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Abstract. The computational cost of a spectral model using spherical harmonics (SH) increases significantly at high resolution
because the transform method with SH requires O(N3) operations, where N is the truncation wavenumber. One way to solve
this problem is to use double Fourier series (DFS) instead of SH, which requires O(N? log N) operations. This paper proposes
a new DFS method that improves the numerical stability of the model compared with the conventional DFS methods by
adopting the following two improvements: a new expansion method that employs the least-squares method (or the Galerkin
method) to calculate the expansion coefficients in order to minimize the error caused by wavenumber truncation, and new
basis functions that satisfy the continuity of both scalar and vector variables at the poles. In the semi-implicit semi-Lagrangian
shallow water model using the new DFS method, the Williamson test cases 2 and 5 and the Galewsky test case give stable
results without the appearance of high-wavenumber noise near the poles, even without using horizontal diffusion and a zonal

Fourier filter. The new DFS model is faster than the SH model, especially at high resolutions, and gives almost the same results.

1 Introduction

Global spectral atmospheric models using the spectral transform method with spherical harmonics (SH) as basis functions
are widely used. They are used in the Japan Meteorological Agency (JMA, 2019) and the Meteorological Research Institute
(MRI; Yukimoto et al., 2011, 2019) for a range of applications, including operational weather prediction, operational seasonal
prediction, and global warming projection. The spectral model has the advantage that the accuracy in horizontal derivatives is
good, and the semi-implicit scheme, which improves numerical stability, can be easily applied because the Helmholtz equation
and the Poisson equation are easily solved in spectral space. The application of the semi-implicit semi-Lagrangian scheme
allows for timesteps longer than the Courant—Friedrichs—Lewy (CFL) condition, which makes the model computationally
efficient. In the spectral model using SH, the Legendre transform used in the latitudinal direction significantly increases the
computational cost at high resolutions since the Legendre transform usually requires O(N?) operations and O(N*) memory
usage, where N is the truncation wavenumber. One way to reduce the operation count and the memory usage at high resolutions
with large N is to use the fast Legendre transform (Suda, 2005; Tygert, 2008; Wedi et al., 2013), which requires only
O(N2%(log N)®) operations, although the accuracy is compromised to reduce the operation count. Dueben et al. (2020)

presented global simulations of the atmosphere at 1.45 km grid-spacing in the SH model using the fast Legendre transform.
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Another approach used to improve the Legendre transform is on-the-fly computation of the associated Legendre functions
(Schaeffer, 2013; Ishioka, 2018), which still requires O(N3) operations but requires only O(N?) memory usage. This small
memory usage also contributes to speeding up calculations by taking advantage of the cache memory.

Another way to reduce the operation count and the memory usage in the global spectral model is to use double Fourier series
(DFS) as basis functions. In the DFS model, the fast Fourier transform (FFT; Cooley and Tukey, 1965; Swarztrauber, 1982)
is used not only in the longitudinal (zonal) direction but also in the latitudinal (meridional) direction. The FFT requires only
0(N?log N) operations and O(N) or O(N?) memory usage, and it is much faster than the fast Legendre transform.

In DFS models (and also in SH models), the scalar variable F (4, 8) is zonally expanded as

M
F(,0) = Z En(8)e™A, (€Y

m=—M
where 4 is longitude, 6 is colatitude, and M is the zonal truncation wavenumber. Several methods have been proposed for
meridional expansion with DFS. Merilees (1973b), Boer and Steinberg (1975), and Spotz et al. (1998) performed the Fourier
transform meridionally along a great circle. Spotz et al. (1998) showed that by using the spherical harmonic filter, the explicit
DFS shallow water model using the pseudo-spectral method can produce results comparable with the SH model in terms of
accuracy and stability. However, the spherical harmonic filter consists of the forward SH transform (from grid space to spectral
space) followed by the inverse SH transform (from spectral space to grid space), which increases the computational cost.

Orszag (1974) and Boyd (1978) expanded E,,(8) meridionally as

- (fm(0) for even m,
Fn(0) = { sin 8 f;,,(6) for odd m, (22)
N
fm(@) = ) famcosnd, (2b)

where N is the meridional truncation wavenumber. The coefficients f, ,, for odd m are calculated from the forward Fourier
cosine transform of F,,(0)/sin 6. Orszag (1974) imposed the following conditions at the poles:
fm(0) = 0and f;, () = 0 for |m| = 2, 3)

which can be expressed in terms of the expansion coefficients f;, ,,, as

N N
Z fam =0 and Z fam =0 for|m| = 2. 4)
n=0 n=1

niseven nisodd

Satisfying the above conditions ensures that the scalar variable F (4, 0) and its gradient VF are continuous at the poles. In
Orszag (1974), only fy_1m and fy ,, were modified to satisfy Eq. (4), but this is not the best way to satisfy the same conditions
as Eq. (3) or Eq. (4), as will be shown in Sect. 3.

Yee (1981) and Layton and Spotz (2003) expanded F,,,(6) as
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( N
z Fym cosnf for even m,
Fn(8) =4’ ®)
LZ Fym sinnf for odd m.
n=1

In the semi-implicit semi-Lagrangian shallow water model in Layton and Spotz (2003), the spherical harmonic filter was
applied to the prognostic variables for stability and accuracy. Layton and Spotz (2003) explained that the expansion with Eq.
(5) permits discontinuity at the poles and nonisotropic waves, which may lead to a prohibitive timestep restriction and
numerical instability, and these problems can be avoided by applying the spherical harmonic filter.

Cheong (2000a, 2000b) proposed expanding F,, (8) as

N
z Fym cosnf form =0,
n=0

Fn(0) = F,m sinn@ for odd m, (6)

=101

Fimsin@sinngd for evenm (& 0).

3
Il
=

The meridional basis functions sin 8 sin né for even m (# 0) are different from Eq. (5). The coefficients F, ,,, for even m (#
0) are calculated by forward Fourier sine transform of F,,(6)/sin 6. The basis functions in Eq. (6) automatically satisfy the
same conditions at the poles as Eq. (3) for even m, and guarantee the continuity of the scalar variable F at the poles, which is
an advantage compared with the basis functions in Eq. (5). However, Eq. (6) does not automatically satisfy the conditions in
Eq. (3) for odd m, and does not guarantee the continuity of VF at the poles. The shallow water model and the vorticity equation
model using a semi-implicit Eulerian scheme ran stably using high-order horizontal diffusion with O(N?) operations to smooth
out the high-wavenumber components (Cheong, 2000b; Cheong et al., 2002; Kwon et al., 2004). The semi-implicit Eulerian
hydrostatic atmospheric model also ran stably with high-order horizontal diffusion (Cheong, 2006; Koo and Hong, 2013; Park
et al., 2013). However, the computational results of these models appear to be a little different from (slightly worse than) the
models using SH. One reason for this seems to be the appearance of high-wavenumber oscillation resulting from the meridional
wavenumber truncation with N = 2] /3 or J /2 for even m (# 0) (See Sect. 3), and the use of strong high-order horizontal
diffusion to smooth out the oscillation, where ] is the number of grid points in the latitudinal direction.

Yoshimura and Matsumura (2005) and Yoshimura (2012) stably ran the two-time-level semi-implicit semi-Lagrangian
hydrostatic and nonhydrostatic atmospheric models using the DFS basis functions of Cheong in Eq. (6). These models used
meridional truncation with N = J, and U = usin 6 and V = v sin 0 (instead of u/sin 8 and v/sin 8) were transformed from
grid space to spectral space, where u is the zonal wind and v is the meridional wind. These models used the same horizontal
diffusion as the SH models, and did not require the strong high-order horizontal diffusion. The results of these models were

very similar to those of the SH models. However, we found the following two problems in these models:

3



https://doi.org/10.5194/gmd-2021-168
Preprint. Discussion started: 8 July 2021
(© Author(s) 2021. CC BY 4.0 License.

10

15

20

1. High wavenumber noise appears near the poles.
2. The meridional wavenumber truncation N needs to be equal to J for even m (# 0) because N < ] (e.g., N = 2] /3) causes

the high-wavenumber oscillation and the numerical instability (See Sect. 3).

To solve these problems, we propose a new DFS method that adopts the following two improvements:

1. A new expansion method to calculate DFS expansion coefficients of scalar and vector variables, which adopts the least-
squares method (or the Galerkin method) to minimize the error due to the meridional wavenumber truncation.

2 New DFS basis functions that automatically satisfy the pole conditions in Eq. (3), which guarantee continuity of not only
scalar variables but also vector variables at the poles.

We also use the Galerkin method to solve partial differential equations such as the Poisson equation and the shallow water
equations.

Section 2 describes the details of the new DFS method using the new DFS expansion method and the new DFS basis
functions. Section 3 examines the error due to the wavenumber truncation in the new DFS method, Orszag’s DFS method, and
Cheong’s DFS method. Section 4 describes how to integrate the semi-implicit semi-Lagrangian shallow water model using the
new DFS method. Section 5 compares the results of the model using the new DFS method with those using the old DFS method

of Yoshimura and Matsumura (2005), and with those using the SH method. Section 6 presents conclusions and perspectives.

2 Improved double Fourier series on the sphere
2.1 New basis functions for a scalar variable

We propose the following new DFS basis functions that automatically satisfy the continuity conditions at the poles in Eq.

(3). The scalar variable T (4, 8) is expanded zonally as

M M
T(A,0) = Z TS5 (6) cosmAa + z T3 (6) sinma, (@)
m=0 m=1

and the variables Ty (6) and T35, (0) are meridionally expanded as

N
Z Tym cosnf

form =0,
n=0
N-1
Ty m sin @ cosnf form=1,
TS(O) =TV () = { 7= (8a)

T sin 0 sinn@

™

=
N

T sin? 6 sinn@

S
I
[y

forevenm > 2,

forodd m > 3,
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T5(0) = TN (0) =

T
I

=3
0

o
A

z3
U]
N

3
=

T3 m sin 6 cosné

T3 msinf sinnd

T3 m sin? 6 sinnd

form =1,

forevenm = 2, (8b)

forodd m > 3.

InEq. (7), cosmA and sin mA are used instead of e?™* as zonal basis functions for convenience in calculating the expansion

coefficients using the least-squares method described later in Sects. 2.3 and 2.7. In Eq. (8), the meridional basis functions

sin? @ sinn for odd m > 3 are especially different from Cheong’s basis functions in Eq. (6). Either sinn8 or sin 8 cos n8

5 can be used as the basis functions for m =1 because it can be shown using Eq. (A2) from Appendix A that

sin@ cosnf (n =0,...,N — 1) are the linear combination of sinné (n = 1, ..., N), and vice versa. Here we use sin 8 cos né

for m = 1 because it can be more easily divided by sin 8, which is convenient for calculating VT.

Using Eq. (A2), Eq. (8) can be transformed as follows:

10  where

N
Z T,f’m cosnd for even m,
T @) ={"%
Z T,f”m sinnd  for oddm,

n=1

!
c _ 7c
Tn,m - Tn,m

o Tr(l:—l,m - Trf+1,m
Tn,m - 2
except for Tf;n
o _Tr‘l:—l,m + T1$+1,m
Tim =0
d rf—z,m + ZTrf,m - T7f+2,m
Tn,m =

4

except for Tf;n

3T = Tim

€))

form =0, (10a)
form=1 (10b)
forevenm = 2, (10¢)
foroddm > 3 (10d)

The equations for 5" (8) and T,f,’m for m > 1 are the same as Eqs. (9) and (10), except that the superscript ¢ is replaced with

the superscript s. The upper limit of n for each m in Eq. (8) is determined so that the upper limit of n for each m in Eq. (9)

becomes N.

