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semi-implicit semi-Lagrangian shallow water model and an Eulerian
advection model

Hiromasa Yoshimura'
"Meteorological Research Institute, Japan Meteorological Agency, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan

Correspondence to: Hiromasa Yoshimura (hyoshimu@mri-jma.go.jp)

Abstract. One way to reduce the computational cost of a spectral model using spherical harmonics (SH) is to use double
Fourier series (DFS) instead of SH. The transform method using SH usually requires O(N3) operations, where N is the
truncation wavenumber, and the computational cost significantly increases at high resolution. On the other hand, the method
using DFS requires only O(N?2log N) operations. This paper proposes a new DFS method that improves the numerical
stability of the model compared with the conventional DFS methods by adopting the following two improvements: a new
expansion method that employs the least-squares method (or the Galerkin method) to calculate the expansion coefficients in
order to minimize the error caused by wavenumber truncation, and new basis functions that satisfy the continuity of both
scalar and vector variables at the poles. Partial differential equations such as the Poisson equation and the Helmholtz
equation are solved by using the Galerkin method. In the semi-implicit semi-Lagrangian shallow water model using the new
DFS method, the Williamson test cases and the Galewsky test case give stable results without the appearance of high-
wavenumber noise near the poles, even without using horizontal diffusion and without a zonal Fourier filter. In the Eulerian
advection model using the new DFS method, the Williamson test cases 1, which simulates a cosine-bell advection, also gives
stable results without horizontal diffusion but with a zonal Fourier filter. The shallow water model using the new DFS
method is faster than that using SH, especially at high resolutions, and gives almost the same results, except that small
oscillations near the truncation wavenumber in the kinetic energy spectrum appear only in the shallow water model using SH.
This small oscillations in the SH model can probably be eliminated by using the vector harmonic transform which is similar

to the vector transform using the least-squares method (or the Galerkin method) in the model using the new DFS method.

1 Introduction

Global spectral atmospheric models using the spectral transform method with spherical harmonics (SH) as basis functions
are widely used. They are used in the Japan Meteorological Agency (JMA, 2019) and the Meteorological Research Institute
(MRI; Yukimoto et al., 2011, 2019) for a range of applications, including operational weather prediction, operational
seasonal prediction, and global warming projection. The spectral model has the advantage that the horizontal derivatives are

accurate, and the semi-implicit scheme, which improves numerical stability, can be easily applied because the Helmholtz
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equation and the Poisson equation are easily solved in spectral space. The application of the semi-implicit semi-Lagrangian
scheme allows for timesteps longer than the Courant—Friedrichs—Lewy (CFL) condition, which makes the model
computationally efficient. In the spectral model using SH, the Legendre transform used in the latitudinal direction
significantly increases the computational cost at high resolutions since the Legendre transform usually requires O(N3)
operations and O(N3) memory usage (unless using the fast Legendre transform or on-the-fly computation of the associated
Legendre functions shown below), where N is the truncation wavenumber. One way to reduce the operation count and the
memory usage at high resolutions with large N is to use the fast Legendre transform (Suda, 2005; Tygert, 2008; Wedi et al.,
2013; Wedi 2014), which requires only O(N?(log N)3) operations and also effectively reduces the memory usage. In the fast
Legendre transform, the threshold parameter affecting the accuracy-cost balance is chosen so that a loss of accuracy is
sufficiently small. Dueben et al. (2020) presented global simulations of the atmosphere at 1.45 km grid-spacing in the SH
model using the fast Legendre transform. Another approach to improve the Legendre transform is on-the-fly computation of
the associated Legendre functions (Schaeffer, 2013; Ishioka, 2018), which still requires O(N?3) operations but requires only
O(N?) memory usage. This small memory usage also contributes to speeding up calculations by taking advantage of the
cache memory.

Alternatively, we can use double Fourier series (DFS) as basis functions to reduce the operation count and the memory
usage in the global spectral model. In the DFS model, the fast Fourier transform (FFT; Cooley and Tukey, 1965;
Swarztrauber, 1982) is used not only in the longitudinal (zonal) direction but also in the latitudinal (meridional) direction.
The FFT requires only O(N?log N) operations and O(N) or O(N?) memory usage, and it is faster than the fast Legendre
transform.

In DFS models (and also in SH models), the scalar variable F (4, 8) is zonally expanded as

M
F(A,0) = z E,(6)ei™?, 1)

where A is longitude, 6 is colatitude, and M is the zonal truncation wavenumber. Several methods have been proposed for
meridional expansion with DFS. Merilees (1973b), Boer and Steinberg (1975), and Spotz et al. (1998) performed the Fourier
transform meridionally along a great circle. Spotz et al. (1998) showed that by using the spherical harmonic filter, the
explicit DFS shallow water model using the pseudo-spectral method can produce results comparable with the SH model in
terms of accuracy and stability. However, the spherical harmonic filter consists of the forward SH transform (from grid space
to spectral space) followed by the inverse SH transform (from spectral space to grid space), which increases the
computational cost.
Orszag (1974) and Boyd (1978) expanded F,,(6) meridionally as

fm(6) for even m,

sin 8 f;,,(0) for odd m, (22)

E,(6) = {
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fm(@) = ) fumcosnb, (2b)

where N is the meridional truncation wavenumber. The coefficients f;, ,,, for odd m are calculated by the forward Fourier
cosine transform of E,,(6)/sin 6. Orszag (1974) imposed the following conditions at the poles:
fm(0) = 0and f,,,(mw) = 0 for [m| = 2, 3)

which can be expressed in terms of the expansion coefficients f;, ,,, as

N N
Z fam =0 and Z fam =0 for|m| = 2. 4)
n=0 n=1

niseven nis odd

Satisfying the above conditions ensures that the scalar variable F(4, 8) and its gradient VF are continuous at the poles. In
Orszag (1974), only fy_1m and fy ,, were modified to satisfy Eq. (4), but this is not the best way to satisfy the same
conditions as Eq. (3) or Eq. (4), as will be shown in Sect. 4.

Yee (1981) and Layton and Spotz (2003) expanded F,,(0) as

N
Z F,m cosné for even m,
Fp(6) = { %0 (5)
Z Fymsinné for odd m.
n=1

In the semi-implicit semi-Lagrangian shallow water model in Layton and Spotz (2003), the spherical harmonic filter was
applied to the prognostic variables for stability and accuracy. Layton and Spotz (2003) explained that the expansion with Eq.
(5) permits discontinuity at the poles and nonisotropic waves, which may lead to a prohibitive timestep restriction and
numerical instability, and these problems can be avoided by applying the spherical harmonic filter.

Cheong (2000a, 2000b) proposed expanding F,,(6) as

N
Z E,m cosnf form =0,
n=0
N
E,(0) = Z F,m sinnf for odd m, (6)
n=’1
Z FEymsinfsinnd  forevenm (# 0).

n=1
The meridional basis functions sin@sinn® for even m (# 0) are different from Eq. (5). The coefficients F,,,
for even m (# 0) are calculated by forward Fourier sine transform of F,(8)/sin8. The basis functions in Eq. (6)
automatically satisfy the same conditions at the poles as Eq. (3) for even m, and guarantee the continuity of the scalar

variable F at the poles, which is an advantage compared with the basis functions in Eq. (5). On the other hand, Eq. (6) does
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not automatically satisfy the conditions in Eq. (3) for odd m, and does not guarantee the continuity of VF at the poles. The
shallow water model and the vorticity equation model using a semi-implicit Eulerian scheme ran stably without the spherical
harmonic filter by using high-order horizontal diffusion with O(N?) operations to smooth out the high-wavenumber
components (Cheong, 2000b; Cheong et al., 2002; Kwon et al., 2004). The semi-implicit Eulerian hydrostatic atmospheric
model also ran stably with high-order horizontal diffusion (Cheong, 2006; Koo and Hong, 2013; Park et al., 2013). However,
the computational results of these models appear to be a little different from (slightly worse than) the models using SH. One
reason for this seems to be the appearance of high-wavenumber oscillation resulting from the meridional wavenumber
truncation with N = N’ = 2] /3 or J /2 for even m (# 0) (See Sect. 4), and the use of strong high-order horizontal diffusion
to smooth out the oscillation, where J is the number of grid points in the latitudinal direction.

Yoshimura and Matsumura (2005) and Yoshimura (2012) stably ran the two-time-level semi-implicit semi-Lagrangian
hydrostatic and nonhydrostatic atmospheric models using the DFS basis functions of Cheong in Eq. (6). These models used
the same fourth-order horizontal diffusion as the SH models, and did not require the spherical harmonics filter or the strong
high-order horizontal diffusion for stability. The numerical stability of the models is improved due to the following reasons:
1. The semi-Lagrangian scheme is used, which avoids the numerical instability due to the nonlinear advection term.

2. The meridional truncation with N = ] — 1 and N’ = J is used, which enables to reconstruct accurately the given grid-data
with the expansion coefficients (Cheong et al., 2004) and avoid the error due to the meridional truncation.

3.U = usinf and V = vsin 0 instead of u/sin 6 and v/sin @ are transformed from grid space to spectral space, where u is
the zonal wind and v is the meridional wind.

The results of these models were very similar to those of the SH models. However, we found the following two problems in

these models:

1. High wavenumber noise appears near the poles.

2. The meridional truncation wavenumber N’ needs to be equal to J for even m (# 0) because N’ < J (e.g., N' = 2] /3) for
even m (# 0) causes the high-wavenumber oscillation (See Sect. 4) and the numerical instability.

To solve these problems, we propose a new DFS method that adopts the following two improvements:

1. A new expansion method to calculate DFS expansion coefficients of scalar and vector variables, which adopts the least-
squares method (or the Galerkin method) to minimize the error due to the meridional wavenumber truncation.

2. New DFS basis functions that automatically satisfy the pole conditions in Eq. (3), which guarantee continuity of not only
scalar variables but also vector variables at the poles.

We also use the Galerkin method to solve partial differential equations such as the Poisson equation, the Helmholtz equation,

and the shallow water equations.

Section 2 describes the arrangement of equally spaced latitudinal grid points used in the new DFS method. Section 3
describes the details of the new DFS method using the new DFS expansion method and the new DFS basis functions.
Section 4 examines the error due to the wavenumber truncation in the DFS method of Orszag (1974), the old DFS method

(Cheong, 2000a, 2000b; Yoshimura and Matsumura, 2005), and the new DFS method. Section 5 examines the accuracy of
4
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the old and new DFS methods and the SH method for the Laplacian operator and the Helmholtz equation. Section 6
compares the results of the shallow water test cases between the model using the new DFS method, that using the old DFS
method of Yoshimura and Matsumura (2005), and that using the SH method. Section 7 presents conclusions and

perspectives.

2 Arrangement of equally spaced latitudinal grid points

In DFS models, equally spaced latitudinal grid points are used. We use the following three ways of arranging equally

spaced latitudinal grid points in the model using the new DFS method:

Grid [0]: J =]°, 6 =n(j+05)//° j=0,..,°-1, (72)
Grid[1]: J=J°+1, 6 =mj/J°, j=0,...,J° (7b)
Grid[-1]: J=J°—1, 6;=mj/J°, j=1,..,]°-1, (70)

where 8; is the latitude at each grid point, and J 0 is the number of latitudinal grid points in Grid [0]. When the grid intervals
in Grids [0], [1], and [—1] are set equal, the number of grid points J in Grid [1] is J° + 1, and the number of grid points J in
Grid [-1] is J° — 1. Figure 1 shows Grids [0], [1], and [-1] when J° = 4 and the grid interval A@ = /4. Grid [0] has been
widely used in DFS models (e.g. Merilees, 1973b; Orszag, 1974; Cheong, 2000a, 2000b; Yoshimura and Matsumura, 2005),
and in DFS expansion (e.g. Cheong et al. 2004). Grid [1] was used in DFS expansion (e.g. Yee, 1981; Cheong et al., 2004).
Grid [-1] was used, for example, in the SH model using Clenshaw—Curtis quadrature (Hotta and Ujiie, 2018). All of Grids
[0], [1], and [—1] were used in SH expansion (Swarztrauber and Spotz, 2000).

In the new DFS method, the wind vector components u and v (instead of u/sin 8 and v/sin 8 or u sin 8 and v sin ) are
transformed from grid space to spectral space and vice versa, as shown in Sects. 3.5 and 3.6 below. This makes it possible to

use Grid [1] that has grid points at the poles.

3 Improved double Fourier series on the sphere

In Sect. 3, we describe the new basis functions for scalar and vector variables, and the new method to calculate expansion
coefficients which minimizes the error due to wavenumber truncation. We compare the new DFS method with the SH
method to see the difference between them. We also describe how to calculate the Laplacian operator, the Poisson equation,

the Helmholtz equation, and horizontal diffusion in the new DFS method.

3.1 New basis functions for a scalar variable

We propose the following new DFS basis functions that automatically satisfy the continuity conditions at the poles in Eq.

(3). The scalar variable T(4, 8) is expanded zonally as



M M
T(1,0) = Z T (8) cosmA + Ty (0) sinmA4,
m=0

m=1

where Ty, (6) and T;5,(6) are calculated from T'(4, 8) by the forward Fourier transform as

re) = 2 [ cosmAT(L6)dA, a= { 1 form =0
™ 2m ), ’ » T2 form>1,
1 271
Ty (0) = ;J- sinmAT(4,0)dA.
0
5 The variables T} (8) and Ty, (8) are meridionally expanded as
Nmax,m
OO = OO ) TS )
N=Nmin,m
where
cosné form =0,
S (8) = sin 8 cos n@ form=1,
nm ~ )sin @ sinnf forevenm = 2,
sin?@sinnd foroddm > 3,
0 form =0, N form =0,
N = 0 form=1, N _JN—=1 form=1,
minm = 1 forevenm =2, MM T )N _—1 forevenm = 2,
1 forodd m = 3, N —2 foroddm = 3.

