Chem
optical lookup table, jv_spec_mie.dat) at each relative humidity and the wet radius of each particle type, to calculate the dry

aerosol radius size.

RH (%) HGF
99 1.066
98 1.062
95 1.05
90 1.03
80 1.02
70 1.01
50 1

0 1

Table 3: Hygroscopic growth factors (HGF) for black carbon (based on Lei et al., 2014).

Using the dry radius size and the wavelengths in the initial lookup table (200, 300, 400, 600, 1000 nm), the initial size parameter

was calculated using:

27T

4= )
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where a; is the initial size parameter, r is the dry radius of the particle, and A, is the wavelength in the initial lookup table.
Using the same formula, the size parameter for the final lookup table was calculated based on GEM-MACH average dry
particle size bins (7.5 nm, 15. nm, 30. nm, 60. nm, 120. nm, 240. nm, 480. nm, 960. nm, 1920. nm, 3840. nm, 7680. nm and
15360. nm) and wavelengths (205 nm, 287 nm, 302 nm, 309 nm, 320 nm, 370 nm and 580 nm). The final lookup table
components as a function of particle size, were calculated by linear interpolation of GEM-MACH size parameter from the size
parameter values in the initial version of the new lookup table (see Fig. 1). The initial and interpolated extinction efficiency of
ammonium sulfate versus dry aerosol size parameter is illustrated in Fig. 2. The final interpolated lookup table of extinction
efficiency, single scatter albedo and asymmetry factor was used to calculate the absorption and scattering cross section and
asymmetry factor of seven pure aerosol types (sea-salt, black carbon, dust, ammonium sulfate, ammonium nitrate, primary
organic carbon and secondary organic carbon) in GEM-MACH. The data in the lookup table is sorted by increasing size
parameter values (based on the dry aerosol sizes) for each aerosol type and relative humidity, i.e., the optical properties in the

lookup table depend on the water uptake for the given relative humidity.

(@

(b)

Figure 2: : (a) Initial and (b) interpolated Q.,; (Extinction efficiency) vs dry a (Size Parameter) for Ammonium Sulfate
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2.3 Updating the photolysis module in the GEM-MACH in-line chemical transport model:

After calculating the new lookup table, we modified the MESSy-JVAL code to use the new lookup table, along with the
calculated aerosol composition and size by GEM-MACH, as input for photolysis rate calculations. The new updated code uses
the eight dry chemical components of GEM-MACH aerosol feedback (sulfate, nitrate, ammonium, black carbon, primary
organic matter, secondary organic matter, dust and sea-salt) and the data in the updated lookup table to calculate scattering and
absorption optical depth and asymmetry factor of black carbon, sea-salt, dust and other internally mixed components. The
volume concentration of each aerosol type (m3 of each aerosol per m? of air) was calculated using the GEM-MACH predicted
mass concentration (ug kg?), and the density (kg m=) of each aerosol type (see Table2). The number concentration of each
aerosol (number of aerosols per 1 m3 of air) was calculated by dividing the volume concentration of the aerosol by the volume
of each size bin. We used the predicted mass concentration of nitrate in GEM-MACH, and the molecular weight of ammonium
nitrate to calculate the mass concentration of ammonium nitrate. Finally, to conserve the mass of ammonium, and since
ammonium sulfate, ammonium bisulfate and letovicite have very similar refraction indices, the remaining mass of ammonium
and the mass concentration of sulfate were used to calculate the mass concentration of ammonium sulfate.

In order to implement the core-shell parameterization where the mass fraction of black carbon is less than 40% in a particle
bin in GEM-MACH, we calculated the number of particles with a black carbon core (Nac), and the mass concentration of

black carbon (Mgc) for those specific size bins. Using the two values, the dry black carbon core size was calculated as follows:

M
rpe = [ @)
NBcX pBC XEXT[

where rg is the dry radius of the black carbon core of a particle and pg( is the density of black carbon (“void-free black carbon
core density of 1.8 g cm™ (McMeeking et al., 2010)”). The total wet radius of a core-shell particle was calculated using the
volume-weighted hygroscopic growth factor of the components in the core-shell particle and the total wet radius of the core
(black carbon) and shell (secondary organics, ammonium sulfate and ammonium nitrate) in that particle. This information was
used to calculate the size parameter of the black carbon core (o) and the total particle size parameter (ata1)- The absorption
amplification factor for the case of black carbon core-shell, was calculated using the core-shell parameterization by Bond et
al. (2006). with the observationally-constrained maximum threshold of 1.93 (Bond et al., 2006). As described below, these
parameters are used to provide an amplification factor based on previous core-shell Mie scattering calculations carried out by
Bond et al., (2006).

Sea-salt, dust and black carbon (when its mass fraction was > 40%) aerosols were assumed to be externally mixed at all times
- their effective scattering coefficient(sca.), absorption coefficient(abs.) and asymmetry factors (asym.) of each of these
aerosols were calculated using the elements of the lookup table and GEM-MACH’s predicted concentrations for these aerosol

species:

13
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12
scac= >  Qexy X 553; X Ny X1 X1{ (4)

i=1
12

abs, = Qex; X (1 —ssa)) X Ny X xrf (5)
i=1

asym. = YiZ ag; X mf; (6)

where subscript ¢ denotes each aerosol category, for each size bin (i) in GEM-MACH (i = 1 to 12), Q. is the extinction
efficiency of each aerosol type, N; is the number concentration of each aerosol type (cm™3), r; is the radius of bin i (cm), ssa;
is single scatter albedo of each aerosol type, ag is the asymmetry factor, and mf; is the fraction of the mass concentration of
each aerosol type to the total mass concentration of all particles (the asymmetry factor was weighted by mass fraction for pure
particles). In the case where the mass fraction of black carbon for a particle size bin was less than 40%, the effective scattering

and absorption coefficient of black carbon was calculated using:

