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Abstract. One way to reduce the computational cost of a spectral model using spherical harmonics (SH) is to use double 

Fourier series (DFS) instead of SH. The transform method using SH usually requires Oሺ𝑁ଷሻ operations, where 𝑁 is the 

truncation wavenumber, and the computational cost significantly increases at high resolution. On the other hand, the method 

using DFS requires only Oሺ𝑁ଶ log 𝑁ሻ operations. This paper proposes a new DFS method that improves the numerical 

stability of the model compared with the conventional DFS methods by adopting the following two improvements: a new 10 

expansion method that employs the least-squares method (or the Galerkin method) to calculate the expansion coefficients in 

order to minimize the error caused by wavenumber truncation, and new basis functions that satisfy the continuity of both 

scalar and vector variables at the poles. Partial differential equations such as the Poisson equation and the Helmholtz 

equation are solved by using the Galerkin method. In the semi-implicit semi-Lagrangian shallow water model using the new 

DFS method, the Williamson test cases and the Galewsky test case give stable results without the appearance of high-15 

wavenumber noise near the poles, even without horizontal diffusion and without a zonal Fourier filter. In the Eulerian 

advection model using the new DFS method, the Williamson test cases 1, which simulates a cosine-bell advection, also gives 

stable results without horizontal diffusion but with a zonal Fourier filter. The shallow water model using the new DFS 

method is faster than that using SH, especially at high resolutions, and gives almost the same results, except that very small 

oscillations near the truncation wavenumber in the kinetic energy spectrum appear only in the shallow water model using SH. 20 

1 Introduction 

Global spectral atmospheric models using the spectral transform method with spherical harmonics (SH) as basis functions 

are widely used. They are used in the Japan Meteorological Agency (JMA, 2019) and the Meteorological Research Institute 

(MRI; Yukimoto et al., 2011, 2019) for a range of applications, including operational weather prediction, operational 

seasonal prediction, and global warming projection. The spectral model has the advantage that the horizontal derivatives are 25 

accurate, and the semi-implicit scheme, which improves numerical stability, can be easily applied because the Helmholtz 

equation and the Poisson equation are easily solved in spectral space. The application of the semi-implicit semi-Lagrangian 

scheme allows for timesteps longer than the Courant–Friedrichs–Lewy (CFL) condition, which makes the model 

computationally efficient. In the spectral model using SH, the Legendre transform used in the latitudinal direction 
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significantly increases the computational cost at high resolutions since the Legendre transform usually requires Oሺ𝑁ଷሻ 

operations and Oሺ𝑁ଷሻ memory usage (unless using the fast Legendre transform or on-the-fly computation of the associated 

Legendre functions shown below), where 𝑁 is the truncation wavenumber. One way to reduce the operation count and the 

memory usage at high resolutions with large 𝑁 is to use the fast Legendre transform (Suda, 2005; Tygert, 2008; Wedi et al., 

2013; Wedi 2014), which requires only Oሺ𝑁ଶሺlog 𝑁ሻଷሻ operations and also effectively reduces the memory usage. In the fast 5 

Legendre transform, the threshold parameter affecting the accuracy-cost balance is chosen so that a loss of accuracy is 

sufficiently small. Dueben et al. (2020) presented global simulations of the atmosphere at 1.45 km grid-spacing in the SH 

model using the fast Legendre transform. Another approach to improve the Legendre transform is on-the-fly computation of 

the associated Legendre functions (Schaeffer, 2013; Ishioka, 2018), which still requires Oሺ𝑁ଷሻ operations but requires only 

Oሺ𝑁ଶሻ memory usage. This small memory usage also contributes to speeding up calculations by taking advantage of the 10 

cache memory. 

Alternatively, we can use double Fourier series (DFS) as basis functions to reduce the operation count and the memory 

usage in the global spectral model. In the DFS model, the fast Fourier transform (FFT; Cooley and Tukey, 1965; 

Swarztrauber, 1982) is used not only in the longitudinal (zonal) direction but also in the latitudinal (meridional) direction. 

The FFT requires only Oሺ𝑁ଶ log 𝑁ሻ operations and Oሺ𝑁ሻ or Oሺ𝑁ଶሻ memory usage, and it is faster than the fast Legendre 15 

transform. 

In DFS models (and also in SH models), the scalar variable 𝐹ሺ𝜆, 𝜃ሻ is zonally expanded as 

𝐹ሺ𝜆, 𝜃ሻ ≅ ෍ 𝐹௠ሺ𝜃ሻ𝑒௜௠ఒ

ெ

௠ୀିெ

,                                                                                    ሺ1ሻ 

where 𝜆 is longitude, 𝜃 is colatitude, and 𝑀 is the zonal truncation wavenumber. Several methods have been proposed for 

meridional expansion with DFS. Merilees (1973b), Boer and Steinberg (1975), and Spotz et al. (1998) performed the Fourier 20 

transform meridionally along a great circle. Spotz et al. (1998) showed that by using the spherical harmonic filter, the 

explicit DFS shallow water model using the pseudo-spectral method can produce results comparable with the SH model in 

terms of accuracy and stability. However, the spherical harmonic filter consists of the forward SH transform (from grid space 

to spectral space) followed by the inverse SH transform (from spectral space to grid space), which increases the 

computational cost. 25 

Orszag (1974) and Boyd (1978) expanded 𝐹௠ሺ𝜃ሻ meridionally as  

𝐹௠ሺ𝜃ሻ ≅ ൜
𝑓௠ሺ𝜃ሻ                        for even 𝑚,
sin 𝜃 𝑓௠ሺ𝜃ሻ              for odd 𝑚,

                                                                    ሺ2aሻ 

𝑓௠ሺ𝜃ሻ ≡ ෍ 𝑓௡,௠ cos 𝑛𝜃

ே

௡ୀ଴

,                                                                                        ሺ2bሻ 

where 𝑁 is the meridional truncation wavenumber. The coefficients 𝑓௡,௠ for odd 𝑚 are calculated by the forward Fourier 

cosine transform of 𝐹௠ሺ𝜃ሻ sin 𝜃⁄ . Orszag (1974) imposed the following conditions at the poles: 30 
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𝑓௠ሺ0ሻ ൌ 0 and 𝑓௠ሺ𝜋ሻ ൌ 0 for |𝑚| ൒ 2,                                                                    ሺ3ሻ 

which can be expressed in terms of the expansion coefficients 𝑓௡,௠ as 

෍ 𝑓௡,௠

ே

௡ୀ଴
௡ ୧ୱ ୣ୴ୣ୬

ൌ 0  and ෍ 𝑓௡,௠

ே

௡ୀଵ
௡ ୧ୱ ୭ୢୢ

ൌ 0   for |𝑚| ൒ 2.                                                         ሺ4ሻ 

Satisfying the above conditions ensures that the scalar variable 𝐹ሺ𝜆, 𝜃ሻ and its gradient ∇𝐹 are continuous at the poles. In 

Orszag (1974), only 𝑓ேିଵ,௠  and 𝑓ே,௠  were modified to satisfy Eq. (4), but this is not the best way to satisfy the same 5 

conditions as Eq. (3) or Eq. (4), as will be shown in Sect. 4. 

Yee (1981), Akahori et al. (2001) and Layton and Spotz (2003) expanded 𝐹௠ሺ𝜃ሻ as 

𝐹௠ሺ𝜃ሻ ൌ

⎩
⎪
⎨

⎪
⎧෍ 𝐹௡,௠ cos 𝑛𝜃

ே

௡ୀ଴

                        for even 𝑚,

෍ 𝐹௡,௠ sin 𝑛𝜃

ே

௡ୀଵ

                        for odd 𝑚.  

                                                        ሺ5ሻ 

In the semi-implicit semi-Lagrangian shallow water model in Layton and Spotz (2003), the spherical harmonic filter was 

applied to the prognostic variables for stability and accuracy. Layton and Spotz (2003) explained that the expansion with Eq. 10 

(5) permits discontinuity at the poles and nonisotropic waves, which may lead to a prohibitive timestep restriction and 

numerical instability, and these problems can be avoided by applying the spherical harmonic filter. 

Cheong (2000a, 2000b) proposed expanding 𝐹௠ሺ𝜃ሻ as 

𝐹௠ሺ𝜃ሻ ≅

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧෍ 𝐹௡,௠ cos 𝑛𝜃

ே

௡ୀ଴

                for 𝑚 ൌ 0,                       

෍ 𝐹௡,௠ sin 𝑛𝜃

ேᇲ

௡ୀଵ

                 for odd 𝑚,                       

෍ 𝐹௡,௠
ᇱ sin 𝜃 sin 𝑛𝜃

ேᇲ

௡ୀଵ

      for even 𝑚 ሺ് 0ሻ.          

                                           ሺ6ሻ 

The meridional basis functions sin 𝜃 sin 𝑛𝜃  for even 𝑚 ሺ് 0ሻ  are different from Eq. (5). The coefficients 𝐹௡,௠
ᇱ  15 

for even 𝑚 ሺ് 0ሻ  are calculated by forward Fourier sine transform of 𝐹௠ሺ𝜃ሻ sin 𝜃⁄ . The basis functions in Eq. (6) 

automatically satisfy the same conditions at the poles as Eq. (3) for even 𝑚, and guarantee the continuity of the scalar 

variable 𝐹 at the poles, which is an advantage compared with the basis functions in Eq. (5). On the other hand, Eq. (6) does 

not automatically satisfy the conditions in Eq. (3) for odd 𝑚, and does not guarantee the continuity of ∇𝐹 at the poles. The 

shallow water model and the vorticity equation model using a semi-implicit Eulerian scheme ran stably without the spherical 20 

harmonic filter by using high-order horizontal diffusion with Oሺ𝑁ଶሻ  operations to smooth out the high-wavenumber 

components (Cheong, 2000b; Cheong et al., 2002; Kwon et al., 2004). The semi-implicit Eulerian hydrostatic atmospheric 

model also ran stably with high-order horizontal diffusion (Cheong, 2006; Koo and Hong, 2013; Park et al., 2013). However, 
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the computational results of these models appear to be a little different from (slightly worse than) the models using SH. One 

reason for this seems to be the appearance of high-wavenumber oscillation resulting from the meridional wavenumber 

truncation with 𝑁 ൌ 𝑁ᇱ ≅ 2𝐽 3⁄  or 𝐽 2⁄  for even 𝑚 ሺ് 0ሻ (See Sect. 4), and the use of high-order horizontal diffusion to 

smooth out the oscillation, where 𝐽 is the number of grid points in the latitudinal direction. 

Yoshimura and Matsumura (2005) and Yoshimura (2012) stably ran the two-time-level semi-implicit semi-Lagrangian 5 

hydrostatic and nonhydrostatic atmospheric models using the DFS basis functions of Cheong in Eq. (6). These models used 

the same fourth-order horizontal diffusion as the SH models, and did not require the spherical harmonics filter or the strong 

high-order horizontal diffusion for stability. The numerical stability of the models was improved by adopting the followings: 

1. The semi-Lagrangian scheme is used, which avoids the numerical instability due to the nonlinear advection term. 

2. The meridional truncation with 𝑁 ൌ 𝐽 െ 1 and 𝑁ᇱ ൌ 𝐽 is used, which enables to reconstruct accurately the given grid-data 10 

with the expansion coefficients (Cheong et al., 2004) and avoid the error due to the meridional truncation. 

3. 𝑈 ൌ 𝑢 sin 𝜃 and 𝑉 ൌ 𝑣 sin 𝜃 instead of 𝑢 sin 𝜃⁄  and 𝑣 sin 𝜃⁄  are transformed from grid space to spectral space, where 𝑢 is 

the zonal wind and 𝑣 is the meridional wind. 

The results of these models were very similar to those of the SH models. However, we found the following two problems in 

these models:  15 

1. High wavenumber noise appears near the poles. 

2. The meridional truncation wavenumber 𝑁ᇱ needs to be equal to 𝐽 for even 𝑚 ሺ് 0ሻ because 𝑁ᇱ ൏  𝐽 (e.g., 𝑁ᇱ ≅ 2𝐽 3⁄ ) for 

even 𝑚 ሺ് 0ሻ causes the high-wavenumber oscillation (See Sect. 4) and the numerical instability. 

To solve these problems, we propose a new DFS method that adopts the following two improvements: 

1. A new expansion method to calculate DFS expansion coefficients of scalar and vector variables, which adopts the least-20 

squares method (or the Galerkin method) to minimize the error due to the meridional wavenumber truncation.  

2. New DFS basis functions that automatically satisfy the pole conditions in Eq. (3), which guarantee continuity of not only 

scalar variables but also vector variables at the poles. 

We also use the Galerkin method to solve partial differential equations such as the Poisson equation, the Helmholtz equation, 

and the shallow water equations. 25 

Section 2 describes the arrangement of equally spaced latitudinal grid points used in the new DFS method. Section 3 

describes the details of the new DFS method using the new DFS expansion method and the new DFS basis functions, and 

also includes the essential summary of the new DFS method. Section 4 examines the error due to the wavenumber truncation 

in the DFS method of Orszag (1974), the old DFS method (Cheong, 2000a, 2000b; Yoshimura and Matsumura, 2005), and 

the new DFS method. Section 5 examines the accuracy of the old and new DFS methods and the SH method for the 30 

Laplacian operator and the Helmholtz equation. Section 6 compares the results of the shallow water test cases between the 

model using the new DFS method, that using the old DFS method of Yoshimura and Matsumura (2005), and that using the 

SH method. Section 7 presents conclusions and perspectives. 
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2 Arrangement of equally spaced latitudinal grid points 

In DFS models, equally spaced latitudinal grid points are used. We use the following three ways of arranging equally spaced 

latitudinal grid points in the model using the new DFS method: 

Grid ሾ0ሿ ∶    𝐽 ൌ 𝐽଴,           𝜃௝ ൌ 𝜋ሺ𝑗 ൅ 0.5ሻ 𝐽଴⁄ ,    𝑗 ൌ 0, … , 𝐽଴ െ 1,                                ሺ7aሻ 

Grid ሾ1ሿ ∶    𝐽 ൌ 𝐽଴ ൅ 1,    𝜃௝ ൌ 𝜋𝑗 𝐽଴⁄ ,                 𝑗 ൌ 0, . . . , 𝐽଴,                                        ሺ7bሻ 5 

Grid ሾെ1ሿ ∶   𝐽 ൌ 𝐽଴ െ 1,   𝜃௝ ൌ 𝜋𝑗 𝐽଴⁄ ,                𝑗 ൌ 1, … , 𝐽଴ െ 1,                                 ሺ7cሻ 

where 𝜃௝  is the colatitude at each grid point, and 𝐽଴ is the number of latitudinal grid points in Grid [0]. When the grid 

intervals in Grids [0], [1], and [−1] are set equal, the number of grid points 𝐽 in Grid [1] is 𝐽଴ ൅ 1, and the number of grid 

points 𝐽 in Grid [−1] is 𝐽଴ െ 1. Figure 1 shows Grids [0], [1], and [−1] when 𝐽଴ ൌ 4 and the grid interval ∆𝜃 ൌ 𝜋 4⁄ . Grid [0] 

has been widely used in DFS models (e.g. Merilees, 1973b; Orszag, 1974; Cheong, 2000a, 2000b; Yoshimura and 10 

Matsumura, 2005), and in DFS expansion (e.g. Cheong et al. 2004). Grid [1] was used in DFS expansion (e.g. Yee, 1981; 

Cheong et al., 2004). Grid [−1] was used, for example, in the SH model using Clenshaw–Curtis quadrature (Hotta and Ujiie, 

2018). All of Grids [0], [1], and [−1] were used in SH expansion (Swarztrauber and Spotz, 2000). 

In the new DFS method, the wind vector components 𝑢 and 𝑣 (instead of 𝑢 sin 𝜃⁄  and 𝑣 sin 𝜃⁄  or 𝑢 sin 𝜃 and 𝑣 sin 𝜃) are 

transformed from grid space to spectral space and vice versa, as shown in Sects. 3.5 and 3.6 below. This makes it possible to 15 

use Grid [1] that has grid points at the poles.  

3 Improved double Fourier series on the sphere 

In Sect. 3, we describe the new basis functions for scalar and vector variables, and the new method to calculate expansion 

coefficients which minimizes the error due to wavenumber truncation. We compare the new DFS method with the SH 

method to see the difference between them. We also describe how to calculate the Laplacian operator, the Poisson equation, 20 

the Helmholtz equation, and horizontal diffusion in the new DFS method. The essential summary (cook book) of the new 

DFS method is in Sect. 3.10. 

3.1 New basis functions for a scalar variable 

We propose the following new DFS basis functions that automatically satisfy the continuity conditions at the poles in Eq. (3). 

The scalar variable 𝑇ሺ𝜆, 𝜃ሻ is expanded zonally as 25 

𝑇ሺ𝜆, 𝜃ሻ ≅ ෍ 𝑇௠
ୡ ሺ𝜃ሻ cos 𝑚𝜆

ெ

௠ୀ଴

൅ ෍ 𝑇௠
ୱ ሺ𝜃ሻ sin 𝑚𝜆

ெ

௠ୀଵ

,                                                                      ሺ8ሻ 

where 𝑇௠
ୡ ሺ𝜃ሻ and 𝑇௠

ୱ ሺ𝜃ሻ are calculated from 𝑇ሺ𝜆, 𝜃ሻ by the forward Fourier transform as 

𝑇௠
ୡ ሺ𝜃ሻ ൌ

𝑎
2𝜋

න cos 𝑚𝜆 𝑇ሺ𝜆, 𝜃ሻ𝑑𝜆
ଶగ

଴
,   𝑎 ≡ ൜

 1  for 𝑚 ൌ 0
 2  for 𝑚 ൒ 1,                                      ሺ9aሻ 
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𝑇௠
ୱ ሺ𝜃ሻ ൌ

1
𝜋

න sin 𝑚𝜆 𝑇ሺ𝜆, 𝜃ሻ𝑑𝜆
ଶగ

଴
.                                                                                ሺ9bሻ 

The variables 𝑇௠
ୡ ሺ𝜃ሻ and 𝑇௠

ୱ ሺ𝜃ሻ are meridionally expanded as 

𝑇௠
ୡሺୱሻሺ𝜃ሻ ≅ 𝑇௠

ୡሺୱሻ,ேሺ𝜃ሻ ≡ ෍ 𝑇௡,௠
ୡሺୱሻ𝑆௡,௠ሺ𝜃ሻ

ேౣ౗౮,೘

௡ୀேౣ౟౤,೘

,                                                                         ሺ10ሻ 

where 

𝑆௡,௠ሺ𝜃ሻ ≡ ൞

cos 𝑛𝜃                  for 𝑚 ൌ 0,                         
sin 𝜃 cos 𝑛𝜃        for 𝑚 ൌ 1,                         
sin 𝜃 sin 𝑛𝜃         for even 𝑚 ൒ 2,               
sinଶ 𝜃 sin 𝑛𝜃       for odd 𝑚 ൒ 3,                 

                                                        ሺ11ሻ 5 

𝑁୫୧୬,௠ ൌ ൞

0  for 𝑚 ൌ 0,          
0  for 𝑚 ൌ 1,          
1  for even 𝑚 ൒ 2,
1  for odd 𝑚 ൒ 3,   

  𝑁୫ୟ୶,௠ ൌ ൞

𝑁           for 𝑚 ൌ 0,          
𝑁 െ 1   for 𝑚 ൌ 1,          
𝑁 െ 1   for even 𝑚 ൒ 2,
𝑁 െ 2   for odd 𝑚 ൒ 3.  

                            ሺ12ሻ 

Here, the superscript c(s) means c or s, and for example, 𝑇௠
ୡሺୱሻሺ𝜃ሻ means 𝑇௠

ୡ ሺ𝜃ሻ or 𝑇௠
ୱ ሺ𝜃ሻ. In Eq. (8), cos 𝑚𝜆 and sin 𝑚𝜆 are 

used instead of 𝑒௜௠ఒ  as zonal basis functions for convenience in calculating the expansion coefficients using the least-

squares method described below in Sects. 3.3 and 3.6. In Eq. (11), the meridional basis functions sinଶ 𝜃 sin 𝑛𝜃 for odd 𝑚 ൒

3 are especially different from the basis functions of Cheong in Eq. (6). Either sin 𝑛𝜃 or sin 𝜃 cos 𝑛𝜃 can be used as the basis 10 

functions for 𝑚 ൌ 1 because it can be shown using Eq. (A2a) from Appendix A that sin 𝜃 cos 𝑛𝜃 ሺ𝑛 ൌ 0, … , 𝑁 െ 1ሻ are the 

linear combination of sin 𝑛𝜃 ሺ𝑛 ൌ 1, … , 𝑁ሻ, and vice versa. Here we use sin 𝜃 cos 𝑛𝜃 for 𝑚 ൌ 1 because it can be more 

easily divided by sin 𝜃, which is convenient for calculating ∇𝑇. 

Using Eq. (A2a–c), Eq. (10) can be converted as 

𝑇௠
ୡሺୱሻ,ேሺ𝜃ሻ ൌ

⎩
⎪
⎨

⎪
⎧෍ 𝑇௡,௠

ୡሺୱሻᇲ
cos 𝑛𝜃

ே

௡ୀ଴

       for even 𝑚,

෍ 𝑇௡,௠
ୡሺୱሻᇲ

sin 𝑛𝜃

ே

௡ୀଵ

       for odd 𝑚,

                                                                                    ሺ13ሻ 15 

where  

𝑇௡,௠
ୡሺୱሻᇲ

ൌ 𝑇௡,௠
ୡሺୱሻ                                                ሺ𝑛 ൌ 0, … , 𝑁ሻ            for 𝑚 ൌ 0,                           ሺ14aሻ 

𝑇௡,௠
ୡሺୱሻᇲ

ൌ
𝑇௡ିଵ,௠

ୡሺୱሻ െ 𝑇௡ାଵ,௠
ୡሺୱሻ

2
                        ሺ𝑛 ൌ 1, … , 𝑁ሻ              for 𝑚 ൌ 1                            ሺ14bሻ 

except for 𝑇ଵ,௠
ୡᇲ൫ୱᇲ൯

ൌ
2𝑇଴,௠

ୡሺୱሻ െ 𝑇ଶ,௠
ୡሺୱሻ

2
     ሺ𝑛 ൌ 1ሻ,                                                                     

𝑇௡,௠
ୡሺୱሻᇲ

ൌ
െ𝑇௡ିଵ,௠

ୡሺୱሻ ൅ 𝑇௡ାଵ,௠
ୡሺୱሻ

2
                     ሺ𝑛 ൌ 0, … , 𝑁ሻ           for even 𝑚 ൒ 2,                   ሺ14cሻ 20 



7 
 

𝑇௡,௠
ୡሺୱሻᇲ

ൌ
െ𝑇௡ିଶ,௠

ୡሺୱሻ ൅ 2𝑇௡,௠
ୡሺୱሻ െ 𝑇௡ାଶ,௠

ୡሺୱሻ

4
     ሺ𝑛 ൌ 1, … , 𝑁ሻ          for odd 𝑚 ൒ 3                     ሺ14dሻ 

except for 𝑇ଵ,௠
ୡሺୱሻᇲ

ൌ
3𝑇ଵ,௠

ୡሺୱሻ െ 𝑇ଷ,௠
ୡሺୱሻ

4
     ሺ𝑛 ൌ 1ሻ.                                                                     

The value of 𝑁୫ୟ୶,௠ in Eq. (12) is determined so that the maximum value of 𝑛 for each 𝑚 in Eq. (13) becomes 𝑁. In Grid 

[0] and Grid [1] (See Sect. 2), the upper limit of 𝑁 is 𝐽଴ െ 1 for each 𝑚. In Grid [−1], the upper limit of 𝑁 is 𝐽଴ െ 1 for 𝑚 ൒

2, but 𝐽଴ െ 2 ሺൌ 𝐽 െ 1ሻ for 𝑚 ൌ 0 or 1. This reason is shown in Appendix C. 5 

When calculating the values of 𝑇௠
ୡሺୱሻ,ேሺ𝜃ሻ in grid space from 𝑇௡,௠

ୡሺୱሻ in spectral space, the coefficients 𝑇௡,௠
ୡሺୱሻᇲ

 are calculated 

from 𝑇௡,௠
ୡሺୱሻ using Eq. (14) and inverse discrete cosine and sine transforms (See Appendix B) are performed using Eq. (13). 

The calculation of 𝑇௡,௠
ୡሺୱሻ in spectral space from 𝑇௠

ୡሺୱሻሺ𝜃ሻ in grid space is described in Sect. 3.3 below. 

The truncated variable 𝑇ே,ெሺ𝜆, 𝜃ሻ is defined as 

𝑇ே,ெሺ𝜆, 𝜃ሻ ≡ ෍ 𝑇௠
ୡ,ேሺ𝜃ሻ cos 𝑚𝜆

ெ

௠ୀ଴

൅ ෍ 𝑇௠
ୱ,ேሺ𝜃ሻ sin 𝑚𝜆

ெ

௠ୀଵ

.                                                           ሺ15ሻ 10 

From Eqs. (10), the values of 𝑇௠
ୡ,ேሺ𝜃ሻ at the poles are finite for 𝑚 ൌ 0, and the values of 𝑇௠

ୡሺୱሻ,ேሺ𝜃ሻ at the poles are zero for 

𝑚 ് 0. Therefore 𝑇ே,ெሺ𝜆, 𝜃ሻ is continuous at the poles. 

3.2 Gradient of a scalar variable 

The gradient ∇𝑇ே,ெ ൌ ൫𝑇ఒ
ே,ெ, 𝑇థ

ே,ெ൯ is obtained as follows: 

𝑇ఒ
ே,ெ ≡

1
𝑎 sin 𝜃

𝜕𝑇ே,ெ

𝜕𝜆
ൌ ෍ 𝑇ఒ,௠

ୡ,ேሺ𝜃ሻ cos 𝑚𝜆

ெ

௠ୀଵ

൅ ෍ 𝑇ఒ,௠
ୱ,ேሺ𝜃ሻ sin 𝑚𝜆

ெ

௠ୀଵ

,                                     ሺ16aሻ 15 

𝑇ఒ,௠
ୡ,ேሺ𝜃ሻ ≡

𝑚
𝑎 sin 𝜃

𝑇௠
ୱ,ேሺ𝜃ሻ ൌ ෍ ቆ𝑇௡,௠

ୱ 𝑚𝑆௡,௠ሺ𝜃ሻ

𝑎 sin 𝜃
ቇ

ேౣ౗౮,೘

௡ୀேౣ౟౤,೘

,                                              ሺ16bሻ 

𝑇ఒ,௠
ୱ,ேሺ𝜃ሻ ≡ െ

𝑚
𝑎 sin 𝜃

𝑇௠
ୡ,ேሺ𝜃ሻ ൌ ෍ ቆെ𝑇௡,௠

ୡ 𝑚𝑆௡,௠ሺ𝜃ሻ

𝑎 sin 𝜃
ቇ

ேౣ౗౮,೘

௡ୀேౣ౟౤,೘

,                                         ሺ16cሻ 

𝑇థ
ே,ெ ≡

1
𝑎

𝜕𝑇ே,ெ

𝜕𝜙
ൌ െ

1
𝑎

𝜕𝑇ே,ெ

𝜕𝜃
ൌ ෍ 𝑇థ,௠

ୡ,ே ሺ𝜃ሻ cos 𝑚𝜆

ெ

௠ୀ଴

൅ ෍ 𝑇థ,௠
ୱ,ே ሺ𝜃ሻ sin 𝑚𝜆

ெ

௠ୀଵ

,                     ሺ17aሻ 

𝑇థ,௠
ୡሺୱሻ,ேሺ𝜃ሻ ≡ െ

1
𝑎

𝜕𝑇௠
ୡሺୱሻ,ேሺ𝜃ሻ

𝜕𝜃
ൌ ෍ ቆെ𝑇௡,௠

ୡሺୱሻ 1
𝑎

𝜕𝑆௡,௠ሺ𝜃ሻ

𝜕𝜃
ቇ

ேౣ౗౮,೘

௡ୀேౣ౟౤,೘

,                                     ሺ17bሻ 

where 𝑎 is the radius of the earth, and 𝜙 is the latitude. From Eqs. (16b,c) and (A2b), we obtain 20 
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𝑇ఒ,௠
ୡሺୱሻ,ேሺ𝜃ሻ ൌ

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

0                                                                                             for 𝑚 ൌ 0,

෍ 𝑇ఒ,௡,௠
ୡሺୱሻ cos 𝑛𝜃

ேିଵ

௡ୀ଴

                                                               for 𝑚 ൌ 1,

෍ 𝑇ఒ,௡,௠
ୡሺୱሻ sin 𝑛𝜃

ேିଵ

௡ୀଵ

                                                      for even 𝑚 ൒ 2,

෍ 𝑇ఒ,௡,௠
ୡሺୱሻ cos 𝑛𝜃

ேିଵ

௡ୀ଴

൭ൌ ෍ 𝑇ఒ,௡,௠
ୡሺୱሻᇲ

sin 𝜃 sin 𝑛𝜃

ேିଶ

௡ୀଵ

൱   for odd 𝑚 ൒ 3,

                                 ሺ18ሻ 

where 

𝑇ఒ,௡,௠
ୡ ൌ

1
𝑎

𝑚𝑇௡,௠
ୱ                                         ሺ𝑛 ൌ 0, … , 𝑁 െ 1ሻ                  for 𝑚 ൌ 1,                   ሺ19aሻ 

𝑇ఒ,௡,௠
ୡ ൌ

1
𝑎

𝑚𝑇௡,௠
ୱ                                         ሺ𝑛 ൌ 1, … , 𝑁 െ 1ሻ           for even 𝑚 ൒ 2,               ሺ19bሻ 

𝑇ఒ,௡,௠
ୡ ൌ

1
𝑎

𝑚൫െ𝑇௡ିଵ,௠
ୱ ൅ 𝑇௡ାଵ,௠

ୱ ൯
2

           ሺ𝑛 ൌ 0, … , 𝑁 െ 1ሻ             for odd 𝑚 ൒ 3.               ሺ19cሻ 5 

The equations for 𝑇ఒ,௡,௠
ୱ  are the same as Eq. (19), except that 𝑇ఒ,௡,௠

ୡ  and 𝑇௡,௠
ୱ  are replaced with 𝑇ఒ,௡,௠

ୱ  and െ𝑇௡,௠
ୡ , respectively. 