®)

(%9a)

(9b)

(10)

(11)

(12)

10  Here, the superscript ¢(s) means ¢ or s, and for example, T,fl(s) (0) means T, (6) or T,5,(0). In Eq. (8), cosmA and sin mA are

used instead of e™4

as zonal basis functions for convenience in calculating the expansion coefficients using the least-

squares method described below in Sects. 3.3 and 3.6. In Eq. (11), the meridional basis functions sin? 8 sinné for odd m >

3 are especially different from the basis functions of Cheong in Eq. (6). Either sin n8 or sin 8 cos né can be used as the basis

functions for m = 1 because it can be shown using Eq. (A2) from Appendix A that sin 8 cosnf (n =0, ..., N — 1) are the

15 linear combination of sinnf (n =1,...,N), and vice versa. Here we use sin 8 cosn8 for m = 1 because it can be more

easily divided by sin 8, which is convenient for calculating VT.

Using Eq. (A2a—c), Eq. (10) can be converted as
N

c(s)’
T,m cosnf  forevenm,

T (0) = 1"

Z T,fl(,fl)’ sinnd  for odd m,
n=1

where

20 T = 1°® (n=0,.,N)  form=0,

nm

(13)

(14a)
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TC(S) _ TC(S)

T = w (n=1,..,N) form =1 (14b)
except for TE;ES’) = w (n=1),

T,fy(nsl)’ = _Trfi)’m;_ T;‘(le)’m (n=0,..,N) forevenm > 2, (140)

T = ~Ticem ¥ ZZ’S'(;‘) = i (n=1,.,N) foroddm >3 (14d)
except for Tf_sy = M (n=1).

4

The value of Npaxm in Eq. (12) is determined so that the maximum value of n for each m in Eq. (13) becomes N. In Grid
[0] and Grid [1] (See Sect. 2), the upper limit of N is J° — 1 for each m. In Grid [—1], the upper limit of N is J — 1 form >
2,butJ° — 2 (=] —1) form = 0 or 1. This reason is shown in Appendix C.

TT(r:l(s),N

When calculating the values of (8) in grid space from T,f_(,fl) in spectral space, the coefficients T,i Efl), are calculated

from Trfgfl) using Eq. (14) and inverse discrete cosine and sine transforms (See Appendix B) are performed using Eq. (13).

The calculation of T,(S) in spectral space from T (6) in grid space is described in Sect. 3.3 below.

The truncated variable TN (4, 8) is defined as
M M
TVM(2,0) = Z TSN (6) cosmA + Z TN (0) sinmA. (15)
m=0 m=1

From Egs. (10), the values of TSV (6) at the poles are finite for m = 0, and the values of T=®"V (8) and TV (6) at the

poles are zero for m # 0. Therefore TV (1, 8) is continuous at the poles.

3.2 Gradient of a scalar variable

The gradient VTVM = (TAN M Tg M ) is obtained as follows:

1 9T < u
TNM = e I z Tf‘ﬁ(@) cosml + Z Ti'ﬁ(@) sinma4, (16a)
m=1 m=1
Nmax,m ( )
m mS, (6
Tim (0) = ——=T3"(6) = Z (Tﬁ,m #) (16b)
N=Nmin,m
Nmax,m ( )
m mS, (0
T;ﬁ(g) = " asing T (0) = Z ~Tam ﬁ) (16¢)

N=Nminm



M M
19TVM 19TNVM
NM _ _ _ N N .
=—=— = z Ty (0) cosma + z Ty (0) sinma,
m=0 m=1

¢ Tq 9¢ a 00
( )N Nmax,m
C(S)N 1 aTC s (6) C(S) 1 aSn_m(g)
=== ), (R 75%)
N=Nmin,m

where a is the radius of the earth, and ¢> is the latitude. From Egs. (16b,c) and (A2b), we obtain

form =0,
Z Tfflszn cosno form =1,
n=0
C(S) N(g) _ < N-1
Z f;szn sinnf for evenm > 2,
n=1
N-1 N-2
Z TS cosnb <= TC( s)' ), sin 6 sin n9> forodd m > 3
Anm An ="
=0 n=1
5 where
1
Tinm = ETrf,m n=0,..,N—-1) form=1,
Tinm = EmTrf_m n=1,..,N=1) for evenm = 2,

T _ 1 m(_Trf—l,m + T1§+1,m)
Anm — E 2

n=0,..,,N-1) forodd m = 3.

(17a)

(17b)

(18)

(19a)

(19b)

(19¢)

The equations for Ty, ,,, are the same as Eq. (19), except that T, ,, and T;; ,, are replaced with T3, ,,, and =T ,,, respectively.

10 From Egs. (17b), (13) and (14), we obtain

Z Ts® sinnd form =0,
c(s) _
¢nmcosn9 form =1,
c(s) N(G) —
v
(;(;)m sinné for evenm > 2,
n=1
N N-1
;(;)m cosné <= T(;(s) sin @ sin n9> foroddm = 3,
n=0 n=1
where
1
qu(rsz)m = _E(_"Trf.gfz) (n=1,..,N) form =0,

(20)

(21a)



11n TCES) c(s)

Tq(b:(r?m — a ( n-1m n+1, m) (Tl =0, ___’N) form=1, (Zlb)

2Tc(s) Tc(s)
except for qu(f)m = - fm (n=1),
n TCES) _ c(s)

T(;(ﬁ)m = - (Taim = Tusim) (n=1,..,N) forevenm=2, (21c)
1[n(-TS),, + 2155 — T2)

T;,(Z,)m =73 ( nm2m 4n'm Tnsz m) (n=0,..,N) foroddm =3, (21d)

3Tc(s) c(s)
5 except for Tdf(f)m = ( m)

From Eqs. (18)—(21), it can be seen that T} (9) (9) T (9), and T ;m(e) at the poles are finite for m = 1 and zero

for m # 1, and moreover the following relations are satisfied for m = 1:

TEN_ (0) = ~TSN 1(9)( ZT;m 1) at@ = 0 (North Pole), (22a)
n=0
=
Tym=1(0) = Tgh _1(6) (= — Tn_m:1> at @ = 0 (North Pole), (22b)
a n=0
1 N-1
10 Tim=1(6) = Tym_1(6) (: —Z(—nnrgm:l) at@ = m (South Pole), (22¢)
a n=0
1 N-1
Tym=1(0) = =T5h _1(6) <= —52(—1)"T;,m=1> at @ = 7 (South Pole). (22d)
n=0

Thus, it is guaranteed that VTN = (TN M T(;,V M ) is continuous at the poles.

3.3 New method to calculate expansion coefficients for a scalar variable

One way to calculate the coefficients T,f_(rfl) from TT;(S)(H) in Eq. (10) is to perform a forward cosine transform of

15 TS (6)/sin @ for m = 1, a sine transform of T< () /sin @ for even m (= 2), and a sine transform of T=® () /sin?  for

odd m (= 3). However, this approach with the meridional wavenumber truncation N < J leads to the large high-

wavenumber oscillation (See Sect. 4). Dividing T,ffs)(e) by sin? @ reduces the numerical stability of the model more
significantly than dividing T<®(8) by sin 6.

Here we propose a new method to calculate expansion coefficients using the least-squares method to minimize the error

20 due to the meridional wavenumber truncation. This method also avoids dividing T,;(S) (6) by sin 8 or sin? § before the
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forward cosine or sine transforms. The coefficients TC(S) in Eq. (10) are calculated as follows. First, Tncl(s) (0) in Eq. (10) are

expanded like Eq. (5) as

Z 7 cosng for even m,

Tal@) = T0" @) ="y (23)
Z T,fﬁi) sinnf for odd m,
n=1

where the expansion coefficients T‘,f_(,fl) are calculated by the forward discrete cosine transform for even m and the forward

discrete sine transform for odd m from the values of Trfl(s) (0) at the grid points (See Appendix B).

Next, Ty5 1, and Ty; ., are calculated using the least-squares method to minimize the following error E (the squared L, norm

of the residual):

1 2w T

- 2
E= anfo fo R(A, 6)2d6dA, (24)
where the residual R(4, 0) is
M M
R(A,0) = (Z TN (8) cosmA + Z TSN (9) sin mA) —TQ,0). (25)
m=0 m=1

From Egs. (24) and (25) and the equations 0E /0Ty, = 0 and 0E /0Ty, = 0 used in the least-squares method to minimize

E, we obtain

2T aTCN( )
f ————=cosmAR(A,0)dOdA =0, (26a)
0T m
fznf aTSN( 2 AR(A,60)d6dA =0 26b
oz s ———sinm , =0. (26b)

From Eq. (10), we derive

aT," (6) 6TSN(9)
TS, 0TS,

Snm(6), (27)

Equations (26) and (27) show that the residual R(4, ) is orthogonal to each of the new DFS basis functions S,,, ,,(8) cos mA
and S, ,(6) sinmA, which means that Eq. (26) is the same as the equation derived using the Galerkin method.

From Egs. (26), (27), (25), (9) and (A3), we derive
i

f nsn,m(e)n;“)”(e)de = f Spm (OITD (6)d6. (28)
0

0
From Egs. (28) and (D4) in Appendix D, we obtain

s

f Sum(OTEOY (0)d6 = f Sum(O)TEOV (6)d6. 29)
0 0

From Eqgs. (29), the following equations for Ty, and Ty ,, are derived, as shown in Appendix E.

10
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Form =0,

TS = 75 (0<n < N). (30a)
Form=1,
T m + 2T = Toom = 200 + 2100, O<n<N-1), (30b)

with the exception of the following underlined values:
1r) -1 = 215 (=1,
21 421 T = 2T 4215 (n=2).

Forevenm (= 2),

—T58) L+ 2T — ) = 2S) 2T (1<n<N-1), (300)
with the exception of the following underlined values:
O] (8) — »g7¢c(s) 7c(s) —
§T1(insz - T3L:rrs; = éToc,ni - ZTzc,nsz (n=1).
For odd m (= 3),
TS = ATSS) L+ 6T — 4TS+ TS = —aTfS)  +8TS) — 4T8), (1<n<N-2), (30d)
with the exception of the following underlined values:
mTf,fZ) - §T3C,£;) + Tsc,grsz) = QTES) - 4T3C,1(1i) (n=1),
TS — 47D + T = 875 — 4T (=2,

_§T1C,1(rsz) + 6T3L:£TSI) - 4T5C.£rsl) + T7c,£rsl) = _477.1(?5’51) + 8713?5151) - 4TSC,£rSz) (n=3).

From Eq. (30a), T,f_ (rfl) for m = 0 is obtained. From Egs. (30d), the following linear simultaneous equations for m = 3 are

derived:
c(s) =c(s) (s) Fc(s)
Tim T Tym Tym
(s) 7 c(s) (s) Fc(s)
Tym Tim Tym Tim
Gl reg | =P T2 O | = Pl 72 D

O

where the matrices C}, and CZ, are penta-diagonal. From Egs. (30b,c), the equations similar to Eq. (31) form = 1 and even
m (= 2) with tri-diagnoal matrices C}, and C2, are derived. By using Eq. (31), the expansion coefficients Tnc‘ Sfl) are calculated

from T",fy(nsl) . A penta-diagonal matrix C can be LU decomposed as

11
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r« 0 0 0 0 O 07 'l = = 0 0 0 07
* * 0 0 0 O 0 01 = = 0 0 0
* x x 0 0 0 0 0 0 1 = *x 0 0
C=LU L=|0 = = = 0 0 o], U=]0 0 0 1 =* = 0l. (32)
0O 0 -« 0 * *x =+ 0 o o0 -« 0 0 0 1 =
L0 0 - 0 0 * % =« 0o 0 - 0 0 0 0 1

To solve LUx = b, we solve Ly = b with forward substitution first, and then solve Ux = y with backward substitution.
There are also other methods to solve Eq. (31). For example, the method using LU decomposition considering penta-
diagonal matrices as 2 x 2 block tri-diagonal matrices makes SIMD operations more effective. The method using cyclic
reduction for block tri-diagonal matrices (e.g., Gander and Golub, 1997) is suitable for vectorization and parallelization. The
calculation with these methods for each m requires O(N) operations. The simultaneous equations with tri-diagonal matrices
C can be solved in a similar way. Therefore, the calculation of T,fy(nsl) for all m and n with Eq. (30) requires only O(N?)

operations.