12
SCape = Z Qext; X ssaj X Ny X 1 X rj, (7
i=1

12
absy. = E . Qext; X (1 —ssa;)) X Ny X X 15, X amp (8)
i=

where rg¢ is the radius of black carbon core particle and amp is the absorption amplification factor by Bond et al. (2006),
based on the black carbon core and shell size parameters. For the fourth aerosol category in each GEM-MACH size bin
(volume-averaged internally mixed particles), we calculated the volume fraction(vf) of each component (ammonium sulfate,

ammonium nitrate, primary and secondary organics) to the total volume of the internally mixed particles:

vi (M) =vi (AS) + vi (AN) + vi (00) + vi (PC) (9)
vi vi vi vi

VfAS = _(AS) ) VfAN = _(AN) ) Vfoc = _(OC) ) prc = —_(PC) (10)
Vl(IM) VI(IM) VI(IM) VI(IM)

where vi is the volume concentration of each aerosol in the internally mixed particles, IM stands for the internally mixed
particles, AS is ammonium sulfate, AN is ammonium nitrate, OC is secondary organic matter, and PC is primary organic
matter. Equations 11 to 13 were used to calculate the effective scattering and absorption coefficients and asymmetry factor of

internally mixed particles:

14



360

365

370

375

380

4

sca, = 3:212 Qexty; X S8 X VEj X Ny X 1T X rf (11)
j=1
4

abs. = 11:212 ) Qext; X (1 —ssajj) X vfj; X Ny X1 x r? (12)
]:

4
asym, = Y12, ijl agi; X vfj X mf; (13)

where the indices (j = 1,2,3,4) correspond to each aerosol type inside the internally mixed particles (ammonium sulfate,
ammonium nitrate, secondary organic carbon, primary organic carbon). Note that the calculations using equations 4 to 8 and
11 to 13 were done for each horizontal grid-point, vertical level, wavelength and relative humidity.

We performed a linear interpolation of the relative humidity in the lookup table for all the aerosol types, with the exception of
dust aerosol (which had no water uptake), to calculate the scattering and absorption coefficients at each given relative humidity
in GEM-MACH. Scattering and absorption optical depth for each model layer and aerosol category were calculated by the
following formula:

Tgea = SCa X dz (14)
Taps = abs. X dz (15)
where T, and T, are the scattering and absorption optical depth of each aerosol category and dz is the vertical level
thickness. The total scattering and absorption optical depth at each vertical level for each aerosol category (black carbon, sea-

salt, dust and internally mixed particles) was calculated using:

Taps = abs. X dz (16)
Total (Taps) = Zgzlrabsc 17)
Total (asym) = Y%, —=%c _qgsym, (18)

=1 rotal (tscq)

In the above summations, ¢ represents each aerosol category. Integrating the total scattering and absorption optical depth
through the entire column at each grid-point and for each wavelength (A), gives the total modelled AOD at that wavelength.
This information was used to calculate J-values for photolysis reactions depending on the attenuation of the radiation stream

by particles.

2.4 Simulation Setup and Emissions

For this study, we used GEM-MACH v2.4, with 12-bin average size distribution of particles, and online aerosol feedbacks
between weather and air-quality (Makar et al., 2015a, b). The model domain covers most of continental Canada and United
States with a horizontal grid-spacing of 10 km, 80 hybrid vertical levels with a model top at 0.1 hPa, 15-minute operator
splitting time step and a 1-hour output time step (Fig. 3). The meteorological initial and boundary conditions for our 10 km
horizontal resolution simulations were from the operational Regional Deterministic Prediction System, ECCC’s operational

numerical weather predictions system (RDPS, Caron and Anselmo, 2014). The chemical boundary conditions are 3-month
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mean climatology from the global chemical transport model MOZART-4 (“The Model for Ozone and Related chemical
Tracers, version 4 (Emmons et al., 2010)™).

The Canadian anthropogenic emissions used in our simulations were obtained from the Canadian Air Pollutant Emissions
Inventory (APEI, 2021), including the 2015 Canadian area and point source emissions and 2013 Canadian transportation (on-
road and off-road) emissions. A projected 2017 US anthropogenic emissions inventory was obtained from the U.S.
Environmental Protection Agency (EPA) 2011 Air Emissions Modelling Version 6.3 Platform (https://www.epa.gov/air-
emissions-modeling/2011-version-63-platform; Eyth et al., 2013) and the 2008 Mexican inventory was obtained from the
EPA’s 2011 Air Emission Modelling Version 6.2 Platform (https://www.epa.gov/air-emissions-modeling/2011-version-62-
platform). The SMOKE emissions processing system (https://cmascenter.org/smoke/) was used to prepare hourly gridded
emissions files for GEM-MACH from these three national annual inventories. The North American wildfire emissions for the
2018 fire season were produced by the Canadian Forest Fire Emissions Prediction System, (CFFEPS), developed by the
Canadian Forest Service (CFS) of Natural Resources Canada (Anderson et al., 2019). The CFFEPS model consists of a fire-
growth model, a fire emissions model and a thermodynamic model to calculate fuel consumption, fire energy, the height of a
smoke plume and emissions (Anderson et al., 2011; Chen et al., 2019). CFFEPS uses the Canadian Forest Fire Danger Rating
System (CFFDRS), including the Canadian Fire Weather Index (FWI) System (Van Wagner, 1987) to provide input data on

fuel moisture, and the Canadian Forest Fire Behaviour Prediction (FBP) System (Forestry Canada Fire Danger Group, 1992)

for predictions of surface, crown and total fuel consumption. Smoke emissions input data for CFFEPS are collected by the
Canadian Wildland Fire Information System (CWFIS) (Lee et al., 2002). The model has been integrated into the ECCC
FireWork air quality forecast system (Pavlovic et al., 2016) and has been operational since May 2019. The CFFEPS v2.03
code is available from: https://doi.org/10.5281/zen0do.2579383 (Anderson et al., 2019). The version of CFFEPS used in this

work is described elsewhere (Makar et al., 2021).

Figure 3: GEM-MACH model North American domain, with 10 km x 10 km horizontal grid resolution.
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2.5 Observations

Measurement data from MAIAC (“Multi-Angle Implementation of Atmospheric Correction (Lyapustin et al., 2018)”), VIIRS
(“Visible Infrared Imaging Radiometer Suite (Hillger et al., 2013)”), the MERRA-2 re-analysis (Modern-Era Retrospective
analysis for Research and Applications - Version 2, Global Modeling and Assimilation Office, 2015) and AERONET (Aerosol
Robotic Network) ground-based measurements, were used in this study to to evaluate the modifications in the photolysis
module in GEM-MACH.