From Eqs. (17b), (13) and (14), we obtain 

𝑇థ,௠
ୡሺୱሻ,ேሺ𝜃ሻ ൌ

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ ෍ 𝑇థ,௡,௠

ୡሺୱሻ sin 𝑛𝜃

ே

௡ୀଵ

                                                                 for 𝑚 ൌ 0,

෍ 𝑇థ,௡,௠
ୡሺୱሻ cos 𝑛𝜃

ே

௡ୀ଴

                                                                 for 𝑚 ൌ 1,

෍ 𝑇థ,௡,௠
ୡሺୱሻ sin 𝑛𝜃

ே

௡ୀଵ

                                                        for even 𝑚 ൒ 2,

෍ 𝑇థ,௡,௠
ୡሺୱሻ cos 𝑛𝜃

ே

௡ୀ଴

൭ൌ ෍ 𝑇థ,௡,௠
ୡሺୱሻᇲ

sin 𝜃 sin 𝑛𝜃

ேିଵ

௡ୀଵ

൱     for odd 𝑚 ൒ 3,

                                    ሺ20ሻ 

where 

𝑇థ,௡,௠
ୡሺୱሻ ൌ െ

1
𝑎

൫െ𝑛𝑇௡,௠
ୡሺୱሻ ൯                                   ሺ𝑛 ൌ 1, … , 𝑁ሻ              for 𝑚 ൌ 0,              ሺ21aሻ 10 

 𝑇థ,௡,௠
ୡሺୱሻ ൌ െ

1
𝑎

൥
𝑛൫𝑇௡ିଵ,௠

ୡሺୱሻ െ 𝑇௡ାଵ,௠
ୡሺୱሻ ൯

2
൩              ሺ𝑛 ൌ 0, … , 𝑁ሻ              for 𝑚 ൌ 1,              ሺ21bሻ 

except for 𝑇థ,ଵ,௠
ୡሺୱሻ ൌ െ

1
𝑎

൥
2𝑇଴,௠

ୡሺୱሻ െ 𝑇ଶ,௠
ୡሺୱሻ

2
൩        ሺ𝑛 ൌ 1ሻ,                                            

 𝑇థ,௡,௠
ୡሺୱሻ ൌ െ

1
𝑎

൥
𝑛൫𝑇௡ିଵ,௠

ୡሺୱሻ െ 𝑇௡ାଵ,௠
ୡሺୱሻ ൯

2
൩               ሺ𝑛 ൌ 1, … , 𝑁ሻ         for even 𝑚 ൒ 2,        ሺ21cሻ 
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𝑇థ,௡,௠
ୡሺୱሻ ൌ െ

1
𝑎

൥
𝑛൫െ𝑇௡ିଶ,௠

ୡሺୱሻ ൅ 2𝑇௡,௠
ୡሺୱሻ െ 𝑇௡ାଶ,௠

ୡሺୱሻ ൯

4
൩    ሺ𝑛 ൌ 0, … , 𝑁ሻ    for odd 𝑚 ൒ 3,      ሺ21dሻ 

except for 𝑇థ,ଵ,௠
ୡሺୱሻ ൌ െ

1
𝑎

൥
൫3𝑇ଵ,௠

ୡሺୱሻ െ 𝑇ଷ,௠
ୡሺୱሻ൯

4
൩    ሺ𝑛 ൌ 1ሻ.                                            

From Eqs. (18)–(21), it can be seen that 𝑇ఒ,௠
ୡ,ேሺ𝜃ሻ, 𝑇ఒ,௠

ୱ,ேሺ𝜃ሻ, 𝑇థ,௠
ୡ,ே ሺ𝜃ሻ, and 𝑇థ,௠

ୱ,ே ሺ𝜃ሻ at the poles are finite for 𝑚 ൌ 1 and zero 

for 𝑚 ് 1, and moreover the following relations are satisfied for 𝑚 ൌ 1: 

𝑇ఒ,௠ୀଵ
ୡ,ே ሺ𝜃ሻ ൌ െ𝑇థ,௠ୀଵ

ୱ,ே ሺ𝜃ሻ ൭ൌ
1
𝑎

෍ 𝑇௡,௠ୀଵ
ୱ

ேିଵ

௡ୀ଴

൱        at 𝜃 ൌ 0 ሺNorth Poleሻ,                                    ሺ22aሻ 5 

𝑇ఒ,௠ୀଵ
ୱ,ே ሺ𝜃ሻ ൌ 𝑇థ,௠ୀଵ

ୡ,ே ሺ𝜃ሻ ൭ൌ െ
1
𝑎

෍ 𝑇௡,௠ୀଵ
ୡ

ேିଵ

௡ୀ଴

൱        at 𝜃 ൌ 0 ሺNorth Poleሻ,                                    ሺ22bሻ 

𝑇ఒ,௠ୀଵ
ୡ,ே ሺ𝜃ሻ ൌ 𝑇థ,௠ୀଵ

ୱ,ே ሺ𝜃ሻ ൭ൌ
1
𝑎

෍ሺെ1ሻ௡𝑇௡,௠ୀଵ
ୱ

ேିଵ

௡ୀ଴

൱        at 𝜃 ൌ 𝜋 ሺSouth Poleሻ,                             ሺ22cሻ 

𝑇ఒ,௠ୀଵ
ୱ,ே ሺ𝜃ሻ ൌ െ𝑇థ,௠ୀଵ

ୡ,ே ሺ𝜃ሻ ൭ൌ െ
1
𝑎

෍ሺെ1ሻ௡𝑇௡,௠ୀଵ
ୡ

ேିଵ

௡ୀ଴

൱    at 𝜃 ൌ 𝜋 ሺSouth Poleሻ.                          ሺ22dሻ 

Thus, it is guaranteed that ∇𝑇ே,ெ ൌ ൫𝑇ఒ
ே,ெ, 𝑇థ

ே,ெ൯ is continuous at the poles. 

3.3 New method to calculate expansion coefficients for a scalar variable 10 

One way to calculate the coefficients 𝑇௡,௠
ୡሺୱሻ  from 𝑇௠

ୡሺୱሻሺ𝜃ሻ  in Eq. (10) is to perform a forward cosine transform of 

𝑇௠
ୡሺୱሻሺ𝜃ሻ sin 𝜃⁄  for 𝑚 ൌ 1, a sine transform of 𝑇௠

ୡሺୱሻሺ𝜃ሻ sin 𝜃⁄  for even 𝑚 ሺ൒ 2ሻ, and a sine transform of 𝑇௠
ୡሺୱሻሺ𝜃ሻ sinଶ 𝜃⁄  for 

odd 𝑚 ሺ൒ 3ሻ. However, this approach with the meridional wavenumber truncation 𝑁 ൏  𝐽 leads to large high-wavenumber 

oscillations (See Sect. 4). Dividing 𝑇௠
ୡሺୱሻሺ𝜃ሻ by sinଶ 𝜃 reduces the numerical stability of the model more significantly than 

dividing 𝑇௠
ୡሺୱሻሺ𝜃ሻ by sin 𝜃. 15 

Here we propose a new method to calculate expansion coefficients using the least-squares method to minimize the error 

due to the meridional wavenumber truncation. This method avoids dividing 𝑇௠
ୡሺୱሻሺ𝜃ሻ by sin 𝜃 or sinଶ 𝜃 before the forward 

cosine or sine transforms. The coefficients 𝑇௡,௠
ୡሺୱሻ  in Eq. (10) are calculated as follows. First, 𝑇௠

ୡሺୱሻሺ𝜃ሻ  in Eq. (10) are 

expanded like Eq. (5) as 

𝑇௠
ୡሺୱሻሺ𝜃ሻ ≅ 𝑇෨௠

ୡሺୱሻ,ேሺ𝜃ሻ ≡

⎩
⎪
⎨

⎪
⎧෍ 𝑇෨௡,௠

ୡሺୱሻ cos 𝑛𝜃

ே

௡ୀ଴

                 for even 𝑚,

෍ 𝑇෨௡,௠
ୡሺୱሻ sin 𝑛𝜃

ே

௡ୀଵ

                 for odd 𝑚,

 

                                              ሺ23ሻ 20 
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where the expansion coefficients 𝑇෨௡,௠
ୡሺୱሻ are calculated by the forward discrete cosine transform for even 𝑚 and the forward 

discrete sine transform for odd 𝑚 from the values of 𝑇௠
ୡሺୱሻሺ𝜃ሻ at the grid points (See Appendix B). 

Next, 𝑇௡,௠
ୡ  and 𝑇௡,௠

ୱ  are calculated using the least-squares method to minimize the following error 𝐸 (the squared Lଶ norm 

of the residual): 

𝐸 ≡
1

2𝜋ଶ න න 𝑅ሺ𝜆, 𝜃ሻଶ𝑑𝜃𝑑𝜆
గ

଴

ଶగ

଴
,                                                                                                    ሺ24ሻ 5 

where the residual 𝑅ሺ𝜆, 𝜃ሻ is 

𝑅ሺ𝜆, 𝜃ሻ ≡ 𝑇ே,ெሺ𝜆, 𝜃ሻ െ 𝑇ሺ𝜆, 𝜃ሻ.                                                                                            ሺ25ሻ 

From Eqs. (24), (25) and (15), and the equations 𝜕𝐸 𝜕𝑇௡,௠
ୡ⁄ ൌ 0 and 𝜕𝐸 𝜕𝑇௡,௠

ୱ⁄ ൌ 0 used in the least-squares method to 

minimize 𝐸, we obtain 

1
2𝜋ଶ න න

𝜕𝑇௠
ୡ,ேሺ𝜃ሻ

𝜕𝑇௡,௠
ୡ cos 𝑚𝜆 𝑅ሺ𝜆, 𝜃ሻ𝑑𝜃𝑑𝜆 ൌ 0

గ

଴

ଶగ

଴
,                                                           ሺ26aሻ 10 

1
2𝜋ଶ න න

𝜕𝑇௠
ୱ,ேሺ𝜃ሻ

𝜕𝑇௡,௠
ୱ sin 𝑚𝜆 𝑅ሺ𝜆, 𝜃ሻ𝑑𝜃𝑑𝜆 ൌ 0

గ

଴

ଶగ

଴
.                                                            ሺ26bሻ 

From Eq. (10), we derive 

𝜕𝑇௠
ୡ,ேሺ𝜃ሻ

𝜕𝑇௡,௠
ୡ ൌ

𝜕𝑇௠
ୱ,ேሺ𝜃ሻ

𝜕𝑇௡,௠
ୱ ൌ 𝑆௡,௠ሺ𝜃ሻ.                                                                                ሺ27ሻ 

Equations (26) and (27) show that the residual 𝑅ሺ𝜆, 𝜃ሻ is orthogonal to each of the new DFS basis functions 𝑆௠,௡ሺ𝜃ሻ cos 𝑚𝜆 

and 𝑆௠,௡ሺ𝜃ሻ sin 𝑚𝜆, which means that Eq. (26) is the same as the equation derived using the Galerkin method. 15 

From Eqs. (26), (27), (25), (15), (9) and (A3), we derive 

න 𝑆௡,௠ሺ𝜃ሻ𝑇௠
ୡሺୱሻ,ேሺ𝜃ሻ𝑑𝜃

గ

଴
ൌ න 𝑆௡,௠ሺ𝜃ሻ𝑇௠

ୡሺୱሻሺ𝜃ሻ𝑑𝜃
గ

଴
.                                                          ሺ28ሻ 

From Eqs. (28) and (D4) in Appendix D, we obtain 

න 𝑆௡,௠ሺ𝜃ሻ𝑇௠
ୡሺୱሻ,ேሺ𝜃ሻ𝑑𝜃

గ

଴
ൌ න 𝑆௡,௠ሺ𝜃ሻ𝑇෨௠

ୡሺୱሻ,ேሺ𝜃ሻ𝑑𝜃
గ

଴
.                                                        ሺ29ሻ 

By substituting Eqs. (10) and (23) into Eq. (29), the following equations for 𝑇௡,௠
ୡ  and 𝑇௡,௠

ୱ  are derived, as shown in 20 

Appendix E. 

For 𝑚 ൌ 0, 

𝑇௡,௠
ୡሺୱሻ ൌ  𝑇෨௡,௠

ୡሺୱሻ    ሺ0 ൑ 𝑛 ൑ 𝑁ሻ.                                                                            ሺ30aሻ 

For 𝑚 ൌ 1, 

െ𝑇௡ିଶ,௠
ୡሺୱሻ ൅ 2𝑇௡,௠

ୡሺୱሻ െ 𝑇௡ାଶ,௠
ୡሺୱሻ ൌ െ2𝑇෨௡ିଵ,௠

ୡሺୱሻ ൅ 2𝑇෨௡ାଵ,௠
ୡሺୱሻ        ሺ0 ൑ 𝑛 ൑ 𝑁 െ 1ሻ,                      ሺ30bሻ 25 

with the exception of the following underlined values: 

1𝑇ଵ,௠
ୡሺୱሻ െ 𝑇ଷ,௠

ୡሺୱሻ ൌ 2𝑇෨ଶ,௠
ୡሺୱሻ                         ሺ𝑛 ൌ 1ሻ,                                              
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െ2𝑇଴,௠
ୡሺୱሻ ൅ 2𝑇ଶ,௠

ୡሺୱሻ െ 𝑇ସ,௠
ୡሺୱሻ ൌ െ2𝑇෨ଵ,௠

ୡሺୱሻ ൅ 2𝑇෨ଷ,௠
ୡሺୱሻ          ሺ𝑛 ൌ 2ሻ.                                             

For even 𝑚 ሺ൒ 2ሻ, 

െ𝑇௡ିଶ,௠
ୡሺୱሻ ൅ 2𝑇௡,௠

ୡሺୱሻ െ 𝑇௡ାଶ,௠
ୡሺୱሻ ൌ 2𝑇෨௡ିଵ,௠

ୡሺୱሻ െ 2𝑇෨௡ାଵ,௠
ୡሺୱሻ        ሺ1 ൑ 𝑛 ൑ 𝑁 െ 1ሻ,               ሺ30cሻ 

with the exception of the following underlined values: 

3𝑇ଵ,௠
ୡሺୱሻ െ 𝑇ଷ,௠

ୡሺୱሻ ൌ 4𝑇෨଴,௠
ୡሺୱሻ െ 2𝑇෨ଶ,௠

ୡሺୱሻ                    ሺ𝑛 ൌ 1ሻ.                                            5 

For odd 𝑚 ሺ൒ 3ሻ, 

𝑇௡ିସ,௠
ୡሺୱሻ െ 4𝑇௡ିଶ,௠

ୡሺୱሻ ൅ 6𝑇௡,௠
ୡሺୱሻ െ 4𝑇௡ାଶ,௠

ୡሺୱሻ ൅ 𝑇௡ାସ,௠
ୡሺୱሻ ൌ െ 4𝑇෨௡ିଶ,௠

ୡሺୱሻ ൅ 8𝑇෨௡,௠
ୡሺୱሻ െ  4𝑇෨௡ାଶ,௠

ୡሺୱሻ   ሺ1 ൑ 𝑛 ൑ 𝑁 െ 2ሻ,   ሺ30dሻ 

with the exception of the following underlined values: 

10𝑇ଵ,௠
ୡሺୱሻ െ 5𝑇ଷ,௠

ୡሺୱሻ ൅ 𝑇ହ,௠
ୡሺୱሻ ൌ 12𝑇෨ଵ,௠

ୡሺୱሻ െ  4𝑇෨ଷ,௠
ୡሺୱሻ                       ሺ𝑛 ൌ 1ሻ,                                      

5𝑇ଶ,௠
ୡሺୱሻ െ 4𝑇ସ,௠

ୡሺୱሻ ൅ 𝑇଺,௠
ୡሺୱሻ ൌ 8𝑇෨ଶ,௠

ୡሺୱሻ െ  4𝑇෨ସ,௠
ୡሺୱሻ                          ሺ𝑛 ൌ 2ሻ,                                      10 

െ5𝑇ଵ,௠
ୡሺୱሻ ൅ 6𝑇ଷ,௠

ୡሺୱሻ െ 4𝑇ହ,௠
ୡሺୱሻ ൅ 𝑇଻,௠

ୡሺୱሻ ൌ െ4𝑇෨ଵ,௠
ୡሺୱሻ ൅ 8𝑇෨ଷ,௠

ୡሺୱሻ െ  4𝑇෨ହ,௠
ୡሺୱሻ         ሺ𝑛 ൌ 3ሻ.                                      

From Eq. (30a), 𝑇௡,௠
ୡሺୱሻ for 𝑚 ൌ 0 is obtained. From Eqs. (30d), the following linear simultaneous equations for 𝑚 ൒ 3 are 

derived: 

𝐂୬_୭ୢୢ,௠

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑇ଵ,௠

ୡሺୱሻ

𝑇ଷ,௠
ୡሺୱሻ

𝑇ହ,௠
ୡሺୱሻ

𝑇଻,௠
ୡሺୱሻ

⋮ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

ൌ 𝐃୬_୭ୢୢ,௠

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑇෨ଵ,௠

ୡሺୱሻ

𝑇෨ଷ,௠
ୡሺୱሻ

𝑇෨ହ,௠
ୡሺୱሻ

𝑇෨଻,௠
ୡሺୱሻ

⋮ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

,   𝐂୬_ୣ୴ୣ୬,௠

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑇ଶ,௠

ୡሺୱሻ

𝑇ସ,௠
ୡሺୱሻ

𝑇଺,௠
ୡሺୱሻ

𝑇 ,௠
ୡሺୱሻ

⋮ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

ൌ 𝐃୬_ୣ୴ୣ୬,௠

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑇෨ଶ,௠

ୡሺୱሻ

𝑇෨ସ,௠
ୡሺୱሻ

𝑇෨଺,௠
ୡሺୱሻ

𝑇෨଼ ,௠
ୡሺୱሻ

⋮ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

,                                       ሺ31ሻ 

where the matrices 𝐂୬_୭ୢୢ,௠ and 𝐂୬_ୣ୴ୣ୬,௠ are penta-diagonal. From Eqs. (30b,c), the equations similar to Eq. (31) for 𝑚 ൌ 1 15 

and even 𝑚 ሺ൒ 2ሻ  with tri-diagnoal matrices 𝐂୬_୭ୢୢ,௠  and 𝐂୬_ୣ୴ୣ୬,௠  are derived. By using Eq. (31), the expansion 

coefficients 𝑇௡,௠
ୡሺୱሻ are calculated from 𝑇෨௡,௠

ୡሺୱሻ. A penta-diagonal matrix 𝐂 can be LU decomposed as 

𝐂 ൌ 𝐋𝐔,   𝐋 ≡

⎣
⎢
⎢
⎢
⎢
⎢
⎡
∗ 0 0 0 0 0 ⋯ 0
∗ ∗ 0 0 0 0 ⋯ 0
∗ ∗ ∗ 0 0 0 ⋯ 0
0 ∗ ∗ ∗ 0 0 ⋯ 0
    ⋮    
0 0 ⋯ 0 ∗ ∗ ∗ 0
0 0 ⋯ 0 0 ∗ ∗ ∗⎦

⎥
⎥
⎥
⎥
⎥
⎤

,   𝐔 ≡

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 ∗ ∗ 0 0 0 ⋯ 0
0 1 ∗ ∗ 0 0 ⋯ 0
0 0 1 ∗ ∗ 0 ⋯ 0
0 0 0 1 ∗ ∗ ⋯ 0
    ⋮    
0 0 ⋯ 0 0 0 1 ∗
0 0 ⋯ 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎤

.                    ሺ32ሻ 

To solve 𝐋𝐔𝒙 ൌ 𝒃, we solve 𝐋𝒚 ൌ 𝒃 with forward substitution first, and then solve 𝐔𝒙 ൌ 𝒚 with backward substitution. 

There are also other methods to solve Eq. (31). For example, the method using LU decomposition considering penta-20 

diagonal matrices as 2 2 block tri-diagonal matrices makes SIMD operations more effective. The method using cyclic 

reduction for block tri-diagonal matrices (e.g., Gander and Golub, 1997) is suitable for vectorization and parallelization. The 

calculation with these methods for each 𝑚 requires Oሺ𝑁ሻ operations. The simultaneous equations with tri-diagonal matrices 
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𝐂 can be solved in a similar way. Therefore, the calculation of 𝑇௡,௠
ୡሺୱሻ for all 𝑚 and 𝑛 with Eq. (30) requires only Oሺ𝑁ଶሻ 

operations. 

3.4 Comparison of new DFS with SH 

Here we compare the new DFS method with the SH method to see the difference between them. In the SH method, 𝑇௠
ୡ ሺ𝜃ሻ 

and 𝑇௠
ୱ ሺ𝜃ሻ in Eq. (8) are expanded with the associated Legendre functions 𝑃௡,௠ሺ𝜃ሻ as 5 

𝑇௠
ୡሺୱሻሺ𝜃ሻ ≅ 𝑇௠

ୡሺୱሻ,ୗୌ,ேሺ𝜃ሻ ≡ ෍ 𝑇௡,௠
ୡሺୱሻ,ୗୌ𝑃௡,௠ሺ𝜃ሻ

ே

௡ୀ௠

,                                                                  ሺ33ሻ 

where 𝑚 ൒ 0. The functions 𝑃௡,௠ሺ𝜃ሻ satisfy the following orthogonality relations for each 𝑚: 

න 𝑃௡,௠ሺ𝜃ሻ𝑃௡ᇲ,௠ሺ𝜃ሻ
గ

଴
sin 𝜃 𝑑𝜃 ൌ ൜1 ሺor 2ሻ    for 𝑛 ൌ 𝑛ᇱ,

0                for 𝑛 ് 𝑛ᇱ.
                                                     ሺ34ሻ 

By the modified Robert expansion (Merilees, 1973a; Orszag, 1974), the associated Legendre functions 𝑃௡,௠ሺ𝜃ሻ are expressed 

as 10 

𝑃௡,௠ሺ𝜃ሻ ൌ ෍ 𝑎௡,௠,௟ sin|௠| 𝜃 cos 𝑙𝜃 .

௡ି|௠|

௟ୀ଴
୵୦ୣ୬ ௡ି|௠|ି௟ ୧ୱ ୣ୴ୣ୬

                                                    ሺ35ሻ 

Conversely, the functions sin|௠| 𝜃 cosሺ𝑛 െ |𝑚|ሻ𝜃  ሺ𝑛 ൒ |𝑚|ሻ can be expressed as the linear combination of 𝑃௟,௠ሺ𝜃ሻ  ሺ𝑙 ൌ

|𝑚|, … , 𝑛ሻ. Substituting Eq. (35) into Eq. (33) gives 

𝑇௠
ୡሺୱሻ,ௌு,ேሺ𝜃ሻ ൌ ෍ 𝑇௡,௠

ୡሺୱሻ,ୗୌᇲ
sin௠ 𝜃 cos 𝑛𝜃,

ேି௠

௡ୀ଴

                                                            ሺ36ሻ 

where 𝑚 ൒ 0. Equation (36) is similar to Eq. (10) in the following sense: the basis functions for 𝑚 ൌ 0 and 𝑚 ൌ 1 in Eq. 15 

(36) are the same as Eq. (11). The basis functions sinଶ 𝜃 cos 𝑛𝜃  ሺ𝑛 ൌ 0, … , 𝑁 െ 2ሻ  for 𝑚 ൌ 2  and sinଷ 𝜃 cos 𝑛𝜃 ሺ𝑛 ൌ

0, … , 𝑁 െ 3ሻ for 𝑚 ൌ 3 in Eq. (36) are the linear combinations of sin 𝜃 sin 𝑛𝜃  ሺ𝑛 ൌ 1, … , 𝑁 െ 1ሻ and sinଶ 𝜃 sin 𝑛𝜃 ሺ𝑛 ൌ

1, … , 𝑁 െ 2ሻ in Eq. (11), respectively (see Eq. (A2a)), and vice versa. The basis functions for 𝑚 ൒ 4 in Eq. (36) are different 

from Eq. (11). The number of expansion coefficients in Eq. (33) or Eq. (36) in the SH method is smaller than in Eq. (10) in 

the new DFS method for each 𝑚 ൒ 4. From Eqs. (8) and (33), the number of expansion coefficients 𝑇௡,௠
ୡ,ୗୌ in the SH model is 20 

about 𝑁ଶ 2⁄  when 𝑀 ൌ 𝑁. This triangular truncation used in the SH method gives a uniform resolution over the sphere. 

From Eqs. (8) and (10), the number of the expansion coefficients 𝑇௡,௠
ୡ  in the DFS method is about 𝑁ଶ when 𝑀 ൌ 𝑁. This 

rectangular truncation used in the DFS model gives almost the same resolution as the grid spacing of the regular longitude–

latitude grids. Therefore, the zonal Fourier filter (see Appendix F) is used in the DFS model to give a more uniform 

resolution. 25 
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We compare the method used to calculate the expansion coefficients in the new DFS method with that in the SH method. 

The SH expansion coefficients 𝑇௡,௠
ୡሺୱሻ,ୗୌ in Eq. (33) are calculated from 𝑇௠

ୡሺୱሻሺ𝜃ሻ by the forward Legendre transform as 

𝑇௡,௠
ୡሺୱሻ,ௌு ൌ න 𝑃௡,௠ሺ𝜃ሻ𝑇௠

ୡሺୱሻሺ𝜃ሻ sin 𝜃 𝑑𝜃
గ

଴
,                                                                         ሺ37ሻ 

where Gaussian quadrature or Clenshaw–Curtis quadrature (e.g., Hotta and Ujiie, 2018) is usually used for integration. They 

can also be calculated using the same equations as Eq. (37) except that 𝑇௠
ୡሺୱሻሺ𝜃ሻ are replaced with 𝑇෨௠

ୡሺୱሻ,ேሺ𝜃ሻ (e.g., Sneeuw 5 

and Bun, 1996), although the values of 𝑇௡,௠
ୡሺୱሻ,ୗୌ calculated from 𝑇෨௠

ୡሺୱሻ,ேሺ𝜃ሻ are different from those calculated from 𝑇௠
ୡሺୱሻሺ𝜃ሻ. 

In the new DFS method, the values of 𝑇௡,௠
ୡሺୱሻ calculated from 𝑇෨௠

ୡሺୱሻ,ேሺ𝜃ሻ in Eq. (29) are the same as those calculated from 

𝑇෨௠
ୡሺୱሻሺ𝜃ሻ in Eq. (28) (See Eq. (D4) in Appendix D). 