3.4 Comparison of new DFS with SH

Here we compare the new DFS method with the SH method to see the difference between them. In the SH method, Ty, (8)

and Ty;, (0) in Eq. (8) are expanded with the associated Legendre functions B, ,,, (8) as

N
TT;(S) (0) ~ T,;(S)'SH'N(H) = Z Trf_gfl)'SHPn,m(e)' (33)
n=m

where m = 0. The functions B, ,,, (8) satisfy the following orthogonality relations for each m:

1(or2) forn=n,

34
0 forn = n'. (34)

T
f Pym(8)P, 1, (8) sin6 do = {
0

By the modified Robert expansion (Merilees, 1973a; Orszag, 1974), the associated Legendre functions P, ,,(6) are expressed

as
n—|m|

Pym(0) = Z Apm, SIN™ 6 cos 16 (35)

=0
when n—|m|-lis even

Conversely, the functions sin™ 8 cos(n — |[m|)@ (n = |m|) can be expressed as the linear combination of Pna6) (1=

|m|, ...,n). Substituting Eq. (35) into Eq. (33) gives the following equations.
N-m
TSN gy = Z TESH sin™m g cosne, (36)
n=0

where m = 0. Equation (36) is similar to Eq. (10) in the following sense: the basis functions form = 0 and m = 1 in Eq.
(36) are the same as Eq. (11). The basis functions sin?8cosnf (n=0,..,N —2) for m = 2 and sin® 0 cosnf (n =

0,..,N —3) form = 3 in Eq. (36) are the linear combinations of sinfsinnd (n=1,..,N —1) and sin?sinnd (n =
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1,..,N —2) in Eq. (11), respectively (see Eq. (A2a)), and vice versa. The basis functions for m > 4 in Eq. (36) are different
from Eq. (11). The number of expansion coefficients in Eq. (33) or Eq. (36) in the SH method is smaller than in Eq. (10) in
the new DFS method for each m > 4. From Egs. (8) and (33), the number of expansion coefficients T,i’,S,IH in the SH model is
about N2/2 when M = N. This triangular truncation used in the SH method gives a uniform resolution over the sphere.
From Egs. (8) and (10), the number of the expansion coefficients T, in the DFS method is about N when M = N. This
rectangular truncation used in the DFS model gives almost the same resolution as the grid spacing of the regular longitude—
latitude grids. Therefore, the zonal Fourier filter (see Appendix F) is used in the DFS model to give a more uniform
resolution.

We compare the method used to calculate the expansion coefficients in the new DFS method with that in the SH method.
s

The SH expansion coefficients in Eq. (33) are calculated from Tni(s) (0) by the forward Legendre transform as

T
T = f Pom ()Tl (8) sin 6 a6, 37)
0

where Gaussian quadrature or Clenshaw—Curtis quadrature (e.g., Hotta and Ujiie, 2018) is usually used for integration. They

TT;(S),N

can also be calculated using the same equations as Eq. (37) except that TT;(S) (@) are replaced with (0) (e.g., Sneeuw

and Bun, 1996), although the values of Tt s"*" calculated from T.<™" (6) are different from those calculated from T (6).
In the new DFS method, the values of Tncrs,sl) calculated from T,;(S)'N (8) in Eq. (29) are the same as those calculated from
7<) (0) in Eq. (28) (See Eq. (D4) in Appendix D).

Eq. (37) can be derived using the least-squares method that minimizes the error ESH (the squared L, norm of the residual):

1 2T T
ESH = — f f RSH(2,0)%sin 0 dédA, (38)
i )y )
where the residual RSH(4, ) is
M M
RSH(A,0) = (Z TSN (9 cos mA + Z TSSHN (9) sin m/1> —TQ,0). (39)
m=0 m=1

From Egs. (38), (39) and (33), and the equations dESH /9T, = 0 and dESH /T4 = 0 used in the least-squares method

to minimize ESH, we derive

2 T
f f Py (6) cosmARSH(2,6) sin6 doda = 0, (40a)
o Jo

2w T
f f Py (6) sinmA RSH(A, 0) sin 6 d8dA = 0. (40b)
0 0

Egs. (40) is the same as the equation obtained using the Galerkin method. From Egs. (40), (33), (34), (9) and (A3), we derive
Eq. (37).
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In Eqgs. (37) and (38), the latitudinal weight sin 8 appears, unlike in Eqs. (24) and (29), which is another difference
between the SH and the new DFS methods. In the DFS method, the constant latitudinal weight is used in Eq. (24), although
the latitudinal area weight described below in Appendix G is usually used as the latitudinal weight at the grid points, for
example, for the calculation of the global mean.

When calculating the coefficients T,i (,fl) in Eq. (10), we can also consider the least-squares method, not using E in Eq. (24)
but using E' with latitudinal weight sin 8 like Eq. (38). However, minimizing E’ derives the simultaneous equations for
calculating Trfgfl) with dense matrices, which leads to O(N?3) operations. When using E, the simultaneous equations with
penta-diagonal or tri-diagonal matrices require only O(N?) operations. Therefore, we choose to use E instead of E’.

The new DFS meridional basis functions S,, ,,(6) for each m are not orthogonal but independent. Therefore, by using

Gram-Schmidt orthogonalization, the basis functions can be converted to orthogonalized basis functions S2,,,(8), which

satisfy
lf%O(mﬂ%(mdesz“”="9 (41)
), T Tmm 0 forn#n'.
This is similar to Eq. (34), but the latitudinal weight is constant. T,fl(s) (0) in Eq. (8) are expanded with S2,,(6) as
Nmax,m
0@ =M@ = > TE050,(0) (42)

N=Nminm

By using the least squares method or the Galerkin method with Eq. (42), we obtain the same equations as Eqs. (24)—(29)
except that T (0) and S, ,, () are replaced with T,.®"*" (6) and S2,,(6) respectively. From Eq. (29) with T,.ON(6)

and S, ,, () replaced by T,fl(s)’O'N(H) and SQ,,(6), and Eqgs. (41) and (42), we derive
1™ _
T = [ sem(@TEO" 0)ao. 43
0

Thus, Tew® and T5°" (6) in Eqgs. (43) and (42) are calculated uniquely. This unique solution T=™>" () is the same as
T,fl(s)’N(H) in Eq. (29) obtained by the least-squares method with the non-orthogonal basis functions S, ,,(8), because

521(8) (N = Npinms - » Nnaxm ) are the linear combination of Sy, 1, (8) (n = Niinmy > Nmaxm ) for each m, and vice versa.

3.5 New basis functions for a wind vector

The velocity potential y and the stream function Y can be converted into the wind vector components u and v using the
equations

. 1 oy 1oy 1 oy 10y

acos¢pdl adp asinfor adf’

b 1 oy 1oy 1 oY 1oy

acos¢p 91  ad¢p asinfor adb’

(44a)

(44b)

14



where u = acos ¢ dA/dt is the zonal wind, and v = ad¢/dt is the meridional wind. The scalar variables y and i are

expanded like Egs. (8) and (10) as

M M
565)= gl S o

[ c(s)(g)] [ C(S)N(H)] Nmix'm c(s)
P> @] Ly 9)

Xnm
c(s)

nm

Snm(6),

Nn=Nmin,m

5 The truncated variables V" (4, 8) and yV'™ (4, 8) are defined as

M
NM SN (g
[XNM(/L 9)] Z [ cosml + Z [XTS”N( )] sinmA,
Y*H(2,0) (9) [y (0)
From Egs. (44)—(47), the equations for the wind vector components u¥'" (4, 8) and v¥" (2, 8) are derived as

1 aXMM(Ae)*_1a¢NM(A9)__§§

NM - oN SN .
uM(2,0) = e L " 70 Uy, (0) cosma + Z Uy, (6) sinma,
m=0 =
CN Nmax,m
uc,N(e) myy, (9) " lad)m ) _ Z s mSp,m(6) L e lasn,m(g)
m asin@ a 06 £ M asin 6 Mo 096 ’
N=Nminm
O 10wt R ® ®
o= mEO 100§ i@ 1050
10 um (6) = asinf a 0 Anm = Gin g ’ana 06 ’
N=Nminm
NM(/‘{ 9) — 1 a‘l)bN‘M(A' 9) 1 aXN‘M(A! 9) _ i C_N(g) /‘l + i S,N(g) - /‘{
v 0)=—— i " T = vy cosm v sinma,
m=0 =
© 1Mo o Q) ®
v PN O)  10x5 (0 zz . MSum(8) . 105,.(6
vm- (6) = asinf a 08 Ynm asin @ Anm ™ 59 ’
N=Nminm
Y e) 1axse) T S, (8) 19S,,,,(6)
SN _m Xm (0) _ :E: _ype onml0) o 10onm(6)
om (8) = asindf a a6 ( Yim = sing Mg a8 )

n=Nminm
The vector (uMM, vNVM) in Egs. (48) and (49) can also be represented as

M Nmaxm

15 (uN'M (/1; 9): vNM (A: 9)) = Z Z (chl,mvr},m + erz,mvr%,m + lpfz,mvrim + wrsl,mvrtm) ’

m=0n=Nmin,m
where we define the new DFS vector basis functions Vi, V2., V3, and Vi ,, as

, _( mSum® . 135,.(0)
Vnym(A,B)_< 250 sinmAi, PR cosmAl

15

(45)

(46)

(47)

(48a)

(48b)

(48¢)

(49a)

(49b)

(49¢)

(50)

(51a)



mS, ;m(6) 19S,.,(8) .
Vim(4,0) = <# cosmA, —E%sm ml ),
10S,.,(0) mS,m(6) .
Vr:l)’,m(/l; 9) = (a% cosmi, — % sinmA |,
10S,.,(0) mS, ,(0)
4 — [ Z2%9nm . nm
Vin(4,0) = (a—ae sin m/l,—a pry cosml |.
From Egs. (48b,c), (49b,¢), and (18)—(21), we obtain
N 'uc(s)'
Z Z(Z; sinné form =0,
n=1 _Un’m_
N 1 oc)]
fnm 0 form =1
(s),N (s) cosn orm=1,
5 [urcn O _ )= rnm ]
vC(S).N(g) N 'uc(s)'
" Z :(Z; sinn@ forevenm = 2,
n=1 _Un,m_
N Tue® ity IR0
z [ Z(Z;l cosné (= Z [ :(Z;,l sin 6 sin n@) foroddm = 3,
n=0 Un,m n=1 vn.m
where
n
Upm = —E‘Prcz,m (n=1,..,N) form=0,
1 n C_ — [
Ufm = p [m)(rsl,m + (s 1'm2 Vi) (n=0,..,N) form=1,
1 200§ — WS
except for uf,, = P [m)(f,m + M} (n=1),

n(lpfl— 1im ¢$1+ 1,m)
+ 2

1
10 urcl,m = a [m)(z,m

C
un,m

— l [m(_)(rsl—l,m + erl+1,m) + n(_lpfl—Z,m + leﬁ,m - l»brcz+2,m)
2 4

1
except for uf,, = 2 [

MLm (3¢S m — YSm)

5 2 ] (n=1).

(n=1,..,N) forevenm =2,

(51b)

(51c)

(51d)

(52)

(53a)

(53b)

(530)

] (n=0,..,N) foroddm =3 (53d)

The equations for uj, ,,, are the same as Eqs. (53b—d), except that uy, ,,, X5 m, and ¥y, ,, are replaced with uj, ,,,, — x5 m, and

Y5 m, respectively. The equations for vy ., are the same as Eqs. (53a—d), except that ug, ,,,, X5 m, and ¥y, ,, are replaced with

15 Vg m, Ynm, and —x;, o, respectively. The equations for vy, ,,, are the same as Eqs. (53b—d), except that ug ,,,, x5 m, and Yy,

are replaced with vy, ,,, =Yy 1, and —x; ., respectively.

From Egs. (52) and (53), it can be seen that u$;" (8), uS)" (0), vSN (6), and v3,N (8) at the poles are finite for m = 1 and

zero for m # 1. Moreover, the following relations are satisfied for m = 1:
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N-1
SN ERSAN ()] < lZ:()(,Sl,m=1 + ¢§,m=1)> at @ = 0 (North Pole), (54a)

a n=0

N-1
s,N c,N 1 c S

W (6) = v (6) <= Ez (~ X s + wn,m=1)> at 6 = 0 (North Pole), (54b)
N (0) = v (9)( Z( D™(xSme1 + VS m= 1)) at @ = m (South Pole), (54¢)
N (8) = —v© (e)( Z( D™M(~1E e + Wme 1)) at® = w (South Pole).  (54d)

n=0

Thus, it is guaranteed that the wind vector (u™™, v¥M) in Eqs. (48) and (49) is continuous at the poles.

3.6 New method to calculate expansion coefficients for a wind vector

We propose a new method that calculates the expansion coefficients xy; ,, Xnm> Wnm and ¥, ,, in Egs. (48) and (49)
using the least-squares method to minimize the error of u™(4,8) and vV (2,8) from u(A, 0) and v(A, 8) due to the

meridional wavenumber truncation. First, the wind vector components u and v are expanded zonally as

M
ua0) Ly [ufn(e)] Z B w5, (0]
[v(l, 0l = Ve (9) cosmi + Vs (9) sinmA, (55)
m=0
where uf,fs) () and v,cn(s) () are calculated from u(4, 8) and v(4, 8) by the forward Fourier transform as
ufn(é?)] _ ifzn [u(/l 9)] _ { 1 form=0
[v,gl(e) ~or), smAlL o) C=12 form =1, (562)
un(0)] _ 1 f“ : [u(a, 0)]
[vfn(H) == ; sinmA v(L0)] da. (56b)

The variables u"® (8) and v< (6) are meridionally expanded as

~c(s)
) N Z l~c(s) sinn@ for even m,
[ufés (9)] N [~C<S> ®)] _

(57)
uO@) " g @)] | S [as
cosnf for odd m,
c(s)
where uc(s) and vc(s) are calculated from uS®(6) and v,‘;l(s) () by the forward discrete cosine or sine transform (See
Appendix B).