20 When calculating the values of TSN (8) (TS (6)) in grid space from Tsm (T3m) in spectral space, the coefficients T,f;n

(T,fvlm) are calculated from Ty, (T3 ) using Eq. (10) and inverse discrete cosine and sine transforms are performed using Eq.

5
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(9) (See Sect. 2.10). The calculation of T, (T;3 ) in spectral space from T, (0) (T;;,(8)) in grid space is described in Sect.

2.3 below.
The truncated variable TN (2, 9) is defined as
M M
TNM (), 9) = Z TSN () cosma + Z TSN (6) sinmA. (1
m=0 m=1
5 From Eq. (8), the values of T.S" (6) at the poles are finite for m = 0, and the values of TSN () and TSV () at the poles are
zero for m # 0. Therefore TN (2, ) is continuous at the poles.
2.2 Gradient of a scalar variable
The gradient VTVM = (TAN M T;V M ) is obtained as follows:
v L ar N N N SN .
T, = asing 91 - Z Ty (0) cosmA + Z Ty (8) sinma, (12a)
m=1 m=1
m m
10 INMOE TSN (G), ToN(6) =— TN (6), 12b
n(0) = —T3(0), Tin(0) = —— =T () (12b)
M M
19TNM 19TNVM
NM _ _ _ cN SN :
T, = - % T Z T¢_m(9) cosmA + Z T¢_m(9) sinmA, (13a)
m=0 m=1
10T, (8) 197N (6)
TN @)=L -2 1V @g)=--2 -2 1
P e N O (13b)
where a is the radius of the earth, and ¢ is the latitude. From Egs. (12b), (8) and (A2) we obtain
0 form =0,
N
Z Ty pm COSNO form=1,
n=1
TEN0) = { N 14
Am Z Tfpm sinng for evenm > 2,
n=1
N N-1
Z Ty m cOSTO <= Tﬂ,m sin 6 sin nB) foroddm = 3,
n=0 n=1
15  where
Tinm = ETTim form=1, (15a)
C 1 S
Tinm = Ean’m forevenm = 2, (15b)
c 1m(_T1§—1m + Trf+1m)
Tinm == - : foroddm > 3. (15¢)

a

2
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The equation for Tf",'x(e) is the same as Eq. (14), except that the subscript c is replaced with s. The equations for T}, ,,, are

the same as Eq. (15), except that Ty, ,, and T3, are replaced with T, ., and =T, respectively. From Eqs. (13b), (9), and

(10) we obtain

=

Z qu,n,m sinnf form =0,
n=1
N
Z T;,n,m cosno form=1,
Tin® =15
Z T nmsinnd forevenm > 2,
n=1
N N-1
Z T nm cOSTO (: Z Téfn,m sin @ sin n9> foroddm = 3,
n=0 n=1
5 where
Tonm = _l(_nT'r::m) form =0,
Pnm a ,
LT 1m = Tram)
Tonm = - [% form =1
11275, — Ty
t for TS — __[ om 2,m]l
except for Tg ; =
[T 1m = Tram)
Tomm = — p [% forevenm = 2,
1[n(=Ty_om + 2T m — Ty¥
10 Tomm = _E[ ( 12 7 L n+2'm)] foroddm > 3

1[(3Tfm — T5
except for Ty, ,, = — . [M}

(16)

(17a)

(17b)

(17¢)

(17d)

The equations for T;"'xl (6) and Tj,,n’m for m > 1 are the same as Eqs. (16) and (17), except that the subscript c is replaced

with s. From Egs. (14) to (17), it can be seen that Tfﬂ ), Tfﬁ @, T;:’,Vn(H), and T;z%(@) at the poles are finite form = 1

and zero for m # 1, and moreover the following relations are satisfied for m = 1:

N-1
1
15 Tim=1(0) = =T57 1 (6) (: —Z T,f_m=1> at @ = 0 (North Pole),
a n=1
1 N-1
T;_',’,V_l(e) = T(;:ﬁpl(e) <= ——Z T,‘{_m=1> at 8 = 0 (North Pole),
a n=1
1 -1
Tim=1(6) = Tgn—1 (6) (= - <—1)”T:,m=1> at6 = 7 (South Pole),
n=1

7

(18a)

(18b)

(18¢)
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N 1
Tim=1(0) = =Ty, (6) <= Z( DT e ) at® = m (South Pole). (18d)
n=1

TNM

Thus, it is guaranteed that V (TN M Tg M ) is continuous at the poles.

2.3 New method to calculate expansion coefficients for a scalar variable

One way to calculate the coefficients Ty, (Ts ) from Ty, (8) (T57,(6)) in Eq. (8) is to perform a forward cosine transform
of T,5(0)/sin 8 (T;5,(6)/sin 8) for m = 1, a cosine transform of T,5(0)/sin 6 (T;5,(8)/sin 8) for even m > 2, and a sine
transform of T;5(8)/sin? 6 (Ts,(68)/sin? @) for odd m > 3. However, this approach with the meridional wavenumber
truncation N < J leads to the large high-wavenumber oscillation as in Cheong’s basis functions for even m > 2 (See Sect. 3).
Dividing T;5, () by sin? 6 reduces the numerical stability of the model more significantly than dividing T,5 () by sin 6.

Here we propose a new method to calculate expansion coefficients using the least-squares method to minimize the error due
to the meridional wavenumber truncation. This method also avoids dividing T;5(8) by sin 8 or sin? 8 before the forward
cosine or sine transforms. The coefficients T, and T};,, in Eq. (8) are calculated as follows. First, Tp5,(8) and T;;, () in Eq.

(8) are expanded like Eq. (5) as

!
Z nm COSNO for even m,

T50) = T/ (0) =" (19)
Z TS sinné for odd m,

n=1
where J is the number of meridional grid points, and the expansion coefficients T,f_m are calculated by the forward discrete
cosine transform for even m and the forward discrete sine transform for odd m from the values of T;5 (6) at the grid points
(See Sect. 2.10). The equation for Ty, (8) is the same as Eq. (19), except that the subscript c is replaced with s.

Next, Ty, and Ty; ,, are calculated using the least-squares method to minimize the following error E (the squared L, norm o

f the residual):

1 2m T
= _f f R(2,0)2d6d2, 20)
2n2 )y ),
where the residual R(4, 8) is
M M M M
R(1,0) = (Z TSV (0) cosma + Z TSV (9) sin mA) - <Z 751 (6) cosma + Z T5/(6) sin ml). (21)
m=0 m=1 m=0 m=1

From Egs. (20), (21), and (A3), we derive

NII——\

M M
1 ~
f [T”o(e) TeL,(@) + 52_ (1@ - T/ @)’ Z TS'”(B)—T,Z’(G))Z]da. 22)
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Egs. (9), (10), and (19) are substituted into Eq. (22). The equations 0E/9 T, = 0 and 9E /0 T;,,, = 0 are used to
calculate Ty, and Ty ,,, respectively, so that E' is minimized.

From 0E /0 Ty, = 0 and Eq. (A4), we derive

N
d ’ ~ 2 ’ ~ 2
P 2(TEm — Tém) + Z(T,f,m —Tn) | =0 for even m, (23a)
0TS m p]
N
d I oa N2
5 Z Z(T,f ~7e.) | =0 for odd m. (23b)
0TS m T ’
=

From Eq. (23) and (10), we derive the following equations for Ty ,,.
Form =0,
T¢m = Tim (0O<n<N). (24a)
Form=1,
10 T om + 2T — Tsom = =275 4 + 2T 1m (0SS N-1), (24b)
with the exception of the following underlined values:
AT — TS = 2T5 n=1,
—2T§m + 2T§m — Tfm = —2T¢m + 25, (n=2).
For even m (= 2),
15 —TE gm + 2T = Tesom = 2T 1 — 2T (1<n<N-1), (24c)
with the exception of the following underlined values:
3Tm = Tsm = 4T5m — 2T5m (n=1).
For odd m (= 3),
T am — AT g + 6T — AT o + Tgam = — 4T o + 8T — 4TS (1S n <N =2), (24d)
20  with the exception of the following underlined values:
10T, — 5T§m + TEm = 1275, — 4TS, (n=1),
STSm — 4Tfm + T = 8T5,, — 4T, (n=2),
—5Tfm + 6T§m — 4TS + T¥m = —4TE,, + 875, — 4TS, (n =3).

From Eq. (24d), two linear simultaneous equations with penta-diagonal matrices,

* x x 0 00 - 0 T&m] <k x x 0 0 0 - 0 Tfm] ]
* % % x 0 0 - 0 TZC'm * *+ % *x x 0 0 .0 T3C’m *
e T I Y T | | U B

2 0 * x * % % -« 0 Tém Tl 10 % ok % ok x -0 Tém * 25
. 6m : : 7m H
000---0***[§Jl*J000~~-0***i L]

are derived. A penta-diagonal matrix can be LU decomposed as
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*x x % 0 0 0 0 * 0 0 0 0 O 0 1 = = 0 0 O 0
[* * x *x 0 0 0] [* * 0 0 0 O 0] [0 1 = * 0 0 0}
* x % x x 0 0 *x x % 0 0 0 0 0 0 1 * % 0 0
0 * % % *x x 0[=LU, L=|0 * x x 0 0 0], U=|0 0 0 1 = =« 0]. (26)
0 0 - 0 *x * * = 00 - 0 *x *x x 0 o0 - 0 0 0 1 =
0 0 -+ 0 0 * % = 0 0 - 0 0 * * = o0 - 0 O0O0 0 1

To solve LUx = b, we solve Ly = b with forward substitution first, and then solve Ux = y with backward substitution. There

are also other methods to solve Eq. (25). For example, the method using LU decomposition considering penta-diagonal

matrices as 2 x 2 block tri-diagonal matrices makes SIMD operations more effective. The method using cyclic reduction for

5 block tri-diagonal matrices (e.g., Gander and Golub, 1997) is suitable for vectorization and parallelization. The calculation

with these methods for each m requires O(N) operations. The simultaneous equations with tri-diagonal matrices derived from

Eqgs. (24b, c) can be solved in a similar way to Eq. (25). Therefore, the calculation of Ty, for all m and n with Eq. (24)
requires only O(N?2) operations.

The equations for T3 ,, are derived from 0E /0 Ty;,, = 0; these are the same equations as Egs. (24b, ¢, d), except that the

10 subscript c is replaced with s.

2.4 Relation between the least-squares method and Galerkin method for a scalar variable

Here we discuss the relation between the least-squares method described above and the Galerkin method when calculating
the expansion coefficients of a scalar variable.

From Egs. (20) and (21) and the equations E /0Ty, = 0 and 0E /9T,;,,, = 0 used in the least-squares method, we obtain

2m ITS N( )
15 f ———cosmAR(4,60)d6dr =0, (27a)
0T m
2 TS N( )
f ———=sinmAR(4,60)dOdA = 0. (27b)
0TS m
From Egq. (8), we derive
TN (@) aTN(®)
—re— = = Sum(0), (28)
0T m 0TS m
where the functions of S, ,,, (8) are the new DFS meridional basis functions defined as
cosno form =0,
_ ) sin@ cosné form=1,
20 Snm(0) = sin @ sinné forevenm > 2, (29)

sin? @ sinnf  for odd m > 3.