MAIAC is an advanced algorithm which produces global AOD from MODIS (Moderate Resolution Imaging Spectroradi
ometer) Terra and Aqua satellite data. NASA’s Terra and Aqua satellite are in polar orbits. The MODIS instruments have a
global coverage of one to two days in 36 spectral bands between 0.405 to 14.385 um. For the purpose of this study, we used
MAIAC gridded daily average AOD data at 550 nm, with 1 km spatial resolution (obtained from:
https://e4ftl01.cr.usgs.gov/IMOTA/MCD19A2.006/). VIIRS is one of the Earth observing instruments aboard the Suomi
National Polar-Orbiting Partnership (Suomi NPP) satellite. Level 2 VIIRS AOD data at 550 nm with a spatial resolution of 6
km at nadir were used in this study (obtained from https://www.avl.class.noaa.gov/saa/products/welcome). The MERRA-2
atmospheric reanalysis assimilation system produced by NASA’s Global Modeling and Assimilation Office (GMAO) is the
second and updated version of the original MERRA atmospheric reanalysis (Rienecker et al., 2011, Gelaro et al., 2017).
MERRA-2 includes aerosol reanalysis using the Goddard Earth Observing System version 5 (GEOS-5) coupled with the
Goddard Chemistry, Aerosol, Radiation, and Transport model (GOCART; Chin et al., 2002; Colarco et al., 2010). It uses the
Goddard Aerosol Assimilation System (GAAS) along with standard meteorological parameters (Buchard et al., 2015, 2016,
2017). Quality-controlled AOD at 550 nm is assimilated every 3 hours by MERRA-2 into GEOS-5/GOCART modeling system
(Randles, etal., 2017). The MERRA-2 re-analysis products use several satellite and ground-based measurement data, including
MODIS Aqua and Terra, MISR and AERONET measurements. The monthly MERRA-2 Aerosol Optical Depth Analysis
V5.12.4 data in this study (DOI: 10.5067/XOGNBQEPLUCS5) was obtained from the Goddard Earth Sciences Data and
Information Services Centre (GIOVANNI: https://giovanni.gsfc.nasa.gov/giovanni/) platform, with a spatial resolution of
0.625°%0.5° longitude-by-latitude.

For ground-based measurements, we used quality assured AERONET Sun photometer measurements of AOD at 500 nm for
North American sites (Fig. 4). The Sun triplet measurements are performed every 15 minutes for older model 4 instruments
and every 3 minutes for newer model 5 and CE318-T instruments (Giles et al., 2019). The AERONET data used in this study
is cloud screened according to the AERONET V3 algorithm described in Giles et el. (2019). We used the Angstrom Exponents
provided by the sun photometer within AERONET data to evaluate the model AOD at 580 nm. The Angstrom exponent (AE)
represents the wavelength (1) dependency of AOD, provides basic information about the size distribution of aerosols and is

calculated by the following formula:
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__ dIn(AoD)
AE = dIn(d) (19)

To calculate AOD at 580 nm, we used a variation of the above formula:

40Dy _ (ﬂ) —AE (20)

AOD, Ao

where AOD; and AOD; are the aerosol optical depth at 500 and 580 nm, and A1 and A, are 500 nm and 580 nm wavelengths
respectively. We used (440 nm - 675 nm) Angstrom Exponent to obtain the observed AOD at 580 nm, which was used to
compare with GEM-MACH output AOD calculated as described in section 2.3.

Simulation Name Date Improved MESSy- Aerosol AOD Calculations
JVAL Feedback
Sb June 2018 No Yes No
S1 June 2018 Yes Yes Yes
S2 June 2018 Yes Yes No
S3 June 2018 Yes No Yes
S4 June 2018 Yes No No
W1 January 2018 Yes Yes Yes
W2 January 2018 Yes Yes No

Table 4: List of simulations performed in this study.
2.6 Simulation Plan

We performed two simulations for June 2018 with the previous and improved versions of MESSy-JVAL and compared the
results with AERONET measurements, to investigate the effects of the modifications of the photolysis module. In addition,
we carried out an additional set of six simulations with the improved version of MESSy-JVAL for the months January 2018
and June 2018. These simulations included different configurations for AOD calculations and interactive weather feedback in
the GEM-MACH model, and were used to evaluate the effects of AOD calculations and the online aerosol feedback on the
photolysis rates over the entire North American domain and over specific industrial and urban areas. A list of all the simulations
is summarized in Table 4. The spatial and temporal resolutions are the same (as described in section 2.4) for all the simulations.
Note that in the “no-feedback” simulations, aerosol optical (and cloud condensation nucleation) properties come from default
climatological properties used in the GEM weather forecast model (Makar et al, 2015a, b). That is, our “no-feedback”
simulation is not a “no aerosol” simulation — rather, the “no-feedback” simulation makes use of spatially invariant, “typical”
optical properties of our weather forecast model. Having “no AOD” in this case means that model aerosol AOD had not been

calculated since it is not used in the feedback code. Further, the aerosol feedback on meteorology code developed in a previous
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study for the GEM radiative transfer scheme (Makar et al, 2015a, b). In the feedback mode, GEM-MACH uses a separate Mie
calculation for generating a lookup-table online, using the particle mass size distribution predicted internally by MACH at
each time step, but with a single typical complex refractive index. In contrast, our photolysis rate calculations and the AODs
we calculate in the current work, are decoupled from this feedback portion of the model. Our next step in this work is to further
modify the GEM radiation code to include the particle chemical composition on-line, and our hybrid particle mixing state

assumptions as an alternative to the existing AOD calculation within the feedback portion of the code.

Figure 4: North American AERONET Sites. AOD data from these stations are used in this study.