Next, X5 m> Xnm> Wnm. and Py, , are calculated to minimize the following error F (the squared L, norm of the residual

vector):
1 2w T
F=orp f f (R¥n(2,0)% + RY 1, (2,0)%) d6 dA, (58)
0 0
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where the residual vector (R%ym(l, 0), Ry (4, 9)) is defined as
Ry (2,0) = uMM(4,0) —u(a,0), (59a)
RE . (2,0) = vVM(4,0) —v(2,0). (59Db)
From Egs. (58), (59), and the equations dF /dxy,, = 0, 0F /0x;; m, = 0, OF /0y, ,,, = 0, and 0F /0, ,,, = 0 used in the

5 least-squares method, we obtain

an 2 f [auNM(/l 0) RY(2,0) + %Rzm& 9)] d6 di =0, (60a)
il jm f [auNM(/l 0) RY . (2,0) + %Rgm(a 9)] d6 di =0, (60b)
22 f ) f [6”2;4:1 2 Rim(4,0) + %Rzm@, 9)] df da =0, (60c)
271T 2 fzn f [aug;(i 0) RY(2,6) + %?Rg,m(a, 9)] d6 di = 0. (60d)
10 From Eq. (50), we derive
(au’;ﬁé;t 2 ' avl;;w; i 9)> =Vain(,0), (61a)
(aug;(j: 2 ’ avg.;f i 9)> =VzZ,.(4,0), (61b)
(au:l: gn 6) ' augz ﬁ(fn 9)) _vi(6) 610
(aug:;um 2, avgl(i 9)> = Vam(,0). (61d)

15 Equations (60) and (61) show that the residual vector (R}f,m(/l, 0), Rz‘m(l,ﬁ)) is orthogonal to each of the vector basis

function, which means that Eq. (60) is the same as the equation obtained by the Galerkin method. From Egs. (60), (61), (51),
(48a), (49a), (56), (A3) and (D6), we derive

Hon [‘nf?i—r;;(em(ﬁ(") Q) —265"—’"(9)( ~“”(9)) do =0 (622)

2| [P (o - w5 0) - ;P (o) - ~SN(9)): 46 = 0 (62b)

20 %fo Eas%_z(@)(uwg)_ﬁmg)) mj"j‘l(;) (sz(e)—v;N(e)) d6 =0 (620)
Hon EM%—YZ@(”%V(G) @) + mSnm( )( NOE ~CN(Q))] d6 =0 (62d)

From Egs. (62a), the following equations for x;, ,, and i, ,, are derived as shown in Appendix H.
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Form =0,
1 ~
a[n)(fn,n] = Unn (1<n<N). (63a)
The coefficient x;,—9 =0 is determined so that the global means of y are zero. See Eq. (G1) about the calculation of the
global mean.
Form =1,
1
2 [—(n = D2x5—om — 2mp5_y jn + (4M% + 207 + 2) X5 1 — 2P — (0 + D200 m]
=2n— 105y — 4miiy , —2(n + D)5, (0Sn<N-1), (63b)
with the exception of the following underlined values:
1
S8 + )y — AmYT = 245 | = —8milyy — 405, (= 0),

1
[~ + (4 + A+ ] = (n=1),

1
[ 2m — 2yt + ] = (n=2),

Forevenm = 2,

1
7 [—(n— D2x5_om — 2mP5i_y py + (A% + 20 + 2) x5 — 25 s1m — (04 D2 x5r1 0]
=2 —D)T5_1 — 4Amily  — 2+ DT 41 (1<n<N-1), (630)
with no exception-
For odd m = 3,
1
a [(Tl - Z)ZXTCL—4,m + zmlprsl—&m + (_4m2 - 47’12 +8n — S)chl—z,m - zmlp‘fl—l,m + (87’)’12 + 6Tl2 + S)Xfl,m
=2 g + (—4m? — 4n? — 8n — ) x5 i + 2Pz + (M + 2)7 X5 sam)
=4(n — 2)0y_ym — 8Mily_q1  — 8N,y + 8Mily 1y + 4N+ 2) V510, (1SN N-2), (63d)

with the exception of the following underlined values:

1

—[(12m? + 18)x5  — 43 + (—4m? = 21) x5 + ] = —L6MTZp — 1255, + - (0= 1),
1
[t + (817 + 325+ ] = (n=2),

1
—[(—4m? = 21) x5 — 25 + ] = - (n=3).

Similarly, from Eq. (62b), we derive the same equations as Eqgs. (63b—d), except that ¢, 3, ¥, and @i° are replaced with x>,

—¢, 7%, and —1ii€, respectively. From Eq. (62¢), we derive the same equations as Egs. (63a—d), except that x€, 5, 7€, and
1S are replaced with —y°¢, x5, i€, and —¥°, respectively. From Eq. (62d), we derive the same equations as Egs. (63b—d),

C

except that y€, Y%, 7€, and @i° are replaced with 35, y€, —@i5, and —7€, respectively.
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Eq. (63a) is easily solved. From Egs. (63d), and from the same equations as Eqs. (63d), except that ¢, %, 7€, and @i° are

replaced with %, ¢, —1i%, and —7¢, respectively, we derive the following linear simultaneous equations for m > 3:

ch,m ﬁg,m l/)%m —1]0 m
w;,m ﬁf,m Xg,m _ul m

Em Xg,m = Fm ﬁ;,m ’ Em ¢§m = tm _UZm (64)
llif,m ﬁ?f,m X z('r:,m _u3 m

where the matrices E,,, are nine-diagonal. From Egs. (63b,c), we derive the equations similar to Eq. (64) for m = 1 and even
m (= 2) with penta-diagonal matrices E,,,. The simultaneous equations with nine-diagonal or penta-diagonal matrices E,,
can be solved in a similar way to Eq. (31), and the expansion coefficients yy; ,, and i, ,,, in Eq. (64) can be solved efficiently.

~5C

From the same equations as Egs. (63b—d), except that ¢, Y5, ¥

, and ©° are replaced with y$, —¢, 73

, and —1i
respectively, and the same equations as Eqs. (63b—d), except that €, ¥, ¢, and @i® are replaced with —y°€, y5, i€, and —75,
respectively, the simultaneous equations similar to Eq. (64) are also derived. Thus, the expansion coefficients x5 ., X5 m-
Y5 m, and Py, , are calculated from @5, .y, 3, 1, Dy m, and ¥y ,, using Eqs. (63a—d) and the similar equations. The expansion
coefficients Uy, 1, U5 m, Vnm, and vy, are calculated from x5 m, Xnm> ¥rm, and Y, ., using Eq. (53) for uy, ,, and the
similar equations for u;, ,,, Vy; 1, and vy, .

This method to calculate the DFS expansion coefficients of y and i from u and v using the least-squares method (or the
Galerkin method with the DFS vector basis functions) is similar to the vector harmonic transform method (Browning et al.,
1989; Temperton, 1991; Swarztrauber, 1993), where the SH expansion coefficients of the divergence D = V?y and the

vorticity { = V% are calculated from the grid-point values of u and v using the Galerkin spectral method with the

orthogonal vector SH basis functions.

3.7 Laplacian operator and Poisson equation

The calculation of the Laplacian operator and the Poisson equation in the new DFS method is described here. In the

equation

1 #f 19 ( af)] 65)

9 —_—
sin2 @ 912 + sin 0 06 sin

1
9(2,0) = V*f(2,6) = — [ -

where V? is the Laplacian operator, the variables f and g are expanded zonally like Eq. (8) as

M
0] S B o 3 [E0] .

The variables f5(0), fin(0), g5.(8), and g3, (6) are expanded merldlonally like Eq. (10) as

2 ©)] o [f“”'”(e) _ [ “S)l ®
- nm
g @1 g @] = o

We define the truncated variables fV'*(8) and g"'™ (0) as

(67)
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N,M /1 0 "ClN rle .
[fNMEA 6%] Z f ( ) cosmAi + z : ( ) sinmaA4, (68)
From Egs. (65) and (68), we obtain

1 (. ")
v 2.0) = Z a? [sm2 o’m )+ sin6 96 (sm o T)] cosma

6
Z o Lngf,g’v( )+ ( ing fag( )>] sinma. (69)

Here we use the Galerkin method to calculate the Laplacian operator and the Poisson equation, and obtain

o 2n f Snm(6) [C"SW] RI(A,0)dOdA = 0, (70)

where the residual
RI(2,0) = g"M(2,0) — V3fNM(2,0) (71D
is orthogonal to each of the new DFS basis functions S,, ,,(6) cosmA and S,, ,(6) sin mA.
We can also use the least-squares method instead of the Galerkin method so that the following error H (the squared L,

norm of the residual) is minimized:

H=-p - RI(A,0)%d6 dA. (72)
=) 1

When calculating g by applying the Laplacian operator to a given f, g5 ,, and g;, ,, can also be calculated from dH /09y,
and 0H/0g;, , using the least-squares method. The equations 0H /g5, ., and 0H/0g;, ,, give the equivalent equations to Eq.
(70). When calculating f from a given g in the Poisson equation, f;', and f;;,,, can also be calculated from 0H/0f,;,, and
O0H /0 using the least-squares method. However, the equations derived from dH/df,;,, and 0H/0f;;,, are different from
Eq. (70). If we use different equations for calculating g from f and f from g, the original values are changed when
calculating g from f followed by calculating f from g, which may be not good for numerical stability. Therefore, we use Eq.
(70) obtained with the Galerkin method for calculating both g from f and f from g. Generally it cannot be said that the
least-squares method is superior to the Galerkin method or vice versa, and here we choose to use the Galerkin method

because of the reason described above.

From Egs. (68)—(71) and Eq. (A3) we derive

m 1[-m? 1 8 LN ()
S 0 SN gy _ (N g 2 [singYm do =0, 73
fo ol )[gm O -Z e @+ 5naaa\ M0 73)
Form = 0, we calculate g5G, by using
2 c(s),N
C(S)N m C(S).N 1 0  0fn )
= 20 Y — = 74
© = a? [sm2 '™ © + sin 9 30 (sm o a0 ’ (74)
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instead of Eq. (73) following Yee (1981) and Cheong (2000a) for ease of calculation. For 0 < m < 3, the exact solutions of
rom i

can be obtained from Eq. (74) because the new DFS meridional basis functions for 0 < m < 3 are the linear

combination of the associated Legendre functions for 0 < m < 3 and vice versa as described in Sect. 3.4

5

Form = 0, by substituting Egs. (67) into Eq. (74) multiplied by sin? 6, transforming using Eqs. (A2d) and (A5b), and
comparing both sides of the equation, we obtain

_gfl(sg o+ ZgC(S) c(s)

1
Inirm =z (= DO -G,

—202£5) + (n+ D+ 2)f8),] (0<n<N), (75a)
except for the following underlined values

1950 — G5 = (n=1),

ch(s) + ch(s) g:(s) (Tl — 2)

e .

10 Form = 1, by substituting Egs. (67) into Eq. (73) and using Egs. (A2d), (A4a) and (A5b), we obtain
~0nym + 20nm ~ It =

c(s)

[(n — DnfS),, — @n® + 4mD D + (n+ DnfS),,] (0<n<N-1) (75b)

except for the following underlined values

1959 — gs® =

_ch(s)+zgc(s) gz(sm) [_fc(s)+ ]

15 For even m > 2, by substituting Egs. (67) into Eq. (73) and using Egs. (A2c), (A4b) and (A5d), we obtain
1
gz(s%m + ch(s) g;(-f;m — p [(TL _ annC(Sz)m (2n? + 4m2)fc(s) +(n+ l)nfC(S)

om] ISn<N-1) (750)
except for the following underlined values

3955 — g5 =
with no exceptions.

(n=1)
20 For odd m > 3, by substituting Egs. (67) into Eq. (73) and using Egs. (A2c,e), (A4b) and (A5d), we obtain
gffsim 4G5 1+ 6950 = 4GeD m + Goihm

= ; [~ =2)(n = D), + (4n? — 6n + 4 + 4m?) ) — (6n% + 4 + 8m?) L)
+(4n? + 6n + 4 + 4m?) £

S =+ 2+ DS (1<n<N-2) (75d)
except for the following underlined values
25

1095 — 595 + g = [ (12 + 12m?) £S5 + -]

(n=1,
595 ~ 4dam + gC(S) (n=2)
~501m + 6G3m ~ 405 + Grom = [+ 4] =3,
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From Eq. (75), we obtain the following two linear simultaneous equations with tri-diagonal or penta-diagonal matrices:

c(s) _ c(s) c(s) _ c(s)
An_even,mgn_even,m - Bn_even,m n_evenm An_odd,mgn_odd,m - Bn_odd,mfn_odd,m ) (76)

c(s)

noddm are the vectors whose components are gf}f,? (nis even) and gfl(frz (n is odd), respectively, and

where gfli)ven,m and g

;(_Se)ven,m and ffg)dd’m are the vectors whose components are f,5,, (n is even) and f;*, (n is odd), respectively; Ay, evenm»

c(s)

B evenm> An_oddm and By, 444, are tri-diagonal or penta-diagonal matrices. g,‘;ﬁfg_even and 9,7 odd

are calculated by

95 enm = AnkvenmBn evenmf o venm gfl(_i)dd,m = A} oddmBn odamf ;E?dd,m ) 77)

which can be solved efficiently as in Eq. (31).

We have verified that all the eigenvalues of the matrices Ay evenmBn evenm and A;_lodd,mBn_odd_m are negative real

numbers for several truncation wavenumbers M and N, but we have not yet proved that this is true for all truncation
wavenumbers.

In the Poisson equation, f is calculated from given g in Eq. (65). We calculate f from g by the reverse calculation of g

from f in Eq. (77). That is, we calculate f from g by

c(s) — Rp-1 c(s) c(s) —Rp-1 c(s)
n_evenm — Bn_even,mAn_even,mgn_even,m ’ gn_odd,m - n_odd,mAn_odd,mfn_odd,m ’ (78)

except whenm = 0 and n is even. Form = 0, f;7_y = disappears in Eq. (75a). The coefficients f;,,—o (even n = 2) are
calculated from g5 ., (even n = 2) by Eq. (75a). The value f;;{_ = is calculated from f;;,,— (even n > 2) so that the
global mean of f is zero using Eq. (G1).