Equation (27) shows that the residual R(4, 8) is orthogonal to each of the new DFS basis functions Sy, ,(8) cos mA and

Sinn(8) sinmA, which means that Eq. (27) is the same as the equation derived using the Galerkin method. Thus, the equations

10
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0E /0Ty, = 0 and 0E /0T, = 0 used in the least-squares method described in Sect. 2.3 are the same as those derived with
the Galerkin method.

2.5 Comparison of new DFS with SH

Here we compare the new DFS method with the SH method to see the difference between them. In the SH method, T;5 (6)

and T;;;(6) in Eq. (7) are expanded with the associated Legendre functions P, ,,, (6) as
N

T5O) 2 TEN©0) = ) TE P 0), (30a)
n=m
N
TH0) = T (@) = ) TP (), (30b)
n=m

where m = 0. The functions B, ,, () satisfy the following orthogonality relations for each m:

1 forn=n,
0 forn=#n'

f P (O)P (6 sin 0 d = { (1)
0

By the modified Robert expansion (Merilees, 1973a; Orszag, 1974), the associated Legendre functions P, ,,, (9) are expressed
as

n—|m|

P (0) = Z A SIN™ @ cos . (32)

=0
when n—|m|-lis even

Conversely, the functions sin™! 8 cos(n — |m|)6 (n = |m|) can be expressed as the linear combination of Pm(6) (1=

|m|, ..., n). Substituting Eq. (32) into Eq. (30) gives the following equations.

N-m

TTS{SH,N(H) = z Tr(l:,’rSnH’ sin™ @ cos n0. (333)
n=0
N-m

TSSHN (g) = Z Tf,’an’ sin™ @ cosné, (33b)
n=0

where m > 0. Equation (33) is similar to Eq. (8) in the following sense: the basis functions for m = 0 and m = 1 in Eq. (33)
are the same as in Eq. (8). The basis functions sin? @ cosnf (n =0, ...,N — 2) form = 2 and sin® 6 cosnf (n =0,...,N —
3) for m = 3 in Eq. (33) are the linear combinations of sin@ sinnd (n =1,..,N — 1) and sin? @sinnf (n=1,...,N — 2)
in Eq. (8), respectively (see Eq. (A2a)), and vice versa. The basis functions for m > 4 in Eq. (33) are different from those in
Eq. (8). The number of expansion coefficients in Eq. (30) or Eq. (32) in the SH method is smaller than in Eq. (8) in the new
DFS method for each m > 4. From Egs. (7) and (30), the number of expansion coefficients T,ﬁan in the SH model is about
NZ2/2 when M = N. The triangular truncation used in the SH method gives a uniform resolution over the sphere. From Egs.

(7) and (8), the number of the expansion coefficients Tyf,, in the DFS method is about N? when M = N. The rectangular

11
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truncation used in the DFS model gives almost the same resolution as the grid spacing of the regular longitude—latitude grids.
Therefore, the zonal Fourier filter (see Sect. 2.11) is used in the DFS model to give a more uniform resolution.

We compare the method used to calculate the expansion coefficients in the new DFS method with that in the SH method.
The SH expansion coefficients T,fj,S,lH and T,f,',,qu in Eq. (30) are usually calculated from the grid-point values of T,5(6) and
T3.(0), respectively, by using Gaussian quadrature or Clenshaw—Curtis quadrature (e.g., Hotta and Ujiie, 2018). They can also
be calculated from T,/ (6) and 75/ () in Eq. (19) instead of T, (6) and T, () at the grid points as follows (e.g., Sneeuw and

Bun, 1996):

T

Tom' = f T (0)Pym(8) sin 6 df), (34a)
0
T

Tom' = f T/ (0)P, 1 (6) sin 6 df, (34b)
0

where sin 6 is the latitudinal weight. The coefficients T,f_',SnH and T,fl',SnH can also be calculated with the least-squares method that

minimizes the error ES? (the squared L, norm of the residual):

1 2m T
psH= L f f RSH(2,6)2 sin 6 dod2, (35)
i Jy  Jo
where the residual RSH(2, 0) is
M M M M
RSH(2,0) = (Z TSSHN (9) cosma + Z TSSHN (9) sin ml) - <Z 75/ (6) cosma + z T5/(6) sin m/’l). (36)
m=0 m=1 m=0 m=1

From Egs. (35), (36), and (A3), we derive

- M
=3[ [(T:;i';”(e) T +3 > (155 E) - T 0))

+% Z (T;'"SH'N 9) - T';ZSH'] (0))2] sin 6 df. (37)

m=1
From Egs. (37), (30), (31), and the equations dESH/d T,fj,SnH =0and dESH /8 T,fj,SnH = 0 used in the least-squares method,
we can derive the same equations as Eq. (34). In Eq. (35) (and Eq. (34)), the latitudinal weight sin 8 appears, unlike in Eq.
(20) (and Eq. (27)), which is another difference between the SH and the new DFS methods. In the DFS method, the constant
latitudinal weight is used in Eq. (20), although the latitudinal area weight described below in Appendix B is usually used as
the latitudinal weight at the grid points.

When calculating the coefficients Ty, (and Ty ,,) in Eq. (8), we can also consider the least-squares method, not using E in
Eq. (20) but using E’ with latitudinal weight sin 8 like Eq. (35). However, minimizing E’ derives the simultaneous equations
for calculating TyS ,, with dense matrices, which leads to O(N?) operations. When using E, the simultaneous equations with

penta-diagonal matrices require only O(N2) operations. Therefore, we choose to use E instead of E .

12
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10

2.6 Application of the new basis functions to a wind vector

The velocity potential y and the stream function ¥ can be converted into the wind vector components u and v using the

equations

1 0y 18y 1 ay 13y

S icospad adp asmBar ad0’ (382)
1 0 10 1 0 10

v= _¢+__X: - _1/)___)(' (38b)
acos¢p 01  ad¢p asinfor adf

where u = a cos ¢ dA/dt is the zonal wind, and v = ad¢/dt is the meridional wind. The scalar variables y and y are
expanded like Egs. (7) and (8) as

M M
x(4,0) = Z X5 (0) cosmA + Z X5(0) sinma, (39)
m=0 m=1
M M
(A, 6) = Z WE(8) cosmA + Z ¥5,(6) sinma, (40)
m=0 m=1
N
Z Xnm COSNO form =0,
n=0

0
.

XnmSin@cosnd form=1,
X (0) = " (6) =

T
no

(41D

=3

NG

XnmSin@sinnd  forevenm = 2,

T
N =

NG

X5 msin?@sinnd  foroddm >3,

3
Il
=

NgE

Y5 m cosnf form =0,

S
b1
o

[N

]

Yrmsinfcosnd  form=1,

Y50 =i (0) =

[l
m o

(42)

=3

g

Pimsinfsinng  forevenm > 2,

T
&

Ps msin?@sinnd  foroddm > 3,

3
Jy

The equations for y5,(0) and 15,(6) for m > 1 are the same as Eqgs. (41) and (42), respectively, except that the subscript ¢
is replaced with s. Here, the truncated variables ¥V (4, 8) and y"'™ (4, 8) are defined as

13
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M M
YNM (2, 6) = Z BN (6) cosmA + Z WV (6) sinma,
m=0 m=1

M M
VM4, 6) = Z 1SN (0) cosma + Z 13N (8) sinmA.
m=0 m=1

(43)

(44)

The wind vector components u¥™ (2, 8) and vV (4, ) are obtained from YV (2,8) and y"V" (4, ) using Eq. (38) as

M M
1 9xMM(AL0) 19pNM(L,0
uMM(2,0) = —3 X aﬂ( ) +E v 69( ) = Z uSN (0) cosma + Z u$N(0) sinmi,
m=0 m=1
s,N c,N
v _ma©)  1ayg ()
> um (6) = asin@ +a 20
N9y = . ©) | 10y )
m ~ asin@ a 090
M M
1 oyYNM(a,6 1ayNM(2, 6
vVM(2,0) = pye v 0; ) - X aé ) = Z vEN(6) cosma + Z v3N(0) sinma,
= m=1
seN gy = b ©) 1003 (6)
m ~ asin@ a 06 '
N (g) = - Mbm (0) 19k ()
m = .

10 From Egs. (45b, ¢), (46b,c), (41), and (42), we obtain
N

Z Uy, m Sinné

N

3
[y

Us, m cosné
0

3
Il

U (0) =

g

Uy, m sinné

n

1

M=

0

S
1l

asin@ a 00

form =0,

form=1,

forevenm > 2,

N-1

Uy, m cosnf (: Z u,ﬁfm sin @ sin n@) foroddm = 3,

n=1

14
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(46a)

(46b)

(46¢)
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N
Z Vg m Sinné form=0,
n=1
N
Z Vs m COSNO form=1,
v (0) =17’ (48)
Z Vg m SinNO forevenm > 2,
n=1
N N-1
Z V5 m cOSNO <= Z v,f,’m sin @ sin n9> forodd m > 3,
n=0 n=1
where
n
Unm = —le)ﬁ,m form = 0, (49a)
1 n C_ —_ C
Ufm = - [m)(rsl,m + M] form =1, (49b)
1 2§ — VS
5 except for uf, = — [mx{_m + 71/)0”"2 ll)z,m]'

1
Unm = 2 |:m){rsl,m forevenm > 2, (49¢)

n(ll)rcl—l,m - 1/)7C1+1,m)
¥ f]

— % [m(_)(rsl—l,m + X1§1+1,m) + n(_lprcl—z,m + zwrcl.m - 1p1c1+2,m) foroddm > 3 (49d)

2 4

c
Un,m

s ¢ _ ¢
except for uf ,, = %[m)gz'm + (311)1'"14 ¥im) ],
The equations for u" (8) and vSY (6) for m > 1 are the same as Eqs. (47) and (48), respectively, except that the subscript
10 cis replaced with s. The equations for u3, ,,, are the same as Eqgs. (49b, ¢, d), except that uy; ,,, x5 m, and ¥y ,, are replaced
with 3, m, —X5m, and Y;, ., respectively. The equations for vy; ,, are the same as Eqs. (49a, b, ¢, d), except that uy, ,,,, X5 m»
and Y, ,,, are replaced with vy ,,, Y5, and —x5 ., respectively. The equations for vy ,, are the same as Eqs. (49b,c,d),
except that ug, ,,, X5 m, and Py, , are replaced with vy, ,,, =5 ., and —x;, ,, respectively.
From Eqs. (47) to (49), it can be seen that u&" (8), uSN (9), veN (8), and vSN (8) at the poles are finite for m = 1 and zero

15 for m # 1. Moreover, the following relations are satisfied form = 1:

N-1
1
ugt (8) = —vpk (8) <= EZ(xz_mzl + w;;_ml)> at@ = 0 (North Pole), (50a)
n=1
1 N-1
UL, (0) = vk, (6) (= EZ(—Xﬁ,m=1 + wi,m=1)> at@ = 0 (North Pole), (50b)
n=1

15
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N-1
upL, (6) = vk, (6) <= %Z(—l)"(;(;_mzl + w;_m=1)> at 6 = m (South Pole), (50¢)
n=0
1 N-1
wh () = —veN.(8) (: EZ(—1)H(—X;,”=1 ¥ 1/;;,,1:1)) at® = (South Pole).  (50d)
n=0

Thus, it is guaranteed that the wind vector (u™", v™¥M) in Eqs. (45) and (46) is continuous at the poles.