3 Results and Discussion
3.1 Comparison of base and improved MESSy-JVAL

In this section, the results of two simulations with the GEM-MACH model for the month of June, 2018 is compared to
AERONET sun photometer measurements of AOD at 500 nm at four North American sites (shown in Fig. 4): simulation Sb
with the previous version on MESSy-JVAL (base) and simulation S1 with the improved photolysis module (see Table 4). The
simulated GEM-MACH AOD output was compared with AERONET sun photometer measurements of AOD at 580 nm for
all North American sites in Fig. 4. As mentioned in section 2.5, we used (440 nm - 675 nm) Angstrom Exponent to obtain the
AERONET AOD at 580 nm. The statistical analysis of the output from the two GEM-MACH simulations (base and improved)
and AERONET AOD at 580 nm for June 2018 at four Canadian sites, Egbert, Fort McKay, Saturna Island and Toronto, are
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shown in Fig. 5. As shown in these plots, the normalized mean bias (NMB = le(fé;f) % 100), which represents the mean
1

paired differences between the model and measurements normalized by the mean measurements, is ranging within £13% for

the improved version and 0%-150% for the base version. The NMB calculations from the improved version show an over-
prediction of AOD in Saturna Island and an under-prediction of AOD in Toronto, Fort McKay and Egbert, whereas the base
version shows a significant over-prediction of AOD for all four sites. The root mean square error (RMSE) is significantly
smaller in the improved version, with less variability around the mean as shown in the standard deviation (c) plots. The
correlation coefficient plots show better results with the improved version of MESSy-JVAL for all four sites. We calculated a
correlation relation of R=0.17 for the base run and R=0.37 for the improved version for all North American AERONET sites.
The base MESSY module uses a climatology for aerosol number density with one fixed vertical profile for grid cells over-land
and another fixed vertical profile over water (see Table 1). The uniformity of the fixed profiles does not account for the real

atmospheric variability resulting in the larger differences between model and observed aerosol optical depths for the base
MESSY version.
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Figure 5: Statistical scores of GEM-MACH AOD with the previous (base) and the improved version of MESSy-JVAL versus
AERONET AOD at 580 nm, on June 2018 at four Canadian AERONET sites, Egbert (44.23° N, -79.78° W), Fort McKay (57.18° N,
-111.64° W), Saturna Island (48.78° N, -123.13° W) and Toronto (43.79° N, -79.47° W).
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3.2 Evaluation of the improved MESSY-JVAL

In this section we evaluate the GEM-MACH output with the improved photolysis module against the observations and assess
the effects of (1) AOD calculations (versus an assumed aerosol optical depth of zero) and (2) interactive aerosol feedback with

the GEM model, on the resulting calculated photolysis rates (see Table 4).

3.2.1 Comparison with observations

As described in section 2.6, we performed six simulations for the months of January and June 2018, using GEM-MACH model
with the updated lookup table and photolysis module. We compared the simulated GEM-MACH AOD with AERONET sun
photometer measurements of AOD at 580 nm (converted from AOD at 500 nm using (440 nm - 675 nm) Angstrom Exponent)
for the entire simulation period (January and June 2018) and for all North American sites in Fig. 4.

Figure 6 illustrates the time series of AERONET and GEM-MACH hourly AOD output at 580 nm for Fort McKay and Toronto
AERONET sites. The output from simulations S1 (with AOD calculations and online aerosol feedbacks, June 2018) and W1

with AOD calculations and online aerosol feedbacks, January 2018) were used to plot these time series.

Figure 6: Time series of hourly AERONET and GEM-MACH AOD at 580 nm at Fort McKay (57.18° N, -111.64° W) and Toronto
(43.79° N, -79.47° W) AERONET stations. Left panel: June 2018, right panel: January 2018. The zero simulated values of AOD
(black dots on the x-axis) represent no calculation of molecular dissociation by sunlight in the model during nighttime hours.
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Figure 7: Scatter plots of AERONET AOD vs. GEM-MACH AOD at 580 nm for all North American sites, Fort McKay (57.18° N, -
111.64° W) and Toronto (43.79° N, -79.47° W) AERONET stations. Correlation coefficient (R) is calculated for the line with

515 dynamic intercept (blue line). Left panel: June 2018, right panel: January 2018. The blue line represents the linear fit and the red
line is the zero-intercept linear fit. The 1:1 line is shown in black.

As shown in this figure, the sample size for Toronto is larger than Fort McKay for both seasons. During the sampling period
in summer of 2018, there was an instrument malfunction at Fort McKay from June 19 to August 20, which led to having a

smaller number of data points at this site compared to Toronto. As shown in these time series, the maximum value of the
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520  modelled AOD was underestimated compared to AERONET data for both sites and both simulation periods. For example, the
maximum AERONET AOD for the month of June in Fort McKay and Toronto were measured ~0.27 and ~0.42 respectively,
whereas the GEM-MACH AOD (simulations S1 and W1) were ~0.19 and ~0.29 for those sites.
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Figure 8: Statistical analysis of GEM-MACH AOD versus AERONET AOD at 580 nm, on January and June 2018 at four Canadian
525 AERONET sites, Egbert (44.23° N, -79.78° W), Fort McKay (57.18° N, -111.64° W), Saturna Island (48.78° N, -123.13° W) and
Toronto (43.79° N, -79.47° W).

Scatter plots of AERONET AOD vs. GEM-MACH AOD (from simulations S1 and W1) at 580 nm for all North American
sites, Fort McKay and Toronto AERONET stations are shown in Fig. 7. The total number of measurements is N= 9759 for
summer and N= 4077 for winter for all AERONET sites. As shown in the top row of Fig. 7, the correlation coefficient (R)
530 between the model and measurements is 0.37 for summer and 0.49 for winter. There is a higher correlation for Toronto

compared to Fort McKay for both seasons.
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The statistical scores of GEM-MACH vs. AERONET AOD at 580 nm for January and June 2018 at four Canadian AERONET
sites, Egbert, Fort McKay, Saturna Island and Toronto are shown in Fig. 8. It should be noted that the number of coincident
data points is considerably smaller in winter. As shown in these plots, the normalized mean bias (NMB) is ranging within
+13% in summer and +32% in winter. The NMB calculations show an over-prediction of AOD in Saturna Island for both
seasons and Fort McKay in winter, whereas there is an under-prediction of AOD in Toronto and Egbert for both seasons. The
root mean square error (RMSE) plots show a better fit of the model AOD to measurements in winter season. The standard
deviation (o) plots show more variability around the mean in AERONET measurements for both seasons compared to model

values.
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Figure 9: Monthly average daytime AOD at 580 nm from GEM-MACH and MERRA-2 model. Left column, June 2018 a) GEM-
MACH AOD c¢) MERRA-2 AOD. Right column, January 2018 b) GEM-MACH AOD d) MERRA-2 AOD. Four major forest fire
events in June 2018 shown in GEM-MACH output (a): (1) Lac La Loche forest fire, (2) 416 fire, (3) Ute Park fire (4) Gila National
Forest fire.