Equation (37) can be derived using the least-squares method that minimizes the error 𝐸ୗୌ (the squared Lଶ norm of the 

residual): 10 

𝐸ୗୌ ≡
1

4𝜋
න න 𝑅ୗୌሺ𝜆, 𝜃ሻଶ sin 𝜃 𝑑𝜃𝑑𝜆

గ

଴

ଶగ

଴
,                                                                                 ሺ38ሻ 

where the residual 𝑅ୗୌሺ𝜆, 𝜃ሻ is 

𝑅ୗୌሺ𝜆, 𝜃ሻ ≡ ൭ ෍ 𝑇௠
ୡ,ୗୌ,ேሺ𝜃ሻ cos 𝑚𝜆

ெ

௠ୀ଴

൅ ෍ 𝑇௠
ୱ,ୗୌ,ேሺ𝜃ሻ sin 𝑚𝜆

ெ

௠ୀଵ

൱ െ 𝑇ሺ𝜆, 𝜃ሻ.              ሺ39ሻ 

From Eqs. (38), (39) and (33), and the equations 𝜕𝐸ୗୌ 𝜕𝑇௡,௠
ୡ,ୗୌൗ ൌ 0 and 𝜕𝐸ୗୌ 𝜕𝑇௡,௠

ୱ,ୗୌൗ ൌ 0 used in the least-squares method 

to minimize 𝐸ୗୌ, we derive 15 

න න 𝑃௡,௠ሺ𝜃ሻ cos 𝑚𝜆 𝑅ୗୌሺ𝜆, 𝜃ሻ sin 𝜃 𝑑𝜃𝑑𝜆
గ

଴

ଶగ

଴
ൌ 0,                                                             ሺ40aሻ 

න න 𝑃௡,௠ሺ𝜃ሻ sin 𝑚𝜆 𝑅ୗୌሺ𝜆, 𝜃ሻ sin 𝜃 𝑑𝜃𝑑𝜆
గ

଴

ଶగ

଴
ൌ 0.                                                             ሺ40bሻ 

Equation (40) is the same as the equation obtained using the Galerkin method. From Eqs. (40), (33), (34), (9) and (A3), we 

derive Eq. (37). 

In Eqs. (37) and (38), the latitudinal weight sin 𝜃 appears, unlike in Eqs. (24) and (28), which is another difference 20 

between the SH and the new DFS methods. In the DFS method, the constant latitudinal weight is used in Eq. (24), although 

the latitudinal area weight described below in Appendix G is usually used as the latitudinal weight at the grid points, for 

example, for the calculation of the global mean. 

When calculating the coefficients 𝑇௡,௠
ୡሺୱሻ in Eq. (10), we can also consider the least-squares method, not using 𝐸 in Eq. (24) 

but using 𝐸ᇱ with latitudinal weight sin 𝜃 like Eq. (38). However, minimizing 𝐸ᇱ  derives the simultaneous equations for 25 

calculating 𝑇௡,௠
ୡሺୱሻ with dense matrices, which leads to Oሺ𝑁ଷሻ operations. When using 𝐸, the simultaneous equations with 

penta-diagonal or tri-diagonal matrices require only Oሺ𝑁ଶሻ operations. Therefore, we choose to use 𝐸 instead of 𝐸ᇱ. 
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The new DFS meridional basis functions 𝑆௡,௠ሺ𝜃ሻ for each m are not orthogonal but independent. Therefore, by using 

Gram-Schmidt orthogonalization, the basis functions can be converted to orthogonalized basis functions 𝑆௡,௠
୓ ሺ𝜃ሻ, which 

satisfy 

1
𝜋

න 𝑆௡,௠
୓ ሺ𝜃ሻ𝑆௡ᇲ,௠

୓ ሺ𝜃ሻ
గ

଴
𝑑𝜃 ൌ ቄ1  for 𝑛 ൌ 𝑛ᇱ,

0  for 𝑛 ് 𝑛ᇱ.
                                                                 ሺ41ሻ 

This is similar to Eq. (34), but the latitudinal weight is constant. 𝑇௠
ୡሺୱሻሺ𝜃ሻ in Eq. (8) are expanded with 𝑆௡,௠

୓ ሺ𝜃ሻ as 5 

𝑇௠
ୡሺୱሻሺ𝜃ሻ ≅ 𝑇௠

ୡሺୱሻ,୓,ேሺ𝜃ሻ ≡ ෍ 𝑇௡,௠
ୡሺୱሻ,୓𝑆௡,௠

୓ ሺ𝜃ሻ

ேౣ౗౮,೘

௡ୀேౣ౟౤,೘

.                                                  ሺ42ሻ 

By using the least squares method or the Galerkin method with Eq. (42), we obtain the same equations as Eqs. (24)–(29) 

except that 𝑇௠
ୡሺୱሻ,ேሺ𝜃ሻ and 𝑆௡,௠ሺ𝜃ሻ are replaced with 𝑇௠

ୡሺୱሻ,୓,ேሺ𝜃ሻ and 𝑆௡,௠
୓ ሺ𝜃ሻ respectively. From Eq. (29) with  𝑇௠

ୡሺୱሻ,ேሺ𝜃ሻ 

and 𝑆௡,௠ሺ𝜃ሻ replaced by 𝑇௠
ୡሺୱሻ,୓,ேሺ𝜃ሻ and 𝑆௡,௠

୓ ሺ𝜃ሻ, and Eqs. (41) and (42), we derive  

𝑇௡,௠
ୡሺୱሻ,୓ ൌ

1
𝜋

න 𝑆௡,௠
୓ ሺ𝜃ሻ𝑇෨௠

ୡሺୱሻ,ேሺ𝜃ሻ𝑑𝜃.
గ

଴
                                                                         ሺ43ሻ 10 

Thus, 𝑇௡,௠
ୡሺୱሻ,୓ and 𝑇௠

ୡሺୱሻ,୓,ேሺ𝜃ሻ in Eqs. (43) and (42) are calculated uniquely. This unique solution 𝑇௠
ୡሺୱሻ,୓,ேሺ𝜃ሻ is the same as 

𝑇௠
ୡሺୱሻ,ேሺ𝜃ሻ in Eq. (29) obtained by the least-squares method with the non-orthogonal basis functions 𝑆௡,௠ሺ𝜃ሻ , because 

𝑆௡,௠
୓ ሺ𝜃ሻ ൫𝑛 ൌ 𝑁୫୧୬,௠, … , 𝑁୫ୟ୶,௠൯ are the linear combination of 𝑆௡,௠ሺ𝜃ሻ ൫𝑛 ൌ 𝑁୫୧୬,௠, … , 𝑁୫ୟ୶,௠൯ for each 𝑚, and vice versa. 

3.5 New basis functions for a wind vector 

The velocity potential 𝜒 and the stream function 𝜓 can be converted into the wind vector components 𝑢 and 𝑣 using the 15 

equations 

𝑢 ൌ
1

𝑎 cos 𝜙
𝜕𝜒
𝜕𝜆

െ
1
𝑎

𝜕𝜓
𝜕𝜙

ൌ
1

𝑎 sin 𝜃
𝜕𝜒
𝜕𝜆

൅
1
𝑎

𝜕𝜓
𝜕𝜃

,                                                                  ሺ44aሻ 

𝑣 ൌ
1

𝑎 cos 𝜙
𝜕𝜓
𝜕𝜆

൅
1
𝑎

𝜕𝜒
𝜕𝜙

ൌ
1

𝑎 sin 𝜃
𝜕𝜓
𝜕𝜆

െ
1
𝑎

𝜕𝜒
𝜕𝜃

,                                                                 ሺ44bሻ 

where 𝑢 ൌ 𝑎 cos 𝜙 𝑑𝜆 𝑑𝑡⁄  is the zonal wind, and 𝑣 ൌ 𝑎𝑑𝜙 𝑑𝑡⁄  is the meridional wind. The scalar variables 𝜒 and 𝜓 are 

expanded like Eqs. (8) and (10) as 20 

൤
𝜒ሺ𝜆, 𝜃ሻ
𝜓ሺ𝜆, 𝜃ሻ൨ ≅ ෍ ൤

𝜒௠
ୡ ሺ𝜃ሻ

𝜓௠
ୡ ሺ𝜃ሻ൨ cos 𝑚𝜆

ெ

௠ୀ଴

൅ ෍ ൤
𝜒௠

ୱ ሺ𝜃ሻ
𝜓௠

ୱ ሺ𝜃ሻ൨ sin 𝑚𝜆

ெ

௠ୀଵ

,                                                         ሺ45ሻ 

ቈ
𝜒௠

ୡሺୱሻሺ𝜃ሻ

𝜓௠
ୡሺୱሻሺ𝜃ሻ

቉ ≅ ቈ
𝜒௠

ୡሺୱሻ,ேሺ𝜃ሻ

𝜓௠
ୡሺୱሻ,ேሺ𝜃ሻ

቉ ≡ ෍ ൥
𝜒௡,௠

ୡሺୱሻ

𝜓௡,௠
ୡሺୱሻ൩ 𝑆௡,௠ሺ𝜃ሻ,

ேౣ౗౮,೘

௡ୀேౣ౟౤,೘

                                                           ሺ46ሻ 

The truncated variables 𝜓ே,ெሺ𝜆, 𝜃ሻ and 𝜒ே,ெሺ𝜆, 𝜃ሻ are defined as 
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൤
𝜒ே,ெሺ𝜆, 𝜃ሻ
𝜓ே,ெሺ𝜆, 𝜃ሻ

൨ ≡ ෍ ቈ
𝜒௠

ୡ,ேሺ𝜃ሻ

𝜓௠
ୡ,ேሺ𝜃ሻ

቉ cos 𝑚𝜆

ெ

௠ୀ଴

൅ ෍ ቈ
𝜒௠

ୱ,ேሺ𝜃ሻ

𝜓௠
ୱ,ேሺ𝜃ሻ

቉ sin 𝑚𝜆

ெ

௠ୀଵ

,                                              ሺ47ሻ 

From Eqs. (44)–(47), the equations for the wind vector components 𝑢ே,ெሺ𝜆, 𝜃ሻ and 𝑣ே,ெሺ𝜆, 𝜃ሻ are derived as 

𝑢ே,ெሺ𝜆, 𝜃ሻ ≡
1

𝑎 sin 𝜃
𝜕𝜒ே,ெሺ𝜆, 𝜃ሻ

𝜕𝜆
൅

1
𝑎

𝜕𝜓ே,ெሺ𝜆, 𝜃ሻ

𝜕𝜃
ൌ ෍ 𝑢௠

ୡ,ேሺ𝜃ሻ cos 𝑚𝜆

ெ

௠ୀ଴

൅ ෍ 𝑢௠
ୱ,ேሺ𝜃ሻ sin 𝑚𝜆

ெ

௠ୀଵ

,       ሺ48aሻ 

𝑢௠
ୡ,ேሺ𝜃ሻ ≡

𝑚𝜒௠
ୱ,ேሺ𝜃ሻ

𝑎 sin 𝜃
൅

1
𝑎

𝜕𝜓௠
ୡ,ேሺ𝜃ሻ

𝜕𝜃
ൌ ෍ ቆ𝜒௡,௠

ୱ 𝑚𝑆௡,௠ሺ𝜃ሻ

𝑎 sin 𝜃
൅ 𝜓௡,௠

ୡ 1
𝑎

𝜕𝑆௡,௠ሺ𝜃ሻ

𝜕𝜃
ቇ

ேౣ౗౮,೘

௡ୀேౣ౟౤,೘

,                ሺ48bሻ 

𝑢௠
ୱ,ேሺ𝜃ሻ ≡ െ

𝑚𝜒௠
ୡ,ேሺ𝜃ሻ

𝑎 sin 𝜃
൅

1
𝑎

𝜕𝜓௠
ୱ,ேሺ𝜃ሻ

𝜕𝜃
ൌ ෍ ቆെ𝜒௡,௠

ୡ 𝑚𝑆௡,௠ሺ𝜃ሻ

𝑎 sin 𝜃
൅ 𝜓௡,௠

ୱ 1
𝑎

𝜕𝑆௡,௠ሺ𝜃ሻ

𝜕𝜃
ቇ

ேౣ౗౮,೘

௡ୀேౣ౟౤,೘

,          ሺ48cሻ 5 

𝑣ே,ெሺ𝜆, 𝜃ሻ ≡
1

𝑎 sin 𝜃
𝜕𝜓ே,ெሺ𝜆, 𝜃ሻ

𝜕𝜆
െ

1
𝑎

𝜕𝜒ே,ெሺ𝜆, 𝜃ሻ

𝜕𝜃
ൌ ෍ 𝑣௠

ୡ,ேሺ𝜃ሻ cos 𝑚𝜆

ெ

௠ୀ଴

൅ ෍ 𝑣௠
ୱ,ேሺ𝜃ሻ sin 𝑚𝜆

ெ

௠ୀଵ

,       ሺ49aሻ 

𝑣௠
ୡ,ேሺ𝜃ሻ ≡

𝑚𝜓௠
ୱ,ேሺ𝜃ሻ

𝑎 sin 𝜃
െ

1
𝑎

𝜕𝜒௠
ୡ,ேሺ𝜃ሻ

𝜕𝜃
ൌ ෍ ቆ𝜓௡,௠

ୱ 𝑚𝑆௡,௠ሺ𝜃ሻ

𝑎 sin 𝜃
െ 𝜒௡,௠

ୡ 1
𝑎

𝜕𝑆௡,௠ሺ𝜃ሻ

𝜕𝜃
ቇ

ேౣ౗౮,೘

௡ୀேౣ౟౤,೘

,                ሺ49bሻ 

𝑣௠
ୱ,ேሺ𝜃ሻ ≡ െ

𝑚𝜓௠
ୡ,ேሺ𝜃ሻ

𝑎 sin 𝜃
െ

1
𝑎

𝜕𝜒௠
ୱ,ேሺ𝜃ሻ

𝜕𝜃
ൌ ෍ ቆെ𝜓௡,௠

ୡ 𝑚𝑆௡,௠ሺ𝜃ሻ

𝑎 sin 𝜃
െ 𝜒௡,௠

ୱ 1
𝑎

𝜕𝑆௡,௠ሺ𝜃ሻ

𝜕𝜃
ቇ

ேౣ౗౮,೘

௡ୀேౣ౟౤,೘

.         ሺ49cሻ 

The vector ሺ𝑢ே,ெ, 𝑣ே,ெሻ in Eqs. (48) and (49) can also be represented as 

൫𝑢ே,ெሺ𝜆, 𝜃ሻ, 𝑣ே,ெሺ𝜆, 𝜃ሻ൯ ൌ ෍ ෍ ൫𝜒௡,௠
ୡ 𝐕௡,௠

ଵ ൅ 𝜒௡,௠
ୱ 𝐕௡,௠

ଶ ൅ 𝜓௡,௠
ୡ 𝐕௡,௠

ଷ ൅ 𝜓௡,௠
ୱ 𝐕௡,௠

ସ ൯

ேౣ౗౮,೘

௡ୀேౣ౟౤,೘

ெ

௠ୀ଴

,            ሺ50ሻ 10 

where we define the new DFS vector basis functions 𝐕௡,௠
ଵ , 𝐕௡,௠

ଶ , 𝐕௡,௠
ଷ  and 𝐕௡,௠

ସ  as 

𝐕௡,௠
ଵ ሺ𝜆, 𝜃ሻ ≡ ቆെ

𝑚𝑆௡,௠ሺ𝜃ሻ

𝑎 sin 𝜃
sin 𝑚𝜆 , െ

1
𝑎

𝜕𝑆௡,௠ሺ𝜃ሻ

𝜕𝜃
cos 𝑚𝜆ቇ,                                            ሺ51aሻ 

𝐕௡,௠
ଶ ሺ𝜆, 𝜃ሻ ≡ ቆ

𝑚𝑆௡,௠ሺ𝜃ሻ

𝑎 sin 𝜃
cos 𝑚𝜆 , െ

1
𝑎

𝜕𝑆௡,௠ሺ𝜃ሻ

𝜕𝜃
sin 𝑚𝜆ቇ,                                                ሺ51bሻ 

𝐕௡,௠
ଷ ሺ𝜆, 𝜃ሻ ≡ ቆ

1
𝑎

𝜕𝑆௡,௠ሺ𝜃ሻ

𝜕𝜃
cos 𝑚𝜆 , െ

𝑚𝑆௡,௠ሺ𝜃ሻ

𝑎 sin 𝜃
sin 𝑚𝜆ቇ,                                                ሺ51cሻ 

𝐕௡,௠
ସ ሺ𝜆, 𝜃ሻ ≡ ቆ

1
𝑎

𝜕𝑆௡,௠ሺ𝜃ሻ

𝜕𝜃
sin 𝑚𝜆 ,

𝑚𝑆௡,௠ሺ𝜃ሻ

𝑎 sin 𝜃
cos 𝑚𝜆ቇ.                                                   ሺ51dሻ 15 

From Eqs. (48), (49), and (16)–(21), we obtain 
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ቈ
𝑢௠

ୡሺୱሻ,ேሺ𝜃ሻ

𝑣௠
ୡሺୱሻ,ேሺ𝜃ሻ

቉ ൌ

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧෍ ൥

𝑢௡,௠
ୡሺୱሻ

𝑣௡,௠
ୡሺୱሻ൩ sin 𝑛𝜃

ே

௡ୀଵ

                                                            for 𝑚 ൌ 0,      

෍ ൥
𝑢௡,௠

ୡሺୱሻ

𝑣௡,௠
ୡሺୱሻ൩ cos 𝑛𝜃

ே

௡ୀ଴

                                                           for 𝑚 ൌ 1,       

෍ ൥
𝑢௡,௠

ୡሺୱሻ

𝑣௡,௠
ୡሺୱሻ൩ sin 𝑛𝜃

ே

௡ୀଵ

                                                        for even 𝑚 ൒ 2,

෍ ൥
𝑢௡,௠

ୡሺୱሻ

𝑣௡,௠
ୡሺୱሻ൩ cos 𝑛𝜃

ே

௡ୀ଴

൭ൌ ෍ ൥
𝑢௡,௠

ୡሺୱሻᇲ

𝑣௡,௠
ୡሺୱሻᇲ൩ sin 𝜃 sin 𝑛𝜃

ேିଵ

௡ୀଵ

൱  for odd 𝑚 ൒ 3,

                          ሺ52ሻ 

where  

𝑢௡,௠
ୡ ൌ

1
𝑎

ൣെ𝑛𝜓௡,௠
ୡ ൧                                                                               ሺ𝑛 ൌ 1, … , 𝑁ሻ        for 𝑚 ൌ 0,                    ሺ53aሻ 

𝑢௡,௠
ୡ ൌ

1
𝑎

ቈ𝑚𝜒௡,௠
ୱ ൅

𝑛൫𝜓௡ିଵ,௠
ୡ െ 𝜓௡ାଵ,௠

ୡ ൯
2

 ቉                                     ሺ𝑛 ൌ 0, … , 𝑁ሻ      for 𝑚 ൌ 1,                    ሺ53bሻ 

except for 𝑢ଵ,௠
ୡ ൌ

1
𝑎

൤𝑚𝜒ଵ,௠
ୱ ൅

2𝜓଴,௠
ୡ െ 𝜓ଶ,௠

ୡ

2
൨       ሺ𝑛 ൌ 1ሻ,                                                       5 

𝑢௡,௠
ୡ ൌ

1
𝑎

ቈ𝑚𝜒௡,௠
ୱ ൅

𝑛൫𝜓௡ିଵ,௠
ୡ െ 𝜓௡ାଵ,௠

ୡ ൯
2

 ቉                                            ሺ𝑛 ൌ 1, … , 𝑁ሻ     for even 𝑚 ൒ 2,     ሺ53cሻ 

𝑢௡,௠
ୡ ൌ

1
𝑎

ቈ
𝑚൫െ𝜒௡ିଵ,௠

ୱ ൅ 𝜒௡ାଵ,௠
ୱ ൯

2
൅

𝑛൫െ𝜓௡ିଶ,௠
ୡ ൅ 2𝜓௡,௠

ୡ െ 𝜓௡ାଶ,௠
ୡ ൯

4
቉ ሺ𝑛 ൌ 0, … , 𝑁ሻ  for odd 𝑚 ൒ 3    ሺ53dሻ 

except for 𝑢ଵ,௠
ୡ ൌ

1
𝑎

ቈ
𝑚𝜒ଶ,௠

ୱ

2
൅

൫3𝜓ଵ,௠
ୡ െ 𝜓ଷ,௠

ୡ ൯
4

 ቉      ሺ𝑛 ൌ 1ሻ.                                                  

The equations for 𝑢௡,௠
ୱ  are the same as Eqs. (53b–d), except that 𝑢௡,௠

ୡ , 𝜒௡,௠
ୱ , and 𝜓௡,௠

ୡ  are replaced with 𝑢௡,௠
ୱ , െ𝜒௡,௠

ୡ , and 

𝜓௡,௠
ୱ , respectively. The equations for 𝑣௡,௠

ୡ  are the same as Eqs. (53a–d), except that 𝑢௡,௠
ୡ , 𝜒௡,௠

ୱ , and 𝜓௡,௠
ୡ  are replaced with 10 

𝑣௡,௠
ୡ , 𝜓௡,௠

ୱ , and െ𝜒௡,௠
ୡ , respectively. The equations for 𝑣௡,௠

ୱ  are the same as Eqs. (53b–d), except that 𝑢௡,௠
ୡ , 𝜒௡,௠

ୱ , and 𝜓௡,௠
ୡ  

are replaced with 𝑣௡,௠
ୱ , െ𝜓௡,௠

ୡ , and െ𝜒௡,௠
ୱ , respectively. 

From Eqs. (52) and (53), it can be seen that 𝑢௠
ୡ,ேሺ𝜃ሻ, 𝑢௠

ୱ,ேሺ𝜃ሻ, 𝑣௠
ୡ,ேሺ𝜃ሻ, and 𝑣௠

ୱ,ேሺ𝜃ሻ at the poles are finite for 𝑚 ൌ 1 and 

zero for 𝑚 ് 1. Moreover, the following relations are satisfied for 𝑚 ൌ 1: 

𝑢௠ୀଵ
ୡ,ே ሺ𝜃ሻ ൌ െ𝑣௠ୀଵ

ୱ,ே ሺ𝜃ሻ ൭ൌ
1
𝑎

෍൫𝜒௡,௠ୀଵ
ୱ ൅ 𝜓௡,௠ୀଵ

ୡ ൯

ேିଵ

௡ୀ଴

൱      at 𝜃 ൌ 0 ሺNorth Poleሻ,                     ሺ54aሻ 15 

𝑢௠ୀଵ
ୱ,ே ሺ𝜃ሻ ൌ 𝑣௠ୀଵ

ୡ,ே ሺ𝜃ሻ ൭ൌ
1
𝑎

෍൫െ𝜒௡,௠ୀଵ
ୡ ൅ 𝜓௡,௠ୀଵ

ୱ ൯

ேିଵ

௡ୀ଴

൱      at 𝜃 ൌ 0 ሺNorth Poleሻ,                     ሺ54bሻ 

𝑢௠ୀଵ
ୡ,ே ሺ𝜃ሻ ൌ 𝑣௠ୀଵ

ୱ,ே ሺ𝜃ሻ ൭ൌ
1
𝑎

෍ሺെ1ሻ௡൫𝜒௡,௠ୀଵ
ୱ െ 𝜓௡,௠ୀଵ

ୡ ൯

ேିଵ

௡ୀ଴

൱  at 𝜃 ൌ 𝜋 ሺSouth Poleሻ,                 ሺ54cሻ 
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𝑢௠ୀଵ
ୱ,ே ሺ𝜃ሻ ൌ െ𝑣௠ୀଵ

ୡ,ே ሺ𝜃ሻ ൭ൌ
1
𝑎

෍ሺെ1ሻ௡൫െ𝜒௡,௠ୀଵ
ୡ െ 𝜓௡,௠ୀଵ

ୱ ൯

ேିଵ

௡ୀ଴

൱  at 𝜃 ൌ 𝜋 ሺSouth Poleሻ.          ሺ54dሻ 

Thus, it is guaranteed that the wind vector ሺ𝑢ே,ெ, 𝑣ே,ெሻ in Eqs. (48) and (49) is continuous at the poles. 

3.6 New method to calculate expansion coefficients for a wind vector 

We propose a new method that calculates the expansion coefficients 𝜒௡,௠
ୡ , 𝜒௡,௠

ୱ , 𝜓௡,௠
ୡ  and 𝜓௡,௠

ୱ  in Eqs. (48)–(50) using the 

least-squares method to minimize the error of 𝑢ே,ெሺ𝜆, 𝜃ሻ and 𝑣ே,ெሺ𝜆, 𝜃ሻ from 𝑢ሺ𝜆, 𝜃ሻ and 𝑣ሺ𝜆, 𝜃ሻ due to the meridional 5 

wavenumber truncation. First, the wind vector components 𝑢 and 𝑣 are expanded zonally as 

൤
𝑢ሺ𝜆, 𝜃ሻ
𝑣ሺ𝜆, 𝜃ሻ൨ ≅ ෍ ൤

𝑢௠
ୡ ሺ𝜃ሻ

𝑣௠
ୡ ሺ𝜃ሻ൨ cos 𝑚𝜆

ெ

௠ୀ଴

൅ ෍ ൤
𝑢௠

ୱ ሺ𝜃ሻ
𝑣௠

ୱ ሺ𝜃ሻ൨ sin 𝑚𝜆

ெ

௠ୀଵ

,                                                                   ሺ55ሻ 

where 𝑢௠
ୡሺୱሻሺ𝜃ሻ and 𝑣௠

ୡሺୱሻሺ𝜃ሻ are calculated from 𝑢ሺ𝜆, 𝜃ሻ and 𝑣ሺ𝜆, 𝜃ሻ by the forward Fourier transform as 

൤
𝑢௠

ୡ ሺ𝜃ሻ
𝑣௠

ୡ ሺ𝜃ሻ൨ ൌ
𝑎

2𝜋
න cos 𝑚𝜆 ൤

𝑢ሺ𝜆, 𝜃ሻ
𝑣ሺ𝜆, 𝜃ሻ൨ 𝑑𝜆

ଶగ

଴
,   𝑎 ≡ ൜

 1  for 𝑚 ൌ 0
 2  for 𝑚 ൒ 1,                                      ሺ56aሻ 

൤
𝑢௠

ୱ ሺ𝜃ሻ
𝑣௠

ୱ ሺ𝜃ሻ൨ ൌ
1
𝜋

න sin 𝑚𝜆 ൤
𝑢ሺ𝜆, 𝜃ሻ
𝑣ሺ𝜆, 𝜃ሻ൨ 𝑑𝜆

ଶగ

଴
.                                                                                ሺ56bሻ 10 

The variables 𝑢௠
ୡሺୱሻሺ𝜃ሻ and 𝑣௠

ୡሺୱሻሺ𝜃ሻ are meridionally expanded as 

ቈ
𝑢௠

ୡሺୱሻሺ𝜃ሻ

𝑣௠
ୡሺୱሻሺ𝜃ሻ

቉ ≅ ቈ
𝑢෤௠

ୡሺୱሻ,ேሺ𝜃ሻ

𝑣෤௠
ୡሺୱሻ,ேሺ𝜃ሻ

቉ ≡

⎩
⎪
⎨

⎪
⎧෍ ൥

𝑢෤௡,௠
ୡሺୱሻ

𝑣෤௡,௠
ୡሺୱሻ൩ sin 𝑛𝜃

ே

௡ୀଵ

               for even 𝑚,

෍ ൥
𝑢෤௡,௠

ୡሺୱሻ

𝑣෤௡,௠
ୡሺୱሻ൩ cos 𝑛𝜃

ே

௡ୀ଴

               for odd 𝑚,

                                       ሺ57ሻ 

where 𝑢෤௡,௠
ୡሺୱሻ  and 𝑣෤௡,௠

ୡሺୱሻ  are calculated from 𝑢௠
ୡሺୱሻሺ𝜃ሻ  and 𝑣௠

ୡሺୱሻሺ𝜃ሻ  by the forward discrete cosine or sine transform (See 

Appendix B). 