In Eq. (65), the global mean of g must be zero because the global mean of the right-hand side of Eq. (65) is zero. Before
calculating f from a given g in the Poisson equation, we should subtract the global mean from g (Cheong 2000b). See Eq.
(G1) about the calculation of the global mean.

3.8 The Helmholtz equation

The Helmholtz equation is

Vif =41 ! ! 62+10(_96) = 79
foevif= “a%|sinz0022 " sinoaa \°"" 39 f=9 (79)
where f is calculated from given g. From Eq. (76), the Poisson equation in Eq. (65) is represented as

Ag = Bf, (80)

where the subscripts n_even, n_odd and m, and the superscripts ¢ and s are omitted. Similarly, by using the Galerkin method,
Eq. (79) is represented as
Af — eBf = Ag. (81)
From Eq. (81), f is calculated from g by
f=(A-¢eB)1Ag. (82)

Since A — ¢B is a penta-diagonal or tri-diagonal matrix, Eq. (82) can be efficiently solved as in Eq. (31).
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Similarly, the Helmholtz-like equation

f—eV2f = Vg (83)
is represented as
Af — ¢Bf = Bg. (84)
From Eq. (84), f is calculated from g by
f=(A—-¢B) Bg. (85)

3.9 Horizontal diffusion

The horizontal diffusion is calculated in the similar way as in Cheong et al. (2004). Here we describe how to calculate
fourth-order diffusion. Higher-order diffusion can be calculated similarly.

The equation for fourth-order hyperdiffusion is

f+eVif=g, (86)
where f is calculated from g. Equation (86) can be converted into
(14 iVev?)(1 - iVeV?)f = g, (87)
where i =+/—1. The calculation of Eq. (86) is accomplished by successive calculations of the following Helmholtz
equations:
(1+iVev?)f =g, (88)
(1-iveV?)f = £/, (88b)
which are represented as
(A+iVeB)f' = Ag. (89a)
(A —iVeB)f = Af'. (89b)

From Egs. (89), we obtain the equation to calculate f from g as

f=(A-iveB) 'A(A+iVeB) 'Ag. (90)
Here, A — iv/eB and A + iv/eB are complex matrices and f and g are real column vectors. For efficient computation, two
real column vectors can be combined into one complex column vector (Cheong et al., 2004); for example, f = f¢ + if* and

g = g¢ +ig®, where the superscript ¢ indicates the zonal cosine component, and the superscript s indicates the zonal sine

component.

4 The error due to meridional wavenumber truncation in DFS expansion methods

Here we examine the error due to the meridional wavenumber truncation when the same continuity conditions at the poles
as Eq. (3) are satisfied. In the DFS method of Orszag (1974) using Eq. (2), only fy_1m, and fy ., are modified to satisfy Eq.
(4) equivalent to Eq. (3). In the old DFS method using Eq. (6), which is proposed in Cheong (2000a. 2000b) and used in
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Yoshimura and Matsumura (2005), the DFS meridional basis functions automatically satisfy the pole conditions in Eq. (3)
for even m, but not for odd m. In the new DFS method using Eq. (10), the DFS meridional basis functions automatically
satisfy the condition in Eq. (3) for both even and odd m. We examine the error due to the wavenumber truncation in these
DFS methods while comparing it with the SH method.

Figure 2 shows the error due to the wavenumber truncation. The number of latitudinal grid points is | = 64. The initial
values of Fm(e,-) are set to one at the grid points north of 30°N (except for the North pole), and zero at the grid points south
of 30°N. Grid [0] is used in the DFS methods, and the Gaussian grid is used in the SH methods. There are no grid points at
the poles. Since the values at the poles are zero due to the pole conditions in Eq. (3), the initial values abruptly change
around the North pole. The initial values are meridionally transformed from grid space to spectral space (forward transform),
truncated with N = 42, and then transformed back from spectral space to grid space (inverse transform) to obtain the
truncated reconstruction of Fm(e,-).

In the DFS method of Orszag using Eq. (2), a very large error occurs, especially for odd |m| (= 3) (Fig. 2¢), when fy_1 m
and fy ,, are modified to satisfy the pole conditions in Eq. (4). Dividing Fm(ej) by sin 8 before the forward Fourier cosine
transform for odd m also contributes to the large error.

In the old DFS method using Eq. (6), large high wavenumber oscillations appear for even m (# 0) in Fig. 2a. Although
the basis functions for even m (# 0) in the old DFS method are the same as those in the new method, the expansion
coefficients are calculated differently in the two methods. In the old DFS method, the simple meridional truncation with N <
J after the forward Fourier sine transform of a variable divided by sin 8 causes the large high-wavenumber oscillations. The
large oscillations appear especially when the initial values abruptly change around the poles. In the case shown in Fig. 2, the
initial values near the North Pole are one, but the value at the North Pole abruptly becomes zero due to the pole conditions of
Eq. (3). The result in the old DFS method for odd |m| (= 3) is not shown in Fig. 2¢ because the method does not satisfy the
condition of Eq. (3) for odd m.

In the new DFS method described in Sect. 3, the usual small oscillations from the Gibbs phenomenon appear in Fig. 2.
The error is small because the expansion coefficients are calculated using the least-squares method (or the Galerkin method)
to minimize the error. Because of this, the truncation with arbitrary N < J does not cause large oscillations in the new DFS
method. The values for even m (= 2) and odd m (= 3) in the new DFS method are similar to those form = 2 and m = 3 in
the SH method, respectively. In the SH method, when m is large, the values become close to zero at high latitudes.

When using the basis functions of Orszag in Eq. (2), we can also obtain results equivalent to the new DFS method by
calculating the expansion coefficients using the least-squares method with Lagrange multipliers to minimize the error while
satisfying the pole conditions in Eq. (4).

Figure 3a shows the same figure as Fig. 2a except for N = 63. In the old DFS method using Eq. (6), we set N = 63 for
m = 0, and N' = 64 for m # 0. Because N = ] for even m (= 2), the forward transform followed by the inverse transform

does not change the original values at the grid points, and the oscillations do not appear in the old DFS method. For this

25



10

15

20

25

reason, Yoshimura and Matsumura (2005) and Yoshimura (2012) set N = J for even m (= 2) to improve stability. However,
there is a problem with the latitudinal derivative in the old DFS method even when N = ] for even m (= 2). Fig. 3b is the
same as Fig. 3a except that it also shows the values between grid points calculated from the expansion coefficients by using
Eq. (6) or Eq. (10). The large oscillations appear in the old DFS method with Grid [0], and it makes the latitudinal derivative
at the grid points unrealistically large. In the new DFS method with the least-squares method, the large oscillations do not

appear.

5 Tests of the DFS methods with the Laplacian operator and the Helmholtz equation

We examine the accuracy of the old and new DFS methods for the Laplacian operator in Eq. (65) and the Helmholtz

equation
(1-eVd)f =h 91)
Here, we give the function f as
H ry 2 )
f= Z(l-l—COSF) 1fr<R, (92)
0 ifr=R
r = acos™[sin ¢, sin ¢ + cos ¢, cos ¢ cos(A — 1.)], (93)

where H = 1000, R = a/3, ¢ is latitude, A is longitude, a is the radius of the earth and r is the distance between (4, ¢) and
the center (A, ¢.) = (3w/2,m/2 — 0.05). The function f is similar to the cosine bell in the Williamson test case 1, but
(1 + cosmr/R) is squared so that the second derivative of f is continuous. To easily calculate the exact values of V2f, the
center is temporarily set to the North Pole, that is, (4., ¢.) = (0,7/2) and r = a cos™![sin ¢] = a8, where 0 is colatitude.
At this time, g is calculated as follows:
1
g =V2f7[mw+smm

_ _¢cos 6 H ma [(1 + cosﬂ) sin %] + Ziaz (E)Z [sin2 o _ (1 + Cosﬂ) COS%]- %94)

sinf —

1 0%f 1 6( af)]
a6

" sinf2a? R R R R R
Equation (94) is satisfied at any position of the center. The function h in Eq. (91) is calculated by
h=(1—-¢eV3)f =f—¢gg, (95)

where € = 0.01a?, and f and g are given by Egs. (92) and (94).

To examine the accuracy for the Laplacian operator, f is given by (92), and V2f is calculated from f with the old DFS
method (Cheong 2000a), the new DFS method (See Sect. 3.7) and the SH method. The calculated values are compared with
the exact values of V2f in Eq. (94). Here, the exact values of V2f are truncated by the forward transform followed by the
inverse transform in order to see the error that does not include the error due to the wavenumber truncation. Table 1 shows
the normalized L, error between the calculated values and the exact values, which is normalized by the L, norm of the exact

values. The differences in error between the methods are small, but the results of the SH method are a little better than the
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old and new DFS methods. Table 2 shows the global mean of calculated V2f. The exact value of the global mean of V2f is
zero. In Table 2, the global means calculated with each method are very close to zero. The global means of V2f in the DFS
methods using Grid [1] and Grid [-1] are not as close to zero as those in the DFS methods using Grid [0] and the SH method.
This seems to be because the accuracy of the meridional discrete cosine and sine transforms in the DFS methods using Grid
[1] and Grid [-1] is not as good as that in the DFS methods using Grid [0].

To examine the accuracy of the solution of the Helmholtz equation, h is given in Eq. (95) and the Helmholtz equation in
Eq. (91) is solved with the old DFS method (Cheong 2000a), the new DFS method (See Sect. 3.8) and the SH method. The
calculated values are compared with the exact solution f in Eq. (92). The exact values of f are also truncated as described
above. Table 3 shows the normalized L, error between the calculated values and the exact values. The differences in error

between the methods are small, and which is better depends on the resolution and the arrangement of the grid points.

6 Evaluation of the DFS methods using shallow water test cases

We ran the Williamson test cases 1, 2, 5 and 6 (Williamson et al., 1992), and the Galewsky test case (Galewsky et al.,
2004) in the model using the new DFS method described in Sect. 3, the model using the old DFS method of Yoshimura and
Matsumura (2005), and the model using the SH method. By comparing the results of these model, we evaluated the old and
new DFS methods.

6.1 Shallow water equations on a sphere

The prognostic equations of the shallow water model on a sphere are
dv
i —2(2 xv)y — gVh, (96)
d(h—h
WL h-nvew, ©7)

where t is time, v is the horizontal wind vector, h is the height, hg is the surface height, g is the acceleration due to gravity,
£ is the 3-dimensional angular velocity of the earth’s rotation, and the subscript H indicates the horizontal component.
Equation (96) is transformed for the advective treatment of the Coriolis term (Temperton, 1997) into

dv+20X71)
— a —gVh, (98)

where 1 is the 3-dimensional position vector from the Earth’s center. Equation (97) is transformed for the spatially averaged

Eulerian treatment of mountains (Ritchie and Tanguay, 1996) into
dh
FTin —(h—hg)V-v+v-Vh, 99)

Equations (98) and (99) are integrated in time using a two-time-level semi-implicit semi-Lagrangian scheme (See Appendix

D).
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6.2 Models

We ran the shallow water test cases in the semi-implicit semi-Lagrangian shallow water model or the Eulerian advection
model (See Sect. 6.3) using the new DFS method (hereafter the new DFS model). We also ran the same test cases in the
model using the old DFS method of Yoshimura and Matsumura (2005) with the basis functions of Cheong (2000a, 2000b)
(hereafter the old DFS model), and in the model using the SH method (hereafter the SH model) for comparison. The new
DFS model was run for each of Grid [0], [1], and [—1]. In the old DFS model, Grid [0] is used. In the SH model, the
Gaussian grid is used. We use a regular longitude-latitude grid, not a reduced grid. We use the timestep At = 3600 s at
about 300 km resolution with J° = 64, At = 1800 s at about 120 km resolution with J = 160, At = 1200 s at about 60 km
resolution with J° = 320, At = 600 s at about 20 km resolution with J° = 960, and At = 90 s at about 1.3 km resolution
with JO = 15360, where J° is the number of latitudinal grid points in Grid [0]. The number of latitudinal grid points ] = J°
in Grid [0] (and in the Gaussian grid), ] = J°+ 1in Grid [1], andJ = J° — 1 in Grid [-1] (See Sect. 2). The number of
longitudinal grid points is I = 2J°. The meridional truncation wavenumber N and the zonal wavenumber M are set to be
equal. In the Eulerian advection model, shorter timesteps are used as shown in Sect. 6.3. Horizontal diffusion is not used in
all test cases. The zonal Fourier filter described in Appendix F is used in the DFS models. We have confirmed that numerical
instability occurs in some test cases in the old DFS shallow water model without the zonal Fourier filter, but stable
integration is possible in all test cases shown here in the new DFS shallow water model, even without the zonal Fourier filter.

The zonal Fourier transforms in all the models and the meridional Fourier cosine and sine transforms in the DFS models
are calculated using the Netlib BIHAR library, which includes a double precision version of the Netlib FFTPACK library
(Swarztrauber, 1982). The meridional Legendre transform in the SH model is calculated using the ISPACK library (Ishioka,
2018), which adopts on-the-fly computation of the associated Legendre functions. We use the ISPACK library’s
optimization option for Intel AVX512, which is highly optimized by using assembly language together with Fortran.