Figure 9 shows the monthly averaged daytime AOD at 580 nm from GEM-MACH simulations and MERRA-2 re-analysis.
The total monthly averaged aerosol Angstrom parameter (470 — 870 nm) and equation 20 were used to calculate MERRA-2
AOD at 580 nm (with different scales in summer and winter plots). As shown in the summer plots, GEM-MACH captured
four major forest fire events during the month of June 2018: Lac La Loche forest fire in Saskatchewan (June 25, 2018), La

Plata County’s 416 fire in Colorado (June 1, 2018), Ute Park fire in New Mexico (June 1, 2018) and Gila National Forest fire
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in New Mexico (May-July, 2018). Higher values of AOD over the Pacific Ocean over the month of January 2018 can be seen
on both GEM-MACH and MERRA-2 plots. As shown in Fig. 9(d), there is an AOD hotspot over the central Alberta in January,
which was not captured by GEM-MACH (Fig. 9(b)). The location of the hotspot in central Alberta in winter season in the
MERRA-2 product is coincident with the location of coal-fired power plants and oil refinery emissions of SO,. This could be
the result of different SO, emissions used in MERRA-2 and GEM-MACH models, or an over-prediction error when sulfate
aerosol is retrieved over a snow covered surface. Over the common domain, there is an underestimation of monthly average
AOD in the GEM-MACH model compared to MERRA-2 for both seasons.

3.2.2  Sensitivity test to AOD calculations and aerosol feedback

In this section we evaluate the impacts of AOD calculations on photolysis rates calculations with the improved photolysis
module in the GEM-MACH model. We also assess the effects of the model-generated aerosols on the radiative transfer and
cloud formation processes in GEM-MACH, through the comparisons of the optical properties of aerosols in the ‘feedback’
mode (Makar et al., 2015a, b) vs ‘no-feedback’ mode, in which the feedback mechanisms (interactions between meteorology
and chemistry) have been disabled and the model uses climatological parameterizations for the aerosol direct and indirect
effects.

Figure 10 shows the monthly average percentage difference in photolysis rate coefficients (J(O'D) and J(NO,)) with and
without AOD calculations in the photolysis module in GEM-MACH model. The top two panels are the simulation outputs
with online aerosol feedback between weather and air-quality in the model. We used the output from simulations S1 and S2 to
calculate the percentage difference in photolysis rates in Fig. 10(a) and (b), and the output from simulations W1 and W2 in
Fig. 10(c) and (d). The percentage difference in summer (top row) and winter (second row) ranges from -10% to 10% and the
spatial distribution of the changes does not vary significantly between J(O*D) and J(NO,). The bottom row of Fig. 10 is the
monthly average percentage difference in J(O'D) and J(NO) at the lowest model level (June 2018) with and without AOD
calculations. The output from simulations S3 and S4 were used in Fig. 10(e) and (f) , meaning there is no online aerosol
feedback in these simulations. As shown in Fig. 10(e) and (f), there is not a significant change in monthly-averaged photolysis
rates (-0.1% to 0.1%) with no online aerosol feedback on weather in the model (Fig. 10 (e) and (f)). The increase in the
photolysis rates differences, and the less organized structure of these changes over the domain in simulations with the online
aerosol feedbacks, is due to the presence of the direct and indirect effects from meteorological changes, such as changes in
cloud patterns, and amplified chemistry perturbations due to weather feedback. The hotspots of greatest difference in Fig. 10
() reflect the direct effects on aerosol with no weather feedback in these simulations.

Figure 11 is the monthly average percentage difference in AOD, number mixing ratio of clouds in the boundary layer at three
heights, J(O'D) at the lowest model level, and J(NO,) at the lowest model level for June 2018 with and without interactive
aerosol feedback on weather in the model (simulations S1 and S3). This figure shows the effects of the interactive online
aerosol feedback on the output of the photolysis module. Note that in both simulations we used AOD calculations in the

photolysis module. As shown in this figure, AOD changes from -30% to 30% and J-values from -40% to 40% with and without
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the GEM-MACH predicted aerosol concentrations in optical properties and photolysis rates calculations. The decrease of J-
values over the continent, might be due to the increase in the cloud droplet density, and/or in-cloud formation of aerosols in
the simulations with interactive aerosol feedback in the model. As we can see in Fig. 11(b), (c) and (d), the moist marine air
masses have the greatest impact on J-values change likely due to changes in low clouds. The areas impacted are mostly over
the ocean or along ocean boundaries (northeast US/Canada, Northwest Territories, north Pacific). Over land, in convective air
masses, there is less impact on J-values averaged over a region. These changes in humidity impact low clouds which, in turn,
impact the radiative transfer and photolysis rates. The results from Fig. 10 and Fig. 11 suggest that the impacts of aerosol

feedbacks as parameterized in the model are considerably greater than the impacts of the AOD calculations in the model.
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Figure 10: Percentage difference (% X 100) in daytime monthly-averaged photolysis rates (J(O'D) and J(NO)) at the
aodJno—aod.

lowest model level, with and without AOD calculations. a, b) June 2018 with online interactive aerosol feedback. ¢, d) January 2018
with online interactive aerosol feedback. e, f) June 2018 without online interactive aerosol feedback.
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(@) (b)

(c) (d)

(€) (f)