Next, 𝜒௡,௠
ୡ , 𝜒௡,௠

ୱ , 𝜓௡,௠
ୡ , and 𝜓௡,௠

ୱ  are calculated to minimize the following error 𝐹 (the squared Lଶ norm of the residual 15 

vector): 

𝐹 ≡
1

2𝜋ଶ න න ሺ𝑅௨ሺ𝜆, 𝜃ሻଶ ൅ 𝑅௩ሺ𝜆, 𝜃ሻଶሻ
గ

଴
𝑑𝜃

ଶగ

଴
𝑑𝜆,                                                            ሺ58ሻ 

where the residual vector ൫𝑅௨ሺ𝜆, 𝜃ሻ, 𝑅௩ሺ𝜆, 𝜃ሻ൯ is defined as 

𝑅௨ሺ𝜆, 𝜃ሻ ≡ 𝑢ே,ெሺ𝜆, 𝜃ሻ െ 𝑢ሺ𝜆, 𝜃ሻ,                                                                        ሺ59aሻ 

𝑅௩ሺ𝜆, 𝜃ሻ ≡ 𝑣ே,ெሺ𝜆, 𝜃ሻ െ 𝑣ሺ𝜆, 𝜃ሻ.                                                                        ሺ59bሻ 20 

From Eqs. (58), (59), and the equations 𝜕𝐹 𝜕𝜒௠,௡
ୡ⁄ ൌ 0, 𝜕𝐹 𝜕𝜒௡,௠

ୱ⁄ ൌ 0, 𝜕𝐹 𝜕𝜓௡,௠
ୡ⁄ ൌ 0, and 𝜕𝐹 𝜕𝜓௡,௠

ୱ⁄ ൌ 0 used in the 

least-squares method, we obtain 
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1
2𝜋ଶ න න ቈ

𝜕𝑢ே,ெሺ𝜆, 𝜃ሻ

𝜕𝜒௡,௠
ୡ 𝑅௨ሺ𝜆, 𝜃ሻ ൅

𝜕𝑣ே,ெሺ𝜆, 𝜃ሻ

𝜕𝜒௡,௠
ୡ 𝑅௩ሺ𝜆, 𝜃ሻ቉

గ

଴

ଶగ

଴
𝑑𝜃 𝑑𝜆 ൌ 0,                                  ሺ60aሻ 

1
2𝜋ଶ න න ቈ

𝜕𝑢ே,ெሺ𝜆, 𝜃ሻ

𝜕𝜒௡,௠
ୱ 𝑅௨ሺ𝜆, 𝜃ሻ ൅

𝜕𝑣ே,ெሺ𝜆, 𝜃ሻ

𝜕𝜒௡,௠
ୱ 𝑅௩ሺ𝜆, 𝜃ሻ቉

గ

଴

ଶగ

଴
𝑑𝜃 𝑑𝜆 ൌ 0,                                  ሺ60bሻ 

1
2𝜋ଶ න න ቈ

𝜕𝑢ே,ெሺ𝜆, 𝜃ሻ

𝜕𝜓௡,௠
ୡ 𝑅௨ሺ𝜆, 𝜃ሻ ൅

𝜕𝑣ே,ெሺ𝜆, 𝜃ሻ

𝜕𝜓௡,௠
ୡ 𝑅௩ሺ𝜆, 𝜃ሻ቉

గ

଴

ଶగ

଴
𝑑𝜃 𝑑𝜆 ൌ 0,                                  ሺ60cሻ 

1
2𝜋ଶ න න ቈ

𝜕𝑢ே,ெሺ𝜆, 𝜃ሻ

𝜕𝜓௡,௠
ୱ 𝑅௨ሺ𝜆, 𝜃ሻ ൅

𝜕𝑣ே,ெሺ𝜆, 𝜃ሻ

𝜕𝜓௡,௠
ୱ 𝑅௩ሺ𝜆, 𝜃ሻ቉

గ

଴

ଶగ

଴
𝑑𝜃 𝑑𝜆 ൌ 0.                                  ሺ60dሻ 

From Eq. (50), we derive 5 

ቆ
𝜕𝑢ே,ெሺ𝜆, 𝜃ሻ

𝜕𝜒௡,௠
ୡ ,

𝜕𝑣ே,ெሺ𝜆, 𝜃ሻ

𝜕𝜒௡,௠
ୡ ቇ ൌ 𝐕௡,௠

ଵ ሺ𝜆, 𝜃ሻ,                                                                             ሺ61aሻ 

ቆ
𝜕𝑢ே,ெሺ𝜆, 𝜃ሻ

𝜕𝜒௡,௠
ୱ ,

𝜕𝑣ே,ெሺ𝜆, 𝜃ሻ

𝜕𝜒௡,௠
ୱ ቇ ൌ 𝐕௡,௠

ଶ ሺ𝜆, 𝜃ሻ,                                                                             ሺ61bሻ 

ቆ
𝜕𝑢ே,ெሺ𝜆, 𝜃ሻ

𝜕𝜓௡,௠
ୡ ,

𝜕𝑣ே,ெሺ𝜆, 𝜃ሻ

𝜕𝜓௡,௠
ୡ ቇ ൌ 𝐕௡,௠

ଷ ሺ𝜆, 𝜃ሻ,                                                                             ሺ61cሻ 

ቆ
𝜕𝑢ே,ெሺ𝜆, 𝜃ሻ

𝜕𝜓௡,௠
ୱ ,

𝜕𝑣ே,ெሺ𝜆, 𝜃ሻ

𝜕𝜓௡,௠
ୱ ቇ ൌ 𝐕௡,௠

ସ ሺ𝜆, 𝜃ሻ.                                                                            ሺ61dሻ 

Equations (60) and (61) show that the residual vector ൫𝑅௨ሺ𝜆, 𝜃ሻ, 𝑅௩ሺ𝜆, 𝜃ሻ൯ is orthogonal to each of the vector basis function, 10 

which means that Eq. (60) is the same as the equation obtained by the Galerkin method. From Eqs. (60), (61), (51), (48a), 

(49a), (56), (A3) and (D6), we derive 

1
𝜋

න ቈെ
𝑚𝑆௡,௠ሺ𝜃ሻ

𝑎 sin 𝜃
ቀ𝑢௠

ୱ,ேሺ𝜃ሻ െ 𝑢෤௠
ୱ,ேሺ𝜃ሻቁ െ

1
𝑎

𝜕𝑆௡,௠ሺ𝜃ሻ

𝜕𝜃
ቀ𝑣௠

ୡ,ேሺ𝜃ሻ െ 𝑣෤௠
ୡ,ேሺ𝜃ሻቁ቉ 𝑑𝜃

గ

଴
ൌ 0,                            ሺ62aሻ 

1
𝜋

න ቈ
𝑚𝑆௡,௠ሺ𝜃ሻ

𝑎 sin 𝜃
ቀ𝑢௠

ୡ,ேሺ𝜃ሻ െ 𝑢෤௠
ୡ,ேሺ𝜃ሻቁ െ

1
𝑎

𝜕𝑆௡,௠ሺ𝜃ሻ

𝜕𝜃
ቀ𝑣௠

ୱ,ேሺ𝜃ሻ െ 𝑣෤௠
ୱ,ேሺ𝜃ሻቁ቉ 𝑑𝜃

గ

଴
ൌ 0,                            ሺ62bሻ 

1
𝜋

න ቈ
1
𝑎

𝜕𝑆௡,௠ሺ𝜃ሻ

𝜕𝜃
ቀ𝑢௠

ୡ,ேሺ𝜃ሻ െ 𝑢෤௠
ୡ,ேሺ𝜃ሻቁ െ

𝑚𝑆௡,௠ሺ𝜃ሻ

𝑎 sin 𝜃
ቀ𝑣௠

ୱ,ேሺ𝜃ሻ െ 𝑣෤௠
ୱ,ேሺ𝜃ሻቁ቉ 𝑑𝜃

గ

଴
ൌ 0,                            ሺ62cሻ 15 

1
𝜋

න ቈ
1
𝑎

𝜕𝑆௡,௠ሺ𝜃ሻ

𝜕𝜃
ቀ𝑢௠

ୱ,ேሺ𝜃ሻ െ 𝑢෤௠
ୱ,ேሺ𝜃ሻቁ ൅

𝑚𝑆௡,௠ሺ𝜃ሻ

𝑎 sin 𝜃
ቀ𝑣௠

ୡ,ேሺ𝜃ሻ െ 𝑣෤௠
ୡ,ேሺ𝜃ሻቁ቉ 𝑑𝜃

గ

଴
ൌ 0.                            ሺ62dሻ 

By substituting Eqs. (52) and (57) into Eq. (62a), the following equations for 𝜒௡,௠
ୡ  and 𝜓௡,௠

ୱ  are derived as shown in 

Appendix H. 

For 𝑚 ൌ 0, 

1
𝑎

ൣ𝑛𝜒௡,௠
ୡ ൧ ൌ 𝑣෤௡,௠

ୡ             ሺ1 ൑ 𝑛 ൑ 𝑁ሻ.                                                                               ሺ63aሻ 20 

The coefficient 𝜒௠ୀ଴,௡ୀ଴
ୡ  is determined so that the global means of 𝜒 are zero. See Eq. (G1) about the calculation of the 

global mean. 



19 
 

For 𝑚 ൌ 1, 

1
𝑎

ൣെሺ𝑛 െ 1ሻଶ𝜒௡ିଶ,௠
ୡ െ 2𝑚𝜓௡ିଵ,௠

ୱ ൅ ሺ4𝑚ଶ ൅ 2𝑛ଶ ൅ 2ሻ𝜒௡,௠
ୡ െ 2𝑚𝜓௡ାଵ,௠

ୱ െ ሺ𝑛 ൅ 1ሻଶ𝜒௡ାଶ,௠
ୡ ൧                           

ൌ 2ሺ𝑛 െ 1ሻ𝑣෤௡ିଵ,௠
ୡ െ 4𝑚𝑢෤௡,௠

ୱ െ 2ሺ𝑛 ൅ 1ሻ𝑣෤௡ାଵ,௠
ୡ    ሺ0 ൑ 𝑛 ൑ 𝑁 െ 1ሻ,                ሺ63bሻ 

with the exception of the following underlined values: 

1
𝑎

ൣ൫8𝑚ଶ ൅ 4൯𝜒଴,௠
ୡ െ 4𝑚𝜓ଵ,௠

ୱ െ 2𝜒ଶ,௠
ୡ  ൧  ൌ െ8𝑚𝑢෤଴,௠

ୱ െ 4𝑣෤ଵ,௠
ୡ        ሺ𝑛 ൌ 0ሻ,                    5 

1
𝑎

ൣെ4𝑚𝜓଴,௠
ୱ ൅ ሺ4𝑚ଶ ൅ 4ሻ𝜒ଵ,௠

ୡ ൅ ⋯ ൧ ൌ ⋯                    ሺ𝑛 ൌ 1ሻ,                    

1
𝑎

ൣെ2𝜒଴,௠
ୡ െ 2𝑚𝜓ଵ,௠

ୱ ൅ ⋯ ൧ ൌ ⋯                    ሺ𝑛 ൌ 2ሻ.                    

For even 𝑚 ൒ 2, 

1
𝑎

ൣെሺ𝑛 െ 1ሻଶ𝜒௡ିଶ,௠
ୡ െ 2𝑚𝜓௡ିଵ,௠

ୱ ൅ ሺ4𝑚ଶ ൅ 2𝑛ଶ ൅ 2ሻ𝜒௡,௠
ୡ െ 2𝑚𝜓௡ାଵ,௠

ୱ െ ሺ𝑛 ൅ 1ሻଶ𝜒௡ାଶ,௠
ୡ ൧                         

ൌ 2ሺ𝑛 െ 1ሻ𝑣෤௡ିଵ,௠
ୡ െ 4𝑚𝑢෤௡,௠

ୱ െ 2ሺ𝑛 ൅ 1ሻ𝑣෤௡ାଵ,௠
ୡ          ሺ1 ൑ 𝑛 ൑ 𝑁 െ 1ሻ,         ሺ63cሻ 10 

with no exception. 

For odd 𝑚 ൒ 3, 

1
𝑎

ൣሺ𝑛 െ 2ሻଶ𝜒௡ିସ,௠
ୡ ൅ 2𝑚𝜓௡ିଷ,௠

ୱ ൅ ሺെ4𝑚ଶ െ 4𝑛ଶ ൅ 8𝑛 െ 8ሻ𝜒௡ିଶ,௠
ୡ െ 2𝑚𝜓௡ିଵ,௠

ୱ ൅ ሺ8𝑚ଶ ൅ 6𝑛ଶ ൅ 8ሻ𝜒௡,௠
ୡ                    

െ2𝑚𝜓௡ାଵ,௠
ୱ ൅ ሺെ4𝑚ଶ െ 4𝑛ଶ െ 8𝑛 െ 8ሻ𝜒௡ାଶ,௠

ୡ ൅ 2𝑚𝜓௡ାଷ,௠
ୱ ൅ ሺ𝑛 ൅ 2ሻଶ𝜒௡ାସ,௠

ୡ ൧                   

ൌ 4ሺ𝑛 െ 2ሻ𝑣෤௡ିଶ,௠
ୡ െ 8𝑚𝑢෤௡ିଵ,௠

ୱ െ 8𝑛𝑣෤௡,௠
ୡ ൅ 8𝑚𝑢෤௡ାଵ,௠

ୱ ൅ 4ሺ𝑛 ൅ 2ሻ𝑣෤௡ାଶ,௠
ୡ     ሺ1 ൑ 𝑛 ൑ 𝑁 െ 2ሻ,      ሺ63dሻ 15 

with the exception of the following underlined values: 

1
𝑎

ൣ൫12𝑚ଶ ൅ 18൯𝜒ଵ,௠
ୡ െ 4𝑚𝜓ଶ,௠

ୱ ൅ ൫െ4𝑚ଶ െ 21൯𝜒ଷ,௠
ୡ ൅ ⋯ ൧ ൌ െ16𝑚𝑢෤଴,௠

ୱ െ 12𝑣෤ଵ,௠
ୡ ൅ ⋯      ሺ𝑛 ൌ 1ሻ,          

1
𝑎

ൣെ4𝑚𝜓ଵ,௠
ୱ ൅ ሺ8𝑚ଶ ൅ 32ሻ𝜒ଶ,௠

ୡ ൅ ⋯ ൧ ൌ ⋯                                                   ሺ𝑛 ൌ 2ሻ,         

1
𝑎

ൣ൫െ4𝑚ଶ െ 21൯𝜒ଵ,௠
ୡ െ 2𝑚𝜓ଶ,௠

ୱ ൅ ⋯ ൧ ൌ ⋯                                                 ሺ𝑛 ൌ 3ሻ.         

Similarly, from Eq. (62b), we derive the same equations as Eqs. (63b–d), except that 𝜒ୡ, 𝜓ୱ, 𝑣෤ୡ, and 𝑢෤ୱ are replaced with 𝜒ୱ, 20 

െ𝜓ୡ, 𝑣෤ୱ, and െ𝑢෤ୡ, respectively. From Eq. (62c), we derive the same equations as Eqs. (63a–d), except that 𝜒ୡ, 𝜓ୱ, 𝑣෤ୡ, and 

𝑢෤ୱ are replaced with െ𝜓ୡ, 𝜒ୱ, 𝑢෤ୡ, and െ𝑣෤ୱ, respectively. From Eq. (62d), we derive the same equations as Eqs. (63b–d), 

except that 𝜒ୡ, 𝜓ୱ, 𝑣෤ୡ, and 𝑢෤ୱ are replaced with 𝜓ୱ, 𝜒ୡ, െ𝑢෤ୱ, and െ𝑣෤ୡ, respectively. 

Eq. (63a) is easily solved. From Eqs. (63d), and from the same equations as Eqs. (63d), except that 𝜒ୡ, 𝜓ୱ, 𝑣෤ୡ, and 𝑢෤ୱ are 

replaced with 𝜓ୱ, 𝜒ୡ, െ𝑢෤ୱ, and െ𝑣෤ୡ, respectively, we derive the following linear simultaneous equations for 𝑚 ൒ 3: 25 
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𝐄௠

⎣
⎢
⎢
⎢
⎡
𝜒ଵ,௠

ୡ

𝜓ଶ,௠
ୱ

𝜒ଷ,௠
ୡ

𝜓ସ,௠
ୱ

: ⎦
⎥
⎥
⎥
⎤

ൌ 𝐅௠

⎣
⎢
⎢
⎢
⎡
𝑢෤଴,௠

ୱ

𝑣෤ଵ,௠
ୡ

𝑢෤ଶ,௠
ୱ

𝑣෤ଷ,௠
ୡ

: ⎦
⎥
⎥
⎥
⎤

,      𝐄௠

⎣
⎢
⎢
⎢
⎡
𝜓ଵ,௠

ୱ

𝜒ଶ,௠
ୡ

𝜓ଷ,௠
ୱ

𝜒ସ,௠
ୡ

: ⎦
⎥
⎥
⎥
⎤

ൌ 𝐅௠

⎣
⎢
⎢
⎢
⎡
െ𝑣෤଴,௠

ୡ

െ𝑢෤ଵ,௠
ୱ

െ𝑣෤ଶ,௠
ୡ

െ𝑢෤ଷ,௠
ୱ

: ⎦
⎥
⎥
⎥
⎤

,                                                                     ሺ64ሻ 

where the matrices 𝐄௠ are nine-diagonal. From Eqs. (63b,c), we derive the equations similar to Eq. (64) for 𝑚 ൌ 1 and even 

𝑚 ሺ൒ 2ሻ with penta-diagonal matrices 𝐄௠. The simultaneous equations with nine-diagonal or penta-diagonal matrices 𝐄௠ 

can be solved in a similar way to Eq. (31), and the expansion coefficients 𝜒௡,௠
ୡ  and 𝜓௡,௠

ୱ  in Eq. (64) can be calculated 

efficiently. From the same equations as Eqs. (63b–d), except that 𝜒ୡ, 𝜓ୱ, 𝑣෤ୡ, and 𝑢෤ ௦ are replaced with 𝜒ୱ, െ𝜓ୡ, 𝑣෤ୱ, and െ𝑢෤ୡ, 5 

respectively, and the same equations as Eqs. (63b–d), except that 𝜒ୡ, 𝜓ୱ, 𝑣෤ୡ, and 𝑢෤ୱ are replaced with െ𝜓ୡ, 𝜒ୱ, 𝑢෤ୡ, and െ𝑣෤ୱ, 

respectively, the simultaneous equations similar to Eq. (64) are also derived. Thus, the expansion coefficients 𝜒௡,௠
ୡ , 𝜒௡,௠

ୱ , 

𝜓௡,௠
ୡ , and 𝜓௡,௠

ୱ  are calculated from 𝑢෤௡,௠
ୡ , 𝑢෤௡,௠

ୱ , 𝑣෤௡,௠
ୡ , and 𝑣෤௡,௠

ୱ  using Eqs. (63a–d) and the similar equations. The expansion 

coefficients 𝑢௡,௠
ୡ , 𝑢௡,௠

ୱ , 𝑣௡,௠
ୡ , and 𝑣௡,௠

ୱ  are calculated from 𝜒௡,௠
ୡ , 𝜒௡,௠

ୱ , 𝜓௡,௠
ୡ , and 𝜓௡,௠

௦  using Eq. (53) for 𝑢௡,௠
ୡ  and the 

similar equations for 𝑢௡,௠
ୱ , 𝑣௡,௠

ୡ , and 𝑣௡,௠
ୱ . 10 

This method to calculate the DFS expansion coefficients of 𝜒 and 𝜓 from 𝑢 and 𝑣 using the least-squares method (or the 

Galerkin method with the DFS vector basis functions) is similar to the vector harmonic transform method (Browning et al., 

1989; Swarztrauber, 1993), where the SH expansion coefficients of the divergence 𝐷 ൌ ∇ଶ𝜒 and the vorticity 𝜁 ൌ ∇ଶ𝜓 are 

calculated from the grid-point values of 𝑢 and 𝑣 using the Galerkin spectral method with the orthogonal vector SH basis 

functions. 15 

3.7 Laplacian operator and Poisson equation 

The calculation of the Laplacian operator and the Poisson equation in the new DFS method is described here. In the equation 

𝑔ሺ𝜆, 𝜃ሻ ൌ ∇ଶ𝑓ሺ𝜆, 𝜃ሻ ൌ
1

𝑎ଶ ቈ
1

sinଶ 𝜃
𝜕ଶ𝑓
𝜕𝜆ଶ ൅

1
sin 𝜃

𝜕
𝜕𝜃

൬sin 𝜃
𝜕𝑓
𝜕𝜃

൰቉,                                               ሺ65ሻ 

where ∇ଶ is the Laplacian operator, the variables 𝑓 and 𝑔 are expanded zonally like Eq. (8) as 

൤
𝑓ሺ𝜆, 𝜃ሻ
𝑔ሺ𝜆, 𝜃ሻ൨ ≅ ෍ ൤

𝑓௠
ୡ ሺ𝜃ሻ

𝑔௠
ୡ ሺ𝜃ሻ൨ cos 𝑚𝜆

ெ

௠ୀ଴

൅ ෍ ൤
𝑓௠

ୱ ሺ𝜃ሻ
𝑔௠

ୱ ሺ𝜃ሻ൨ sin 𝑚𝜆

ெ

௠ୀଵ

.                                                        ሺ66ሻ 20 

The variables 𝑓௠
ୡ ሺ𝜃ሻ, 𝑓௠

ୱ ሺ𝜃ሻ, 𝑔௠
ୡ ሺ𝜃ሻ, and 𝑔௠

ୱ ሺ𝜃ሻ are expanded meridionally like Eq. (10) as 

ቈ
𝑓௠

ୡሺୱሻሺ𝜃ሻ

𝑔௠
ୡሺୱሻሺ𝜃ሻ

቉ ≅ ቈ
𝑓௠

ୡሺୱሻ,ேሺ𝜃ሻ

𝑔௠
ୡሺୱሻ,ேሺ𝜃ሻ

቉ ≡ ෍ ൥
𝑓௡,௠

ୡሺୱሻ

𝑔௡,௠
ୡሺୱሻ൩ 𝑆௡,௠ሺ𝜃ሻ

ேౣ౗౮,೘

௡ୀேౣ౟౤,೘

.                                                          ሺ67ሻ 

We define the truncated variables 𝑓ே,ெሺ𝜃ሻ and 𝑔ே,ெሺ𝜃ሻ as 

൤
𝑓ே,ெሺ𝜆, 𝜃ሻ
𝑔ே,ெሺ𝜆, 𝜃ሻ

൨ ≡ ෍ ቈ
𝑓௠

ୡ,ேሺ𝜃ሻ

𝑔௠
ୡ,ேሺ𝜃ሻ

቉ cos 𝑚𝜆

ெ

௠ୀ଴

൅ ෍ ቈ
𝑓௠

ୱ,ேሺ𝜃ሻ

𝑔௠
ୱ,ேሺ𝜃ሻ

቉ sin 𝑚𝜆

ெ

௠ୀଵ

.                                             ሺ68ሻ 
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From Eqs. (65) and (68), we obtain 

∇ଶ𝑓ே,ெሺ𝜆, 𝜃ሻ ൌ ෍
1

𝑎ଶ ቈ
െ𝑚ଶ

sinଶ 𝜃
𝑓௠

ୡ,ேሺ𝜃ሻ ൅
1

sin 𝜃
𝜕

𝜕𝜃
ቆsin 𝜃

𝜕𝑓௠
ୡ,ேሺ𝜃ሻ

𝜕𝜃
ቇ቉ cos 𝑚𝜆

ெ

௠ୀ଴

                                        

൅ ෍
1

𝑎ଶ ቈ
െ𝑚ଶ

sinଶ 𝜃
𝑓௠

ୱ,ேሺ𝜃ሻ ൅
1

sin 𝜃
𝜕

𝜕𝜃
ቆsin 𝜃

𝜕𝑓௠
ୱ,ேሺ𝜃ሻ

𝜕𝜃
ቇ቉ sin 𝑚𝜆

ெ

௠ୀଵ

.                           ሺ69ሻ 

Here we use the Galerkin method to calculate the Laplacian operator and the Poisson equation, and obtain 

1
2𝜋ଶ න න 𝑆௡,௠ሺ𝜃ሻ ቂcos 𝑚𝜆

sin 𝑚𝜆
ቃ 𝑅௚ሺ𝜆, 𝜃ሻ𝑑𝜃𝑑𝜆 ൌ 0

గ

଴

ଶగ

଴
,                                                        ሺ70ሻ 5 

where the residual 

𝑅௚ሺ𝜆, 𝜃ሻ ≡ 𝑔ே,ெሺ𝜆, 𝜃ሻ െ ∇ଶ𝑓ே,ெሺ𝜆, 𝜃ሻ                                                                 ሺ71ሻ 

is orthogonal to each of the new DFS basis functions 𝑆௠,௡ሺ𝜃ሻ cos 𝑚𝜆 and 𝑆௠,௡ሺ𝜃ሻ sin 𝑚𝜆.  

We can also use the least-squares method instead of the Galerkin method so that the following error 𝐻 (the squared Lଶ 

norm of the residual) is minimized: 10 

𝐻 ≡
1

2𝜋ଶ න න 𝑅௚ሺ𝜆, 𝜃ሻଶ𝑑𝜃
గ

଴
𝑑𝜆.

ଶగ

଴
                                                                        ሺ72ሻ 

When calculating 𝑔 by applying the Laplacian operator to a given 𝑓, 𝑔௡,௠
ୡ  and 𝑔௡,௠

ୱ  can also be calculated from 𝜕𝐻 𝜕𝑔௡,௠
ୡ⁄  

and 𝜕𝐻 𝜕𝑔௡,௠
ୱ⁄  using the least-squares method. The equations 𝜕𝐻 𝜕𝑔௡,௠

ୡ⁄  and 𝜕𝐻 𝜕𝑔௡,௠
ୱ⁄  give the equivalent equations to Eq. 

(70). When calculating 𝑓 from a given 𝑔 in the Poisson equation, 𝑓௡,௠
ୡ  and 𝑓௡,௠

ୱ  can also be calculated from 𝜕𝐻 𝜕𝑓௡,௠
ୡ⁄  and 

𝜕𝐻 𝜕𝑓௡,௠
ୱ⁄  using the least-squares method. However, the equations derived from 𝜕𝐻 𝜕𝑓௡,௠

ୡ⁄  and 𝜕𝐻 𝜕𝑓௡,௠
ୱ⁄  are different from 15 

Eq. (70). If we use different equations for calculating 𝑔  from 𝑓  and 𝑓  from 𝑔 , the original values are changed when 

calculating 𝑔 from 𝑓 followed by calculating 𝑓 from 𝑔, which may be not good for numerical stability. Therefore, we use Eq. 

(70) obtained with the Galerkin method for calculating both 𝑔 from 𝑓 and 𝑓 from 𝑔. Generally, it cannot be said that the 

least-squares method is superior to the Galerkin method or vice versa, and here we choose to use the Galerkin method 

because of the reason described above. 20 

From Eqs. (68)–(71) and Eq. (A3) we derive 

න 𝑆௡,௠ሺ𝜃ሻ ൝𝑔௠
ୡሺୱሻ,ேሺ𝜃ሻ െ

1
𝑎ଶ ൥

െ𝑚ଶ

sinଶ 𝜃
𝑓௠

ୡሺୱሻ,ேሺ𝜃ሻ ൅
1

sin 𝜃
𝜕

𝜕𝜃
൭sin 𝜃

𝜕𝑓௠
ୡሺୱሻ,ேሺ𝜃ሻ

𝜕𝜃
൱൩ൡ

గ

଴
𝑑𝜃 ൌ 0,                    ሺ73ሻ 

For 𝑚 ൌ 0, we calculate 𝑔௡,௠
ୡሺୱሻ by using 

𝑔௠
ୡሺୱሻ,ேሺ𝜃ሻ ൌ

1
𝑎ଶ ൥

െ𝑚ଶ

sinଶ 𝜃
𝑓௠

ୡሺୱሻ,ேሺ𝜃ሻ ൅
1

sin 𝜃
𝜕

𝜕𝜃
൭sin 𝜃

𝜕𝑓௠
ୡሺୱሻ,ேሺ𝜃ሻ

𝜕𝜃
൱൩,                                                ሺ74ሻ 
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instead of Eq. (73) following Yee (1981) and Cheong (2000a) for ease of calculation. For 0 ൑ 𝑚 ൑ 3, the exact solutions of 

𝑔௡,௠
ୡሺୱሻ  can be obtained from Eq. (74) because the new DFS meridional basis functions for 0 ൑ 𝑚 ൑ 3  are the linear 

combination of the associated Legendre functions for 0 ൑ 𝑚 ൑ 3 and vice versa as described in Sect. 3.4. 