2.7 New method to calculate expansion coefficients for a wind vector

5 We propose a new method that calculates the expansion coefficients x5 m, Xnm> ¥nm and Y5 ,, using the least-squares
method to minimize the error of u™"(4,8) and vV (2,8) with respect to u(4,8) and v(4,8) due to the meridional

wavenumber truncation. First, the wind vector components u and v are expanded as

M M
u(4,0) = Z u§,(0) cosma + Z u$,(0) sinma, (51)
m=0 m=1
M M
v(4,0) = Z v5,(6) cosma + Z vs,(0) sinm4, (52)
m=0 m=1
J
Z i, m Sinnd for even m,
10 ufn(6) = @) (0) = n/=—11 (53)
Z 1§, m cos no for odd m,
\&
( ]
Um SIN NG, for even m,
v (0) = 7,/ () = {74 (54)
U m cOSTH , for odd m.
n=0

The equations for u3, (0) and vy, (0) for m = 1 are the same as Egs. (53) and (54), respectively, except that the subscript ¢

is replaced with s. Here the expansion coefficients iy, ,,, @i}, 1, ¥ m, and #; ,, are calculated by the forward discrete cosine or

sine transform from the grid-point values of u,(0), U5 (6), v5,(6), and v5,(6) (See Sect. 2.10). The truncated variables
15 @/M(2,60) and #/M(4,0) are defined as

M M
wWM(2,0) = Z %) (8) cosmd + Z s/ (6) sinma, (55)
m=0 m=1
M M
FIM(2,0) = Z 55/(8) cos ma + Z 55/(8) sinm. (56)
m=0 m=1
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Next, X5 m»> Xnm> Yrm» and Py, are calculated to minimize the following error F (the squared L, norm of the residual

vector):

2 s
F = f J. (R¥ (4, 0)2 + RE,,(4,0)%) d6 dA, (57)
o Jo

1
2m?
where the residual vector (R,L{,m (1, 6), Ry (4, 9)) is defined as

5 R n(2,6) = uM(2,0) — @M (2,6), (58a)
REm(2,6) = v™M(,0) — 7/M(2,6). (58b)

From Egs. (55) to (58) and Eqs. (45a), (46a), and (A3), we derive

1 (" 1 foa
—_ c,N _ ~c] - c,N _ ~c] - s,N _ ~s]
F= J; [(um=0(6) a(0)) +5 Zl (us @) - a5/ (9))] DR GAORE (0))]
m=

m=1

2

2

M
> (e - ﬁf,;’(e))] as, (59)

m=1

2
10 + +1
2

M
(v522a(0) ~ 5L ®)) +5 > (v (0) ~ 57 8))
m=1

Equations (47), (48), (49), (53), and (54) are substituted into Eq. (59). The equations 0F /05, = 0, 0F /0x5m = 0,
OF /0y, 1y = 0, and OF /015, ,, = 0 are used to calculate x5 m, Xnm» Pr5m» and Y5, so that F is minimized.
From 0F /0y, = 0 and Eq. (A4), we derive

N
0
Z(Vﬁm—ﬁﬁm =0 form = 0, (60a)
0Xfan ’ '
" ln=1
P N N
15 Z(uf”" —ﬁim)z +Z(uﬁm—ﬁﬁm)2 =0 forevenm > 2, (60b)
o VA m
7 ln=1 n=1
N N
e Z(u(s),m - ﬁolm)z + Z(u,ﬁ_m - ﬁflym)z + Z(V&m - ﬁglm)z + Z(vf,_m - ﬁﬁ_m)z] =0 foroddm. (60c)
mn =1 n=1
From Eq. (60), and from the same equations as Eqs. (49b, ¢, d), except that uy, ,,, x5 m, and 15 ,,, are replaced with u; ,,,
—Xnm» and Y5 ., respectively, and the same equations as Eqs. (49a,b, ¢, d), except that ug, ,, x5 m, and Py ,, are replaced
with v, Y5 m, and — x5, ., respectively, we derive the following equations for xy; ,, and Y5 .
20 Form =0,
1
- [nxGn] = 95 (1<n<N). (61a)

The coefficient yy,_o o is determined so that the global means of y are zero. See Appendix B for the calculation of the global
mean.

Form =1,
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1
E [_(n - 1)2X1€—2,m - Zmlpfz—l,m + (4'm2 + an + Z)chl,m - 2m¢151+1,m - (Tl + 1)2X;:1+2,m]
=2(n—Dig_1pm —4mily,m —2(n+ D541, 0Sn<N-1),
with the exception of the following underlined values:
1
~[(8m® + 4)xGm — 4mipi o — 25 | = —8MAy — 475, (0 =0),

1
E[_imwg,m"'(4m2+4)){1c,m+"'] = .. (n=1),

1
25 — 2t + ] = (n=2),
Forevenm > 2,
1
- [—(n = D2xSogm — 2map§_y pn + (4mM2 + 202 + x5 — 251 m — (M + 1A 42 m]

=2(n— DUy 1 — 4mily,m — 20+ D541 m (1<sn<N-1),
with no exception=

Forodd m > 3,
1
o [(n = 2)2xS g + 2MPS 3 + (—4m2 — 402 + 80 — B) XS 5 — 2MPS_1 1 + (BM2 + 612 + 8) xS

—=2mp5 g n + (—4m? — 40 — 81 — 8) X5 1o m + 2Pz m + (0 + 2)2 X 4am]
=4 — 2)Up_p;m — 8Mi;_g 1y — BNTS,, + 8MiG g + 4+ 2)Tgin, (1SN SN -2),

with the exception of the following underlined values:

1
—[(12m? + 18)xf = dmps + (—4m? = 20)25 + | = —16m, — 1255+ (0=
1
E[—imlpim+(8m2 F3Dpm + ] = (n=
1
—[(=4m? = 20)xf = 2mps  + ] = - (n=

(61b)

(61c)

(61d)

D,

2),

3).

Similarly, from 0F /0x;, , = 0, we derive the same equations as Eqs. (61b, ¢, d), except that x©, 1%, ¥, and #i° are replaced

with x%, =€, ¥°, and —i€, respectively. From — 0F /9y, , = 0, we derive the same equations as Eqs. (61a,b, c, d), except

that x¢, ¥, ¥¢, and @i° are replaced with —y°, x°, @, and —7°, respectively. From dF /05, , = 0, we derive the same

equations as Eqs. (61b, ¢, d), except that x€, Y3, 7€, and #i® are replaced with 5, €, —@i%, and —7°, respectively.

From Egs. (61D, ¢, d), and from the same equations as Egs. (61b, ¢, d), except that €, 5, 7€, and ©i° are replaced with 15,

x€, —u®, and —7C, respectively, we derive the following two linear simultaneous equations with nine-diagonal matrices for

each oddm > 3:
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_)((():,m_ * 'IPS,m' *
lpim * )(f,m *
Xem| |* Yim| |*

D, ll’é,m ="l D, st.m =17 (62)
Xam . Yim .
Yim| |. Xsm| |.
: * : *

where D; and D, are nine-diagonal matrices. We also derive two similar linear simultaneous equations with penta-diagonal
matrices for m = 1 and each even m > 2. The simultaneous equations with nine-diagonal or penta-diagonal matrices can be

solved in a similar way to Eq. (25), and the expansion coefficients xy, ,, and ¥, ;,, in Eq. (62) can be solved efficiently. From

5 the same equations as Egs. (61b, ¢, d), except that €, 5, ¥, and @i° are replaced with y*, =, 7%, and —ii€, respectively,
and the same equations as Eqs. (61b, ¢, d), except that €, 15, €, and @i° are replaced with —¢, x5, @i€, and —75, respectively,
two similar linear simultaneous equations with nine-diagonal matrices for each m > 3 and two linear simultaneous equations
with penta-diagonal matrices for m = 1 and each even m > 2 are also derived. Thus, the expansion coefficients xy; 1, X5m>
Yy m, and Y} 1, are obtained from iy, ,,,, 115, 1, Dy 1, and ¥ , using Egs. (61a, b, ¢, d) and the similar equations.

10 The expansion coefficients uy, ,, U m, V5im, and vy, are obtained from x5, . X5 m> Prm» and Py, ., using Eq. (49) for
Uy, , and the similar equations for uj, ,,, Vs 1, and vy, .
2.8 Relation between the least-squares method and the Galerkin method for the wind vector
Here we discuss the relation between the least-squares method described above and the Galerkin method when calculating
the expansion coefficients related to the wind vector.
15 From Egs. (57), (58), and the equations dF /0 x5, = 0, 0F /05 = 0, OF /0y, ., = 0, and OF /9y, ,,, = 0 used in the
least-squares method, we obtain
2m gy, NM NM
#J; fo MT;JH)R#M(A, 0) + aVT;i'e)RZ’m(l, 0)|d6 dar =0, (63a)
ifzn fﬂ MR“ 1,0 +MR” (1,0)[dodr=0, (63b)
)y Jo | 0xhm ™ im "
2n om , f
%Jo J; %R;{m@, 0) + %;j:a)Rﬁ_m(/l, 6)|deda =0, (63c)
20 ifzn fﬂ w&ﬁ‘m(ﬂ,@) + szm(A, 9)- df da=0. (63d)
2n2 )y )y 0P3m ’ o5 m ’ |

From Egs. (45), (46), and (28) we derive

0

<6uN‘M(/1, 6) avVM(a, 9))
OXsim

OXsim

OXsim
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(9) 108, m(0)
— nm _ = nm
*< “asind inmAa, g ¢S mai |, (64a)
ouMM(a,8) ovVM(4,6 6 10S,.,(0
u"M( )' vt A0\ _ (m nm() ma, nm ( )smml , (64b)
Oxnm Nxnm asinf a a0
auNM(2,60) avNM(a,0) 105nm(9) mS, m(6)
< 0¢ﬁ.m ’ all’rcl,m > (a osma, = asin@ sin ml) (640)
ouNM(3,6) avVM(2,6) 10S,m(6) . MSy 1 (6)
( Wim ' OWim )‘ <E 26 S Ging O mﬂ) (64d)

5 The right-hand sides of Eqs. (64a, b, ¢, d) are considered as the new DFS vector basis functions. Equation (63) shows that the
residual vector (R,ﬁ‘,m 1, 6),R; (4, 9)) is orthogonal to each of the vector basis functions in Eq. (64), which means that Eq.

(63) is the same as the equation obtained by the Galerkin method.
This method to calculate the DFS expansion coefficients of y and ¥ from u and v using the least-squares method (or the
Galerkin method with the DFS vector basis functions) is similar to the vector harmonic transform method (Browning et al.,
10 1989; Temperton, 1991; Swarztrauber, 1993), where the SH expansion coefficients of the divergence D = V2y and the
vorticity { = V21 are calculated from the grid-point values of u and v using the Galerkin spectral method with the orthogonal

vector SH basis functions.