Figure 11: Percentage difference in daytime monthly average (June 2018) of (a) AOD (b), (c), (d) number mixing ratio of clouds at
120 m, 900 m, and 2 km above ground level respectively, (€) JO'D at the lowest model level, and (f) INO: at the lowest model level,
with and without online aerosol feedbacks.
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600 Histograms and the statistical scores of hourly percentage difference in J(O'D) at Fort McKay and Toronto AERONET stations
at the lowest model level, with and without AOD calculations in June 2018 are shown in Fig. 12 and Table 5. With the
interactive aerosol feedbacks in the model (simulations S1 and S2), the standard deviation for Fort McKay and Toronto stations
are 29.3 and 28.7 respectively, showing the average of approximately 29% change in J(O'D) around the mean, with more
frequent changes within £10% for both stations. The 95™ percentile shows that 95% of the data points (percentage difference

605 in J(O'D) values) are below ~36.2% for Fort McKay and ~42% for Toronto (Fig. 12(a), (b)) . In the cases without the online
aerosol feedback in the model (simulations S3 and S4), the standard deviation for both stations is considerably smaller (0.55
for Toronto and 0.21 for Fort McKay) and the values of percentage difference in J(O'D) are more clustered around the mean
(Fig. 12(c), (d)). The more-organized changes in photolysis rates in the no-feedback case, is due to including only the direct
effect of photolysis on aerosols, whereas, the effect of clouds and in-cloud formation of aerosols in the feedback case leads to

610 more variability in the photolysis rate changes between simulations S1 and S2.

Toronto Fort MacKay
(a) (b)

©) (d)

Figure 12: : Histograms of percentage difference of hourly JO!D output for June 2018 at Toronto and Fort McKay AERONET
stations at the lowest model level, with and without AOD calculations. (a), (b) are with aerosol feedbacks and (c), (d) are without
aerosol feedbacks. Nighttime data (JO'D=0) was omitted from the analysis.
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620

Percentage Difference in J(O'D)

With Aerosol Feedbacks

Without Aerosol Feedbacks

Fort McKay Toronto Fort McKay Toronto

Standard Deviation 29.25 28.7 0.213 0.547
Mean -0.96 -0.65 -0.006 0.035
Median 0.0 0.0 0.0 0.0

5 Percentile -38.87 -44.63 -0.103 -0.062
25 Percentile -1.45 -0.31 -0.003 -0.012
75 Percentile 0.60 0.09 0.007 0.016
95 Percentile 36.17 41.94 0.214 0.134

Table 5: Statistical scores of percentage difference of J(O!D), with and without AOD calculations (

Jaod—Jno—aod

Uaod*Jno-aoa)

72 X 100) at Fort

McKay and Toronto AERONET stations. From one-month GEM-MACH J(O!D) output at the lowest model level on June 2018.

3.2.3  Case study: Lac La Loche forest fire

In order to evaluate the impacts of the modifications of the photolysis calculations on air quality under high pollutant flux

emissions conditions, we study a forest fire case in the Lac La Loche area in the northwestern corner of the province of
Saskatchewan of Canada on June 25, 2018 (Fig. 13).

29



625

630

Figure 13: : Lac La Loche forest fire on June 25, 2018. Top : Overlay layer: MODIS-Terra thermal anomalies (day and night), over
MODIS Terra true color corrected reflectance (Image from: https://worldview.earthdata.nasa.gov). Bottom: GEM-MACH AOD at
580 nm at 23:00 UTC.

Figure 14(a) shows the daily AOD at 550 nm from the MAIAC, Fig. 14(b) is the daily AOD at 550 nm from the VIIRS, and
Fig. 14(c) is GEM-MACH AOD at 580 nm over La Loche area at 23:00 UTC on June 25, 2018. Both MAIAC and VIIRS
plots (Fig. 14(b) and 14(c)) show two areas of maxima; one is directly over the forest fire plume, similar to the hotspot on
GEM-MACH plot (Fig. 14(c)), and a weaker hotspot over the north-east of the major forest fire plume, which is more
intensified compared to the GEM-MACH secondary hotspot. The aging of the major fire plume downwind is evident in all
three plots. The maximum GEM-MACH AOD (0.625) is underestimated compared to the MAIAC (maximum of 3) and VIIRS
(maximum of 1.7). One possible explanation for the underestimation in both primary and secondary hotspots, could be the

potential deficiencies in modeled biomass burning emissions or aerosol processes in this simulation. Curci et al (2015) suggest
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that AOD under-predictions may be a common problem for current air-quality models. Other studies e.g., Pan et al. (2020)
and Johnson et al. (2016) show underestimations of modeled AOD over biomass burning areas, which could be related to the

shortcomings in biomass burning processes in air-quality models.

Figure 14: Lac La Loche forest fire, June 25, 2018 (a): MAIAC daily AOD at 550 nm, (b): VIIRS daily AOD at 550 nm and (c):
GEM-MACH AOD at 580 nm and horizontal wind bars at 23:00 UTC. The color bar scale on VIIRS and GEM-MACH plots (b and
¢) show the true maximum values. The maximum AOD value in the MAIAC plot (maximum of 3) was scaled down to illustrate the
fire plume. The cross sections in Fig. 15, Fig. 16 and Fig. 17 are plotted along the black line in (c).