For 𝑚 ൌ 0, by substituting Eq. (67) into Eq. (74) multiplied by sinଶ 𝜃, transforming using Eqs. (A2d) and (A5b), and 

comparing both sides of the equation, we obtain 5 

െ𝑔௡ିଶ,௠
ୡሺୱሻ ൅ 2𝑔௡,௠

ୡሺୱሻ െ 𝑔௡ାଶ,௠
ୡሺୱሻ ൌ

1
𝑎ଶ ൣሺ𝑛 െ 1ሻሺ𝑛 െ 2ሻ𝑓௡ିଶ,௠

ୡሺୱሻ െ 2𝑛ଶ𝑓௡,௠
ୡሺୱሻ ൅ ሺ𝑛 ൅ 1ሻሺ𝑛 ൅ 2ሻ𝑓௡ାଶ,௠

ୡሺୱሻ ൧   ሺ0 ൑ 𝑛 ൑ 𝑁ሻ,    ሺ75aሻ 

except for the following underlined values: 

1𝑔ଵ,௠
ୡሺୱሻ െ 𝑔ଷ,௠

ୡሺୱሻ ൌ ⋯                            ሺ𝑛 ൌ 1ሻ,                                               

െ2𝑔଴,௠
ୡሺୱሻ ൅ 2𝑔ଶ,௠

ୡሺୱሻ െ 𝑔ସ,௠
ୡሺୱሻ ൌ ⋯                        ሺ𝑛 ൌ 2ሻ.                                               

For 𝑚 ൌ 1, by substituting Eqs. (67) into Eq. (73) and using Eqs. (A2d), (A4a) and (A5b), we obtain  10 

െ𝑔௡ିଶ,௠
ୡሺୱሻ ൅ 2𝑔௡,௠

ୡሺୱሻ െ 𝑔௡ାଶ,௠
ୡሺୱሻ ൌ

1
𝑎ଶ ൣሺ𝑛 െ 1ሻ𝑛𝑓௡ିଶ,௠

ୡሺୱሻ െ ሺ2𝑛ଶ ൅ 4𝑚ଶሻ𝑓௡,௠
ୡሺୱሻ ൅ ሺ𝑛 ൅ 1ሻ𝑛𝑓௡ାଶ,௠

ୡሺୱሻ ൧   ሺ0 ൑ 𝑛 ൑ 𝑁 െ 1ሻ,   ሺ75bሻ 

except for the following underlined values: 

1𝑔ଵ,௠
ୡሺୱሻ െ 𝑔ଷ,௠

ୡሺୱሻ ൌ ⋯                                                                  ሺ𝑛 ൌ 1ሻ,                                         

െ2𝑔଴,௠
ୡሺୱሻ ൅ 2𝑔ଶ,௠

ୡሺୱሻ െ 𝑔ସ,௠
ୡሺୱሻ ൌ

1
𝑎ଶ ൣ4𝑓଴,௠

ୡሺୱሻ ൅ ⋯ ൧                           ሺ𝑛 ൌ 2ሻ.                                        

For even 𝑚 ൒ 2, by substituting Eqs. (67) into Eq. (73) and using Eqs. (A2c), (A4b) and (A5d), we obtain 15 

െ𝑔௡ିଶ,௠
ୡሺୱሻ ൅ 2𝑔௡,௠

ୡሺୱሻ െ 𝑔௡ାଶ,௠
ୡሺୱሻ ൌ

1
𝑎ଶ ൣሺ𝑛 െ 1ሻ𝑛𝑓௡ିଶ,௠

ୡሺୱሻ െ ሺ2𝑛ଶ ൅ 4𝑚ଶሻ𝑓௡,௠
ୡሺୱሻ ൅ ሺ𝑛 ൅ 1ሻ𝑛𝑓௡ାଶ,௠

ୡሺୱሻ ൧   ሺ1 ൑ 𝑛 ൑ 𝑁 െ 1ሻ,   ሺ75cሻ 

except for the following underlined values: 

3𝑔ଵ,௠
ୡሺୱሻ െ 𝑔ଷ,௠

ୡሺୱሻ ൌ ⋯                                                                         ሺ𝑛 ൌ 1ሻ.                            

For odd 𝑚 ൒ 3, by substituting Eqs. (67) into Eq. (73) and using Eqs. (A2c,e), (A4b) and (A5d), we obtain 

𝑔௡ିସ,௠
ୡሺୱሻ െ 4𝑔௡ିଶ,௠

ୡሺୱሻ ൅ 6𝑔௡,௠
ୡሺୱሻ െ 4𝑔௡ାଶ,௠

ୡሺୱሻ ൅ 𝑔௡ାସ,௠
ୡሺୱሻ                                                                                            20 

ൌ
1

𝑎ଶ ൣെሺ𝑛 െ 2ሻሺ𝑛 െ 1ሻ𝑓௡ିସ,௠
ୡሺୱሻ ൅ ሺ4𝑛ଶ െ 6𝑛 ൅ 4 ൅ 4𝑚ଶሻ𝑓௡ିଶ,௠

ୡሺୱሻ െ ሺ6𝑛ଶ ൅ 4 ൅ 8𝑚ଶሻ𝑓௡,௠
ୡሺୱሻ                   

൅ሺ4𝑛ଶ ൅ 6𝑛 ൅ 4 ൅ 4𝑚ଶሻ𝑓௡ାଶ,௠
ୡሺୱሻ െ ሺ𝑛 ൅ 2ሻሺ𝑛 ൅ 1ሻ𝑓௡ାସ,௠

ୡሺୱሻ ൧              ሺ1 ൑ 𝑛 ൑ 𝑁 െ 2ሻ,     ሺ75dሻ 

except for the following underlined values: 

10𝑔ଵ,௠
ୡሺୱሻ െ 5𝑔ଷ,௠

ୡሺୱሻ ൅ 𝑔ହ,௠
ୡሺୱሻ ൌ

1
𝑎ଶ ൣെ൫12 ൅ 12𝑚ଶ൯𝑓ଵ,௠

ୡሺୱሻ ൅ ⋯ ൧            ሺ𝑛 ൌ 1ሻ,                           

5𝑔ଶ,௠
ୡሺୱሻ െ 4𝑔ସ,௠

ୡሺୱሻ ൅ 𝑔଺,௠
ୡሺୱሻ ൌ ⋯                                                        ሺ𝑛 ൌ 2ሻ,                           25 

െ5𝑔ଵ,௠
ୡሺୱሻ ൅ 6𝑔ଷ,௠

ୡሺୱሻ െ 4𝑔ହ,௠
ୡሺୱሻ ൅ 𝑔଻,௠

ୡሺୱሻ ൌ
1

𝑎ଶ ൣ൫24 ൅ 4𝑚ଶ൯𝑓ଵ,௠
ୡሺୱሻ ൅ ⋯ ൧          ሺ𝑛 ൌ 3ሻ.                           

From Eq. (75), we obtain the following two linear simultaneous equations with tri-diagonal or penta-diagonal matrices: 
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𝐀୬_ୣ୴ୣ୬,௠𝒈୬_ୣ୴ୣ୬,௠
ୡሺୱሻ ൌ 𝐁୬_ୣ୴ୣ୬,௠𝒇୬_ୣ୴ୣ୬,௠

ୡሺୱሻ    ,    𝐀୬_୭ୢୢ,௠𝒈୬_୭ୢୢ,௠  
ୡሺୱሻ ൌ 𝐁୬_୭ୢୢ,௠𝒇୬_୭ୢୢ,௠

ୡሺୱሻ    ,                                 ሺ76ሻ 

where 𝒈୬_ୣ୴ୣ୬,௠
ୡሺୱሻ  and 𝒈୬_୭ୢୢ,௠  

ୡሺୱሻ  are the vectors whose components are 𝑔௡,௠
ୡሺୱሻ (𝑛 is even) and 𝑔௡,௠

ୡሺୱሻ (𝑛 is odd), respectively, and 

𝒇୬_ୣ୴ୣ୬,௠
ୡሺୱሻ  and 𝒇୬_୭ୢୢ,௠

ୡሺୱሻ  are the vectors whose components are 𝑓௡,௠
ୡሺୱሻ (𝑛 is even) and 𝑓௡,௠

ୡሺୱሻ (𝑛 is odd), respectively; 𝐀୬_ୣ୴ୣ୬,௠, 

𝐁୬_ୣ୴ୣ୬,௠, 𝐀୬_୭ୢୢ,௠ and 𝐁୬_୭ୢୢ,௠ are tri-diagonal or penta-diagonal matrices. 𝒈௠,୬_ୣ୴ୣ୬
ୡሺୱሻ  and 𝒈௠,୬_୭ୢୢ

ୡሺୱሻ  are calculated by 

𝒈୬_ୣ୴ୣ୬,௠
ୡሺୱሻ ൌ 𝐀୬_ୣ୴ୣ୬,௠

ିଵ 𝐁୬_ୣ୴ୣ୬,௠𝒇୬_ୣ୴ୣ୬,௠
ୡሺୱሻ    ,    𝒈୬_୭ୢୢ,௠  

ୡሺୱሻ ൌ 𝐀୬_୭ୢୢ,௠
ିଵ 𝐁୬_୭ୢୢ,௠𝒇୬_୭ୢୢ,௠

ୡሺୱሻ    ,                     ሺ77ሻ 5 

which can be solved efficiently as in Eq. (31). We have verified that all the eigenvalues of the matrices 𝐀୬_ୣ୴ୣ୬,௠
ିଵ 𝐁୬_ୣ୴ୣ୬,௠ 

and 𝐀୬_୭ୢୢ,௠
ିଵ 𝐁୬_୭ୢୢ,௠ are negative real numbers for several truncation wavenumbers 𝑀 and 𝑁, but we have not yet proved 

that this is true for all truncation wavenumbers.  

In the Poisson equation, 𝑓 is calculated from given 𝑔 in Eq. (65). We calculate 𝑓 from 𝑔 by the reverse calculation of 𝑔 

from 𝑓 in Eq. (77). That is, we calculate 𝑓 from 𝑔 by 10 

𝒇୬_ୣ୴ୣ୬,௠
ୡሺୱሻ ൌ 𝐁୬_ୣ୴ୣ୬,௠

ିଵ 𝐀୬_ୣ୴ୣ୬,௠𝒈୬_ୣ୴ୣ୬,௠
ୡሺୱሻ    ,    𝒈୬_୭ୢୢ,௠  

ୡሺୱሻ ൌ 𝐁୬_୭ୢୢ,௠
ିଵ 𝐀୬_୭ୢୢ,௠𝒇୬_୭ୢୢ,௠

ୡሺୱሻ    ,                     ሺ78ሻ 

except when 𝑚 ൌ 0 and 𝑛 is even. For 𝑚 ൌ 0, 𝑓௡ୀ଴,௠ୀ଴
ୡ  disappears in Eq. (75a). The coefficients 𝑓௡,௠ୀ଴

ୡ  (even 𝑛 ൒ 2) are 

calculated from 𝑔௡,௠ୀ଴
ୡ  (even 𝑛 ൒ 2) by using Eq. (75a). The value 𝑓௡ୀ଴,௠ୀ଴

ୡ  is calculated from 𝑓௡,௠ୀ଴
ୡ  (even 𝑛 ൒ 2) so that 

the global mean of 𝑓 is zero using Eq. (G1). 

In Eq. (65), the global mean of 𝑔 must be zero because the global mean of the right-hand side of Eq. (65) is zero. Before 15 

calculating 𝑓 from a given 𝑔 in the Poisson equation, we should subtract the global mean from 𝑔 (Cheong 2000b). See Eq. 

(G1) about the calculation of the global mean. 

3.8 The Helmholtz equation 

The Helmholtz equation is 

𝑓 െ 𝜀∇ଶ𝑓 ൌ ቊ1 െ 𝜀
1

𝑎ଶ ቈ
1

sinଶ 𝜃
𝜕ଶ

𝜕𝜆ଶ ൅
1

sin 𝜃
𝜕

𝜕𝜃
൬sin 𝜃

𝜕
𝜕𝜃

൰቉ቋ 𝑓 ൌ 𝑔,                                       ሺ79ሻ 20 

where 𝑓 is calculated from given 𝑔. From Eq. (76), the Poisson equation in Eq. (65) is represented as 

𝐀𝒈 ൌ 𝐁𝒇,                                                                                             ሺ80ሻ 

where the subscripts n_even, n_odd and 𝑚, and the superscripts c and s are omitted. Similarly, by using the Galerkin method, 

Eq. (79) is represented as 

𝐀𝒇 െ 𝜀𝐁𝒇 ൌ 𝐀𝒈.                                                                                       ሺ81ሻ 25 

From Eq. (81), 𝒇 is calculated from 𝒈 by 

𝒇 ൌ ሺ𝐀 െ 𝜀𝐁ሻି𝟏𝐀𝒈.                                                                                     ሺ82ሻ 

Since 𝐀 െ 𝜀𝐁 is a penta-diagonal or tri-diagonal matrix, Eq. (82) can be efficiently solved as in Eq. (31). 

Similarly, the Helmholtz-like equation 

𝑓 െ 𝜀∇ଶ𝑓 ൌ ∇ଶ𝑔                                                                                       ሺ83ሻ 30 
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is represented as 

𝐀𝒇 െ 𝜀𝐁𝒇 ൌ 𝐁𝒈.                                                                                    ሺ84ሻ 

From Eq. (84), 𝒇 is calculated from 𝒈 by 

𝒇 ൌ ሺ𝐀 െ 𝜀𝐁ሻି𝟏𝐁𝒈.                                                                                  ሺ85ሻ 

3.9 Horizontal diffusion 5 

The horizontal diffusion is calculated in the similar way as in Cheong et al. (2004). Here we describe how to calculate 

fourth-order diffusion. Higher-order diffusion can be calculated similarly. 

The equation for fourth-order hyperdiffusion is 

𝑓 ൅ 𝜀∇ସ𝑓 ൌ 𝑔,                                                                                            ሺ86ሻ 

where 𝑓 is calculated from 𝑔. Equation (86) can be converted into 10 

൫1 ൅ 𝑖√𝜀∇ଶ൯൫1 െ 𝑖√𝜀∇ଶ൯𝑓 ൌ 𝑔,                                                                         ሺ87ሻ 

where 𝑖 ൌ √െ1 . The calculation of Eq. (86) is accomplished by successive calculations of the following Helmholtz 

equations: 

൫1 ൅ 𝑖√𝜀∇ଶ൯𝑓ᇱ ൌ 𝑔,                                                                           ሺ88aሻ 

൫1 െ 𝑖√𝜀∇ଶ൯𝑓 ൌ 𝑓ᇱ,                                                                           ሺ88bሻ 15 

which are represented as 

൫𝐀 ൅ 𝑖√𝜀𝐁൯𝒇ᇱ ൌ 𝐀𝒈.                                                                             ሺ89aሻ 

൫𝐀 െ 𝑖√𝜀𝐁൯𝒇 ൌ 𝐀𝒇ᇱ.                                                                             ሺ89bሻ 

From Eqs. (89), we obtain the equation to calculate 𝒇 from 𝒈 as 

𝒇 ൌ ൫𝐀 െ 𝑖√𝜀𝐁൯
ି𝟏

𝐀൫𝐀 ൅ 𝑖√𝜀𝐁൯
ି𝟏

𝐀𝒈.                                                        ሺ90ሻ 20 

Here, 𝐀 െ 𝑖√𝜀𝐁 and 𝐀 ൅ 𝑖√𝜀𝐁 are complex matrices and 𝒇 and 𝒈 are real column vectors. For efficient computation, two 

real column vectors can be combined into one complex column vector (Cheong et al., 2004); for example, 𝒇 ൌ 𝒇ୡ െ 𝑖𝒇ୱ and 

𝒈 ൌ 𝒈ୡ െ 𝑖𝒈ୱ, where the superscript c indicates the zonal cosine component, and the superscript s indicates the zonal sine 

component. 

3.10 Essential summary (cook book) of the new DFS method 25 

The essential summary for a scalar variable: 

1. Define DFS expansion for a scalar variable with zonal expansion in Eq. (8) and meridional expansion in Eq. (10). 

2. For the inverse transform from spectral space to grid point space, 

a) Calculate the coefficients 𝑇௡,௠
ୡሺୱሻᇲ

 from 𝑇௡,௠
ୡሺୱሻ by using Eqs. (14). 

b) Calculate 𝑇௠
ୡሺୱሻ,ேሺ𝜃ሻ in Eq. (13) from 𝑇௡,௠

ୡሺୱሻᇲ
 by inverse cosine and sine Fourier transforms in Appendix B. 30 
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c) Calculate the grid point values 𝑇ே,ெሺ𝜆, 𝜃ሻ in Eq. (15) from 𝑇௠
ୡሺୱሻ,ேሺ𝜃ሻ by inverse Fourier transform. 

3. For the forward transform from grid point space to spectral space, 

a) Calculate 𝑇௠
ୡሺୱሻሺ𝜃ሻ in Eq. (9) from the grid point values 𝑇ሺ𝜆, 𝜃ሻ by forward Fourier transform. 

b) Calculate the coefficients 𝑇෨௡,௠
ୡሺୱሻ in Eq. (23) from 𝑇௠

ୡሺୱሻሺ𝜃ሻ by forward cosine and sine transforms in Appendix B. 

c) Calculate the coefficients 𝑇௡,௠
ୡሺୱሻ from 𝑇෨௡,௠

ୡሺୱሻ by using Eqs. (30) and (31). Here, the coefficients 𝑇௡,௠
ୡሺୱሻ are calculated so that 5 

Eq. (29) derived from the Galerkin method (or the least-squares method) is satisfied. 

The essential summary for a vector variable: 

1. Represent DFS expansion for a vector variable by Eq. (50). 

2. For the inverse transform from spectral space to grid point space, 

a) Calculate the coefficients 𝑢௡,௠
ୡሺୱሻ and 𝑣௡,௠

ୡሺୱሻ from 𝜒௡,௠
ୡሺୱሻ and 𝜓௡,௠

ୡሺୱሻ by using Eq. (53) and the similar equations. 10 

b) Calculate 𝑢௠
ୡሺୱሻ,ேሺ𝜃ሻ and 𝑣௠

ୡሺୱሻ,ேሺ𝜃ሻ in Eq. (52) from 𝑢௡,௠
ୡሺୱሻ and 𝑣௡,௠

ୡሺୱሻ by inverse cosine and sine transforms in Appendix 

B. 

c) Calculate the grid point values 𝑢ே,ெሺ𝜆, 𝜃ሻ and 𝑣ே,ெሺ𝜆, 𝜃ሻ in Eqs. (48a) and (49a) from 𝑢௠
ୡሺୱሻ,ேሺ𝜃ሻ and 𝑣௠

ୡሺୱሻ,ேሺ𝜃ሻ by 

inverse Fourier transform. 

3. For the forward transform from grid point space to spectral space, 15 

a) Calculate 𝑢௠
ୡሺୱሻሺ𝜃ሻ and 𝑣௠

ୡሺୱሻሺ𝜃ሻ in Eq. (56) from the grid point values 𝑢ሺ𝜆, 𝜃ሻ and 𝑣ሺ𝜆, 𝜃ሻ by forward Fourier transform. 

b) Calculate the coefficients 𝑢෤௡,௠
ୡሺୱሻ and 𝑣෤௡,௠

ୡሺୱሻ in Eq. (57) from the grid point values 𝑢௠
ୡሺୱሻሺ𝜃ሻ and 𝑣௠

ୡሺୱሻሺ𝜃ሻ by forward cosine 

and sine transforms in Appendix B. 

c) Calculate the coefficients 𝜒௡,௠
ୡሺୱሻ and 𝜓௡,௠

ୡሺୱሻ from 𝑢෤௡,௠
ୡሺୱሻ and 𝑣෤௡,௠

ୡሺୱሻ by using Eqs. (63) and (64). Here, 𝜒௡,௠
ୡሺୱሻ and 𝜓௡,௠

ୡሺୱሻ are 

calculated so that Eq. (62) derived from the Galerkin method (or the least-squares method) is satisfied. 20 

4 The error due to meridional wavenumber truncation in DFS expansion methods 

Here we examine the error due to the meridional wavenumber truncation when the same continuity conditions at the poles as 

Eq. (3) are satisfied. In the DFS method of Orszag (1974) using Eq. (2), only 𝑓ேିଵ,௠ and 𝑓ே,௠ are modified to satisfy Eq. (4) 

equivalent to Eq. (3). In the old DFS method using Eq. (6), which is proposed in Cheong (2000a, 2000b) and used in 

Yoshimura and Matsumura (2005), the DFS meridional basis functions automatically satisfy the pole conditions in Eq. (3) 25 

for even 𝑚 , but not for odd 𝑚 . In the new DFS method using Eqs. (10)–(12), the DFS meridional basis functions 

automatically satisfy the condition in Eq. (3) for both even and odd 𝑚. We examine the error due to the wavenumber 

truncation in these DFS methods while comparing it with the SH method. 

Figure 2 shows the error due to the wavenumber truncation. The number of latitudinal grid points is 𝐽 ൌ 64. The initial 

values of 𝐹௠൫𝜃௝൯ are set to one at the grid points north of 30°N (except for the North pole), and zero at the grid points south 30 



26 
 

of 30°N. Grid [0] is used in the DFS methods, and the Gaussian grid is used in the SH method. There are no grid points at 

the poles. Since the values at the poles are zero due to the pole conditions in Eq. (3), the initial values abruptly change 

around the North pole. The initial values are meridionally transformed from grid space to spectral space (forward transform), 

truncated with 𝑁 ൌ 42, and then transformed back from spectral space to grid space (inverse transform) to obtain the 

truncated reconstruction of 𝐹௠൫𝜃௝൯. 5 

In the DFS method of Orszag, a very large error occurs, especially for odd |𝑚| ሺ൒ 3ሻ (Fig. 2c), when 𝑓ேିଵ,௠ and 𝑓ே,௠ are 

modified to satisfy the pole conditions in Eq. (4). Dividing 𝐹௠൫𝜃௝൯ by sin 𝜃 before the forward Fourier cosine transform for 

odd 𝑚 also contributes to the large error. 

In the old DFS method, large high wavenumber oscillations appear for even 𝑚 ሺ് 0ሻ in Fig. 2a. Although the basis 

functions for even 𝑚 ሺ് 0ሻ in the old DFS method are the same as those in the new method, the expansion coefficients are 10 

calculated differently in the two methods. In the old DFS method, the simple meridional truncation with 𝑁 ൏ 𝐽 after the 

forward Fourier sine transform of a variable divided by sin 𝜃 causes the large high-wavenumber oscillations. The large 

oscillations appear especially when the initial values abruptly change around the poles. In the case shown in Fig. 2, the initial 

values at the grid points near the North Pole are one, but the value at the North Pole abruptly becomes zero due to the pole 

conditions of Eq. (3). The result in the old DFS method for odd |𝑚| ሺ൒ 3ሻ is not shown in Fig. 2c because the method does 15 

not satisfy the condition of Eq. (3) for odd 𝑚. 

In the new DFS method, the usual small oscillations from the Gibbs phenomenon appear in Fig. 2. The error is small 

because the expansion coefficients are calculated using the least-squares method (or the Galerkin method) to minimize the 

error. Because of this, the truncation with arbitrary 𝑁 ൏ 𝐽 does not cause large oscillations in the new DFS method. The 

values for even 𝑚 ሺ൒ 2ሻ and odd 𝑚 ሺ൒ 3ሻ in the new DFS method are similar to those for 𝑚 ൌ 2 and 𝑚 ൌ 3 in the SH 20 

method, respectively. In the SH method, when 𝑚 is large, the values become close to zero at high latitudes. 

When using the basis functions of Orszag in Eq. (2), we can also obtain results equivalent to the new DFS method by 

calculating the expansion coefficients using the least-squares method with Lagrange multipliers in order to minimize the 

error while satisfying the pole conditions in Eq. (4). 

Figure 3a shows the same figure as Fig. 2a except for 𝑁 ൌ 63. In the old DFS method using Eq. (6), we set 𝑁 ൌ 63 for 25 

𝑚 ൌ 0, and 𝑁ᇱ ൌ 64 for 𝑚 ് 0. Because 𝑁ᇱ ൌ 𝐽 for even 𝑚 ሺ൒ 2ሻ, the forward transform followed by the inverse transform 

does not change the initial values at the grid points, and the oscillations do not appear in the old DFS method. For this reason, 

Yoshimura and Matsumura (2005) and Yoshimura (2012) set 𝑁ᇱ ൌ 𝐽 for even 𝑚 ሺ൒ 2ሻ to improve stability. However, there 

is a problem with the latitudinal derivative in the old DFS method even when 𝑁ᇱ ൌ 𝐽 for even 𝑚 ሺ൒ 2ሻ. Fig. 3b is the same 

as Fig. 3a except that it also shows the values between grid points calculated from the expansion coefficients by using Eq. 30 

(6) or Eq. (10). The large oscillations appear in the old DFS method with Grid [0], and it makes the latitudinal derivative at 

the grid points unrealistically large. In the new DFS method with the least-squares method, the large oscillations do not 

appear. 
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5 Tests of the DFS methods with the Laplacian operator and the Helmholtz equation 

We examine the accuracy of the old and new DFS methods for the Laplacian operator in Eq. (65) and the Helmholtz 

equation 

ሺ1 െ 𝜀∇ଶሻ𝑓 ൌ ℎ.                                                                                                             ሺ91ሻ 

Here, we give the function 𝑓 as 5 

𝑓 ൌ ൝
𝐻
4

ቀ1 ൅ cos
𝜋𝑟
𝑅

ቁ
ଶ

               if 𝑟 ൏ 𝑅,

            0                                 if 𝑟 ൒ 𝑅,
                                                                  ሺ92ሻ 

𝑟 ൌ 𝑎 cosିଵሾsin 𝜙௖ sin 𝜙 ൅ cos 𝜙௖ cos 𝜙 cosሺ𝜆 െ 𝜆௖ሻሿ,                                       ሺ93ሻ 

where 𝐻 ൌ 1000, 𝑅 ൌ 𝑎 3⁄ , 𝜙 is latitude, 𝜆 is longitude, 𝑎 is the radius of the earth and 𝑟 is the distance between ሺ𝜆, 𝜙ሻ and 

the center ሺ𝜆௖, 𝜙௖ሻ ൌ ሺ3𝜋 2⁄ , 𝜋 2⁄ െ 0.05ሻ . The function 𝑓  is similar to the cosine bell in the Williamson test case 1 

(Williamson et al., 1992), but ሺ1 ൅ cos 𝜋𝑟 𝑅⁄ ሻ is squared so that the second derivative of 𝑓 is continuous. To easily calculate 10 

the exact values of ∇ଶ𝑓 , the center is temporarily set to the North Pole, that is, ሺ𝜆௖, 𝜙௖ሻ ൌ ሺ0, 𝜋 2⁄ ሻ  and 𝑟 ൌ

𝑎 cosିଵሾsin 𝜙ሿ ൌ 𝑎𝜃, where 𝜃 is colatitude. At this time, 𝑔 is calculated as follows: 

𝑔 ൌ ∇ଶ𝑓 ൌ
1

𝑎ଶ ቈ
1

sinଶ 𝜃
𝜕ଶ𝑓
𝜕𝜆ଶ ൅

1
sin 𝜃

𝜕
𝜕𝜃

൬sin 𝜃
𝜕𝑓
𝜕𝜃

൰቉                                                                                        

ൌ െ
cos 𝜃
sin 𝜃

𝐻
2𝑎ଶ

𝜋𝑎
𝑅

ቂቀ1 ൅ cos
𝜋𝑟
𝑅

ቁ sin
𝜋𝑟
𝑅

ቃ ൅
𝐻

2𝑎ଶ ቀ
𝜋𝑎
𝑅

ቁ
ଶ

ቂsinଶ 𝜋𝑟
𝑅

െ ቀ1 ൅ cos
𝜋𝑟
𝑅

ቁ cos
𝜋𝑟
𝑅

ቃ.  ሺ94ሻ 

Equation (94) is satisfied at any position of the center. The function ℎ in Eq. (91) is calculated by 15 

ℎ ൌ ሺ1 െ 𝜀∇ଶሻ𝑓 ൌ 𝑓 െ 𝜀𝑔,                                                                                     ሺ95ሻ 

where 𝜀 ൌ 0.01𝑎ଶ, and 𝑓 and 𝑔 are given by Eqs. (92) and (94). 

To examine the accuracy for the Laplacian operator, 𝑓 is given by (92), and ∇ଶ𝑓 is calculated from 𝑓 with the old DFS 

method (Cheong 2000a), the new DFS method (See Sect. 3.7) and the SH method. The calculated values are compared with 

the exact values of ∇ଶ𝑓 in Eq. (94). Here, the exact values of ∇ଶ𝑓 are truncated by the forward transform followed by the 20 

inverse transform in order to see the error that does not include the error due to inability to resolve at the resolution. Table 1 

shows the normalized Lଶ error between the calculated values and the exact values, which is normalized by the Lଶ norm of the 

exact values. The differences in error between the methods are small, but the results of the SH method are a little better than 

the old and new DFS methods. Table 2 shows the global mean of calculated ∇ଶ𝑓. The exact value of the global mean of ∇ଶ𝑓 

is zero. In Table 2, the global means calculated with each method are very close to zero. The global means of ∇ଶ𝑓 in the DFS 25 

methods using Grid [1] and Grid [-1] are not as close to zero as those in the DFS methods using Grid [0] and the SH method. 

This seems to be because the accuracy of the meridional discrete cosine and sine transforms in the DFS methods using Grid 

[1] and Grid [-1] is not as good as that in the DFS methods using Grid [0]. 

  To examine the accuracy of the solution of the Helmholtz equation, ℎ is given in Eq. (95) and the Helmholtz equation in 

Eq. (91) is solved with the old DFS method (Cheong 2000a), the new DFS method (See Sect. 3.8) and the SH method. The 30 
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calculated values are compared with the exact solution 𝑓 in Eq. (92). The exact values of 𝑓 are also truncated as described 

above. Table 3 shows the normalized Lଶ error between the calculated values and the exact values. The differences in error 

between the methods are small, and which is better depends on the resolution and the arrangement of the grid points. 

6 Evaluation of the DFS methods using shallow water test cases 

We ran the Williamson test cases 1, 2, 5 and 6 (Williamson et al., 1992), and the Galewsky test case (Galewsky et al., 2004) 5 

in the model using the new DFS method described in Sect. 3, the model using the old DFS method of Yoshimura and 

Matsumura (2005), and the model using the SH method. By comparing the results of these model, we evaluated the old and 

new DFS methods. 