6.3 Williamson test case 1

The Williamson test case 1 simulates a cosine-bell advection. In the semi-Lagrangian models, the advection is calculated
in the semi-Lagrangian scheme and the horizontal derivatives calculated from the expansion coefficients are not used for the
advection calculation. Therefore, we also use the Eulerian scheme here to simulate the advection in the DFS and SH models

to test the expansion methods. The advection equation is
—=—+v-Vh (100)

In the Eulerian models, the advection term v - Vh is evaluated using the spectral transform method. The advection equation is
integrated by the leap-frog scheme with the Robert-Asselin time filter (Robert, 1969; Asselin, 1972) with a coefficient of
0.05. The horizontal diffusion is not used, but the zonal Fourier filter is used in the old and new DFS methods. In Eq. (F1),

the value My = 20 is used in the DFS shallow water models. However, the larger the value M, is, the higher the longitudinal
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resolution around the pole is. Because of this, when the Eulerian scheme is used and M, is large, a timestep must be very
short due to the CFL condition. Therefore M, should be as small as possible. We have tested M, = 0, but this degrades the
result of the Williamson test case 1. We have also tested M, = 1 and this result is good. Therefore, we use My = 1 in the
Eulerian models.

Figure 4 shows the predicted height after a 12-day integration in the Williamson test case 1 when using the Eulerian
advection models at the resolution /° = 64. The meridional truncation wavenumber N and the zonal truncation wavenumber
M are set as N = M = 42 = 2 J°/3 because the 2/3 rule (Orszag, 1971) is used in order to avoid aliasing in the nonlinear
advection term. The timestep is 30 minutes. The results for DFS [0], DFS [1], DFS [-1] and SH are very similar. Instability
occurs in the old DFS model without horizontal diffusion. This is probably because of the appearance of high-wavenumber
oscillations due to the wavenumber truncation with N = 2 J°/3 for even m (% 0) in the old DFS method, as shown in Sect.
4. Table 4 shows the normalized L, errors of the predicted height after a 12-day integration when using the Eulerian
advection models. The timesteps are 30, 15, 7.5, and 2.5 minutes at the resolution J° = 64, 160, 320 and 960 (N = 42, 106,
213 and 639), respectively. The errors are very close between the models at each resolution. At the resolution N = 639, the
new DFS model without horizontal diffusion is unstable when the timestep is 200 seconds. The SH model without horizontal
diffusion is stable when the timestep was 240 seconds and unstable when the timestep is 300 seconds. One reason for this
difference in timestep is probably that the longitudinal resolution near the poles is higher in the new DFS model with My = 1
than in the SH model. When the fourth order horizontal diffusion in Eq. (86) with € = 7.2[107 /(N + 1)]? is used, the both
new DFS and SH models are stable when the timestep is 240 seconds and are unstable when the timestep is 300 seconds.
The old DFS model is unstable even when the same fourth order horizontal diffusion is used. Higher-order horizontal
diffusion, which effectively smooths out the high wavenumber components, is necessary to stabilize the Eulerian old DFS
model (Cheong, 2000b; Cheong et al., 2002).

Table 5 shows the same as Table 4 except for using the semi-Lagrangian scheme. In the semi-Lagrangian models, the
forward transform followed by the inverse transform are executed at every timestep, but the expansion coefficients are not
used for the advection calculation. The timesteps are the same as described in Sect. 6.2. The errors are very close between
the models. At the resolution J° = 64, the errors in the semi-Lagrangian models are larger than those in the Eulerian models,
but at the resolutions J° = 160, 320 and 960, the errors in the semi-Lagrangian models are smaller than those in the Eulerian
models.

The conservation of mass in the Williamson test case 1 was also examined, and the results are shown in Sect. S2 in the

supplement.

6.4 Williamson test case 2

The Williamson test case 2 simulates a steady state non-linear zonal geostrophic flow. In this test case, the angle between

the solid body rotation and the polar axis « is given, and the zonal and meridional components of 22 X r become
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202 x r = (2Qa[cos 8 cos a + cos Asin 6 sin a], —2Qa sin A sin ). (101)

Figure 5 shows the time series of forecast errors of the height for a 5-day integration in the Williamson test case 2 with

a = /2 — 0.05 in the models at the resolution J° = 64 and N = 63 (DFS) or N = 62 (SH), using no horizontal diffusion.

The normalized L4, L,, and L ., errors are almost the same between the new DFS models using Grids [0], [1] and [—1], the

old DFS model, and the SH model. Table 6 shows the normalized L, errors of the predicted height after a 5-day integration.
The errors are almost the same between the old DFS, new DFS and SH models at each resolution.

The conservation of mass, energy and vorticity in the Williamson test cases 2, 5 and 6 was also examined, and the results

are shown in Sect. S2 in the supplement.

6.5 Williamson test case 5

The Williamson test case 5 simulates zonal flow over an isolated mountain. Figure 6 shows the predicted height after a 15-
day integration in Williamson test case 5 with hy = 5960 m. The result of the high-resolution SH model at the resolution
J =960 and N = 958 is regarded as the reference solution. Horizontal diffusion is not used. The errors with respect to the
reference solution are almost the same for the new DFS models, the old DFS model, and the SH model at the resolution J° =
64. Table 7 shows the normalized L, errors of the predicted height after a 15-day integration. The errors are almost the same
between the old DFS, new DFS and SH models at each resolution. The errors do not decrease when the resolution increases,
which is different from the results in the other test cases. This may be because the mountain topography is not a
differentiable function, and the mountain is added impulsively on to a initially balanced flow (Galewsky et al. 2004).

Figure 7 shows the longitudinal distributions of meridional wind at the grid points near the South Pole after a 15-day
integration in the old and new DFS models using Grid [0] at the resolutions /° = 64 and J° = 960. While the zonal
wavenumber 1 component is dominant in the new DFS model at the resolution J° = 64 and N = 63, high zonal
wavenumber noise appears in the old DFS model at the same resolution. One possible reason is that the latitudinal derivative
at the grid points can be unrealistically large in the old DFS method even when N’ = J° for even m (= 2) as described in
Sect. 4 (Fig. 3b). The new DFS expansion method with the least-squares method does not have this problem. By using the
new expansion method with the least-squares method, the high zonal wavenumber noise does not appear even in the model
that uses the same DFS basis functions as in Eq. (11) except that the basis function for odd m (= 3) is sin 6 cos n8 instead
of sin? @ sinn@. In the old DFS model at high resolution with J® = 960 and N = 959, the high wavenumber noise is not
seen in Fig. 7. The higher the resolution, the smaller the high wavenumber noise becomes. Figure 8 shows the kinetic energy
spectra of the horizontal winds (Lambert, 1984) after a 15-day integration in Williamson test case 5. The kinetic energy
spectra in the DFS models are calculated from the SH expansion coefficients, which are obtained by firstly calculating the
Gaussian grid-point values from the DFS coefficients using Eq. (10) for the new DFS method and Eq. (6) for the old DFS
method, and secondly calculating the SH expansion coefficients from the Gaussian grid-point values by using a forward

Legendre transform. In the old DFS model with J° = 64 and N = 63, the high wavenumber components are larger than in
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the other models, which is related to the high wavenumber noise near the South Pole in Fig. 7. In the old DFS model with
J° = 960, the high wavenumber components are a little larger than in the other models, but the differences are slight.

Figure 9 shows the predicted height after a 15-day integration in Williamson test case 5, which is the same as Fig. 6 except
for the truncation wavenumber N = 2J°/3. In our semi-implicit semi-Lagrangian models, we usually use N satisfying N =
J% — 1, which is called linear truncation. However, here N is determined to satisfy N = 2J°/3 to eliminate aliasing errors
with quadratic nonlinearity, which is called quadratic truncation. When using the quadratic truncation N = 42, the new DFS
models with Grids [0], [1], and [—1] are stable without horizontal diffusion, but the old DFS model without strong high-order
horizontal diffusion is unstable. The numerical instability in the old DFS model probably occurs because of the high-
wavenumber oscillations due to the quadratic wavenumber truncation for even m (# 0) (See Sect. 4) as in the Williamson
test case 1 with the Eulerian model. The results of the new DFS models are almost the same as those of the SH model. Table
8 is the same as Table 7 except for N = 2J°/3. The results of the new DFS models and the SH model with N = 2/°/3 in
Table 8 are very similar to those with N = J° — 1 in Table 7 when J° is the same. Figure 10 shows the kinetic energy
spectrum of the horizontal winds after a 15-day integration in Williamson test case 5, which is the same as Fig. 8 except for
the truncation wavenumber N = 2J°/3. At the resolution J° = 64 and N = 42, the high wavenumber components are a little
larger in the SH model than in the new DFS model. At the resolution J° = 960 and N = 639, small oscillations appear in the
high wavenumber region in the SH model, but not in the new DFS models. In the SH model, the wind components u and v
divided by sin 0 are transformed from grid space to spectral space (Ritchie, 1988; Temperton, 1991), which seems to be the
cause of the small oscillations in the high wavenumber region. Another way to transform u and v from grid space to spectral
space in the SH model is to use the vector harmonic transform (see Sect. 3.6), which avoids dividing u and v by sin 8 and
improves the stability of the model (Swarztrauber, 2004). This approach is similar to the expansion method for u and v using
the least-squares method in the new DFS method described in Sect. 3.6, and probably eliminates the small oscillations in the

SH model. Alternatively, using D and { instead of u and v as prognostic variables may eliminate the small oscillations.

6.6 Williamson test case 6

Figure 11 shows the predicted height after a 14-day integration in Williamson test case 6. The error is similar between the
old and new DFS models using Grid [0] and the SH model. The error in the new DFS model using Grid [1] is the smallest.
This is probably because Grid [1] has grid points at the poles, where the minimum height exists, and on the equator, where
the maximum height exists. The error in the new DFS model using Grid [—1] is the second smallest. This is probably because
Grid [—1] has grid points on the equator, where the maximum height exists. Table 9 shows the normalized L, errors of the
predicted height after a 14-day integration. The error in the new DFS model using Grid [1] is the smallest, and that in the
new DFS model using Grid [—1] is the second smallest, at each resolution. The errors in the old and new DFS models using

Grid [0] and in the SH model are very close.
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6.7 Galewsky test case

The Galewsky test case simulates a barotropically unstable mid-latitude jet. Figure 12 shows the predicted vorticity after a
6-day integration in the Galewsky test case for the models at 1.3 km resolution with J® = 15360 and the quadratic truncation
N = 10239, without horizontal diffusion. The result in the new DFS model using Grid [0] is almost the same as in the SH
model. The old DFS model is unstable for the same reason as that shown in Sect. 6.5 (Fig. 9). Figure 13 shows the kinetic
energy spectrum of horizontal winds after a 6-day integration in the Galewsky test case. The results are almost the same for
the DFS models using Grid [0], [1] and [-1], and the SH model, but small oscillations appear near the truncation
wavenumber in the SH model. This is probably for the same reason as in Williamson test case 5 in Fig. 10.

The results of the Galewsky-like test case using the north-south symmetric initial conditions are shown in Sect. S3 in the

supplement.

6.8 Elapsed time

Figure 14 shows the elapsed time for the 15-day integration in the Williamson test case 5 in the SH model and the new
DFS model using Grid [0] at 20 km resolution with J° = 960 and N = 958 (SH) or N = 959 (DFS), and that for the 6-day
integration in the Galewsky test case at 1.3 km resolution with J° = 15360 and N = 10239. We use one node (with two
Intel Xeon Gold 6248 CPUs with 20 cores per CPU) of the FUJITSU Server PRIMERGY CX2550 M5 in the MRI. The
source code written in Fortran is compiled with the Intel compiler. OpenMP parallelization is used, but MPI parallelization is
not used. The elapsed time in the SH model is larger than in the DFS model, although the Legendre transform used in the SH
model is highly optimized for Intel AVX512. The higher the resolution, the larger is the difference of the elapsed time
between the models. This is because the Legendre transform used in the SH model requires O(N3) operations while the
Fourier cosine and sine transforms used in the DFS model require only O(N?logN) operations. If the fast Legendre
transform, which requires only N2(log N)3 operation, is used instead of the usual Legendre transform in the SH model, the
difference of the elapsed time between the models will be reduced at high resolutions. We have not tested the fast Legendre

transform yet because we do not have subroutines for the fast Legendre transform.

7 Conclusions and perspectives

We have developed the new DFS method to improve the numerical stability of the DFS model, which has the following
two improvements:
1. A new expansion method with the least-squares method is used to calculate the expansion coefficients so that the error due
to the meridional wavenumber truncation is minimized. The method also avoids dividing by sin 8 before taking the forward

Fourier cosine or sine transform.
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2. New DFS basis functions that guarantee that not only scalar variables, but also vector variables and the gradient of scalar
variables, are continuous at the poles.

The equations obtained with the least-squares method are equivalent to those obtained with the Galerkin method. We also
use the Galerkin method to solve partial differential equations such as the Poisson equation, the Helmholtz equation, and the
shallow water equations.

To test the new DFS method, we conducted experiments for the Williamson test cases 2, 5 and 6, and the Galewsky test
case in semi-implicit semi-Lagrangian shallow water models using the new DFS method with the three types of equally
spaced latitudinal grids with or without the poles. We also ran the Williamson test case 1, which simulates a cosine-bell
advection, in the Eulerian and semi-Lagrangian advection models. We compared the results between the new DFS models
using the new DFS method, the old DFS model using the method of Yoshimura and Matsumura (2005) with the basis
functions of Cheong (2000a, 2000b), and the SH model.