2.9 Arrangement of equally spaced latitudinal grid points

In DFS models, equally spaced latitudinal grid points are used. We use the following three ways of arranging equally spaced

15 latitudinal grid points:

Grid[0]: J=]°, 6;=n(j+05)//°, j=0,.,/°-1, (65a)
Grid[1]: J=J°+1, 6;=mj/]°, j=0,...J° (65b)
Grid[-1]: J=J°-1, 6; =m/]°, j=1..,-1, (65¢)

where 6; is the latitude at each grid point, and J 0 is the number of latitudinal grid points in Grid [0]. When the grid intervals
20 in Grids [0], [1], and [~1] are set equal, the number of grid points J in Grid [1] is J° + 1 and the number of grid points J in
Grid [-1] is J° — 1. Figure 1 shows Grids [0], [1], and [-1] when J° = 4 and the grid interval A@ = i/4. Grid [0] has been
widely used in DFS models, for example, in Merilees (1973b), Orszag (1974), Cheong (2000a, 2000b), and Yoshimura and
Matsumura (2005). Grid [1] was used, for example, in the DFS expansion in Yee (1981). Grid [-1] was used, for example, in
the SH model using Clenshaw—Curtis quadrature in Hotta and Ujiie (2018). All of Grids [0], [1], and [—1] were used in the SH
25 expansion in Swarztrauber and Spotz (2000). We have confirmed that stable integration is possible in the model using the new

DFS method with any of Grids [0], [1], and [—1], as shown in Sect. 5 below.

20



https://doi.org/10.5194/gmd-2021-168
Preprint. Discussion started: 8 July 2021
(© Author(s) 2021. CC BY 4.0 License.

2.10 Discrete Fourier cosine and sine transforms in latitude

Forward discrete Fourier cosine and sine transforms are performed in Egs. (19), (53), and (54), and inverse discrete
Fourier cosine and sine transforms are performed in Egs. (9), (47), and (48), in the latitudinal direction. The calculation of
the discrete cosine and sine transforms in Grids [0], [1], and [—1] is shown below. Here, g(Gj) and h(Oj) are grid-point values,

5 and g, and h, are expansion coefficients.

When using Grid [0], forward and inverse discrete cosine transforms are performed as

Jo-1
b _ (1 forn=0
gn—]—OZg(ej)cosnB-, b={2 forn#0, (66a)
j=0
Jo-1
9(6;) = Z gn cOSTY;. (66b)
n=0
When using Grid [0], forward and inverse discrete sine transforms are performed as
b 0
. (1 forn=]
10 h":]_OZO h(6;) sinn;, b={2 fomel® (67a)
=
]0
B(6) = ) hysinng;. (67b)
n=1
When using Grid [1], forward and inverse discrete cosine transforms are performed as
b &
Gn = ]—OZ c g(8;) cosng;,
j=0
1 forn=0,J° {1/2 forj=0,]°
= ) = 68,
{2for0<n<]° “=l1 foro<j<)o, (68a)
]0
15 g(Gj) = Z Gn COSNO;. (68b)
n=0
When using Grid [1], forward and inverse discrete sine transforms are performed as
Jo-1
2 .
h, =]—0 Z h(Hj) sinn@;, (69a)
j=1
Jo-1
h(8;) = Z hy sinng;, h(8,) = h(6)0) = 0. (69b)
n=1

Grid [—1] is the same as Grid [1], except that there are no grid points at the North and South poles. The zonal wavenumber

20 components of scalar variables at the poles are zero except for m = 0 (See Eq. (8)), and those of vector variables at the poles
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are zero except for m = 1 (See Eqgs. (47) and (48)). When we use Grid [—1] and the values at the poles are known to be zero,
forward and inverse discrete cosine transforms can be performed using Eq. (68) and forward and inverse discrete sine
transforms can be performed using Eq. (69) in the same way as for Grid [1]. When we use Grid [—1] and the values at the

poles are unknown (i.e., the zonal wavenumber components of scalar variables for m = 0, and those of vector variables for

5 m = 1), the inverse discrete cosine transform can be performed using Eq. (68b), but the forward discrete cosine transform
cannot be performed using Eq. (68a). We can calculate the expansion coefficients g,, from g(@,—) in the following way. Eq.
(68b) is multiplied by sin 6;, and we define g(e,-) as

]0
3(6;) = g(6;)sing; = Z gn sin 6 cos n;. (70)
n=0
Since the values g(ej) at the poles (j = 0, /°) are zero, we can expand g(ej) as
J°-1
10 a(6) = Z G sinne;. 1)
n=1
The expansion coefficients g, can be obtained from § (9,-) in the same way as in Eq. (69a) by forward discrete sine transform:
Jo-1
L2 . .
Jn =]—0 Z g(e,-) sinnd;. (72)
=
From Egs. (70) and (71), we obtain
J0-2 Jo-1
Z gnSinf cosnb = Z Jnsinnd, (73a)
n=0 n=1
15 g1 =9p =0, (73b)
By using Eq. (A2a), we obtain
Jo-2 Jo-3
. _ 92\ _. In-1 _ YGn+1) _. g5°-3 . 0 -2 . o
Z gnsinf cosnf = (go > ) sin 6 + Z ( > > )smnG + > sin(J° — 2)0 + > sin(J° — 1)0.(74)
n=0 n=1
By substituting Eq. (74) into Eq. (73a) and comparing the left and right sides of the equation, we obtain
Jo — % forn=1,
g"2_1 _ 1 forn=2,..,J°-3,
Gn = (75)
g_];_3 forn=J°—-2,
0_
902 forn=J°-2.
2
20 We can calculate g(ej) from g(6;) using Eq. (70), calculate g, from g(e,-) using Eq. (72), and calculate g, from g, using

Eq. (75).
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2.11 Zonal Fourier filter

In regular longitude—latitude grids, the longitudinal grid spacing becomes narrow at high latitudes. In DFS methods, the
zonal Fourier filter (Merilees 1974; Boer and Steinberg 1975; Cheong 2000a), which filters out the high zonal wavenumber
components at high latitudes, is usually used to obtain a more uniform resolution. In this study, we set the largest zonal

S5 wavenumber M at each latitude as
M;(6;) = min(M, M, + M sin(6;)), (76)
where we use the value M, = 20 to make the resolution similar to that in the reduced grid of Miyamoto (2006). The values of
Ty (9]-) and Ty, (Hj) in Eq. (7) are set to zero for m > Mf(Hj) during the spectral transform. The use of a reduced grid (Hortal

and Simmons, 1991; Juang, 2004; Miyamoto, 2006) has a similar effect to the zonal Fourier filter.

10  2.12 Laplacian operator and Poisson equation

The calculation of the Laplacian operator and the Poisson equation in the new DFS method is described in this section. In

the equation

z 1[ 1 0%f 1 a4/, of
90.0) =100 = |+ w5 (03| a7
where V? is the Laplacian operator, the variables f and g are expanded zonally using Eq. (7) as
M M
15 F(4,60) = Z £2(8) cosmA + Z £5(0) sinma, (78)
m=0 m=1
M M
g,0) = Z 95, (0) cosma + Z g (0) sinmA. (79)
m=0 m=1
The variables f5(0), fi7(0), g (0), and g5,(0) are expanded meridionally using Eq. (8) as
N
Z fium cosné, form =0,
n=0
N-1
Z famsin@cosnf, form=1,
£:0) = £ (6) =1 37Y (80)
famsin@sinng, forevenm =2,
n=1
N-2
fimsin?@sinng, foroddm =3,
n=1
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NgE

Jnmcosnl, form =0,

=3
[
m o

g

gnmsinBcosnf, form=1,
95(0) = g5 () =

=3
DRl
no

InmsSin@sinng, forevenm = 2,

i

T
N

gimsin?@sinnd, foroddm = 3.

3
I
-

(81

The equations for f,(6) and g5,(6) for m = 1 are the same as Eqgs. (80) and (81), respectively, except that the subscript c is

replaced with s. We define the truncated variables f¥'™(8) and g"'™(6) as

M M
NM(4,8) = Z LN () cosma + Z 5N () sinmaA,

(82a)
5 g"M(2,0) = Z 9N (8) cosma + Z gaN () sinmA. (82b)
From Eq. (82a), we obtain
ofm (6)
2 FN,M _ cN . m
ViR (,0) = Zaz[smzﬂfm ®)+ sm600< in6 =75 — 00 cosmd
ofm (6)
in —————— || sinmA. 83
* Z a? [sm2 o’m né oo <51n a0 st (83)
Here we use the Galerkin method to calculate the Laplacian operator and the Poisson equation, and obtain
2
10 anf J Spm(8) cosmARI(A,6)dodA =0, (84a)
2n
72 f f Spm(8) sinmARI(A,0)dOdA = 0, (84b)
where the residual
RI(2,0) = g"M(2,6) — VAV (2,6) (85)
is orthogonal to each of the new DFS basis functions Sy, ,,(8) cosmA and Sy, ,,(8) sinmA (see Sect. 2.4).
15 We can also use the least-squares method described in Sect. 2.3 instead of the Galerkin method so that the following error
H (the squared L, norm of the residual) is minimized:
1 21 T
H=— R9(2,0)2d0 dA. 86
o R (86)
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When calculating g by applying the Laplacian operator to a given f, g5, and g;, ,, can be calculated from 0H/dgy, ,, and
0H /0g;, m using the least-squares method. The equations 0H /gy, ,, and 0H /g5, », give the equivalent equations to Eq. (84).
When calculating f from a given g in the Poisson equation, f,7, and f;;,, can be calculated from dH /df,;,, and 0H /0f;; .,
using the least-squares method. However, the equations derived from 0H/df,;,, and 0H/df;,, are different from Eq. (84). If
we use different equations for calculating g from f and f from g, the original values are changed when calculating g from f
followed by calculating f from g, which is not good for numerical stability. Therefore, we use Eq. (84) for calculating both
g from f and f from g.
From Egs. (82) to (85) and Eq. (A3) we derive

" . fm" () _
J; Sum(6) {g O -—= 7|52 gme( )+ 6—<Sm 0 30 )]} do =0, (87a)
" ; IO\ 4
J; Spm(8) {g ) - ? = Hfm’v( )+ 0—<sm€ 5 )]} de = 0. (87b)
Form = 0, we calculate g5, ,, by using
c c - 0f"(0)
gn(0) = ; e Hme(G) Sna90 (SIHQT>], (88)

instead of Eq. (87) following Yee (1981) and Cheong (2000a) for ease of calculation. For 0 < m < 3, the exact solutions of
g5m can be obtained from Eq. (88) because the new DFS meridional basis functions for 0 < m < 3 are the linear
combination of the associated Legendre functions for 0 < m < 3 and vice versa as described in Sect. 2.5.