6.1 Shallow water equations on a sphere 

The prognostic equations of the shallow water model on a sphere are 10 

𝑑𝒗
𝑑𝑡

ൌ െ2ሺ𝜴 ൈ 𝒗ሻୌ െ 𝑔∇ℎ,                                                                                   ሺ96ሻ 

𝑑ሺℎ െ ℎୱሻ

𝑑𝑡
ൌ െሺℎ െ ℎୱሻ∇ ∙ 𝒗,                                                                              ሺ97ሻ 

where 𝑡 is time, 𝒗 is the horizontal wind vector, ℎ is the height, ℎୱ is the surface height, 𝑔 is the acceleration due to gravity, 

𝜴 is the 3-dimensional angular velocity of the earth’s rotation, and the subscript H indicates the horizontal component. 

Equation (96) is converted for the advective treatment of the Coriolis term (Temperton, 1997) into 15 

𝑑ሺ𝒗 ൅ 2𝜴 ൈ 𝒓ሻ

𝑑𝑡
ൌ െ𝑔∇ℎ,                                                                                     ሺ98ሻ 

where 𝒓 is the 3-dimensional position vector from the Earth’s center. Equation (97) is converted for the spatially averaged 

Eulerian treatment of mountains (Ritchie and Tanguay, 1996) into 

𝑑ℎ
𝑑𝑡

ൌ െሺℎ െ ℎୱሻ∇ ∙ 𝒗 ൅ 𝒗 ∙ ∇ℎୱ.                                                                         ሺ99ሻ 

Equations (98) and (99) are integrated in time using a two-time-level semi-implicit semi-Lagrangian scheme (See Appendix 20 

I). 

6.2 Models 

We ran the shallow water test cases in the semi-implicit semi-Lagrangian shallow water model or the Eulerian advection 

model (See Sect. 6.3) using the new DFS method (hereafter the new DFS model). We also ran the same test cases in the 

model using the old DFS method of Yoshimura and Matsumura (2005) with the basis functions of Cheong (2000a, 2000b) 25 

(hereafter the old DFS model), and in the model using the SH method (hereafter the SH model) for comparison. The new 

DFS model was run for each of Grid [0], [1], and [−1]. In the old DFS model, Grid [0] is used. In the SH model, the 



29 
 

Gaussian grid is used. We use a regular longitude-latitude grid, not a reduced grid. We use the timestep ∆𝑡 ൌ 3600 s at 

about 300 km resolution with 𝐽଴ ൌ 64, ∆𝑡 ൌ 1800 s at about 120 km resolution with 𝐽଴ ൌ 160, ∆𝑡 ൌ 1200 s at about 60 km 

resolution with 𝐽଴ ൌ 320, ∆𝑡 ൌ 600 s at about 20 km resolution with 𝐽଴ ൌ 960, and ∆𝑡 ൌ 90 s at about 1.3 km resolution 

with 𝐽଴ ൌ 15360, where 𝐽଴ is the number of latitudinal grid points in Grid [0]. The number of latitudinal grid points 𝐽 is  𝐽଴ 

in Grid [0] (and in the Gaussian grid), 𝐽଴ ൅ 1 in Grid [1], and 𝐽଴ െ 1 in Grid [−1] (See Sect. 2). The number of longitudinal 5 

grid points 𝐼 is 2𝐽଴. The meridional truncation wavenumber 𝑁 and the zonal wavenumber 𝑀 are set to be equal. In the 

Eulerian advection model, shorter timesteps are used as shown in Sect. 6.3. Horizontal diffusion is not used in all test cases. 

The zonal Fourier filter described in Appendix F is used in the DFS models. We have confirmed that numerical instability 

occurs in some test cases in the old DFS shallow water model without the zonal Fourier filter, but stable integration is 

possible in all test cases shown here in the new DFS semi-Lagrangian shallow water model, even without the zonal Fourier 10 

filter. In the new DFS Eulerian advection model, the zonal Fourier filter is necessary (See Sect. 6.3). 

The zonal Fourier transforms in all the models and the meridional Fourier cosine and sine transforms in the DFS models 

are calculated using the Netlib BIHAR library, which includes a double precision version of the Netlib FFTPACK library 

(Swarztrauber, 1982). The meridional Legendre transform in the SH model is calculated using the ISPACK library (Ishioka, 

2018), which adopts on-the-fly computation of the associated Legendre functions. We use the ISPACK library’s 15 

optimization option for Intel AVX512, which is highly optimized by using assembly language together with Fortran. 

6.3 Williamson test case 1 

The Williamson test case 1 simulates a cosine-bell advection. In the semi-Lagrangian models, the advection is calculated in 

the semi-Lagrangian scheme and the horizontal derivatives calculated from the expansion coefficients are not used for the 

advection calculation. Therefore, we also use the Eulerian scheme here to simulate the advection in the DFS and SH models 20 

to test the expansion methods. The advection equation is  

𝑑ℎ
𝑑𝑡

ൌ
𝜕ℎ
𝜕𝑡

൅ 𝒗 ∙ ∇ℎ.                                                                                                              ሺ100ሻ 

In the Eulerian models, the advection term 𝒗 ∙ ∇ℎ is evaluated using the spectral transform method. The advection equation is 

integrated by the leap-frog scheme with the Robert-Asselin time filter (Robert, 1966; Asselin, 1972) with a coefficient of 

0.05. The horizontal diffusion is not used, but the zonal Fourier filter is used in the old and new DFS methods. In Eq. (F1), 25 

the value 𝑀଴ ൌ 20 is used in the DFS semi-Lagrangian shallow water models. However, the larger the value 𝑀଴ is, the 

higher the longitudinal resolution around the pole is. Because of this, when the Eulerian scheme is used and 𝑀଴ is large, a 

timestep must be very short due to the CFL condition. Therefore 𝑀଴ should be as small as possible. We have tested 𝑀଴ ൌ 0, 

but this degrades the result of the Williamson test case 1. We have also tested 𝑀଴ ൌ 1 and this result is good. Therefore, we 

use 𝑀଴ ൌ 1 in the Eulerian models. 30 

Figure 4 shows the predicted height after a 12-day integration in the Williamson test case 1 when using the Eulerian 

advection models at the resolution 𝐽଴ ൌ 64. The meridional truncation wavenumber 𝑁 and the zonal truncation wavenumber 



30 
 

𝑀 are set as 𝑁 ൌ 𝑀 ൌ 42 ≅ 2 𝐽଴ 3⁄  because the 2/3 rule (Orszag, 1971) is used in order to avoid aliasing in the nonlinear 

advection term. The timestep is 30 minutes. The angle between the solid body rotation and the polar axis 𝛼 is 𝜋 2⁄ െ 0.05. 

The results for DFS [0], DFS [1], DFS [−1] and SH are very similar. Instability occurs in the old DFS model without 

horizontal diffusion. This is probably because of the appearance of high-wavenumber oscillations due to the wavenumber 

truncation with 𝑁 ≅ 2 𝐽଴ 3⁄  for even 𝑚 ሺ് 0ሻ in the old DFS method, as shown in Sect. 4. Table 4 shows the normalized Lଶ 5 

errors of the predicted height after a 12-day integration when using the Eulerian advection models. The timesteps are 30, 15, 

7.5, and 2.5 minutes at the resolution 𝐽଴ ൌ 64, 160, 320 and 960 (𝑁 ൌ 42, 106, 213 and 639), respectively. The errors are 

very close between the models at each resolution. At the resolution 𝑁 ൌ 639, the new DFS model without horizontal 

diffusion is unstable when the timestep is 200 seconds. The SH model without horizontal diffusion is stable when the 

timestep is 240 seconds and unstable when the timestep is 300 seconds. One reason for this difference in timestep is 10 

probably that the longitudinal resolution near the poles is higher in the new DFS model with 𝑀଴ ൌ 1 than in the SH model. 

When the fourth order horizontal diffusion in Eq. (86) with 𝜀 ൌ 𝑎ସ∆𝑡 ሺ7.2 ൈ 3600 ൈ 107ଶ𝑁ଶሻ⁄  is used, the both new DFS 

and SH models are stable when the timestep is 240 seconds and are unstable when the timestep is 300 seconds. The old DFS 

model is unstable even when the same fourth order horizontal diffusion is used. Higher-order horizontal diffusion, which 

effectively smooths out the high wavenumber components, is necessary to stabilize the Eulerian old DFS model (Cheong, 15 

2000b; Cheong et al., 2002). 

Table 5 shows the same as Table 4 except for using the semi-Lagrangian scheme. In the semi-Lagrangian models, the 

forward transform followed by the inverse transform are executed at every timestep, but the expansion coefficients are not 

used for the advection calculation. The timesteps are the same as described in Sect. 6.2. The errors are very close between 

the models. At the resolution 𝐽଴ ൌ 64, the errors in the semi-Lagrangian models are larger than those in the Eulerian models, 20 

but at the resolutions 𝐽଴ ൌ 160, 320 and 960, the errors in the semi-Lagrangian models are smaller than those in the Eulerian 

models. 

The conservation of mass in the Williamson test case 1 was also examined, and the results are shown in Sect. S2 in the 

supplement. 

6.4 Williamson test case 2 25 

The Williamson test case 2 simulates a steady state non-linear zonal geostrophic flow. In this test case, the angle between the 

solid body rotation and the polar axis 𝛼 is given, and the zonal and meridional components of 2𝜴 ൈ 𝒓 become 

2𝜴 ൈ 𝒓 ൌ ሺ2Ω𝑎ሾcos 𝜃 cos 𝛼 ൅ cos 𝜆 sin 𝜃 sin 𝛼ሿ, െ2Ω𝑎 sin 𝜆 sin 𝛼ሻ.                              ሺ101ሻ 

Figure 5 shows the time series of forecast errors of the height for a 5-day integration in the Williamson test case 2 with 

𝛼 ൌ 𝜋 2⁄ െ 0.05 in the models at the resolution 𝐽଴ ൌ 64 and 𝑁 ൌ 63 (DFS) or 𝑁 ൌ 62 (SH), using no horizontal diffusion. 30 

The normalized Lଵ, Lଶ, and Lஶ errors are almost the same between the new DFS models using Grids [0], [1] and [−1], the 
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old DFS model, and the SH model. Table 6 shows the normalized Lଶ errors of the predicted height after a 5-day integration. 

The errors are almost the same between the old DFS, new DFS and SH models at each resolution. 

The conservation of mass, energy and vorticity in the Williamson test cases 2, 5 and 6 was also examined, and the results 

are shown in Sect. S2 in the supplement. 

6.5 Williamson test case 5 5 

The Williamson test case 5 simulates zonal flow over an isolated mountain. Figure 6 shows the predicted height after a 15-

day integration in Williamson test case 5 with ℎ଴ ൌ 5960 m. The result of the high-resolution SH model at the resolution 

𝐽 ൌ 960 and 𝑁 ൌ 958 is regarded as the reference solution. Horizontal diffusion is not used. The errors with respect to the 

reference solution are almost the same for the new DFS models, the old DFS model, and the SH model at the resolution 𝐽଴ ൌ

64. Table 7 shows the normalized Lଶ errors of the predicted height after a 15-day integration. The errors are almost the same 10 

between the old DFS, new DFS and SH models at each resolution. The errors do not decrease when the resolution increases, 

which is different from the results in the other test cases. This may be because the mountain topography is not a 

differentiable function, and the mountain is added impulsively on to an initially balanced flow (Galewsky et al. 2004). 

Figure 7 shows the longitudinal distributions of meridional wind at the grid points near the South Pole after a 15-day 

integration in the old and new DFS models using Grid [0] at the resolutions 𝐽଴ ൌ 64 and 𝐽଴ ൌ 960. While the zonal 15 

wavenumber 1 component is dominant in the new DFS model at the resolution 𝐽଴ ൌ 64  and 𝑁 ൌ 63 , high zonal 

wavenumber noise appears in the old DFS model at the same resolution. One possible reason is that the latitudinal derivative 

at the grid points can be unrealistically large in the old DFS method even when 𝑁ᇱ ൌ 𝐽଴ for even 𝑚 ሺ൒ 2ሻ as described in 

Sect. 4 (Fig. 3b). The new DFS expansion method with the least-squares method does not have this problem. By using the 

new expansion method with the least-squares method, the high zonal wavenumber noise does not appear even in the model 20 

that uses the same DFS basis functions as in Eq. (11) except that the basis function for odd 𝑚 ሺ൒ 3ሻ is sin 𝜃 cos 𝑛𝜃 instead 

of sinଶ 𝜃 sin 𝑛𝜃. In the old DFS model at high resolution with 𝐽଴ ൌ 960 and 𝑁 ൌ 959, the high wavenumber noise is not 

seen in Fig. 7. The higher the resolution, the smaller the high wavenumber noise becomes. 

Figure 8 shows the kinetic energy spectra of the horizontal winds (Lambert, 1984) after a 15-day integration in 

Williamson test case 5. The kinetic energy spectra in the DFS models are calculated from the SH expansion coefficients, 25 

which are obtained by firstly calculating the Gaussian grid point values from the DFS coefficients using Eq. (10) for the new 

DFS method and Eq. (6) for the old DFS method, and secondly calculating the SH expansion coefficients from the Gaussian 

grid point values by using a forward Legendre transform. In the old DFS model with 𝐽଴ ൌ 64 and 𝑁 ൌ 63 , the high 

wavenumber components are larger than in the other models, which is related to the high wavenumber noise near the South 

Pole in Fig. 7. In the old DFS model with 𝐽଴ ൌ 960, the high wavenumber components are a little larger than in the other 30 

models, but the differences are slight. 
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Figure 9 shows the predicted height after a 15-day integration in Williamson test case 5, which is the same as Fig. 6 except 

for the truncation wavenumber 𝑁 ൌ 42 ≅ 2𝐽଴ 3⁄ . In our semi-implicit semi-Lagrangian models, we usually use 𝑁 satisfying 

𝑁 ≅ 𝐽଴ െ 1, which is called linear truncation. However, here 𝑁 is determined to satisfy 𝑁 ≅ 2𝐽଴ 3⁄  to eliminate aliasing 

errors with quadratic nonlinearity, which is called quadratic truncation. When using the quadratic truncation, the new DFS 

models with Grids [0], [1], and [−1] are stable without horizontal diffusion, but the old DFS model without strong high-order 5 

horizontal diffusion is unstable. The numerical instability in the old DFS model probably occurs because of the high-

wavenumber oscillations due to the quadratic wavenumber truncation for even 𝑚 ሺ് 0ሻ (See Sect. 4) as in the Williamson 

test case 1 with the Eulerian model. The results of the new DFS models are almost the same as those of the SH model. Table 

8 is the same as Table 7 except for 𝑁 ≅ 2𝐽଴ 3⁄ . The results of the new DFS models and the SH model with 𝑁 ≅ 2𝐽଴ 3⁄  in 

Table 8 are very similar to those with 𝑁 ≅ 𝐽଴ െ 1 in Table 7 when 𝐽଴ is the same. 10 

Figure 10 shows the kinetic energy spectrum of the horizontal winds after a 15-day integration in Williamson test case 5, 

which is the same as Fig. 8 except for the truncation wavenumber 𝑁 ≅ 2𝐽଴ 3⁄ . At the resolution 𝐽଴ ൌ 64 and 𝑁 ൌ 42, the 

high wavenumber components are a little larger in the SH model than in the new DFS model. At the resolution 𝐽଴ ൌ 960 and 

𝑁 ൌ 639, very small oscillations appear in the high wavenumber region in the SH model, but not in the new DFS models. In 

the SH model, the wind components 𝑢 and 𝑣 divided by sin 𝜃 are transformed from grid space to spectral space (Ritchie, 15 

1988; Temperton, 1991), which seems to reduce the accuracy and cause the small oscillations in the high wavenumber 

region. Another way to transform 𝑢 and 𝑣 from grid space to spectral space in the SH model is to use the vector harmonic 

transform (see Sect. 3.6). This way is algebraically equivalent to the way dividing 𝑢 and 𝑣 by sin 𝜃 (Temperton, 1991), but 

avoids dividing 𝑢 and 𝑣  by sin 𝜃 and provides the remarkable stability and accuracy (Swarztrauber, 2004). This way is 

similar to the new DFS expansion method for 𝑢 and 𝑣 using the least-squares method described in Sect. 3.6, and probably 20 

eliminates the small oscillations in the SH model. Alternatively, using 𝐷 and 𝜁 instead of 𝑢 and 𝑣 as prognostic variables 

may eliminate the small oscillations. 

6.6 Williamson test case 6 

Figure 11 shows the predicted height after a 14-day integration in Williamson test case 6. The error is similar between the 

old and new DFS models using Grid [0] and the SH model. The error in the new DFS model using Grid [1] is the smallest. 25 

This is probably because Grid [1] has grid points at the poles, where the minimum height exists, and on the equator, where 

the maximum height exists. The error in the new DFS model using Grid [−1] is the second smallest. This is probably because 

Grid [−1] has grid points on the equator. Table 9 shows the normalized Lଶ errors of the predicted height after a 14-day 

integration. The error in the new DFS model using Grid [1] is the smallest, and that in the new DFS model using Grid [−1] is 

the second smallest, at each resolution. The errors in the old and new DFS models using Grid [0] and in the SH model are 30 

very close. 
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6.7 Galewsky test case 

The Galewsky test case simulates a barotropically unstable mid-latitude jet. Figure 12 shows the predicted vorticity after a 6-

day integration in the Galewsky test case for the models at 1.3 km resolution with 𝐽଴ ൌ 15360 and the quadratic truncation 

𝑁 ൌ 10239, without horizontal diffusion. The result in the new DFS model using Grid [0] is almost the same as in the SH 

model. The old DFS model is unstable for the same reason as that shown in Sect. 6.5 (Fig. 9). Figure 13 shows the kinetic 5 

energy spectrum of horizontal winds after a 6-day integration in the Galewsky test case. The results are almost the same for 

the DFS models using Grid [0], [1] and [−1], and the SH model, but very small oscillations appear near the truncation 

wavenumber in the SH model. This is probably for the same reason as in Williamson test case 5 in Fig. 10. 

The results of the Galewsky-like test case using the north-south symmetric initial conditions are shown in Sect. S3 in the 

supplement. 10 

6.8 Elapsed time 

Figure 14 shows the elapsed time for the 15-day integration in the Williamson test case 5 in the SH model and the new DFS 

model using Grid [0] at 20 km resolution with 𝐽଴ ൌ 960 and 𝑁 ൌ 958 (SH) or 𝑁 ൌ 959 (DFS), and that for the 6-day 

integration in the Galewsky test case at 1.3 km resolution with 𝐽଴ ൌ 15360 and 𝑁 ൌ 10239. We use one node (with two 

Intel Xeon Gold 6248 CPUs with 20 cores per CPU) of the FUJITSU Server PRIMERGY CX2550 M5 in the MRI. The 15 

source code written in Fortran is compiled with the Intel compiler. OpenMP parallelization is used, but MPI parallelization is 

not used. The elapsed time in the SH model is larger than in the DFS model, although the Legendre transform used in the SH 

model is highly optimized for Intel AVX512. The higher the resolution, the larger is the difference of the elapsed time 

between the models. This is because the Legendre transform used in the SH model requires Oሺ𝑁ଷሻ operations while the 

Fourier cosine and sine transforms used in the DFS model require only Oሺ𝑁ଶ log 𝑁ሻ  operations. If the fast Legendre 20 

transform, which requires only 𝑁ଶሺlog 𝑁ሻଷ operation, is used instead of the usual Legendre transform in the SH model, the 

difference of the elapsed time between the models will be reduced at high resolutions. We have not tested the fast Legendre 

transform yet because we do not have subroutines for the fast Legendre transform. 

7 Conclusions and perspectives 

We have developed the new DFS method to improve the numerical stability of the DFS model, which has the following two 25 

improvements: 

1. A new expansion method with the least-squares method is used to calculate the expansion coefficients so that the error due 

to the meridional wavenumber truncation is minimized. The method also avoids dividing by sin 𝜃 before taking the forward 

Fourier cosine or sine transform. 
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2. New DFS basis functions are used, which guarantees that not only scalar variables, but also vector variables and the 

gradient of scalar variables, are continuous at the poles. 

The equations obtained with the least-squares method are equivalent to those obtained with the Galerkin method. We also 

use the Galerkin method to solve partial differential equations such as the Poisson equation, the Helmholtz equation, and the 

shallow water equations. 5 

To test the new DFS method, we conducted experiments for the Williamson test cases 2, 5 and 6, and the Galewsky test 

case in the semi-implicit semi-Lagrangian shallow water models using the new DFS method with the three types of equally 

spaced latitudinal grids with or without the poles. We also ran the Williamson test case 1, which simulates a cosine-bell 

advection, in the Eulerian and semi-Lagrangian advection models. We compared the results between the new DFS models 

using the new DFS method, the old DFS model using the method of Yoshimura and Matsumura (2005) with the basis 10 

functions of Cheong (2000a, 2000b), and the SH model. 

The high zonal wavenumber noise of the meridional wind appears near the poles in the old DFS model, but not in the new 

DFS models in the Williamson test case 5. One possible reason is that the latitudinal derivative at the grid points can be 

unrealistically large in the old DFS method even when the truncation wavenumber 𝑁ᇱ for even 𝑚 ሺ് 0ሻ is equal to the 

number of latitudinal grid points 𝐽, while the new DFS expansion method with the least-squares method does not have this 15 

problem. In the old DFS model, 𝑁ᇱ ൏ 𝐽 for even 𝑚 ሺ് 0ሻ causes numerical instability. In the new DFS model, an arbitrary 

meridional wavenumber truncation 𝑁 ሺ൏ 𝐽ሻ can be used without the stability problem because the error due to meridional 

wavenumber truncation is small when using the new DFS expansion method with the least-squares method. This is one of 

the merits of the new DFS method because the quadratic truncation ሺ𝑁 ≅ 2𝐽 3⁄ ሻ or the cubic truncation ሺ𝑁 ≅ 𝐽 2⁄ ሻ is usually 

used in the Eulerian model and is also becoming to be used in the semi-Lagrangian model instead of the linear truncation 20 

ሺ𝑁 ≅ 𝐽 െ 1ሻ for stability and efficiency at high resolutions (Wedi, 2014; Hotta and Ujiie, 2018; Dueben et al., 2020). We 

have also confirmed that in the new DFS model, stable integration is possible in all test cases shown here even without using 

the zonal Fourier filter unlike in the old DFS model. Thus, the numerical stability of the semi-implicit semi-Lagrangian 

model using the new DFS method is very good. In the Williamson test cases 1, the Eulerian advection model using the new 

DFS method also gives stable results without horizontal diffusion but with a zonal Fourier filter. The Eulerian advection 25 

model using the old DFS method is unstable without horizontal diffusion or with the weak fourth-order horizontal diffusion. 

In the old DFS model, the use of the semi-Lagrangian scheme is important for numerical stability. On the other hand, the 

advection model using the new DFS method is stable, even when the Eulerian scheme is used instead of the semi-Lagrangian 

scheme. 

The results of the new DFS model are almost the same as the SH model. But in the SH shallow water model without 30 

horizontal diffusion, very small oscillations appear in the high wavenumber region of the kinetic energy spectrum in some 

cases, unlike in the new DFS model. This seems to be because the wind components 𝑢  and 𝑣  divided by sin 𝜃  are 

transformed from grid space to spectral space in the SH model. The small oscillations with the SH model can probably be 

eliminated by using the vector harmonic transform, which is similar to the new DFS expansion method for 𝑢 and 𝑣 using the 
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least-squares method and avoids dividing 𝑢 and 𝑣 by sin 𝜃. Alternatively, using divergence and vorticity instead of 𝑢 and 𝑣 

as prognostic variables may eliminate the small oscillations. 

The elapsed time in the new DFS model is shorter than in the SH model especially at high resolution because the Fourier 

transform requires only Oሺ𝑁ଶ log 𝑁ሻ operations, and the Legendre transform in the SH model requires Oሺ𝑁ଷሻ operations. 

We have executed our shallow water models on Intel CPUs. The execution on GPUs is one important topic, but we have not 5 

tested our models on GPUs because the execution on GPUs is not an easy task. MPI parallelization is another important 

topic. However, in our shallow water models, we use only OpenMP parallelization, not MPI parallelization for the simplicity 

of the source code. 

We developed hydrostatic and nonhydrostatic global atmospheric models using the old DFS method (Yoshimura and 

Matsumura, 2005; Yoshimura, 2012) and conducted typhoon prediction experiments in the nonhydrostatic global 10 

atmospheric model using the old DFS method in the Global 7 km mesh nonhydrostatic Model Intercomparison Project for 

improving TYphoon forecast (TYMIP-G7; Nakano et al., 2017). We have already developed a nonhydrostatic (or 

hydrostatic) atmospheric model using the new DFS method, where both OpenMP and MPI parallelization are used. We will 

describe the nonhydrostatic DFS model and the MPI parallelization in another paper after improving the nonhydrostatic 

dynamical core as needed. 15 

 

Supplement. The supplement related to this article is available online at ... 

 

Code availability. The source code of the DFS and SH shallow water models is available in the supplement to the article and 

is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) 20 

license. These models utilize the Netlib BIHAR library and the ISPACK library. The Netlib BIHAR library is available at 

https://www.netlib.org/bihar/ and is also included in the supplement. The ISPACK library is available at https://www.gfd-

dennou.org/arch/ispack/. 

 

Data availability. The results of model experiments are available at https://climate.mri-25 

jma.go.jp/pub/archives/Yoshimura_DFS_SW_Testcase/. 