The high zonal wavenumber noise of the meridional wind appears near the poles in the old DFS model, but not in the new
DFS models in the Williamson test case 5. One possible reason is that the latitudinal derivative at the grid points can be
unrealistically large in the old DFS method even when the truncation wavenumber N’ for even m (# 0) is equal to the
number of latitudinal grid points J, while the new DFS expansion method with the least-squares method does not have this
problem. In the old DFS model, N’ < J for even m (# 0) causes numerical instability. In the new DFS model, an arbitrary
meridional wavenumber truncation N (< J) can be used without the stability problem because the error due to meridional
wavenumber truncation is small when using the new DFS expansion method with the least-squares method. This is one of
the merits of the new DFS method because the quadratic truncation (N = 2] /3) or the cubic truncation (N = J/2) is usually
used in the Eulerian model and is also becoming to be used in the semi-Lagrangian model instead of the linear truncation
(N =] — 1) for stability and efficiency at high resolutions (Hotta and Ujiie, 2018; Dueben et al., 2020). We have also
confirmed that in the new DFS model, stable integration is possible in all test cases shown here even without using the zonal
Fourier filter unlike in the old DFS model. Thus, the numerical stability of the semi-implicit semi-Lagrangian model using
the new DFS method is very good. In the Williamson test cases 1, the Eulerian advection model using the new DFS method
also gives stable results without horizontal diffusion but with a zonal Fourier filter. The Eulerian advection model using the
old DFS method is unstable without horizontal diffusion or with the weak fourth-order horizontal diffusion. In the old DFS
model, the use of the semi-Lagrangian scheme is important for numerical stability. On the other hand, the advection model
using the new DFS method is stable, even when the Eulerian scheme is used instead of the semi-Lagrangian scheme. The
Eulerian shallow water model using the new DFS method without horizontal diffusion is also likely to be stable, although we
have not tested it yet.

The results of the new DFS model are almost the same as the SH model. But in the SH shallow water model without
horizontal diffusion, small oscillations appear in the high wavenumber region of the kinetic energy spectrum in some cases,
unlike in the new DFS model. This seems to be because the wind components © and v divided by sin 8 are transformed from

grid space to spectral space in the SH model. The small oscillations with the SH model can probably be eliminated by using
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the vector harmonic transform, which is similar to the expansion method for u and v using the least-squares method in the
new DFS model. Alternatively, using divergence and vorticity instead of u and v as prognostic variables may eliminate the
small oscillations.

The elapsed time in the new DFS model is shorter than in the SH model especially at high resolution because the Fourier
transform requires only O(N?log N) operations, and the Legendre transform in the SH model requires O(N?3) operations.
We have executed our shallow water models on Intel CPUs. The execution on GPUs is one important topic, but we have not
tested our models on GPUs because the execution on GPUs is not an easy task. MPI parallelization is another important
topic. However, in our shallow water models, we use only OpenMP parallelization, not MPI parallelization for the simplicity
of the source code.

We developed hydrostatic and nonhydrostatic global atmospheric models using the old DFS method (Yoshimura and
Matsumura, 2005; Yoshimura, 2012) and conducted typhoon prediction experiments in the nonhydrostatic global
atmospheric model using the old DFS method in the Global 7 km mesh nonhydrostatic Model Intercomparison Project for
improving TYphoon forecast (TYMIP-G7; Nakano et al., 2017). We have already developed a nonhydrostatic (or
hydrostatic) atmospheric model using the new DFS method, where both OpenMP and MPI parallelization are used. We will
describe the nonhydrostatic DFS model and the MPI parallelization in another paper after improving the nonhydrostatic

dynamical core as needed.

Supplement. The supplement related to this article is available online at ...

Code availability. The source code of the DFS and SH shallow water models is available in the supplement to the article and
are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
license. These models utilize the Netlib BIHAR library and the ISPACK library. The Netlib BIHAR library is available at
https://www.netlib.org/bihar/ and is also included in the supplement. The ISPACK library is available at https://www.gfd-
dennou.org/arch/ispack/ispack-3.0.1.tar.gz.

Data availability. The  results of  model experiments are available at  https://climate.mri-

jma.go.jp/pub/archives/Yoshimura DFS SW_Testcase/.

Appendix A: Trigonometric identities

We list here the trigonometric identities used in transforming the expressions in this paper.

The following identities are satisfied:
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sinnf cosn' = = [sin(n + n")8 + sin(n — n")0]

N -

1
cosnfsinn'g = 5 [sin(n + n")8 — sin(n — n")0]
1
cosnf cosn'd = > [cos(n +n")0 + cos(n —n')0]
1
sinnf sinn’'d = 3 [—cos(n +n")O + cos(n —n")O]

5 From Eq. (A1), the following identities are derived:

1
sin @ cosnf = 5 [sin(n + 1)8 — sin(n — 1)8]
1
sin @ sinnf = > [—cos(n + 1)8 + cos(n — 1)6]
1
sin® 0 sinnf = i [—sin(n — 2)8 + 2sinnf — sin(n + 2)0]
1
sin® 0 cosnf = I [ cos(n —2)0 + 2 cosnf — cos(n + 2)0]
1
10 sin* @ sinnf = Te [sin(n — 4)0 — 4sin(n — 2)0 + 6sinnf — 4sin(n + 2)0 + sin(n + 4)0]

From Eq. (A1), the following orthogonal relations in longitude are derived:

cosmAcosm'AdA ={x form=m'#0

fzfz 2r form=m'=0
0 0 form = m’

21
J. cosmAsinm'AdA =0
0

21 f B ’ 0
f sinmlsinm’ld)L:{” Ol‘m—ml *
0 0 form#+m

15  Similarly, from Eq. (A1), the following orthogonal relations in latitude are derived:
T forn=n"=0

T
1
fcosn@cosn’9d0= En forn=n"#0
0

0 forn #n'

n 1 ,
f sinn95inn’9d9=[§” forn=n"+0

0 0 forn #n'

By using Eq. (A1), the following relations are derived:

l n—
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a n+
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Appendix B: Discrete Fourier cosine and sine transforms in latitude

sin' 8 cos(n — 2)8

sin’ 8 sin(n — 2)6

(AS5b)

(A5C)

(A5d)

(ASe)

Forward discrete Fourier cosine and sine transforms are performed in Egs. (23) and (57) and inverse discrete Fourier

10  cosine and sine transforms are performed in Eqs. (13), (52), in the latitudinal direction. The calculation of the discrete cosine

and sine transforms in Grids [0], [1], and [—1] is shown below. Here, g(Qj) and h(Hj) are grid-point values, and g, and h,,

are expansion coefficients.

When using Grid [0], inverse and forward discrete cosine transforms are performed as

J°-1
g(Bj) = 2 Jn cOSNY;.
n=0
b
_ (1 forn=0
15 gn—]—OZg(Qj)coan-, b={2forn¢0,
j=0

When using Grid [0], inverse and forward discrete sine transforms are performed as

]0
h(6) = ) hysinng).
n=1

J%-1
_ b _ (1 forn=])°
hn—]ozoh(ﬁj)smne-, b_{Zforn;t]O,
J:

When using Grid [1], inverse and forward discrete cosine transforms are performed as

]0
20 g(Hj) = Z gn cOSNY;.
n=0
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]0

b
In = ]_OZ c g(ej) cosnéb;,

j=0
1 forn=0,J° 1/2 forj=0,J°
b= { , = { B3b
2 foro<n<J® =11 foro<j<])o (B3b)
When using Grid [1], inverse and forward discrete sine transforms are performed as
J°-1
R(O;) = D hysinnd;, h(6) = h(00) = 0. (B4a)
n=1
Jo-1
2 :
hn =75 Z h(6;) sinné;, (B4b)
j=1

Grid [—1] is the same as Grid [1], except that there are no grid points at the North and South poles. The zonal wavenumber
components of scalar variables at the poles are zero except for m = 0 (See Eq. (10)), and those of vector variables at the
poles are zero except for m = 1 (See Eqgs. (52)). When we use Grid [—1] and the values at the poles are known to be zero,
forward and inverse discrete cosine transforms can be performed using Eq. (B3) and forward and inverse discrete sine
transforms can be performed using Eq. (B4) in the same way as for Grid [1]. When we use Grid [—1] and the values at the
poles are unknown (i.e., the zonal wavenumber components of scalar variables for m = 0, and those of vector variables for

m = 1), the inverse discrete cosine transform can be performed like Eq. (B3b) as
Jo-2
g(Gj) = Z gn cosnb;, (B5)
n=0

where n is from 0 to J° — 2 (=] — 1) because the number of the meridional grid points is J° — 1 (=) in Grid [-1].
However, the forward discrete cosine transform cannot be performed like Eq. (B3b). We can calculate the expansion

coefficients g,, from g(Hj) in the following way. Eq. (B5) is multiplied by sin 8;, and we define § (9]-) as

J0-2
9(6;) = g(6;)sing; = Z gn Sin 6; cosnb;. (B6)
n=0
We can expand g (Hj) as
J°-1
a(6) = Z Gy sinn;. (B7)
n=1
The expansion coefficients §, can be obtained from g(e,-) in the same way as in Eq. (B4b) by forward discrete sine
transform:
J°-1
~ 2 ~ .
gn = ]—0 z 9(9]-) sinng; . (B8)
j=1
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From Egs. (B6) and (B7), we obtain

J°-2 J°-1
Z Jn Sin 6 cosnf = Z Jn sinnd, (B9)
n=0 n=1
By using Eq. (A2a), we obtain
Jo-2 J°-3
; Jn Sin @ cosné = (go - %) sin6 + nZl (9112—1 — gnzﬂ) sinnf + g];_3 sin(J° — 2)0 + %sin(}0 —1)6. (B10)

By substituting Eq. (B10) into Eq. (B9) and comparing the left and right sides of the equation, we obtain

go—% forn=1,

9712—1 - gnzﬂ forn=2,..,J° -3,
gn = 950 3 (B11)
— forn=J° -2,
% forn=J°—1.

We can calculate § (9]-) from g(8;) using Eq. (B6), calculate §,, from § (9]-) using Eq. (B8), and calculate g,, from g, using
Eq. (B11).

Appendix C: The upper limit of the meridional truncation wavenumber N

In the new DFS method, the meridional truncation wavenumber N is used for the new DFS meridional basis functions in
Egs. (12), and for the discrete cosine or sine transform of a scalar variable (Egs. (13) and (23)), derivatives of a scalar
variable (Egs. (18) and (20)) and a wind vector (Egs. (52) and (57)). In Grid [0], the upper limit of N is J° — 1 for each m
because the discrete cosine transform in Eq. (B1), where the maximum value of nis J® — 1, is used for a scalar variable
when m is even, and for vector components when m is odd. In Grid [1], the upper limit of N is J° — 1 for each m because
the discrete sine transform in Eq. (B4), where the maximum value of n is J® — 1, is used for a scalar variable when m is odd,
and for vector components when m is even. In Grid [—1], the upper limit of N is J° — 1 for m > 2 because of the same
reason as in Grid [1]. However, form = 0 or 1 in Grid [-1], the upper limit of N is J® — 2 because the discrete cosine
transform in Eq. (B5), where the maximum value of nis J° — 2, is used for a scalar variable when m = 0, and for vector
components when m = 1. Thus, the upper limit of N is J® — 1, except that the upper limit of N form = 0 or 1 in Grid [-1] is
J° — 2. For example, in the model using the new DFS method with Grid [—1] at the resolution J° = 64 and N = 63, we set
N=63form=2butN =62form=0orl.
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Appendix D: Equations for the derivation of Eqs. (29) and (62)

TC(S) in Eq. (23) is calculated by the forward Fourier cosine or sine transform as
(b c(s) _(1forn=0
—f cosnb T, (0)d6, b = {2 forn % 0, for even m,
FS) — 0
nm T
;f sinnd TS (6)d6 for odd m,
0

(1)

The equations for the forward discrete Fourier cosine or sine transform are described in Appendix B. From Eq. (23) and (A4),

b
;f cosnd TV (9)dg = nc(n? (n=0,..,N) forevenm,
0

2
;J- sinnd TSN (9)do = C(S) (n=1,..,N) foroddm
0

are also derived. From Egs. (D1) and (D2),

T T
f cosnd TE® (0)do = J. cosnd TN (9)do (n=0,...,N) for evenm,
0

0
s T ~
f sinnf T,Z(S)(H)dé? = f sinnd T,;(S)'N(e)de (n=1,..,N) foroddm
0 0
are satisfied. From Egs. (D3), (11) and (A2a—), we derive

T T
f Spm(O)Te(6)d6 = f Spm @ TEON (9)d6.
0 0

From Egs. (28) and (D4), we derive Eq. (29).

We can also derive the following equations from Eq. (57) in the similar way to the derivation of (D3):

T
f sinnf us™ (0)do =f sinnf 15 (0)dd (n=1,...,N) for evenm,
0 0

f cosnfus™(0)do = f cosn@ @M (0)do (n=0,..,N) foroddm
0 0

From Egs. (D5), (11), and (A2a—), we derive

mSnm(g) c(s) mSn m(e) ~c(s) N

f oy (936 = - ©)de,
aSn,m(e) c(s) _ f aSnm(g) ~C(S)N

‘L TP 0)d0 = | Y 0)do.

(D2a)

(D2b)

(D3a)

(D3b)

(D4)

(D5a)

(D5b)

(D6a)

(D6b)

We can also derive the same equations as Eq. (D6) except that u is replaced with v. Equation (D6) are used to derive Eq.