For m = 0, by substituting Egs. (80) and (81) into Eq. (88) multiplied by sin? 8, transforming using Eq. (A5), and

comparing both sides of the equation, we obtain
1
_g7c1—2,m + ngl,m - g1(':1+2,m = E [(Tl - 1)(“’ - Z)frf—z,m - 2r"zfnc,m + (Tl + 1)(" + 2)frf+2,m] (0 =n< N): (89a)
except for the following underlined values:
lglc,m - gg,m = (‘l’l = 1);
—Zgﬁ,m + Zgg,m - gg,m = (Tl = 2)-
For m = 1, by substituting Eqs. (80) and (81) into Eq. (87a) and using Eqs. (A2), (A4) and (A5), we obtain
1
=Gi-zm + 205m = Giram = —5 [0 = DNfil_pm — 2n* +4mD) fif + (0 + Dnfifiom] (0<n<N-1) (89b)
except for the following underlined values:
195 m — G5m = (n=1),
1
—Zgﬁ,m+29§,m _gz,m =¥[if0(fm+"'] (7’1 = 2)-

For even m = 2, by substituting Eqgs. (80) and (81) into Eq. (87a) and using Eqs. (A4)
and (A5), we obtain
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—9n-2m + 29n,m — Gntzm = % [(n = Dnfiipm — @n* +4m?) fiin + (n+ Dnfifpm] (1Sn<N-1) (89c)
except for the following underlined values:
39im = 9sm = (n=1)
with no exceptions.
For odd m > 3, by substituting Eqs. (80) and (81) into Eq. (87a) and using Eqgs. (A2), (A4) and (A5), we obtain
Gn-am ~ 4Gn-2m + 6gnm ~ 4Gn+zm + Gn+am

1
== [~ =2)(n = DfSgm + (4n? — 6n+ 4 + 4mP)fS,  — (602 + 4 + 8m?)fS,

+@An2 +6n+ 4+ 4mA)fom — M+ 2)(+ DfSam] (1<n<N) (89d)
except for the following underlined values:
1
109§ m = 595m + g5m = 5 [~(12+ 12m*)fim + 4] (n=1),
Egg,m - 4g£,m + gg,m = (n = 2),

~595m + 695 m — 495m + 9Fm = ai (24 +4m?*)fm + ] (=3).
From Eq. (89), we obtain the following two linear simultaneous equations with tri-diagonal or penta-diagonal matrices:
Am,n,evengwcn,n,even = Bm,n,evenffn,n,even: Am,n,oddgfn,n_odd = Bm,n,oddffn,n_odd' (90)
where g5, even and g7, 5qq are the vectors whose components are g5 ,,, (n is even) and g5, (n is odd), respectively, and
[run_even and fr,  oqq are the vectors whose components are f7, (n is even) and f7,, (n is odd), respectively; Ay, 5 evens
Bun_even> Amn_odds and By, 1 o4q are tri-diagonal or penta-diagonal matrices. g5, n even and g5, oqq are calculated by
Imneven = AmnevenBmnevenSmnevens Iimnoaa = AmnoaaBmngaaf/ mnoaas CRY
which can be solved efficiently as in Eq. (25).

By using Eq. (87b) instead of Eq. (87a), we obtain the equations to calculate g;, ,, from f7,,, which are the same as Eqgs.
(89) to (91), except that the superscript c is replaced with the superscript s.

We have verified that all the eigenvalues of the matrices Ayly evenBimn_even and A;nl,n,oddBm.n_odd are negative real
numbers for several truncation wavenumbers M and N, but we have not yet proved that this is true for all truncation
wavenumbers.

In the Poisson equation, f is calculated from given g in Eq. (77). We calculate f from g by the reverse calculation of g
from f in Eq. (91). That is, we calculate f from g by

finn even = Bin evenAmn evendinn even Finn odd = Brin_oddAmn odafmn_odds 92)
except when m = 0 and n is even. Form = 0, f;7_¢,=0 disappears in Eq. (89a). The coefficients f;;,,-o (evenn = 2) are

calculated from g5, ,—o (even n = 2) by Eq. (89a). The value f;7—o m=o is calculated from f;7,,—o (evenn = 2) so that the
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global mean of f is zero using Eq. (B1). f3n_even and fy, 1, oqq are also calculated from the equations where the superscripts

c in Eq. (92) are replaced with the superscript s.

2.13 The Helmholtz equation

From Eq. (91), Eq. (77) is represented as
g =A"Bf, (93)
where the subscripts m, n_even and n_odd, and the superscripts ¢ and s are omitted. The matrix A~'B represents the Laplacian
operator V2 in spectral space.

The Helmholtz equation is

vr=li-e bl 0 (o D)= %
f-evif = Eaz sin20 012  sin0 06 sin 06 =9 9
where f is calculated from given g. Equation (94) is represented as

(I1-¢A'B)f = g. (95)

From Eq. (95), f is calculated from g by
f=(A-eB)'Ag. (96)
Since A — eB is a penta-diagonal or tri-diagonal matrix, Eq. (96) can be efficiently solved as in Eq. (25). Similarly, the

Helmbholtz-like equation

f-aVif=Vyg 7
is represented as
(I1-&A™'B)f = A" 'Bg. (98)
From Eq. (98), f is calculated from g by
f=(A-¢B)"'Bg. 99

2.14 Horizontal diffusion

The horizontal diffusion is calculated in the same way as in Cheong et al. (2004). The equation for fourth-order

hyperdiffusion is
f+evif=g, (100)
where f is calculated from g. Equation (100) can be converted into
(14 iVev?)(1 - iVeV?)f = g, (101)
where i = vV—1. Equation (101) is represented as
(1+iVeA'B)(1-iveA'B)f = g, (102)

from which we obtain the equation to calculate f from g as
f=(A-iveB) 'A(A +iVeB) 'Ag. (103)
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Here, A — iv/eB and A + iv/eB are complex matrices and f and g are real column vectors. For efficient computation, two real
column vectors can be combined into one complex column vector (Cheong et al., 2004); for example, f = f¢ —ifSand g =
g€ —ig®, where the superscript ¢ indicates the zonal cosine component, and the superscript s indicates the zonal sine

component.

3 The error due to meridional wavenumber truncation in DFS expansion methods

Here we examine the error due to the meridional wavenumber truncation when the same continuity conditions at the poles
as Eq. (3) are satisfied. In the DFS method of Orszag (1974), only fy_1 », and fy , are modified to satisfy Eq. (4) equivalent
to Eq. (3). The DFS meridional basis functions of Cheong in Eq. (6) automatically satisfy the pole conditions in Eq. (3) for
even m, but not for odd m. The new DFS meridional basis functions in Eq. (8) automatically satisfy the condition in Eq. (3)
for both even and odd m. We compare the error due to the wavenumber truncation among these DFS methods.

Figure 2 shows the error due to the wavenumber truncation when we use Grid [0] (see Sect. 2.9) with the number of
latitudinal grid points / = 64. The original values of F,, (Gj) are set to one at grid points north of 30°N, and zero at grid points
south of 30°N. The original values are meridionally transformed from grid space to spectral space (forward transform),
truncated with N = 42, and then transformed back from spectral space to grid space (inverse transform) to obtain the truncated
reconstruction of Fm(Gj).

In the method of Orszag using Eq. (2), a very large error occurs especially for odd |m| (= 3) (Fig. 2) when fy_1 », and fy
are modified to satisfy the pole conditions in Eq. (4). Dividing Fm(Qj) by sin 6 before the forward Fourier cosine transform
for odd [m| (= 3) also contributes to the large error.

In the method of Cheong using Eq. (6), large high wavenumber oscillations appear for even m (# 0) in Fig. 2. Although
the basis functions in the method of Cheong for even m (# 0) are the same as those in the new method, the expansion
coefficients are calculated differently in the two methods. In the method of Cheong, the simple meridional truncation with
N < ] after the forward Fourier sine transform of a variable divided by sin 6 causes the large high-wavenumber oscillations.
The large oscillations appear when the original values abruptly change around the poles. In the case shown in Fig. 2, the
original values near the North Pole are one, but the value at the North Pole abruptly becomes zero due to the pole conditions
of Eq. (3). When N = J for even m (# 0), the forward transform followed by the inverse transform does not change the
original values, and the oscillations do not appear. For this reason, Yoshimura and Matsumura (2005) and Yoshimura (2012)
set N = J for even m, to improve stability. The result in the method of Cheong for odd [m| (= 3) is not shown in Fig. 2 because
the method does not satisfy the condition of Eq. (3) for odd m.

In the new DFS method described in Sect. 2, the usual small oscillations from the Gibbs phenomenon appear in Fig. 2, but

the error is small because the expansion coefficients are calculated using the least-squares method (or the Galerkin method) to
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minimize the error. Because of this, the truncation with arbitrary N < J does not cause large oscillations in the new DFS
method.

Even when using the basis functions of Orszag in Eq. (2), we can obtain results equivalent to the new DFS method by
calculating the expansion coefficients using the least-squares method with Lagrange multipliers to minimize the error while

5 satisfying the pole conditions in Eq. (4).

4 Shallow water model on a sphere
4.1 Equations

The prognostic equations of the shallow water model on a sphere are
dv
= = ~2Qxv)y - gVh, (104)
dth—nh
%: —(h—h)V-v, (105)

where t is time, v is the horizontal wind vector, h is the height, h is the surface height, g is the acceleration due to gravity, 2
is the 3-dimensional angular velocity of the earth’s rotation, and the subscript H indicates the horizontal component. Equation
(104) is transformed for the advective treatment of the Coriolis term (Temperton, 1997) into

dlv+202Xxr)
dt

15  where 7 is the 3-dimensional position vector from the Earth’s center. Equation (105) is transformed for the spatially averaged

— _gvh, (106)

Eulerian treatment of mountains (Ritchie and Tanguay, 1996) into
dh

i —(h—hg)V-v+v-Vh, (107)

4.2 Time integration method

A two-time-level semi-implicit semi-Lagrangian scheme (e.g., Temperton et al., 2001) and the Stable Extrapolation Two-

20 Time-Level Scheme (SETTLS; Hortal, 2002) are adopted to discretize Eqs. (106) and (107) in time as

W+22x1)*" — (W +202x71)8 g(vh$? +vn0)  g(VRSY +VR®)  g(VRY + VhY)
At = - 2 - ﬁv 2 + ﬁv 2 (108)
h*—h§ | [(h=h)DI +[(h—h)DI®  [v- VAL + [v-VA]°
=1{- +
At 2 2
= 1(+) = .10 = 10 - 1+
[AD] "~ + [RD] [AD]_ + [RD]
+ B B : (109)

where
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11 1 ou 1 Odvcos¢
“alcos¢p A cosp I

is horizontal divergence; At is a timestep; the superscripts —, 0, and + mean past time (t — At), present time (t), and future

D=V-v

(110)

time (t + At), respectively, and the superscript (+) means future time (t + At) extrapolated in time, for example, h(¥) =

2h% — h~; the subscript D means the departure point, and the absence of the subscript D means the arrival point; h is a constant

5 value of height for semi-implicit linear terms; f8,, and S}, are second-order decentering parameters (Yukimoto et al., 2011).
Using f3,, and B, larger than 1.0 (e.g., 1.2) increases the effect of the semi-implicit scheme improving computational stability,

but 8, = B, = 1.0 is used here because h larger than h is enough for stable calculations in the shallow water model. The
departure point xp is the upstream horizontal position from the arrival point x along the wind vector between present time (t)

and future time (t 4+ At). Here, the arrival point x is on a grid point, and the departure point xp is not generally on a grid point.

10  Since the right-hand sides of Egs. (108) and (109) are the time average between present time (t) and future time (t + At)
and the spatial average between the departure point and the arrival point, these equations have second-order precision in time

and space. In SETTLS, xp is calculated using

vg') +°
Xp = x =~ ——AL. (111)

However, when At is longer than 30 minutes, using vg') extrapolated in time to calculate xp causes numerical instability in
15 our experiments. To avoid instability when At is 1 hour, here we use
0 1+
vp+v
xp :x—DTAt, (112a)
g(vh§’ + vho)
T M

instead of Eq. (111), where v’ * is a provisional future value obtained by discretizing Eq. (106) in an explicit semi-

v =vi+ 2 X1)p 22 XT 112b
D

Lagrangian scheme. From Eq. (112), we obtain

20 Xp =x — At

) 0
(vo Xy gAtVh ) Cox gAtVR
D

2 r—— (113)
This method using a provisional future value to calculate xp is similar to the method in Gospodinov et al., (2001). Since the
value with the subscript D depends on xp, xp is calculated iteratively from Eq. (113) (e.g., Ritchie, 1995; Temperton et al.,
2001). Since xp is not generally on the grid point, the value at xp is calculated by spatial interpolation from nearby grid points.
In the right-hand side of Eq. (113), the value at xp with the subscript D is calculated by third-order Lagrange interpolation.