 

Appendix A: Trigonometric identities 

We list here the trigonometric identities used in transforming the expressions in this paper. The following identities are 

satisfied: 30 

sin 𝑛𝜃 cos 𝑛′𝜃 ൌ
1
2

ሾsinሺ𝑛 ൅ 𝑛′ሻ𝜃 ൅ sinሺ𝑛 െ 𝑛′ሻ𝜃ሿ,                                            ሺA1aሻ 
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cos 𝑛𝜃 sin 𝑛′𝜃 ൌ
1
2

ሾsinሺ𝑛 ൅ 𝑛′ሻ𝜃 െ sinሺ𝑛 െ 𝑛′ሻ𝜃ሿ,                                            ሺA1bሻ 

cos 𝑛𝜃 cos 𝑛′𝜃 ൌ
1
2

ሾcosሺ𝑛 ൅ 𝑛′ሻ𝜃 ൅ cosሺ𝑛 െ 𝑛′ሻ𝜃ሿ,                                            ሺA1cሻ 

sin 𝑛𝜃 sin 𝑛′𝜃 ൌ
1
2

ሾെ cosሺ𝑛 ൅ 𝑛′ሻ𝜃 ൅ cosሺ𝑛 െ 𝑛′ሻ𝜃ሿ.                                        ሺA1dሻ 

From Eq. (A1), the following identities are derived: 

sin 𝜃 cos 𝑛𝜃 ൌ
1
2

ሾsinሺ𝑛 ൅ 1ሻ𝜃 െ sinሺ𝑛 െ 1ሻ𝜃ሿ,                                                      ሺA2aሻ 5 

sin 𝜃 sin 𝑛𝜃 ൌ
1
2

ሾെ cosሺ𝑛 ൅ 1ሻ𝜃 ൅ cosሺ𝑛 െ 1ሻ𝜃ሿ,                                                ሺA2bሻ 

sinଶ 𝜃 sin 𝑛𝜃 ൌ
1
4

ሾെ sinሺ𝑛 െ 2ሻ𝜃 ൅ 2 sin 𝑛𝜃 െ sinሺ𝑛 ൅ 2ሻ𝜃ሿ,                             ሺA2cሻ 

sinଶ 𝜃 cos 𝑛𝜃 ൌ
1
4

ሾെ cosሺ𝑛 െ 2ሻ𝜃 ൅ 2 cos 𝑛𝜃 െ cosሺ𝑛 ൅ 2ሻ𝜃ሿ,                           ሺA2dሻ 

sinସ 𝜃 sin 𝑛𝜃 ൌ
1

16
ሾsinሺ𝑛 െ 4ሻ𝜃 െ 4 sinሺ𝑛 െ 2ሻ𝜃 ൅ 6 sin 𝑛𝜃 െ 4 sinሺ𝑛 ൅ 2ሻ𝜃 ൅ sinሺ𝑛 ൅ 4ሻ𝜃ሿ.    ሺA2eሻ 

From Eq. (A1), the following orthogonal relations in longitude are derived: 10 

න cos 𝑚𝜆 cos 𝑚′𝜆
ଶగ

଴
𝑑𝜆 ൌ ൝

2𝜋      for 𝑚 ൌ 𝑚′ ൌ 0,
𝜋        for 𝑚 ൌ 𝑚′ ് 0,
0        for 𝑚 ് 𝑚ᇱ,         

                                            ሺA3aሻ 

න cos 𝑚𝜆 sin 𝑚′𝜆
ଶగ

଴
𝑑𝜆 ൌ 0,                                                                                     ሺA3bሻ 

න sin 𝑚𝜆 sin 𝑚′𝜆
ଶగ

଴
𝑑𝜆 ൌ ቄ𝜋        for 𝑚 ൌ 𝑚′ ് 0,

0        for 𝑚 ് 𝑚ᇱ.         
                                             ሺA3cሻ 

Similarly, from Eq. (A1), the following orthogonal relations in latitude are derived: 

න cos 𝑛𝜃 cos 𝑛′𝜃
గ

଴
𝑑𝜃 ൌ ൞

𝜋         for 𝑛 ൌ 𝑛′ ൌ 0,
1
2

𝜋      for 𝑛 ൌ 𝑛′ ് 0,

 0         for 𝑛 ് 𝑛ᇱ,         

                                           ሺA4aሻ 15 

න sin 𝑛𝜃 sin 𝑛′𝜃
గ

଴
𝑑𝜃 ൌ ൝

1
2

𝜋        for 𝑛 ൌ 𝑛′ ് 0,

  0          for 𝑛 ് 𝑛ᇱ.         
                                           ሺA4bሻ 

By using Eqs. (A1) and (A2), the following relations are derived: 

𝜕
𝜕𝜃

ሺsin௟ 𝜃 cos 𝑛𝜃ሻ ൌ
𝑛 ൅ 𝑙

2
sin௟ିଵ 𝜃 cosሺ𝑛 ൅ 1ሻ𝜃 െ

𝑛 െ 𝑙
2

sin௟ିଵ 𝜃 cosሺ𝑛 െ 1ሻ𝜃,                       ሺA5aሻ 

sin 𝜃
𝜕

𝜕𝜃
൤sin 𝜃

𝜕
𝜕𝜃

ሺsin௟ 𝜃 cos 𝑛𝜃ሻ൨ ൌ
ሺ𝑛 ൅ 𝑙ሻሺ𝑛 ൅ 𝑙 ൅ 1ሻ

4
sin௟ 𝜃 cosሺ𝑛 ൅ 2ሻ𝜃                                           

െ
2𝑛ଶ െ 2𝑙ଶ ൅ 2𝑙

4
sin௟ 𝜃 cos 𝑛𝜃 ൅

ሺ𝑛 െ 𝑙ሻሺ𝑛 െ 𝑙 െ 1ሻ

4
sin௟ 𝜃 cosሺ𝑛 െ 2ሻ𝜃,         ሺA5bሻ 20 
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𝜕
𝜕𝜃

ሺsin௟ 𝜃 sin 𝑛𝜃ሻ ൌ
𝑛 ൅ 𝑙

2
sin௟ିଵ 𝜃 sinሺ𝑛 ൅ 1ሻ𝜃 െ

𝑛 െ 𝑙
2

sin௟ିଵ 𝜃 sinሺ𝑛 െ 1ሻ𝜃 ,                         ሺA5cሻ 

sin 𝜃
𝜕

𝜕𝜃
൤sin 𝜃

𝜕
𝜕𝜃

ሺsin௟ 𝜃 sin 𝑛𝜃ሻ൨ ൌ
ሺ𝑛 ൅ 𝑙ሻሺ𝑛 ൅ 𝑙 ൅ 1ሻ

4
sin௟ 𝜃 sinሺ𝑛 ൅ 2ሻ𝜃                                           

െ
2𝑛ଶ െ 2𝑙ଶ ൅ 2𝑙

4
sin௟ 𝜃 sin 𝑛𝜃 ൅

ሺ𝑛 െ 𝑙ሻሺ𝑛 െ 𝑙 െ 1ሻ

4
sin௟ 𝜃 sinሺ𝑛 െ 2ሻ𝜃,         ሺA5dሻ 

Appendix B: Discrete Fourier cosine and sine transforms in latitude 

Forward discrete Fourier cosine and sine transforms are performed in Eqs. (23) and (57), and inverse discrete Fourier cosine 5 

and sine transforms are performed in Eqs. (13), (52), in the latitudinal direction. The calculation of the discrete cosine and 

sine transforms in Grids [0], [1], and [−1] is shown below. Here, 𝑔൫𝜃௝൯ and ℎ൫𝜃௝൯ are grid-point values, 𝜃௝ is the colatitude 

defined in Eq. (7), and 𝑔௡ and ℎ௡ are expansion coefficients. 

When using Grid [0], inverse and forward discrete cosine transforms are performed as 

𝑔൫𝜃௝൯ ൌ ෍ 𝑔௡ cos 𝑛𝜃௝

௃బିଵ

௡ୀ଴

,                                                                                         ሺB1aሻ 10 

𝑔௡ ൌ
𝑏
𝐽଴ ෍ 𝑔൫𝜃௝൯ cos 𝑛𝜃௝

௃బିଵ

௝ୀ଴

,    𝑏 ≡ ൜
 1  for 𝑛 ൌ 0                  
 2  for 1 ൑ 𝑛 ൑ 𝐽଴ െ 1.                           ሺB1bሻ 

When using Grid [0], inverse and forward discrete sine transforms are performed as 

ℎ൫𝜃௝൯ ൌ ෍ ℎ௡ sin 𝑛𝜃௝

௃బ

௡ୀଵ

,                                                                                           ሺB2aሻ 

ℎ௡ ൌ
𝑏
𝐽଴ ෍ ℎ൫𝜃௝൯ sin 𝑛𝜃௝

௃బିଵ

௝ୀ଴

, 𝑏 ≡ ൜
1  for 𝑛 ൌ 𝐽଴                

 2  for 1 ൑ 𝑛 ൑ 𝐽଴ െ 1.
                        ሺB2bሻ 

When using Grid [1], inverse and forward discrete cosine transforms are performed as 15 

𝑔൫𝜃௝൯ ൌ ෍ 𝑔௡ cos 𝑛𝜃௝

௃బ

௡ୀ଴

,                                                                                              ሺB3aሻ 

𝑔௡ ൌ
𝑏
𝐽଴ ෍ 𝑐 𝑔൫𝜃௝൯ cos 𝑛𝜃௝

௃బ

௝ୀ଴

,                                                                                                    

𝑏 ≡ ൜
 1  for 𝑛 ൌ 0, 𝐽଴           
 2  for 1 ൑ 𝑛 ൑ 𝐽଴ െ 1

,     𝑐 ≡ ൜
1 2⁄    for 𝑗 ൌ 0, 𝐽଴           
 1      for 1 ൑ 𝑗 ൑ 𝐽଴ െ 1.

                 ሺB3bሻ 

When using Grid [1], inverse and forward discrete sine transforms are performed as 
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ℎ൫𝜃௝൯ ൌ ෍ ℎ௡ sin 𝑛𝜃௝

௃బିଵ

௡ୀଵ

,   ℎሺ𝜃଴ሻ ൌ ℎ൫𝜃௃బ൯ ൌ 0,                                                       ሺB4aሻ 

ℎ௡ ൌ
2
𝐽଴ ෍ ℎ൫𝜃௝൯ sin 𝑛𝜃௝

௃బିଵ

௝ୀଵ

   ሺ 1 ൑ 𝑛 ൑ 𝐽଴ െ 1ሻ.                                                       ሺB4bሻ 

Grid [−1] is the same as Grid [1], except that there are no grid points at the North and South poles. The zonal wavenumber 

components of scalar variables at the poles are zero except for 𝑚 ൌ 0 (See Eqs. (10) and (11)), and those of vector variables 

at the poles are zero except for 𝑚 ൌ 1 (See Eq. (52)). When we use Grid [−1] and the values at the poles are known to be 5 

zero, forward and inverse discrete cosine transforms can be performed using Eq. (B3) and forward and inverse discrete sine 

transforms can be performed using Eq. (B4) in the same way as for Grid [1]. When we use Grid [−1] and the values at the 

poles are unknown (i.e., the zonal wavenumber components of scalar variables for 𝑚 ൌ 0, and those of vector variables for 

𝑚 ൌ 1), the inverse discrete cosine transform can be performed like Eq. (B3a) as 

𝑔൫𝜃௝൯ ൌ ෍ 𝑔௡ cos 𝑛𝜃௝

௃బିଶ

௡ୀ଴

,                                                                                              ሺB5ሻ 10 

where 𝑛  is from 0 to 𝐽଴ െ 2 ሺൌ 𝐽 െ 1ሻ  because the number of the meridional grid points is 𝐽଴ െ 1 ሺൌ 𝐽ሻ  in Grid [−1]. 

However, the forward discrete cosine transform cannot be performed like Eq. (B3b). We can calculate the expansion 

coefficients 𝑔௡ from 𝑔൫𝜃௝൯ in the following way. Eq. (B5) is multiplied by sin 𝜃௝, and we define 𝑔ො൫𝜃௝൯ as 

𝑔ො൫𝜃௝൯ ≡ 𝑔൫𝜃௝൯ sin 𝜃௝ ൌ ෍ 𝑔௡ sin 𝜃௝ cos 𝑛𝜃௝

௃బିଶ

௡ୀ଴

.                                                          ሺB6ሻ 

We can expand 𝑔ො൫𝜃௝൯ as 15 

𝑔ො൫𝜃௝൯ ൌ ෍ 𝑔ො௡ sin 𝑛𝜃௝

௃బିଵ

௡ୀଵ

.                                                                              ሺB7ሻ 

The expansion coefficients 𝑔ො௡  can be obtained from 𝑔ො൫𝜃௝൯ in the same way as in Eq. (B4b) by forward discrete sine 

transform: 

𝑔ො௡ ൌ
2
𝐽଴ ෍ 𝑔ො൫𝜃௝൯ sin 𝑛𝜃௝ .

௃బିଵ

௝ୀଵ

                                                                       ሺB8ሻ 

From Eqs. (B6) and (B7), we obtain 20 

෍ 𝑔௡ sin 𝜃 cos 𝑛𝜃

௃బିଶ

௡ୀ଴

ൌ ෍ 𝑔ො௡ sin 𝑛𝜃

௃బିଵ

௡ୀଵ

,                                                         ሺB9ሻ 

By using Eq. (A2a), we obtain 
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෍ 𝑔௡ sin 𝜃 cos 𝑛𝜃

௃బିଶ

௡ୀ଴

ൌ ቀ𝑔଴ െ
𝑔ଶ

2
ቁ sin 𝜃 ൅ ෍ ቀ

𝑔௡ିଵ

2
െ

𝑔௡ାଵ

2
ቁ

௃బିଷ

௡ୀଶ

sin 𝑛𝜃 ൅
𝑔௃బିଷ

2
sinሺ𝐽଴ െ 2ሻ𝜃 ൅

𝑔௃బିଶ

2
sinሺ𝐽଴ െ 1ሻ𝜃 .   ሺB10ሻ 

By substituting Eq. (B10) into Eq. (B9) and comparing the left and right sides of the equation, we obtain 

𝑔ො௡ ൌ

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑔଴ െ

𝑔ଶ

2
         for 𝑛 ൌ 1,            

𝑔௡ିଵ

2
െ

𝑔௡ାଵ

2
   for 2 ൑ 𝑛 ൑ 𝐽଴ െ 3,

𝑔௃బିଷ

2
          for 𝑛 ൌ 𝐽଴ െ 2,

𝑔௃బିଶ

2
          for 𝑛 ൌ 𝐽଴ െ 1.

                                                                 ሺB11ሻ 

We can calculate 𝑔ො൫𝜃௝൯ from 𝑔൫𝜃௝൯ using Eq. (B6), calculate 𝑔ො௡ from 𝑔ො൫𝜃௝൯ using Eq. (B8), and calculate 𝑔௡ from 𝑔ො௡ using 

Eq. (B11). 5 

Appendix C: The upper limit of the meridional truncation wavenumber N 

In the new DFS method, the meridional truncation wavenumber 𝑁 is used for the new DFS meridional basis functions in Eq. 

(12), and for the discrete cosine or sine transform of a scalar variable (Eqs. (13) and (23)), derivatives of a scalar variable 

(Eqs. (18) and (20)) and a wind vector (Eqs. (52) and (57)). In Grid [0], the upper limit of 𝑁 is 𝐽଴ െ 1 for each 𝑚 because the 

discrete cosine transform in Eq. (B1), where the maximum value of 𝑛 is 𝐽଴ െ 1, is used for a scalar variable when 𝑚 is even, 10 

and for vector components when 𝑚 is odd. In Grid [1], the upper limit of 𝑁 is 𝐽଴ െ 1 for each 𝑚 because the discrete sine 

transform in Eq. (B4), where the maximum value of 𝑛 is 𝐽଴ െ 1, is used for a scalar variable when 𝑚 is odd, and for vector 

components when 𝑚 is even. In Grid [−1], the upper limit of 𝑁 is 𝐽଴ െ 1 for 𝑚 ൒ 2 because of the same reason as in Grid [1]. 

However, for 𝑚 ൌ 0 or 1 in Grid [−1], the upper limit of 𝑁 is 𝐽଴ െ 2 because the discrete cosine transform in Eq. (B5), 

where the maximum value of 𝑛 is 𝐽଴ െ 2, is used for a scalar variable when 𝑚 ൌ 0, and for vector components when 𝑚 ൌ 1. 15 

Thus, the upper limit of 𝑁 is 𝐽଴ െ 1, except that the upper limit of 𝑁 for 𝑚 ൌ 0 or 1 in Grid [−1] is 𝐽଴ െ 2. For example, in 

the model using the new DFS method with Grid [−1] at the resolution 𝐽଴ ൌ 64 and 𝑁 ൌ 63, we set 𝑁 ൌ 63 for 𝑚 ൒ 2 but 

𝑁 ൌ 62 for 𝑚 ൌ 0 or 1. 

Appendix D: Equations for the derivation of Eqs. (29) and (62) 

𝑇෨௡,௠
ୡሺୱሻ in Eq. (23) is calculated by the forward Fourier cosine or sine transform as 20 

𝑇෨௡,௠
ୡሺୱሻ ൌ

⎩
⎪
⎨

⎪
⎧

𝑏
𝜋

න cos 𝑛𝜃 𝑇௠
ୡሺୱሻሺ𝜃ሻ𝑑𝜃

గ

଴
,   𝑏 ≡ ൜

 1  for 𝑛 ൌ 0
 2  for 𝑛 ് 0,

   for even 𝑚,

 
2
𝜋

න sin 𝑛𝜃 𝑇௠
ୡሺୱሻሺ𝜃ሻ𝑑𝜃

గ

଴
                                           for odd 𝑚.   

 

                                     ሺD1ሻ 
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The equations for the forward discrete Fourier cosine or sine transform are described in Appendix B. From Eq. (23) and (A4), 

𝑏
𝜋

න cos 𝑛𝜃 𝑇෨௠
ୡሺୱሻ,ேሺ𝜃ሻ𝑑𝜃

గ

଴
ൌ 𝑇෨௡,௠

ୡሺୱሻ    ሺ𝑛 ൌ 0, … , 𝑁ሻ  for even 𝑚,                                       ሺD2aሻ 

2
𝜋

න sin 𝑛𝜃 𝑇෨௠
ୡሺୱሻ,ேሺ𝜃ሻ𝑑𝜃

గ

଴
ൌ 𝑇෨௡,௠

ୡሺୱሻ    ሺ𝑛 ൌ 1, … , 𝑁ሻ  for odd 𝑚                                         ሺD2bሻ 

are also derived. From Eqs. (D1) and (D2), 

න cos 𝑛𝜃 𝑇௠
ୡሺୱሻሺ𝜃ሻ𝑑𝜃

గ

଴
ൌ න cos 𝑛𝜃 𝑇෨௠

ୡሺୱሻ,ேሺ𝜃ሻ𝑑𝜃
గ

଴
  ሺ𝑛 ൌ 0, … , 𝑁ሻ  for even 𝑚,                     ሺD3aሻ 5 

න sin 𝑛𝜃 𝑇௠
ୡሺୱሻሺ𝜃ሻ𝑑𝜃

గ

଴
ൌ න sin 𝑛𝜃 𝑇෨௠

ୡሺୱሻ,ேሺ𝜃ሻ𝑑𝜃
గ

଴
  ሺ𝑛 ൌ 1, … , 𝑁ሻ  for odd 𝑚                        ሺD3bሻ 

are satisfied. From Eqs. (D3), (11), (12) and (A2a–c), we derive 

න 𝑆௡,௠ሺ𝜃ሻ𝑇௠
ୡሺୱሻሺ𝜃ሻ𝑑𝜃

గ

଴
ൌ න 𝑆௡,௠ሺ𝜃ሻ𝑇෨௠

ୡሺୱሻ,ேሺ𝜃ሻ𝑑𝜃
గ

଴
   ൫𝑛 ൌ 𝑁୫୧୬,௠, … , 𝑁୫ୟ୶,௠൯.                      ሺD4ሻ 

From Eqs. (28) and (D4), we derive Eq. (29). 

We can also derive the following equations from Eq. (57) in the similar way to the derivation of (D3): 10 

න sin 𝑛𝜃 𝑢௠
ୡሺୱሻሺ𝜃ሻ𝑑𝜃

గ

଴
ൌ න sin 𝑛𝜃 𝑢෤௠

ୡሺୱሻ,ேሺ𝜃ሻ𝑑𝜃
గ

଴
  ሺ𝑛 ൌ 1, … , 𝑁ሻ  for even 𝑚,                       ሺD5aሻ 

න cos 𝑛𝜃 𝑢௠
ୡሺୱሻሺ𝜃ሻ𝑑𝜃

గ

଴
ൌ න cos 𝑛𝜃 𝑢෤௠

ୡሺୱሻ,ேሺ𝜃ሻ𝑑𝜃
గ

଴
  ሺ𝑛 ൌ 0, … , 𝑁ሻ  for odd 𝑚.                        ሺD5bሻ 

From Eqs. (D5), (11), (12), and (A2a–c), we derive 

න
𝑚𝑆௡,௠ሺ𝜃ሻ

sin 𝜃
𝑢௠

ୡሺୱሻሺ𝜃ሻ𝑑𝜃
గ

଴
ൌ න

𝑚𝑆௡,௠ሺ𝜃ሻ

sin 𝜃
𝑢෤௠

ୡሺୱሻ,ேሺ𝜃ሻ𝑑𝜃
గ

଴
   ൫𝑛 ൌ 𝑁୫୧୬,௠, … , 𝑁୫ୟ୶,௠൯,             ሺD6aሻ 

න
𝜕𝑆௡,௠ሺ𝜃ሻ

𝜕𝜃
𝑢௠

ୡሺୱሻሺ𝜃ሻ𝑑𝜃
గ

଴
ൌ න

𝜕𝑆௡,௠ሺ𝜃ሻ

𝜕𝜃
𝑢෤௠

ୡሺୱሻ,ேሺ𝜃ሻ𝑑𝜃
గ

଴
   ൫𝑛 ൌ 𝑁୫୧୬,௠, … , 𝑁୫ୟ୶,௠൯.              ሺD6bሻ 15 

We can also derive the same equations as Eq. (D6) except that 𝑢 is replaced with 𝑣. Equation (D6) are used to derive Eq. 

(62). 

Appendix E: Derivation of Eq. (30) from Eq. (29) 

Here we derive Eq. (30d) for odd ሺ𝑚 ൒ 3ሻ from Eq. (29). Eqs. (30b,c) can also be derived similarly. By using Eqs. (10), (11), 

(23) and (A2c,e), Eq. (29) is converted as follows: 20 

ሺl. h. s of Eq. ሺ29ሻ for odd 𝑚 ൒ 3ሻ ൌ න 𝑆௡,௠ሺ𝜃ሻ𝑇௠
ୡ,ேሺ𝜃ሻ𝑑𝜃

గ

଴
ൌ න sinଶ 𝜃 sin 𝑛𝜃 ෍ 𝑇௡ᇲ,௠

ୡ sinଶ 𝜃 sin 𝑛ᇱ𝜃

ேିଶ

௡ᇲୀଵ

𝑑𝜃
గ

଴
                         

ൌ න sin 𝑛𝜃 ෍
𝑇௡ᇲ,௠

ୡ

16
ሾsinሺ𝑛ᇱ െ 4ሻ𝜃 െ 4 sinሺ𝑛ᇱ െ 2ሻ𝜃 ൅ 6 sin 𝑛ᇱ𝜃 െ 4 sinሺ𝑛ᇱ ൅ 2ሻ𝜃 ൅ sinሺ𝑛ᇱ ൅ 4ሻ𝜃ሿ

ேିଶ

௡ᇲୀଵ

𝑑𝜃
గ

଴
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ൌ න sin 𝑛𝜃 ቈ
10𝑇ଵ,௠

ୡ െ 5𝑇ଷ,௠
ୡ ൅ 𝑇ହ,௠

ୡ

16
sin 𝜃 ൅

5𝑇ଶ,௠
ୡ െ 4𝑇ସ,௠

ୡ ൅ 𝑇଺,௠
ୡ

16
sin 2𝜃 ൅

െ5𝑇ଵ,௠
ୡ ൅ 6𝑇ଷ,௠

ୡ െ 4𝑇ହ,௠
ୡ ൅ 𝑇଻,௠

ୡ

16
sin 3𝜃

గ

଴
    

൅ ෍
𝑇௡ᇲିସ,௠

ୡ െ 4𝑇௡ᇲିଶ,௠
ୡ ൅ 6𝑇௡ᇲ,௠

ୡ െ 4𝑇௡ᇲାଶ,௠
ୡ ൅ 𝑇௡ᇲାସ,௠

ୡ

16
sin 𝑛ᇱ𝜃

ேାଶ

௡ᇲୀସ

൩ 𝑑𝜃,                     ሺE1ሻ 

ሺr. h. s of Eq. ሺ29ሻ for odd 𝑚 ൒ 3ሻ ൌ න 𝑆௡,௠ሺ𝜃ሻ𝑇෨௠
ୡሺୱሻ,ேሺ𝜃ሻ𝑑𝜃

గ

଴
ൌ න sinଶ 𝜃 sin 𝑛𝜃 ෍ 𝑇෨௡ᇲ,௠

ୡ sin 𝑛ᇱ𝜃

ே

௡ᇲୀଵ

𝑑𝜃
గ

଴
                                      

ൌ න sin 𝑛𝜃 ෍
𝑇෨௡ᇲ,௠

ୡ

4
ሾെ sinሺ𝑛ᇱ െ 2ሻ𝜃 ൅ 2 sin 𝑛ᇱ𝜃 െ sinሺ𝑛ᇱ ൅ 2ሻ𝜃ሿ

ே

௡ᇲୀଵ

𝑑𝜃
గ

଴
                                                                         

ൌ න sin 𝑛𝜃 ൥
3𝑇෨ଵ,௠

ୡ െ 𝑇෨ଷ,௠
ୡ

4
sin 𝜃 ൅

2𝑇෨ଶ,௠
ୡ െ 𝑇෨ସ,௠

ୡ

4
sin 2𝜃 ൅ ෍

െ𝑇෨௡ᇲିଶ,௠
ୡ ൅ 2𝑇෨௡ᇲ,௠

ୡ െ 𝑇෨௡ᇲାଶ,௠
ୡ

4
sin 𝑛ᇱ𝜃

ேାଶ

௡ᇲୀଷ

൩ 𝑑𝜃
గ

଴
, ሺE2ሻ 5 

where 1 ൑ 𝑛 ൑ 𝑁 െ 2. From Eqs. (29), (E1), (E2) and (A4b), Eq. (30d) are derived. 

Appendix F: Zonal Fourier filter 

In a regular longitude–latitude grid, the longitudinal grid spacing becomes narrow at high latitudes. In DFS methods, the 

zonal Fourier filter (Merilees 1974; Boer and Steinberg 1975; Cheong 2000a), which filters out the high zonal wavenumber 

components at high latitudes, is usually used to obtain a more uniform resolution. The use of a reduced grid (Hortal and 10 

Simmons, 1991; Juang, 2004; Miyamoto, 2006; Malardel, 2016) has a similar effect to the zonal Fourier filter. In our 

atmospheric model using the old DFS method (Yoshimura, 2012), we use the reduced grid of Miyamoto (2006). 

In this study, we use the regular longitude–latitude grid with the zonal Fourier filter, not the reduced grid, for the 

simplicity of the source code. We set the largest zonal wavenumber 𝑀୤ at each colatitude 𝜃௝ as 

𝑀୤൫𝜃௝൯ ൌ min൫𝑀, 𝑀଴ ൅ 𝑀 sin൫𝜃௝൯൯.                                                                 ሺF1ሻ 15 

The values of 𝑇௠
ୡ ൫𝜃௝൯ and 𝑇௠

ୱ ൫𝜃௝൯ in Eq. (8) are set to zero for 𝑚 ൐ 𝑀୤൫𝜃௝൯ during the spectral transform. We use the value 

𝑀଴ ൌ 20 in the DFS shallow water model to make the resolution similar to that in the reduced grid of Miyamoto (2006). In 

the DFS Eulerian advection model, we use the value 𝑀଴ ൌ 1 as described in Sect. 6.3. 

Appendix G: Calculation of global mean and latitudinal area weight 

The global mean value of 𝑇ே,ெሺ𝜆, 𝜃ሻ in Eq. (15) can be calculated in spectral space by the following equation (Cheong 20 

2000a): 

𝐺 ൌ
1

4𝜋
න න ൭ ෍ 𝑇௠

ୡ,ேሺ𝜃ሻ cos 𝑚𝜆

ெ

௠ୀ଴

൅ ෍ 𝑇௠
ୱ,ேሺ𝜃ሻ sin 𝑚𝜆

ெ

௠ୀଵ

൱ sin 𝜃 𝑑𝜃𝑑𝜆
గ

଴

ଶగ

଴
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ൌ
1
2

න ෍ 𝑇௡,௠ୀ଴
ୡ cos 𝑛𝜃

ே

௡ୀ଴

sin 𝜃 𝑑𝜃
గ

଴
ൌ ෍

𝑇௡,௠ୀ଴
ୡ

1 െ 𝑛ଶ ,

ே

௡ୀ଴
୵୦ୣ୬ ௡ ୧ୱ ୣ୴ୣ୬

                                                          ሺG1ሻ 

where Eq. (A2a) is used. 

The latitudinal area weight at each colatitude 𝜃௝ is calculated as follows: 

1. The latitudinal distribution of 𝑇௠ୀ଴
௖ ሺ௝ሻሺ𝜃௞ሻ for each 𝑗 is given as 

𝑇௠ୀ଴
ୡ ሺ௝ሻሺ𝜃௞ሻ ൌ ൜

1   for 𝑘 ൌ 𝑗
0   for 𝑘 ് 𝑗,                                                                                                               ሺG2ሻ 5 

where 0 ൑ 𝑘 ൑ 𝐽 െ 1 in Grid [0] and Grid [1], and 1 ൑ 𝑘 ൑ 𝐽 in Grid [-1] (See Sect. 2). 

2. From 𝑇௠ୀ଴
ୡ ሺ௝ሻሺ𝜃௞ሻ, the meridional expansion coefficients 𝑇௡,௠ୀ଴

ୡ ሺ௝ሻ  ሺ0 ൑ 𝑛 ൑ 𝑁ሻ are calculated by forward discrete cosine 

transform described in Appendix B. 

3. The value of 𝐺 calculated from 𝑇௡,௠ୀ଴
ୡ ሺ௝ሻ  using Eq. (G1) is considered as the latitudinal area weight 𝑤൫𝜃௝൯ at colatitude 𝜃௝. 

In Grid [0] and Grid[1], the distribution of 𝑤൫𝜃௝൯ is smooth. However, in Grid [−1], the distribution of 𝑤൫𝜃௝൯ is not smooth 10 

because of the irregularity with Grid [−1] (See Eqs. (B5)–(B11) in Appendix B). 

The latitudinal area weight 𝑤൫𝜃௝൯ is used, for example, to calculate the global mean in the grid space.  