Figure 15 shows the aerosol concentrations and photolysis rates cross sections over the black solid line in Fig. 15(c). There are
multiple injected fire plumes and they move off in different directions as a result of different plumes reaching different heights
in the atmosphere as well as variation over time. The model captures the branch moving toward Fort MacKay but not the
branches that move farther north. Only the branch traveling to Fort MacKay is shown in the vertical cross section. While this
aged plume still has character originating from the forest fire, it does not originate from all the fire emissions near Lac La
Loche. As shown in Fig. 15(a), Osis impacted by titration below the PBL (Planetary Boundary Layer), and there is a low
concentration of ozone right above the fire plume. Higher concentrations of Oz can be seen downwind below the PBL. As the
fire plume continues to dilute with distance downwind, the NOx concentration in the boundary layer (not shown) decreases
and eventually reaches an optimal concentration range for efficient ozone production. This is illustrated in Fig. 15(a) as ozone
increases to near 80 ppbv about 170 km downwind from the fire. Figure 15(b) shows the depletion of hydroxyl radical (OH)
in the fire plume below the PBL and a maxima above the boundary layer, where there is a high concentration of O3 and low
concentration of VOC (Volatile Organic Compound) to deplete OH. The increase in OH downwind from the fire plume is in
response to the O3 increase, reaching a maximum value of ~2.3x10** pg kg* (~7.5 x10® molecules cm3) in the upper boundary
layer ~700-800 hPa. The increase in OH concentration results in delayed production of secondary aerosol components. The
PM5 predicted in the forest fire plume (Fig. 15(c)) reached a maximum value of 65 pg m= near the surface and remained
above 10 pg m up to 800 hPa. As shown in Fig. 15(d), the fire plume was predicted to penetrate above the boundary layer
height due to the black carbon plume mixing up to 600 hPa. The black carbon concentration decay with distance illustrates the
extent of dilution of directly emitted PM2s components as it mixes horizontally. As shown in Fig. 15(e), the concentration of

SOA increases downwind from the fire plume. Similarly, the concentration of nitrate (Fig. 15(f)) increases downwind between
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900 hPa and the boundary layer due to secondary production and the long-lived nature of nitrate. The attenuation of radiation
by the fresh fire plume is illustrated by the decrease in J(NO) below the PBL from 1.26x102 s at ~700 hPa to 4.52x103 s1
at the surface and J(O'D) from 1.83x10° s? at ~700 hPa to 5.48x10® s* at the surface (Fig. 15(g) and (h)). The photolysis
rates decrease with distance is due to the attenuation of radiation by the directly emitted fire PM.s components.

In order to evaluate the effects of aerosol optical properties in aerosol concentrations and photolysis rates in Lac La Loche fire
event, we calculated the percentage difference in aerosol concentrations and photolysis rates with and without AOD
calculations (simulations S1 and S2). Figure 16 shows the percentage difference of aerosol concentrations and photolysis rates
cross sections with and without AOD calculations over the Lac La Loche forest fire event on June 25, 2018 (black solid line
in Fig. 15(c)). Figure 16(a) shows the reduction of Os in the fresh fire plume below the PBL due to the decrease in J(O'D),
reaching a difference close to 1% to 6% from the surface up to the mid-boundary layer. The OH radical concentration difference
(Fig. 16(b)) responds to the O3 change and decreases by 10% to 20% from the surface up to the boundary level, due to the
AOD feedback on the photolysis rates. This affects the rate of production of secondary aerosol components such as nitrate
(Fig. 16(f)) and secondary organic material (Fig. 16(e)), although there is a small decrease of up to 7% in nitrate concentration
in the fresh plume. There is a reduction in J(NO,) and J(OD) (Fig. 16(g) and (h)) in the fire plume below the boundary layer.
As shown in Fig. 16(c) and (d), after including AOD calculations in the model, the concentrations of PM_sand black carbon
decrease by 5% in the fire plume from the surface to 900 hPa and increase by 5% above 900 hPa and below the boundary
layer. The changes in black carbon concentration (+5%) in Fig. 16(d) at the surface up to the mid-boundary layer are mostly
due to aerosol feedbacks on meteorology.

Figure 17 is the percentage difference in aerosol concentrations and photolysis rates, with and without AOD calculations and
no aerosol feedbacks in the model (simulations S3 and S4). As shown in Fig. 17(c), (d) and (e), without the interactive aerosol
feedbacks in the model, there is an insignificant difference (-0.2% to 0.2%) in PM.s, black carbon and SOA concentrations
compared to the difference in concentrations from simulations S1 and S2 (-50% to 50% with aerosol feedbacks). Similarly,
there is -1% to 1% difference in O3 concentrations (Fig. 17(a)) from simulations S3 and S4. The variability in the production
of OH (Fig. 17(b)) by the photolysis of Oz is more considerable (-5% to 5%). The decrease in the OH concentration with
primary-aerosol-component photolysis attenuation results in lower secondary aerosol production downwind, which in turn,
slowly counters the primary aerosol attenuation and increases the photolysis rates (maximum of < 1%). The increased
photolysis difference results in a positive difference between the ozone and OH concentrations. The predicted OH increases

downwind reaching a maximum of 1%.
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Figure 15: Cross sections of gas and aerosol concentrations and photolysis rates with aerosol feedbacks over the line shown in Fig.
14(c), Lac La Loche forest fire. June 25, 2018 at 23:00 UTC. a: ozone (ppb), b: hydroxyl radical (ug kg?), c: PM2s (ug m?), d: EC
(<2.5 um, ug kgl), e: nitrate (<2.5 um, pg m3), f: SOA(<2.5 um, pg kg ), g: I(NO2) (s1), h: J(OD) (s).
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695 Figure 16: Cross sections of percentage difference in gas and aerosol concentrations and photolysis rates with and without AOD
calculations (with aerosol feedbacks) over the line shown in Fig. 14(c). Lac La Loche forest fire. June 25, 2018 at 23:00 UTC. a:
ozone (ppb), b: hydroxyl radical (ug kg?), ¢: PMzs (ug m?), d: EC (<2.5 um, pg kg?), e: nitrate (<2.5 um, pg m3), f: SOA(<2.5 um,

ug kgt), g: I(NO2) (s1), h: J(O'D) (sh).
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700 Figure 17: Cross sections of percentage difference in aerosol concentrations and photolysis rates with and without AOD
calculations (no aerosol feedbacks) over the line shown in Fig. 14(c). Lac La Loche forest fire. June 25, 2018 at 23:00 UTC. a:
ozone (ppb), b: hydroxyl radical (ug kg?), c: PM2s (ug m), d: EC (<2.5 um, pg kg?), e: nitrate (<2.5 um, pg m3), f: SOA(<2.5 um,

ug kgt), g: I(NO2) (s1), h: J(OD) (sb).
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4  Summary and Conclusions

A new lookup table for aerosol optical properties based on a Mie scattering code was calculated and adopted within an
improved version of the photolysis module in the GEM-MACH in-line chemical transport model, by interpolating the optical
properties of aerosols into GEM-MACH wavelengths and size bins. The modified version of the photolysis module makes use
of online interactive aerosol feedback for radiative transfer calculations. Additionally, for particle size bins with black carbon
mass fraction of less than 40%, a lensing correction factor to the black carbon absorption efficiency based on Bond et al. (2006)
core-shell parameterizations was applied. The comparison of the improved version of MESSy-JVAL with the previous version
showed significant improvements in the model performance with the implementation of the new photolysis module and
adopting the online interactive aerosol concentrations in GEM-MACH. The calculated correlation coefficient, R, between the
one-month hourly (June 2018) model and AERONET measurements for all North American sites was 0.17 with the previous
offline version of MESSY-JVAL and 0.37 with the improved version of the photolysis module.