25 Egs. (108) and (109) are transformed into

B2

+ t + —
v+ 2 gvVh™ =R, (114a)

At At
R,= [vV'+20x71— 7g(Vh(+) — B,VA™ + ﬁVVhO)] —20XT1— 7g(vh" — B,Vh®), (114b)
D
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BrAt _
ht + ThD* =Ry, (115a)

At _ _
R,=h'+ 7{[(—(h —h)D + v V)P + BhD® — D}

At _
+7{[(—(h — ho)D + v+ Vh)]° + B,hD°}. (115b)
In Egs. (114b) and (115b), the values at xp with the subscript D are calculated by fifth-order and third-order Lagrange
interpolations, respectively, since high-order interpolation of wind vector components increases the accuracy of the model’s

results in our experiments. From Eq. (114), we obtain

At
Dt + ﬂVTgV2h+ =Rp, (116)

it =R, (117)

where

K-V x _1[ 1 ov 1 Bucosd)]
¢= v=a cospdl cos¢p P

is vorticity, k = r/|r| is the vertical unit vector, R, =V R, and Ry = k- V X R,,.

(118)

We calculate h* and v* using the spectral transform method and the Galerkin method with the new DFS method as follows.

—

. The scalar variable R}, is transformed from grid space to spectral space using Eqgs. (19) to (25). The components of the
vector variable R, = (Ry, R,) in grid space are transformed to R, and Ry, in spectral space using Egs. (51) to (62), where
R, and Ry, are the velocity potential and the stream function of R,,, respectively.

2. Rp and R; are calculated by

Rp = V?Ry, (119)
R; = V2R, (120)
using Egs. (89) and (91). {* is obtained from R; using Eq. (117).
3. Equations (115a) and (119) are substituted into Eq. (116) and we obtain

p*— (%) puprghivin® = v (R, -2 pugn,). (121)
D* is calculated by solving the Helmholtz-like equation Eq. (121) using Egs. (97) and (99).
4. h* is calculated from D* and R, using Eq. (115).
5. x* and Yt are calculated from D and {* by solving the Poisson equations
Viy*t =D+, (122)
VYt =7, (123)
using Egs. (89) and (92).

6.v* = (u*,v*) is calculated from y* and * using Eq. (49) for uy, ,, and the similar equations for u;, n, Vs 1, and vy ..
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7.u*, v*, h*, D, and VA* in spectral space are transformed to grid space. h* and D* are transformed meridionally using
Egs. (9) and (10). u* and v* are transformed meridionally using Eq. (48). VA* = (hj, h{) is transformed meridionally
using Egs. (14) to (17). hf can also be calculated from hieN (Gj) and b5V (Bj) at the latitudinal grid points using Eq.
(12), and additionally using Eq. (18) at the poles when using Grid [1], which is more efficient than using Eqs. (14) and

(15) because the meridional inverse discrete cosine and sine transforms of h} become unnecessary.

5 Results of shallow water test cases
5.1 Models

We ran Williamson test cases 2 and 5 (Williamson et al., 1992) and the Galewsky test case (Galewsky et al., 2004) in the
semi-implicit semi-Lagrangian shallow water model using the new improved DFS method described in Sect. 2 (hereafter the
new DFS model). We also ran the same test cases in the semi-implicit semi-Lagrangian shallow water model using the DFS
method of Yoshimura and Matsumura (2005) with the basis functions of Cheong (2000a, 2000b) (hereafter the old DFS model),
and in the model using the SH method (hereafter the SH model) for comparison. The new DFS model was run for each of Grid
[0], [1], and [—1]. In the old DFS model, Grid [0] was used. In the SH model, the Gaussian grid was used. We use a regular
longitude-latitude grid, not a reduced grid. We use the timestep At = 3600 s at about 300 km resolution with around 128 x 64
grid points, At = 600 s at about 20 km resolution with 1920 x 960 grid points, and At = 90 s at about 1.3 km resolution with
30720 x 15360 grid points, where 128 x 64, for example, indicates the number of longitudinal grid points I = 128 and the
number of latitudinal grid points ] = 64. Horizontal diffusion is not used in all test cases. The zonal Fourier filter described in
Sect. 2.11 is used in the DFS models. We have confirmed that numerical instability occurs in some test cases in the old DFS
model without the zonal Fourier filter, but stable integration is possible in all test cases shown here in the new DFS model,
even without the zonal Fourier filter.

The zonal Fourier transforms in all of the models and the meridional Fourier cosine and sine transforms in the DFS models
are calculated using the Netlib BIHAR library, which is a double precision version of the Netlib FFTPACK library
(Swarztrauber, 1982). The meridional Legendre transform in the SH model is calculated using the ISPACK library (Ishioka,
2018), which adopts on-the-fly computation of the associated Legendre functions. We use the ISPACK library’s optimization
option for Intel AVXS512, which is highly optimized by using assembly language together with Fortran.

5.2 Williamson test case 2

The Williamson test case 2 simulates a steady state non-linear zonal geostrophic flow. In this test case, the angle between
the solid body rotation and the polar axis « is given, and the zonal and meridional components of 22 X r become

20 x r = (2Qa[cos 8 cos a + cos A sin 8 sin a], —2Qa sin A sin a). (124)
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Figure 3 shows the time series of forecast errors of the height for a 5-day integration in the Williamson test case 2 with a =
/2 — 0.05 in the models with around 128 x 64 grid points and truncation wavenumber N = 63 (DFS) or N = 62 (SH), using
no horizontal diffusion. The L,, L,, and L., errors are almost the same among the new DFS models using Grids [0], [1] and

[—1], the old DFS model and the SH model.

5.3 Williamson test case 5

The Williamson test case 5 simulates zonal flow over an isolated mountain. Figure 4 shows the predicted height after a 15-
day integration in Williamson test case 5 with hy = 5960 m. The result of the high-resolution SH model with 1920 x 960 grid
points is regarded as the reference solution. Horizontal diffusion is not used. The errors with respect to the reference solution
are almost the same for the new DFS models, the old DFS model, and the SH model with around 128 x 64 grid points. Figure
5 shows the longitudinal distributions of meridional wind at the grid points near the South Pole after a 15-day integration in
the old and new DFS models using Grid [0] with 128 x 64 and 1920 x 960 grid points. While the zonal wavenumber 1
component is dominant in the new DFS model with 128 x 64 grid points, high zonal wavenumber noise appears in the old
DFS model with 128 x 64 grid points. This difference is because the new DFS expansion method with the least-squares method
improves numerical stability. By using this new expansion method, the high zonal wavenumber noise does not appear even in
the model that does not use the new DFS basis functions in Eq. (7) but uses the same DFS basis functions as in Eq. (7) except
that the basis function for odd m > 3 is sin 8 cos n8 instead of sin? 8 sinnf. The result of this model is almost the same as
that of the new model (Figure not shown). In the old DFS model at high resolution with 1920 x 960 grid points, the high
wavenumber noise is not seen in Fig. 5. The higher the resolution, the smaller the high wavenumber noise becomes. Figure 6
shows the kinetic energy spectra of the horizontal winds (Lambert, 1984) after a 15-day integration in Williamson test case 5.
The kinetic energy spectra in the DFS models are calculated from the SH expansion coefficients, which are obtained by firstly
calculating the Gaussian grid-point values from the DFS coefficients using Eq. (8) for the new DFS method and Eq. (6) for
the old DFS method, and secondly calculating the SH expansion coefficients from the Gaussian grid-point values by using a
forward Legendre transform. In the old DFS model with 128 x 64 grid points, the high wavenumber components are larger
than in the other models, which is related to the high wavenumber noise near the South Pole in Fig. 5. In the old DFS model
with 1920 x 960 grid points, the high wavenumber components are a little larger than in the other models, but the differences
are slight.

Figure 7 shows the predicted height after a 15-day integration in Williamson test case 5, which is the same as Fig. 4 except for
the truncation wavenumber N. In our semi-implicit semi-Lagrangian models, we usually use N satisfying N = | — 1 (J is the
number of latitudinal grid points), which is called linear truncation. However, here N is determined to satisfy N = 2(J — 1)/3
to eliminate aliasing errors with quadratic nonlinearity (Orszag, 1971), which is called quadratic truncation. When using the
quadratic truncation N = 42, the new DFS models with Grids [0], [1], and [—1] are stable without horizontal diffusion, but the
old DFS model without strong high-order horizontal diffusion is unstable. The numerical instability in the old DFS model
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occurs because of the high-wavenumber oscillations due to the quadratic wavenumber truncation for even m (# 0), as
explained in Sect. 3. The results for the new DFS models are almost the same as for the SH model. Figure 8 shows the kinetic
energy spectrum of the horizontal winds after a 15-day integration in Williamson test case 5, which is the same as Fig. 6 except
for the truncation wavenumber N. At the resolution N = 42 with 128 x 64 grid points, the high wavenumber components are
a little larger in the SH model than in the new DFS model. At the resolution N = 639 with 1920 x 960 grid points, small
oscillations appear in the high wavenumber region in the SH model, but not in the new DFS models. In the SH model, the
wind components u and v divided by sin 8 are transformed from grid space to spectral space (Ritchie, 1988; Temperton, 1991),
which seems to be the cause of the small oscillation in the high wavenumber region. Another way to transform u and v from
grid space to spectral space in the SH model is to use the vector harmonic transform (see Sect. 2.8), which avoids dividing u
and v by sin 8 and improves the stability of the model (Swarztrauber, 2004). This approach is similar to the expansion method
for u and v using the least-squares method in the new DFS method described in Sects. 2.7 and 2.8, and probably solves the
problem with the high wavenumber components in the SH model. Alternatively, using D and { instead of u and v as

prognostic variables may mitigate this problem.

5.4 Galewsky test case

The Galewsky test case simulates a barotropically unstable mid-latitude jet. Figure 9 shows the predicted vorticity after a 6-
day integration in the Galewsky test case for the models at 1.3 km resolution with 30720 x 15360 grid points and the quadratic
truncation N = 10239, without horizontal diffusion. The result in the new DFS model using Grid [0] is almost the same as in
the SH model. The old DFS model is unstable for the same reason as that shown in Fig. 7. Figure 10 shows the kinetic energy
spectrum of horizontal winds after a 6-day integration in the Galewsky test case. The results are almost the same for the DFS
models using Grid [0], [1] and [-1], and the SH model, but small oscillations appear near the truncation wavenumber in the

SH model. This is probably for the same reason as in Williamson test case 5 in Fig. 8.

5.5 Elapsed time

Figure 11 shows the elapsed time for the 15-day integration in the Williamson test case 5 in the SH model and the new DFS
model using Grid [0] at 20 km resolution with 1920 x 960 grid points and N = 958 (SH) or N = 959 (DFS), and that for the
6-day integration in the Galewsky test case at 1.3 km resolution with 30720 x 15360 grid points and N = 10239. We use one
node (with two Intel Xeon Gold 6248 CPUs with 20 cores per CPU) of the FUJITSU Server PRIMERGY CX2550 M5 in the
MRI. OpenMP parallelization is used, but MPI parallelization is not used. The elapsed time in the SH model is larger than in
the DFS model, although the Legendre transform in the SH model is highly optimized for Intel AVX512. The higher the
resolution, the larger is the difference of the elapsed time between the models. This is because the Legendre transform used in
the SH model requires O(N3) operations while the Fourier cosine and sine transforms used in the DFS model require only

0(N?log N) operations.
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6 Conclusions and perspectives

We have developed the new DFS method to improve the numerical stability of the DFS model, which has the following two
improvements:

1. A new expansion method with the least-squares method is used to calculate the expansion coefficients so that the error due
5 to the meridional wavenumber truncation is minimized. The method also avoids dividing by sin 6 before taking the forward

Fourier cosine or sine transform.