Appendix H: Derivation of Eq. (63) from Eq. (62) 

Here we describe the derivation of Eq. (63d) for odd 𝑚 ሺ൒ 3ሻ from Eq. (62a). Eqs. (63b,c) can also be derived similarly. By 

using Eqs. (52), (57), (11), (A2b,c), and the same equations as Eq. (53) except that 𝑢௡,௠
ୡ , 𝜒௡,௠

ୱ , and 𝜓௡,௠
ୡ  are replaced with 15 

𝑢௡,௠
ୱ , െ𝜒௡,௠

ୡ , and 𝜓௡,௠
ୱ , respectively, and the same equations as Eq. (53) except that 𝑢௡,௠

ୡ , 𝜒௡,௠
ୱ , and 𝜓௡,௠

ୡ  are replaced with 

𝑣௡,௠
ୡ , 𝜓௡,௠

ୱ , and െ𝜒௡,௠
ୡ , respectively, Eq. (62a) is converted into the following equation for odd 𝑚 ൒ 3: 

න ቊെ𝑚
െ cosሺ𝑛 ൅ 1ሻ𝜃 ൅ cosሺ𝑛 െ 1ሻ𝜃

2
ቈ
െ𝑚𝜒ଵ,௠

ୡ

2𝑎
െ 𝑢෤଴,௠

ୱ ൅ ቆ
െ𝑚𝜒ଶ,௠

ୡ

2𝑎
൅

3𝜓ଵ,௠
ୱ െ 𝜓ଷ,௠

ୱ

4𝑎
െ 𝑢෤ଵ,௠

ୱ ቇ cos 𝜃
గ

଴
                                

൅ ෍ ቆ
𝑚൫𝜒௡ᇲିଵ,௠

ୡ െ 𝜒௡ᇲାଵ,௠
ୡ ൯

2𝑎
൅

𝑛൫െ𝜓௡ᇲିଶ,௠
ୱ ൅ 2𝜓௡ᇲ,௠

ୱ െ 𝜓௡ᇲାଶ,௠
ୱ ൯

4𝑎
െ 𝑢෤௡ᇲ,௠

ୱ ቇ cos 𝑛ᇱ𝜃

ே

௡ᇲୀଶ

൩                         

െ ൬െ
𝑛 െ 2

4
cosሺ𝑛 െ 2ሻ𝜃 ൅

2𝑛
4

cos 𝑛𝜃 െ
𝑛 ൅ 2

4
cosሺ𝑛 ൅ 2ሻ𝜃൰ ቈ

𝑚𝜓ଵ,௠
ୱ

2𝑎
െ 𝑣෤଴,௠

ୡ ൅ ቆ
𝑚𝜓ଶ,௠

ୱ

2𝑎
൅

െ3𝜒ଵ,௠
ୡ ൅ 𝜒ଷ,௠

ୡ

4𝑎
െ 𝑣෤ଵ,௠

ୡ ቇ cos 𝜃   20 

൅ ෍ ቆ
𝑚൫െ𝜓௡ᇲିଵ,௠

ୱ ൅ 𝜓௡ᇲାଵ,௠
ୱ ൯

2𝑎
൅

𝑛ᇱ൫𝜒௡ᇲିଶ,௠
ୡ െ 2𝜒௡ᇲ,௠

ୡ ൅ 𝜒௡ᇲାଶ,௠
ୡ ൯

4𝑎
െ 𝑣෤௡ᇲ,௠

ୡ ቇ cos 𝑛ᇱ𝜃

ே

௡ᇲୀଶ

൩ൡ 𝑑𝜃 ൌ 0.   ሺH1ሻ 

When 𝑛 ൒ 4, by using Eq. (A4a), Eq. (H1) can be converted into 

න ቊ
𝑚
2

cosሺ𝑛 ൅ 1ሻ𝜃 ቆ
𝑚൫𝜒௡,௠

ୡ െ 𝜒௡ାଶ,௠
ୡ ൯

2𝑎
൅

ሺ𝑛 ൅ 1ሻ൫െ𝜓௡ିଵ,௠
ୱ ൅ 2𝜓௡ାଵ,௠

ୱ െ 𝜓௡ାଷ,௠
ୱ ൯

4𝑎
െ 𝑢෤௡ାଵ,௠

ୱ ቇ cosሺ𝑛 ൅ 1ሻ𝜃
గ

଴
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െ
𝑚
2

cosሺ𝑛 െ 1ሻ𝜃 ቆ
𝑚൫𝜒௡ିଶ,௠

ୡ െ 𝜒௡,௠
ୡ ൯

2𝑎
൅

ሺ𝑛 െ 1ሻ൫െ𝜓௡ିଷ,௠
ୱ ൅ 2𝜓௡ିଵ,௠

ୱ െ 𝜓௡ାଵ,௠
ୱ ൯

4𝑎
െ 𝑢෤௡ିଵ,௠

ୱ ቇ cosሺ𝑛 െ 1ሻ𝜃                  

൅
𝑛 െ 2

4
cosሺ𝑛 െ 2ሻ𝜃 ቆ

𝑚൫െ𝜓௡ିଷ,௠
ୱ ൅ 𝜓௡ିଵ,௠

ୱ ൯
2𝑎

൅
ሺ𝑛 െ 2ሻ൫𝜒௡ିସ,௠

ୡ െ 2𝜒௡ିଶ,௠
ୡ ൅ 𝜒௡,௠

ୡ ൯
4𝑎

െ 𝑣෤௡ିଶ,௠
ୡ ቇ cosሺ𝑛 െ 2ሻ𝜃           

െ
2𝑛
4

cos 𝑛𝜃 ቆ
𝑚൫െ𝜓௡ିଵ,௠

ୱ ൅ 𝜓௡ାଵ,௠
ୱ ൯

2𝑎
൅

𝑛൫𝜒௡ିଶ,௠
ୡ െ 2𝜒௡,௠

ୡ ൅ 𝜒௡ାଶ,௠
ୡ ൯

4𝑎
െ 𝑣෤௡,௠

ୡ ቇ cos 𝑛𝜃                               

൅
𝑛 ൅ 2

4
cosሺ𝑛 ൅ 2ሻ𝜃 ቆ

𝑚൫െ𝜓௡ାଵ,௠
ୱ ൅ 𝜓௡ାଷ,௠

ୱ ൯
2𝑎

൅
ሺ𝑛 ൅ 2ሻ൫𝜒௡,௠

ୡ െ 2𝜒௡ାଶ,௠
ୡ ൅ 𝜒௡ାସ,௠

ୡ ൯
4𝑎

െ 𝑣෤௡ାଶ,௠
ୡ ቇ cosሺ𝑛 ൅ 2ሻ𝜃ቋ 𝑑𝜃 ൌ 0.  

ሺH2ሻ 5 

From Eq. (H2) and (A4a), Eq. (63d) for 𝑛 ൒ 4 is derived. Equation (63d) for 𝑛 ൑ 3 can also be derived from (H1) and (A4a). 

Appendix I: Two-time-level semi-implicit semi-Lagrangian scheme for time integration 

A two-time-level semi-implicit semi-Lagrangian scheme (e.g., Temperton et al., 2001) and the Stable Extrapolation Two-

Time-Level Scheme (SETTLS; Hortal, 2002) are adopted to discretize the shallow water equations in Eqs. (98) and (99) in 

time as 10 

ሺ𝒗 ൅ 2𝜴 ൈ 𝒓ሻା െ ሺ𝒗 ൅ 2𝜴 ൈ 𝒓ሻୈ
଴

Δ𝑡
ൌ െ

𝑔൫∇ℎୈ
ሺାሻ ൅ ∇ℎ଴൯

2
൅ 𝛽𝐯

𝑔൫∇ℎୈ
ሺାሻ ൅ ∇ℎ଴൯

2
െ 𝛽𝐯

𝑔ሺ∇ℎୈ
଴ ൅ ∇ℎାሻ

2
,             ሺI1ሻ 

ℎା െ ℎୈ
଴

Δ𝑡
ൌ െ

ሾሺℎ െ ℎ௦ሻ𝐷ሿୈ
ሺାሻ ൅ ሾሺℎ െ ℎ௦ሻ𝐷ሿ଴

2
൅

ሾ𝒗 ∙ ∇ℎ௦ሿୈ
ሺାሻ ൅ ሾ𝒗 ∙ ∇ℎୱሿ଴

2
                                                      

൅𝛽௛

ൣℎത𝐷൧
ୈ

ሺାሻ
൅ ൣℎത𝐷൧

଴

2
െ 𝛽௛

ൣℎത𝐷൧
ୈ

଴
൅ ൣℎത𝐷൧

ା

2
,                       ሺI2ሻ 

where 

𝐷 ≡ ∇ ∙ 𝒗 ൌ
1
𝑎

൤
1

cos 𝜙
𝜕𝑢
𝜕𝜆

൅
1

cos 𝜙
𝜕𝑣 cos 𝜙

𝜕𝜙
൨                                                                       ሺI3ሻ 15 

is horizontal divergence; ∆𝑡 is a timestep; the superscripts െ, 0, and ൅ mean past time ሺ𝑡 െ ∆𝑡ሻ, present time ሺ𝑡ሻ, and future 

time ሺ𝑡 ൅ ∆𝑡ሻ, respectively, and the superscript ሺ൅ሻ means future time ሺ𝑡 ൅ ∆𝑡ሻ extrapolated in time, for example, ℎሺାሻ ൌ

2ℎ଴ െ ℎି; the subscript D means the departure point, and the absence of the subscript D means the arrival point; ℎത  is a 

constant value of height for semi-implicit linear terms; 𝛽𝒗 and 𝛽௛ are second-order decentering parameters (Yukimoto et al., 

2011). Using 𝛽𝒗 and 𝛽௛ larger than 1.0 (e.g., 1.2) increases the effect of the semi-implicit scheme improving computational 20 

stability, but 𝛽𝒗 ൌ 𝛽௛ ൌ 1.0 is used here because ℎത larger than ℎ is enough for stable calculations in the shallow water model. 

The departure point 𝒙ୈ is the upstream horizontal position from the arrival point 𝒙 along the wind vector between present 

time ሺ𝑡ሻ and future time ሺ𝑡 ൅ ∆𝑡ሻ. Here, the arrival point 𝒙 is on a grid point, and the departure point 𝒙ୈ is not generally on a 

grid point. Since the right-hand sides of Eqs. (I1) and (I2) are the time average between present time ሺ𝑡ሻ and future time 
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ሺ𝑡 ൅ ∆𝑡ሻ and the spatial average between the departure point and the arrival point, these equations have second-order 

precision in time and space. In SETTLS, 𝒙ୈ is calculated using 

𝒙ୈ ൌ 𝒙 െ
𝒗ୈ

ሺାሻ ൅ 𝒗଴

2
∆𝑡.                                                                                              ሺI4ሻ 

However, when ∆𝑡 is longer than 30 minutes, using 𝒗ୈ
ሺାሻ extrapolated in time to calculate 𝒙ୈ causes numerical instability in 

our experiments. To avoid instability when ∆𝑡 is 1 hour, here we use 5 

𝒙ୈ ൌ 𝒙 െ
𝒗ୈ

଴ ൅ 𝒗ᇱା

2
∆𝑡,                                                                                                 ሺI5aሻ 

𝒗ᇱା ≡ 𝒗ୈ
଴ ൅ ሺ2𝜴 ൈ 𝒓ሻୈ െ 2𝜴 ൈ 𝒓 െ

𝑔൫∇ℎୈ
ሺାሻ ൅ ∇ℎ଴൯

2
Δ𝑡,                               ሺI5bሻ 

instead of Eq. (I4), where 𝒗ᇱା is a provisional future value obtained by discretizing Eq. (98) in an explicit semi-Lagrangian 

scheme. From Eq. (I5), we obtain 

𝒙ୈ ൌ 𝒙 െ ∆𝑡 ቈቆ𝒗଴ ൅ 𝜴 ൈ 𝒓 െ
𝑔∆𝑡∇ℎሺାሻ

4
ቇ

ୈ

െ 𝜴 ൈ 𝒓 െ
𝑔∆𝑡∇ℎ଴

4
቉.                               ሺI6ሻ 10 

This method using a provisional future value to calculate 𝒙ୈ is similar to the method in Gospodinov et al. (2001). Since the 

value with the subscript D depends on 𝒙ୈ, 𝒙ୈ is calculated iteratively from Eq. (I6) (e.g., Ritchie et al., 1995; Temperton et 

al., 2001). Since 𝒙ୈ is not generally on the grid point, the value at 𝒙ୈ is calculated by spatial interpolation from nearby grid 

points. In the right-hand side of Eq. (I6), the value at 𝒙ୈ  with the subscript D  is calculated by third-order Lagrange 

interpolation. 15 

Eqs. (I1) and (I2) are converted into 

𝒗ା ൅
𝛽𝐯Δ𝑡

2
𝑔∇ℎା  ൌ 𝑹𝒗,                                                                                                                                             ሺI7aሻ 

𝑹𝒗 ≡  ൤𝐯଴ ൅ 2𝜴 ൈ 𝒓 െ
Δ𝑡
2

𝑔൫∇ℎሺାሻ െ 𝛽𝐯∇ℎሺାሻ ൅ 𝛽𝐯∇ℎ଴൯൨
ୈ

െ 2𝜴 ൈ 𝒓 െ
Δ𝑡
2

𝑔ሺ∇ℎ଴ െ 𝛽𝐯∇ℎ଴ሻ,     ሺI7bሻ 

ℎା ൅
𝛽௛Δ𝑡

2
ℎത𝐷ା ൌ 𝑅௛,                                                                                                                                                ሺI8aሻ 

𝑅௛ ≡ ൜ℎ଴ ൅
Δ𝑡
2

ൣെሺℎ െ ℎ௦ሻ𝐷ሺାሻ ൅ 𝒗 ∙ ∇ℎୱ
ሺାሻ ൅ 𝛽௛ℎത𝐷ሺାሻ െ 𝛽௛ℎത𝐷଴൧ൠ

ୈ
                                                             20 

൅
Δ𝑡
2

ൣെሺℎ െ ℎ௦ሻ𝐷଴ ൅ 𝒗 ∙ ∇ℎୱ
଴ ൅ 𝛽௛ℎത𝐷଴൧.                            ሺI8bሻ 

In Eqs. (I7b) and (I8b), the values at 𝒙ୈ  with the subscript D  are calculated by fifth-order and third-order Lagrange 

interpolations, respectively, since high-order interpolation of wind vector components increases the accuracy of the model’s 

results in our experiments. From Eq. (I7), we obtain 

𝐷ା ൅
𝛽𝐯Δ𝑡

2
𝑔∇ଶℎା  ൌ 𝑅஽,                                                                                              ሺI9ሻ 25 

𝜁ା  ൌ 𝑅఍,                                                                                              ሺI10ሻ 
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where 

𝜁 ≡ 𝒌 ∙ ∇ ൈ 𝒗 ൌ
1
𝑎

൤
1

cos 𝜙
𝜕𝑣
𝜕𝜆

െ
1

cos 𝜙
𝜕𝑢 cos 𝜙

𝜕𝜙
൨                                                          ሺI11ሻ 

is vorticity, 𝒌 ≡ 𝒓 |𝒓|⁄  is the vertical unit vector, 𝑅஽ ≡ ∇ ∙ 𝑹𝒗 and 𝑅఍ ≡ 𝒌 ∙ ∇ ൈ 𝑹𝒗. 

We calculate ℎା and 𝒗ା  using the spectral transform method and the Galerkin method with the new DFS method as 

follows. (See Sect. 3.10 for the spectral transform with the new DFS method.) 5 

1. The scalar variable 𝑅௛  is transformed from grid space to spectral space using Eqs. (9), (23), (30) and (31). The 

components of the vector variable 𝑹𝒗 ൌ ሺ𝑅௨, 𝑅௩ሻ in grid space are transformed to 𝑅ఞ and 𝑅ట in spectral space using Eqs. 

(56), (57), (63) and (64), where 𝑅ఞ and 𝑅ట are the velocity potential and the stream function of 𝑹𝒗, respectively. 

2. 𝑅஽ and 𝑅఍ are calculated by 

𝑅஽ ൌ ∇ଶ𝑅ఞ,                                                                                          ሺI12ሻ 10 

𝑅఍ ൌ ∇ଶ𝑅ట,                                                                                          ሺI13ሻ 

using Eqs. (75) and (77). 𝜁ା is obtained from 𝑅఍ using Eq. (I10). 

3. Equations (I8a) and (I12) are substituted into Eq. (I9) and we obtain 

𝐷ା െ ൬
Δ𝑡
2

൰
ଶ

𝛽𝐯𝛽௛𝑔ℎത∇ଶ𝐷ା  ൌ ∇ଶ ൬𝑅ఞ െ
Δ𝑡
2

𝛽𝐯𝑔𝑅௛൰.                                              ሺI14ሻ 

𝐷ା is calculated by solving the Helmholtz-like equation Eq. (I14) using Eqs. (83) and (85). 15 

4. ℎା is calculated from 𝐷ା and 𝑅௛ using Eq. (I8). 

5. 𝜒ା and 𝜓ା are calculated from 𝐷ା and 𝜁ା by solving the Poisson equations 

∇ଶ𝜒ା ൌ 𝐷ା,                                                                                        ሺI15ሻ 

∇ଶ𝜓ା ൌ 𝜁ା,                                                                                        ሺI16ሻ 

using Eqs. (75) and (78). 20 

6. 𝐯ା ൌ ሺ𝑢ା, 𝑣ାሻ is calculated from 𝜒ା and 𝜓ା using Eq. (53) for 𝑢௡,௠
௖  and the similar equations for 𝑢௡,௠

௦ , 𝑣௡,௠
௖ , and 𝑣௡,௠

௦ . 

7. 𝑢ା, 𝑣ା, ℎା, 𝐷ା, and ∇ℎା in spectral space are transformed to grid space. ℎା and 𝐷ା are transformed meridionally using 

Eqs. (14) and (13). 𝑢ା and 𝑣ା are transformed meridionally using Eq. (52). ∇ℎା ൌ ሺℎఒ
ା, ℎఏ

ାሻ is transformed meridionally 

using Eqs. (18)–(21). ℎఒ
ା can also be calculated from ℎ௠

ା௖,ே൫𝜃௝൯ and ℎ௠
ା௦,ே൫𝜃௝൯ at the latitudinal grid points using Eq. (16), 

and additionally using Eq. (22) at the poles when using Grid [1], which is more efficient than using Eqs. (18) and (19) 25 

because the meridional inverse discrete cosine and sine transforms of ℎఒ
ା become unnecessary. 
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Table 1. Normalized Lଶ errors of Laplacian operator calculation (∇ଶ𝑓). We use the old DFS method with Grid [0], the new 

DFS methods with Grid [0], Grid [1] and Grid [-1], and the SH method. 𝐽଴ is the number of latitudinal grid points in Grid [0]. 

The truncation wavenumber 𝑁 ≅ 2𝐽଴ 3⁄ . 

Resolution\ Method Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=42 4.1208E−3 2.3019E−3 2.2530E−3 2.6281E−3 2.0927E−3 

J0=160, N=106 2.2221E−4 2.3678E−4 2.3369E−4 2.3374E−4 2.1668E−4 

J0=320, N=213 3.8070E−5 3.7931E−5 3.8752E−5 3.8740E−5 3.7565E−5 

J0=960, N=639 2.4281E−6 3.5687E−6 3.5888E−6 3.5904E−6 2.3453E−6 

      

 5 
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Table 2. Same as Table 1 except that the global mean values of calculated ∇ଶ𝑓 are shown. 

Resolution\ Method Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=42 3.4331E−26 2.2012E−26 −1.2242E−25 −6.4414E−25 −3.8370E−27 

J0=160, N=106 −6.1392E−27 2.9404E−26 3.1530E−25 −4.1152E−25 3.0050E−26 

J0=320, N=213 −2.9272E−26 −4.4429E−28 1.3779E−24 −1.0004E−24 3.3190E−26 

J0=960, N=639 −4.6309E−26 −3.5020E−26 2.3521E-24 4.7404E−25 9.4697E−27 
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Table 3. Same as Table 1 except that Lଶ errors of the solution of the Helmholtz equation are shown. 

Resolution\ Method Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=42 7.5000E−4 7.0729E−4 7.3360E−4 7.5868E−4 6.4564E−4 

J0=160, N=106 1.7270E−5 1.7263E−5 1.5884E−5 1.5907E−5 3.0100E−5 

J0=320, N=213 1.0970E−6 1.0965E−6 1.2557E−6 1.2602E−6 2.7348E−6 

J0=960, N=639 4.3114E−8 4.3114E−8 3.8081E−8 3.8253E−8 3.7720E−8- 
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Table 4. Normalized Lଶ errors of the predicted height after a 12-day integration in the Williamson test case 1 when using the 

Eulerian advection models. The truncation wavenumber 𝑁 ≅ 2𝐽଴ 3⁄ . 

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=42 Unstable 1.1557E−1 1.1559E−1 1.1559E−1 1.1554E−1 

J0=160, N=106 Unstable 5.0956E−2 5.0954E−2 5.0954E−2 5.0955E−2 

J0=320, N=213 Unstable 2.4619E−2 2.4619E−2 2.4619E−2 2.4619E−2 

J0=960, N=639 Unstable 8.2424E−3 8.2424E−3 8.2424E−3 8.2424E−3 

 

 
 5 
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Table 5. Same as Table 4 except for using the semi-Lagrangian models and the truncation wavenumber 𝑁 ≅ 𝐽଴ െ 1. 

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=63 1.6782E−1 1.6782E−1 1.6795E−1 1.6849E−1 1.6464E−1 

J0=160, N=159 2.0076E−2 2.0076E−2 2.0074E−2 2.0080E−2 1.9887E−2 

J0=320, N=319 3.4033E−3 3.4033E−3 3.4029E−3 3.4033E−3 3.3855E−3 

J0=960, N=959 2.1503E−4 2.1503E−4 2.1503E−4 2.1504E−4 2.1514E−4 

 
 
 

5 
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Table 6. Same as Table 5 except for the errors after a 5-day integration in the Williamson test case 2 

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=63 2.4468E−05 2.4468E−05 2.4453E−05 2.4434E−05 2.4147E−05 

J0=160, N=159 1.3462E−06 1.3462E−06 1.3463E−06 1.3458E−06 1.3402E−06 

J0=320, N=319 4.1918E−07 4.1918E−07 4.1918E−07 4.1916E−07 4.1927E−07 

J0=960, N=959 1.1800E−07 1.1800E−07 1.1800E−07 1.1800E−07 1.1800E−07 
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Table 7. Same as Table 5 except for the errors after a 15-day integration in the Williamson test case 5. The result of the 

high-resolution SH model with 𝐽଴ ൌ 960 and 𝑁 ൌ 958 is regarded as the reference solution. 

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=63 8.2998E−4 8.2972E−4 8.2559E−4 8.2533E−4 8.2575E−4 

J0=160, N=159 9.2568E−4 9.2569E−4 9.2571E−4 9.2607E−4 9.2578E−4 

J0=320, N=319 8.3815E−4 8.3815E−4 8.3813E−4 8.3807E−4 8.3812E−4 

 
  



58 
 

Table 8. Same as Table 7 except for 𝑁 ≅ 2𝐽଴ 3⁄ . 

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=42 Unstable 8.2985E−4 8.2555E−4 8.2545E−4 8.2587E−4 

J0=160, N=106 Unstable 9.2571E−4 9.2573E−4 9.2571E−4 9.2584E−4 

J0=320, N=259 Unstable 8.3814E−4 8.3813E−4 8.3812E−4 8.3812E−4 
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Table 9. Same as Table 7 except for the errors after a 14-day integration in the Williamson test case 6 

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=63 1.0319E−2 1.0361E−2 7.2824E−3 8.7423E−3 1.0118E−2 

J0=160, N=159 2.7830E−3 2.7830E−3 1.5615E−3 2.0704E−3 2.7766E−3 

J0=320, N=319 9.3546E−4 9.3546E−4 5.6164E−4 6.8201E−4 9.3560E−4 
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Figure 1. Grid [0], Grid[1], and Grid [−1] are three ways of arranging equally spaced latitudinal grid points. Red circles 

show the positions of the grid points when the grid interval ∆𝜃 ൌ 𝜋 4⁄ . 5 
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Figure 2. Change in values at the grid points due to the meridional wavenumber truncation. We use Grid [0] with the 

number of latitudinal grid points 𝐽 ൌ 64. Initial values (black) are meridionally transformed from grid space to spectral space, 

truncated with 𝑁 ൌ 42, and transformed back from spectral space to grid space. (a) Values for even |𝑚| ൒ 2 when using the 

DFS method of Orszag (blue), the old DFS method (green), and the new DFS method (red) with Grid [0]. (b) Values for 5 

𝑚 ൌ 2 (orange), 14 (deep sky blue), 30 (lime) when using the SH expansion method with the gaussian grid. (c) Same as (a) 

except for the values for odd |𝑚| ൒ 3. (d) Same as (b) except for the values for 𝑚 ൌ 3 (orange), 15 (deep sky blue), 31 

(lime). 
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Figure 3. (a) Same as Fig 2(a) except for 𝑁 ൌ 63. (b) Same as (a) except that the values between grid points calculated from 

the expansion coefficients are also shown. 

 

  5 
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Figure 4. Predicted height (m) in the Eulerian models after a 12-day integration in Williamson test case 1. (a) New DFS 

model with Grid [0]. (b) New DFS model with Grid [1]. (c) New DFS model with Grid [−1]. (d) SH model. The number of 

longitudinal (I) and latitudinal (J) grid points is shown in the form I  J. In the upper figures, the black contour shows the 

predicted height, and the red contour shows the reference solution. In the lower figures, color shading shows the difference 5 

between the predicted height and the reference solution. 
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Figure 5. Time series of prediction error of height ሺmሻ for 5 days (120 hours) integration in Williamson test case 2 ሺ𝛼 ൌ

𝜋 2⁄ െ 0.05ሻ. The number of longitudinal grid points 𝐼 ൌ 128. The number of latitudinal grid points in Grid [0] is 𝐽଴ ൌ 64. 

The truncation wavenumber 𝑁 ൌ 63. Solid, dashed, and dotted lines represent normalized Lଵ, Lଶ, and Lஶ errors, respectively. 5 

The colors blue, green, red, purple, and orange represent the models using SH, old DFS with Grid [0], new DFS with Grid 

[0], new DFS with Grid [1], and new DFS with Grid [−1], respectively. 
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Figure 6. Predicted height ሺmሻ after a 15-day integration in Williamson test case 5. (a) New DFS model with Grid [0]. (b) 

New DFS model with Grid [1]. (c) New DFS model with Grid [−1]. (d) Old DFS model with Grid [0]. (e) SH model. (f) SH 

model at high resolution, which is regarded as the reference solution. The number of longitudinal (I) and latitudinal (J) grid 5 

points is shown in the form I  J. N is the truncation wavenumber. Color shading shows the error with respect to the 

reference solution. 
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Figure 7. Longitudinal distributions of meridional wind ሺm sିଵሻ at the grid points near the South Pole after a 15-day 

integration in Williamson test case 5. Results of the models using Grid [0] with (a) 𝐼 ൌ 128, 𝐽଴ ൌ 64 and 𝑁 ൌ 63, and (b) 5 

𝐼 ൌ 1920, 𝐽଴ ൌ 960 and 𝑁 ൌ 959. Green (red) lines represent the old (new) DFS models. 
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Figure 8. Kinetic energy spectrum of horizontal winds ሺmଶsିଶሻ after a 15-day integration in Williamson test case 5. Results 

of the models with (a) 𝐼 ൌ 128, 𝐽଴ ൌ 64, and 𝑁 ൌ 63 (DFS) or 𝑁 ൌ 62 (SH), and (b) 𝐼 ൌ 1920, 𝐽଴ ൌ 960 and 𝑁 ൌ 959 

(DFS) or 958 (SH). The colors blue, green, red, purple, and orange represent the models using SH, old DFS with Grid [0], 5 

new DFS with Grid [0], new DFS with Grid [1], and new DFS with Grid [−1], respectively. 
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Figure 9. Same as Fig. 6, except with truncation wavenumber 𝑁. 
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Figure 10. Same as Fig. 8, except with truncation wavenumber 𝑁. 
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Figure 11. Same as Fig. 6 except for predicted height ሺmሻ after a 14-day integration in Williamson test case 6. 
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Figure 12. Predicted vorticity ሺsିଵሻ after a 6-day integration in the Galewsky test case. (a) The new DFS model with Grid 

[0], and (b) the SH model at 1.3 km resolution with 𝐼 ൌ 30720, 𝐽଴ ൌ 15360 and 𝑁 ൌ 10239.  

  5 
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Figure 13. Kinetic energy spectrum of horizontal winds ሺmଶsିଶሻ after a 6-day integration in the Galewsky test case. (a) 

Results of the models with 𝐼 ൌ 30720, 𝐽଴ ൌ 15360 and 𝑁 ൌ 10239. The colors blue, red, purple, and orange represent the 

models using SH, DFS with Grid [0], DFS with Grid [1], and DFS with Grid [−1], respectively. (b) As (a), but showing the 5 

high-wavenumber region. 
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Figure 14. Elapsed time ሺsሻ for (a) 15-day integration in Williamson test case 5 in the SH model and the new DFS model at 

20 km resolution with 𝐼 ൌ 1920, 𝐽଴ ൌ 960 and 𝑁 ൌ 959, and (b) 6-day integration in the Galewsky test case at 1.3 km 

resolution with 𝐼 ൌ 30720, 𝐽଴ ൌ 15360 and 𝑁 ൌ 10239. There is no monitoring output during elapsed time measurement 5 

 