A series of simulations using the improved photolysis module were performed for two months, January 2018 and June 2018,
and the results were compared with MAIAC gridded daily average AOD data, level 2 VIIRS AOD data, re-analysis products
(MERRA-2) and ground-based measurements (AERONET). The monthly averaged AOD from the GEM-MACH output with
the improved version of MESSy JVAL showed an under-prediction of AOD over the common domain for both seasons.
Detailed evaluations of AOD calculations over all North American AERONET sites for two months were performed and the
model output was compared with observed AOD at each individual site. Model comparisons with observations at four
Canadian AERONET sites showed good correlation with observations for both seasons. However, the correlation coefficient,
R, shows better results for AERONET stations located further south in the domain with similar number of paired data points,
e.g., Toronto (43.79° N, -79.47° W) and Egbert (44.23° N, -79.78° W) vs. Saturna Island (48.78° N, -123.13° W) in summer
and Fort McKay (57.18° N, -111.64° W) in winter. Similarly, the NMB calculations show an over-prediction of AOD in
Saturna Island for both seasons and Fort McKay in winter, whereas there is an under-prediction of AOD in Toronto and Egbert
for both seasons. In addition, we calculated a higher correlation coefficient between the model and measurements for urban
AERONET sites for both simulation periods (e.g., Toronto vs. Fort McKay). Further investigations on the aerosol processes
and emissions at these sites is needed to assess the effects of different climatological and meteorological conditions on
photolysis rate calculations.

The sensitivity test to aerosol feedback demonstrates the effects of the model predicted aerosol distribution in the modified
photolysis rate calculations. As shown in this study, there was up to +40% change in monthly averaged photolysis rate
calculations with and without online aerosol feedback in the model, whereas with no aerosol feedback in the model this change
is very small (-0.1% to 0.1%) between the runs with and without AOD calculations. The sensitivity tests to AOD calculations
show a monthly average change of £10% in photolysis rate coefficients over the North American domain, while as shown in
the forest fire case study this number can be as high as £50% in the fire plume. This study also showed the impact of aerosol

feedbacks as parameterized in the model to be considerably greater than the effects of the AOD calculations (by a factor of 3
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to 4) on the photolysis rates over the entire domain. Furthermore, this study highlights the importance of model simulations of
AOD where satellite observations are obscured by cloud cover.

Further investigation of the effects of the improved photolysis module with a nested configuration of GEM-MACH 10-km
domain to a 2.5 km Athabasca Oil Sands domain is needed for more detailed comparisons of model output with observations
under the Oil Sands Monitoring Program, 2018 aircraft campaign. This new model capability will also enable us to use model
predicted AOD on regional scales over the boreal forest to assess future improvements in biogenic VOC emissions and SOA

processes in GEM-MACH, by comparing with clear-sky satellite-derived AOD.

Data availability: GEM-MACH, the atmospheric chemistry library for the GEM numerical atmospheric model (©2007-
2013, Air Quality Research Division and National Prediction Operations Division, Environment and Climate Change Canada),
is a free software which can be redistributed and/or modified under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation — either version 2.1 of the license or any later version. The modified MACH
(chemistry) code with the improved photolysis module can be downloaded from the Zenodo website:
https://zenodo.org/record/5042514#.YNtY8hGSmPo. The GEM (meteorology) code (Canadian Meteorological
Centre, 2018) is available to download from the website: https://github.com/mfvalin?tab=repositories (last access: 25
June 2021). The executable for GEM-MACH is obtained by providing the chemistry library to GEM when generating its
executable.  Many of the emissions data used in our model are available online at ECCC web page at
http://donnees.ec.gc.ca/data/air/monitor/source-emissions-monitoring-oil-sands-region/source-emissions-oil-sands-

region/?lang=en (ECCC, 2018) and more recent updates may be obtained by contacting Junhua Zhang or Mike Moran
(junhua.zhang@ec.gc.ca; mike.moran@ec.gc.ca). The model output is available upon request to Craig Stroud
(craig.stroud@ec.gc.ca). The AERONET version 3 AOD datasets are publicly available from the AERONET website
(https://aeronet.gsfc.nasa.gov/, last access: 5 February 2020). MERRA-2 Aerosol Optical Depth Analysis V5.12.4 was
obtained from the publicly accessible Goddard Earth Sciences Data and Information Services Centre platform (GIOVANNI:
https://giovanni.gsfc.nasa.gov/giovanni/, last access: 1 October 2020). The MAIAC data were obtained from NASA's Land
Processes Distributed Active Archive Center (LP DAAC) located at the USGS Earth Resources Observation and Science
(EROS) Center (https://e4ftl01.cr.usgs.gov/MOTA/MCD19A2.006/, last access: 30 August 2021). The VIIRS data were
obtained from NOAA'’s (National Oceanic and Atmospheric Administration) Comprehensive Large Array-Data Stewardship

System (CLASS; https://www.avl.class.noaa.gov/saa/products/welcome, last access: 31 August 2021).
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developed and implemented the improved code into the photolysis module in GEM-MACH, performed the analysis of the
model output and wrote the manuscript under the supervision of CAS, with assistance from PAM. CS was responsible for the
satellite (MAIAC and VIIRS) data retrieval and plotting, and the calculation of the initial version of the updated lookup table
for aerosol optical properties based on the model developed by CM. AA provided support with GEM-MACH model and
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