2. New DFS basis functions that guarantee that not only scalar variables, but also vector variables and the gradient of scalar

variables, are continuous at the poles.

The equations obtained with the least-squares method are equivalent to those obtained with the Galerkin method. We also use

10  the Galerkin method to solve partial differential equations such as the Poisson equation and the shallow water equations.

To test the new DFS method, we conducted experiments for the Williamson test cases 2 and 5, and the Galewsky test case
in semi-implicit semi-Lagrangian shallow water models using the new DFS method with the three types of equally spaced
latitudinal grids with or without the poles. We compared the results of the new DFS models using the new DFS method with
the old DFS model using the method of Yoshimura and Matsumura (2005), and with the SH model.

15 The high zonal wavenumber noise of the meridional wind appears near the poles in the old DFS model, but not in the new
DFS models. This is because the new DFS expansion method with the least-squares method improves the model’s stability. In
the old DFS model, a truncation wavenumber N lower than the number of latitudinal grid points J for even m # 0 causes
numerical instability. In the new DFS model, an arbitrary meridional wavenumber truncation N < J can be used without the
stability problem because the error due to meridional wavenumber truncation is small when using the new DFS expansion

20 method with the least-squares method. This is one of the merits of the new DFS method because the quadratic truncation
(N = 2(J — 1)/3) or the cubic truncation (N = (J — 1)/2) is usually used in the Eulerian model and is also becoming to be
used in the semi-Lagrangian model instead of the linear truncation (N = J — 1) for stability and efficiency at high resolutions
(Hotta and Ujiie, 2018; Dueben et al., 2020). We have also confirmed that in the new DFS model, stable integration is possible
in all test cases shown here even without using the zonal Fourier filter unlike in the old DFS model. Thus, the numerical

25  stability of the semi-implicit semi-Lagrangian model using the new DFS method is very good.

The results of the new DFS shallow water model are almost the same as the SH shallow water model. But in the SH model
without horizontal diffusion, small oscillations appear in the high wavenumber region of the kinetic energy spectrum in some
cases, unlike in the new DFS model. This seems to be because the wind components u and v divided by sin 6 are transformed
from grid space to spectral space in the SH model. This problem with the SH model can probably be solved by using the vector

30 harmonic transform, which is similar to the expansion method for u and v using the least-squares method in the new DFS
model.

The elapsed time in the new DFS model is shorter than in the SH model especially at high resolution because the Fourier

transform requires only O(N? log N) operations, and the Legendre transform in the SH model requires O(N?3) operations.
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We developed hydrostatic and nonhydrostatic global atmospheric models using the old DFS method (Yoshimura and
Matsumura, 2005; Yoshimura, 2012) and conducted typhoon prediction experiments in the nonhydrostatic global atmospheric
model using the old DFS method in the Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving
TYphoon forecast (TYMIP-G7; Nakano et al., 2017). We have already developed a nonhydrostatic (or hydrostatic)

5 atmospheric model using the new DFS method, which will be described in another paper after improving the nonhydrostatic

dynamical core as needed.

Code availability. The source codes of the DFS and SH shallow water models are available in the Supplement to the article
and are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

10 license. These models utilize the Netlib BIHAR library and the ISPACK library. The Netlib BIHAR library is available at
https://www.netlib.org/bihar/ and is also included in the Supplement. The ISPACK library is available at https://www.gfd-
dennou.org/arch/ispack/ispack-3.0.1.tar.gz.

-

Data  availability. The  results of  model experiments  are available a

15 jma.go.jp/pre/Yoshimura DFS SW _Testcase 2021/.

https://climate.mri-

Appendix A: Trigonometric identities

We list here the trigonometric identities used in transforming the expressions in this paper.

The following identities are satisfied:

1
20 sinnf cosn'g = 3 [sin(n +n")6 + sin(n — n")6] (Ala)
1
cosnfsinn'g = 3 [sin(n +n") — sin(n — n")8] (A1lb)
1
cosnfcosn'g = 3 [cos(n + n")O + cos(n —n")8] (Alc)
1
sinnf sinn'6 = 3 [—cos(n +n")0 + cos(n —n')6] (A1d)
From Eq. (A1), the following identities are derived:
1
25 sin@ cosnf = 3 [sin(n + 1) — sin(n — 1)0] (A2a)
1
sin @ sinnf = 3 [—cos(n +1)8 + cos(n — 1)6] (A2b)
. . 1 . . .
sin? @sinnf = 1 [—sin(n — 2)6 + 2sinnb — sin(n + 2)6] (A2¢)
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1
sin 6 cosnf = i [—cos(n —2)6 + 2 cosnb — cos(n + 2)6] (A2d)
From Eq. (A1), the following orthogonal relations in longitude are derived:
2n 2 form=m'=0
f cosmicosm'AdAi={r form=m'#0 (A3a)
0 0 form=m
2
J cosmAsinm'Adi =0 (A3b)
0
2m f %0
5 f sinmAsinm'AdA = {n orm =m * (A3¢c)
o 0 form=m
Similarly, from Eq. (A1), the following orthogonal relations in latitude are derived:
s forn=n"=0
r 1
f cosnf cosn'0 df = 37 forn=n"#0 (Ada)
0
0 forn #n'
n 1 .,
f sinn@sinn'6 do = [En forn=mn"+0 (A4b)
0 0 forn #n’'
By using Eq. (A1), the following relations are derived:
d n+l n—1
10 sin 0 3 (sin' @ cosn@) = sin! @ cos(n + 1)6 — sin! @ cos(n — 1)@ (A5a)

m+Dn+1+1)

a a
sinf—|sin @ kT (sin' 6 cos nB)] = sin! 8 cos(n + 2)@

a6 4
2n? =212+ 21 n—-Dn-1-1
—fsinl 0 cosnb + #sinl 0 cos(n —2)0 (A5b)

5} n+l n—1

sin @ T (sin @ sinnd) = sin' 8 sin(n + 1)8 — sin' @ sin(n — 1)@ (A5¢)
a d m+Dn+1+1)

S P A _n+D+l+D
sin 6 20 [sm@ 50 (sin' 0 sinnf) 2 sin' @ sin(n + 2)6
2n? —21? + 21 n—Dn-1-1
15 —fsinl 6sinnf + #sinl 6 sin(n — 2)8 (A5d)

Appendix B: Calculation of global mean and latitudinal area weight

The global mean value of TV" (4, 8) in Eq. (11) can be calculated in spectral space by

M M
— i o c,N s,N . .
G= 7 Ty (0) cosmA + T, () sinmA |sin 6 d6dA
o Jo \1zh m=1
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1 ("% O T
= Ef Z T o COSNO sin 6 d = Z 1"’_'";1(2) . (B1)
0 n=0 0

n=
when nis even

The latitudinal area weight at each latitude 8; is calculated as follows:

1. The latitudinal distribution of T,flijg (6y) for each j is given as

c() _ 1 fork =j _
15860 ={g fory =) ©k<J-1. (B2)
5 2. From T,f!(zjg(ﬁk), the meridional expansion coefficients T,f, ,(1{10 (0 <n < N) are calculated by forward discrete cosine

transform described in Sect. 2.10.
3. The value of G calculated from wa, T(,{io using Eq. (C1) is considered as the latitudinal area weight w; at latitude 6;.

The latitudinal area weight w; (9,-) is used, for example, to calculate the global mean in the grid space.
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Figure 1. Grid [0], Grid[1], and Grid [—1] are three ways of arranging equally spaced latitudinal grid points when the grid

interval A = 1 /4. Red circles show the positions of the grid points.
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Figure 2. Change in values due to the meridional wavenumber truncation for (a) even [m| > 2, and (b) odd [m| > 3. We use
Grid [0] with the number of latitudinal grid points /] = 64. Original values (black) are meridionally transformed from grid
5 space to spectral space, truncated with N = 42, and transformed back from spectral space to grid space. Blue: Orszag’s

expansion method. Green: Cheong’s expansion method. Red: the new expansion method.
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Figure 3. Time series of prediction error of height (m) for 5 days (120 hours) integration in Williamson test case 2
(@ = m/2 — 0.05). 128 x 64 indicates the numbers of longitudinal and latitudinal grid points. N is the truncation wavenumber.
5 Solid, dashed, and dotted lines represent L,, L,, and L .. errors, respectively. The colors blue, green, red, purple, and orange
represent the models using SH, old DFS with Grid [0], new DFS with Grid [0], new DFS with Grid [1], and new DFS with
Grid [—1], respectively.
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Figure 4. Predicted height (m) after a 15-day integration in Williamson test case 5. (a) New DFS model with Grid [0]. (b)
New DFS model with Grid [1]. (c) New DFS model with Grid [-1]. (d) Old DFS model with Grid [0]. (¢) SH model. (f) SH
model at high resolution, which is regarded as the reference solution. The number of longitudinal (I) and latitudinal (J) grid
points is shown in the form | x J. N is the truncation wavenumber. Color shading shows the error with respect to the reference

solution.
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Figure 5. Longitudinal distributions of meridional wind (m s™1) at the grid points near the South Pole after a 15-day
5 integration in Williamson test case 5. Results of the models using Grid [0] with (a) 128 x 64 grid points and truncation

wavenumber N = 63, and (b) 1920 x 960 grid points and N = 959. Green (red) lines represent the old (new) DFS models.
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Figure 6. Kinetic energy spectrum of horizontal winds (m?s~2) after a 15-day integration in Williamson test case 5. Results

5 ofthe models with (a) around 128 x 64 grid points and N = 63 (DFS) or N = 62 (SH), and (b) around 1920 x 960 grid points
and N = 959 or 958. The colors blue, green, red, purple, and orange represent the models using SH, old DFS with Grid [0],
new DFS with Grid [0], new DFS with Grid [1], and new DFS with Grid [—1], respectively.
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Figure 7. Same as Fig. 4, except with truncation wavenumber N.
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Figure 8. Same as Fig. 6, except with truncation wavenumber N.
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Figure 9. Predicted vorticity (s™1) after a 6-day integration in the Galewsky test case. (a) The new DFS model with Grid [0],
and (b) the SH model at 1.3 km resolution with 30720 x 15360 grid points and N = 10239.
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Figure 10. Kinetic energy spectrum of horizontal winds (m?s~2) after a 6-day integration in the Galewsky test case. (a)

Results of the models with 30720 x 15360 grid points. The colors blue, green, and red represent the models using SH, old DFS

5 with Grid [0], and DFS with Grid [0], respectively. (b) As (a), but showing the high-wavenumber region.
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Figure 11. Elapsed time (s) for (a) 15-day integration in Williamson test case 5 in the SH model and the new DFS model at
20 km resolution with 1920 x 960 grid points, and (b) 6-day integration in the Galewsky test case at 1.3 km resolution with

5 30720 x 15360 grid points. There is no monitoring output during elapsed time measurement.
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