(62).
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Appendix E: Derivation of Eq. (30) from Eq. (29)

Here we derive Eq. (30d) for odd (m > 3) from Eq. (29). Eq. (30b,c) can be derived similarly.
By using Egs. (11) and (A2c,e), the following equations are derived.
N-2

T T
(Lh.s of Eq.(29) forodd m = 3) = f Spm (0T (8)d6 = f sin? 0 sin nd Z Ty Sin® 6sinn'6 do
0 0

n'=1

T TS
5 = J- sinn@ Z 7116’” [sin(n’ — 4)0 — 4sin(n’ — 2)0 + 6sinn’'6 — 4sin(n’ + 2)@ + sin(n’ + 4)0] do
0 T~

in6 + : - —sin 20 +

fﬂ g (10T = 5T + Tém 5TS = 4TEm + Tem 5T + 6T§ 1 — 4TS + T
0 16 16 16

N+2
n -4m 4"117’(15'—2,m + 6Trf', 4'Tn'+2m + Tn’+4—m .
+ 16 sinn’'0|d6.

s

Sum(B)T (8)d6 = j "

J
sin? @ sin n@ Z Trf,,m sinn’6 do
0

(r.h.s of Eq.(29) foroddm = 3) = f
n'=1

0

J -
T TS

= f sinn6 Z % [—sin(n' — 2)8 + 2sinn’'6 — sin(n' + 2)0] d6
0

J+2 ~ ~

4 4

sin 36

(ED)

T 3TE,, — Tf 2T§ +2TS  —TS
10 = f sinng |[— 3" ging + 2m4 ™ sin 26 + Z I'-om nm A2 Ginn'6|de. (E2)
0

From Egs. (29), (E1), (E2) and (A4b), Eq. (30d) are derived.

Appendix F: Zonal Fourier filter

In a regular longitude—latitude grid, the longitudinal grid spacing becomes narrow at high latitudes. In DFS methods, the

zonal Fourier filter (Merilees 1974; Boer and Steinberg 1975; Cheong 2000a), which filters out the high zonal wavenumber

15 components at high latitudes, is usually used to obtain a more uniform resolution. The use of a reduced grid (Hortal and

Simmons, 1991; Juang, 2004; Miyamoto, 2006; Malardel, 2016) has a similar effect to the zonal Fourier filter. In our

atmospheric model using the old DFS method (Yoshimura and Matsumura, 2005; Yoshimura, 2012), we use the reduced

grid of Miyamoto (2006).

In this study, we use the longitude—latitude grid with the zonal Fourier filter, not the reduced grid, for the simplicity of the

20 source code. We set the largest zonal wavenumber M; at each latitude as

M(6;) = min(M, M, + M sin(6;)).
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The values of T;l(e,-) and T;l(e,-) in Eq. (8) are set to zero for m > Mf(BJ-) during the spectral transform. We use the value
M, = 20 in the DFS shallow water models to make the resolution similar to that in the reduced grid of Miyamoto (2006). In

the DFS Eulerian advection model, we use the value M, = 1 as described in Sect. 6.3.

Appendix G: Calculation of global mean and latitudinal area weight

The global mean value of TV (2, 0) in Eq. (15) can be calculated in spectral space by the following equation (Cheong
2000a):

M M
1 2T T
G =— J’ Z TSV (0) cosma + Z T3V () sinma | sin 6 dodA
i )y Jo —~ —

N N
1(" -
= EJ. Z Ty m=o cosnf sinf do = Z 1”’_"712 . (GD)
0 n=0

when n is even
The latitudinal area weight at each latitude 8; is calculated as follows:
1. The latitudinal distribution of Tnclijg (6y,) for each j is given as

1 fork=j

1800 =y forx 2, ©<k<I-D. (62)

nm=o (0 <n < N) are calculated by forward discrete cosine

2. From Trfl(zjg (6y), the meridional expansion coefficients
transform described in Appendix B.

3. The value of G calculated from Trf‘ ,(,{)zo using Eq. (G1) is considered as the latitudinal area weight W(Hj) at latitude ;.

In Grid [0] and Grid[1], the distribution of W(Bj) is smooth. However, In Grid [—1], the distribution of W(Qj) is not smooth

because of the irregularity with Grid [-1] (See Egs. (B5)—(B11) in Appendix B).

The latitudinal area weight w; (9]-) is used, for example, to calculate the global mean in the grid space.

Appendix H: Derivation of Eq. (63) from Eq. (62)

Here we describe the derivation of Eq. (63d) for odd m (= 3) from Eq. (62a). Eq. (63b,c) can be derived similarly.
From Egs. (62a), (11), (52), (57), (A2b) and (ASe), and from the same equations as Eqgs. (53b,c,d) except that uy, 1, X m»
and Yy, ,, are replaced with u3, ,,, —X7 m, and Y5, ,,, respectively, and the same equations as Eqs. (53a,b,c,d) except that ug, ,,,

Xnm» and Yy, ., are replaced with vy ., Y5 1, and —xy, ., respectively, we derive the following equation for odd m = 3:

T —cos(n+1)8 +cos(n —1)0 1 [—-myi,, —mySm  3Win—Vim .
f -m - — — fg T+ — + : — — {i , | cos O
0 2 a 2 ' 2 4 ’
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When n > 4, by using Eq. (A4a), Eq. (H1) can be converted into
5 jn{ﬂ COS(TL + 1)9 (m()(fl,m - X1C1+2,m) + (Tl + 1)(_1/)151—1,m + 21/)151+1,m - 1/)rsl+3,m)
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2a 2 4 ’
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+ - COS(TL _ 2)9 ( ( wn 3,1; lpn 1,m) + ( )(Xn 4,m 4 Xn 2m Xn,m) _ ﬁrcl—z,m> COS(Tl _ 2)9

oo (M F Yriam) | o = 2 + Xnsam) 5 Veosno
4a 2 4 '
n+2 m(—y;, + 93 n+2)(Xnm — 2Xxn + X
+ - COS(TL + 2)9 ( ( ¢n+1,1r21 Izljn+3,m) + ( )(Xn,m 4?(n+2,m Xn+4,m) _ ﬁrcl+2,m) cos(n + 2)9} de =0
10 (H2)

From Eq. (H2) and (A4a), Eq. (63d) for n = 4 is derived. Equation (63d) for n < 3 can also be derived from (H1) and (A4a).

Appendix I: Two-time-level semi-implicit semi-Lagrangian scheme for Time integration

A two-time-level semi-implicit semi-Lagrangian scheme (e.g., Temperton et al., 2001) and the Stable Extrapolation Two-

15 Time-Level Scheme (SETTLS; Hortal, 2002) are adopted to discretize the shallow water equations in Egs. (98) and (99) in

time as
W+22%x1r)"— W+ 22 %x71)8 g(VhS? +vr%)  g(VhSY +VR?)  g(VRY + VAY)
= - — Pv + v (Il)
At 2 2 2
h* — h{ [(h = ho)D]S” + [(h— hy)D]®  [v- VRS + [v- Vhy]°
- =] +
At 2 2
— () — 10 — 10 — 1+
[RD] " + [RD] [rD]_ + [RD]
+ Bn D - PBn D , dz)
2 2
20 where
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1[ 1 6u+ 1 6vcos¢>]
cos¢p dA  cos¢p OJ¢

is horizontal divergence; At is a timestep; the superscripts —, 0, and + mean past time (t — At), present time (t), and future

D=V-v (13)

a

time (t + At), respectively, and the superscript (+) means future time (t + At) extrapolated in time, for example, h(*¥) =
2h° — h~; the subscript D means the departure point, and the absence of the subscript D means the arrival point; h is a
constant value of height for semi-implicit linear terms; 3, and S, are second-order decentering parameters (Yukimoto et al.,
2011). Using 8, and B}, larger than 1.0 (e.g., 1.2) increases the effect of the semi-implicit scheme improving computational
stability, but 8, = B, = 1.0 is used here because h larger than h is enough for stable calculations in the shallow water model.
The departure point xp is the upstream horizontal position from the arrival point x along the wind vector between present
time (t) and future time (¢ + At). Here, the arrival point x is on a grid point, and the departure point xp, is not generally on a
grid point. Since the right-hand sides of Egs. (I1) and (I2) are the time average between present time (t) and future time
(t + At) and the spatial average between the departure point and the arrival point, these equations have second-order

precision in time and space. In SETTLS, xp, is calculated using

17](;) +°
xp = x - —2——At. (14)

However, when At is longer than 30 minutes, using vl(;) extrapolated in time to calculate xp causes numerical instability in

our experiments. To avoid instability when At is 1 hour, here we use
v+ vt
Xp=X-— TAt, (I5a)
g(VhS? + vho) A
2 )

instead of Eq. (I4), where v'* is a provisional future value obtained by discretizing Eq. (98) in an explicit semi-Lagrangian

V=0l 4+ Q2 X1)p - 20 XT (15b)

scheme. From Eq. (I5), we obtain

=x—At 16
XD X 4 ( )

(€D)] 0
<v°+ﬂxr—M> —.er—gAch )
D

This method using a provisional future value to calculate xp is similar to the method in Gospodinov et al., (2001). Since the
value with the subscript D depends on xp, xp is calculated iteratively from Eq. (I6) (e.g., Ritchie, 1995; Temperton et al.,
2001). Since xp is not generally on the grid point, the value at xp is calculated by spatial interpolation from nearby grid
points. In the right-hand side of Eq. (16), the value at xp with the subscript D is calculated by third-order Lagrange
interpolation.

Egs. (I1) and (I2) are transformed into
B,At
2

vt + gvVht =R, (17a)
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At At
R, = [VO +20xT—— g(VA®) — VA + ,BVVhO)] —20%XT—— g(Vh® — B,Vh?), (I7b)
D

BrAt _
h* + ThD+ =Ry, (I18a)

At _ _
R, =h+ 7{[(—(h — h)D + v Vho)]P + BLhD® — B ADO}

+ %{[(—(h —h)D +v-Vhy)]° + B,hD°}. (18b)

In Egs. (I7b) and (I8b), the values at xp with the subscript D are calculated by fifth-order and third-order Lagrange
interpolations, respectively, since high-order interpolation of wind vector components increases the accuracy of the model’s

results in our experiments. From Eq. (I7), we obtain

At
D* + BVT gV2ht =R, (19)

* =R, (110)

where

{=k-VXxv=

11 1 dv 1 aucosq,’)] a1

a cos¢ﬁ_ cos¢p 0J¢
is vorticity, k = r/|r| is the vertical unit vector, R, = V- R, and R; = k-V X R,,.

We calculate h* and v* using the spectral transform method and the Galerkin method with the new DFS method as
follows.

1. The scalar variable Ry, is transformed from grid space to spectral space using Egs. (23)—(31). The components of the
vector variable R,, = (Ry, R,) in grid space are transformed to R, and Ry, in spectral space using Egs. (55)-(64), where
R, and Ry, are the velocity potential and the stream function of R,,, respectively.

2. Rp and R, are calculated by

Rp = V?R,, (112)
R; = V2R, (113)
using Egs. (75) and (77). {* is obtained from R; using Eq. (110).

3. Equations (I8a) and (I12) are substituted into Eq. (19) and we obtain
2

D* — (%) ByPrghV?D* = V? (RX - %ﬁngh). (114)
D is calculated by solving the Helmholtz-like equation Eq. (I114) using Egs. (83) and (85).
4. h* is calculated from D* and R), using Eq. (I8).
5. x" and ¢ are calculated from D* and {* by solving the Poisson equations
VZyt = DY, (I115)
vyt =t (116)
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using Egs. (75) and (78).
6.v* = (u*,v*) is calculated from y* and ¥* using Eq. (53) for uy, ,,, and the similar equations for u;, ,,, v, and vy, .
7.u*, v, h*, D*, and Vh* in spectral space are transformed to grid space. h* and D* are transformed meridionally using
Egs. (13) and (14). u* and v* are transformed meridionally using Eq. (52). Vh* = (h}, hy) is transformed meridionally
using Egs. (18)—(21). hj can also be calculated from h;lc'N (9]-) and h;f'N (0]-) at the latitudinal grid points using Eq. (16),
and additionally using Eq. (22) at the poles when using Grid [1], which is more efficient than using Egs. (18) and (19)

because the meridional inverse discrete cosine and sine transforms of b become unnecessary.
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Table 1. Normalized L, errors of Laplacian operator calculation (V2f). We use the old DFS method with Grid [0], the new
DFS methods with Grid [0], Grid [1] and Grid [-1], and the SH method. J° is the number of latitudinal grid points in Grid [0].

The truncation wavenumber N = 2J°/3.

Resolution\ Method | OId DFS [0] DFS [0] DFS [1] DFS [1] SH
=64, N=42 4.1208E-3 2.3019E-3 2.2530E-3 2.6281E-3 2.0927E-3
=160, N=106 2.2221E4 2.3678E—4 2.3369E—4 2.3374E—4 2.1668E—4
=320, N=213 3.8070E-5 3.7931E-5 3.8752E-5 3.8740E-5 3.7565E-5
J°=960, N=639 2.4281E-6 3.5687E-6 3.5888E-6 3.5904E—6 2.3453E-6
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Table 2. Same as Table 1 except that the global mean values of calculated V2f are shown.

Resolution\ Method | OId DFS [0] DFS [0] DFS [1] DFS [1] SH
=64, N=42 3.4331E26 | 2.2012E26 | —12242E-25 | —6.4414E-25 | —3.8370E-27
=160, N=106 | —6.1392E—27 | 2.9404E26 | 3.1530E-25 | —4.1152E-25 | 3.0050E-26
=320, N=213 | —2.9272E26 | —4.4429E28 | 13779E24 | —1.0004E-24 | 3.3190E-26
=960, N=639 | —4.6309E—26 | —3.5020E26 | 2.3521E-24 | 4.7404E-25 | 9.4697E-27
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Table 3. Same as Table 1 except that L, errors of the solution of the Helmholtz equation are shown.

Resolution\ Method | OId DFS [0] DFS [0] DFS [1] DFS [1] SH
=64, N=42 7.5000E—4 7.0729E—4 7.3360E—4 7.5863E—4 6.4564E—4
=160, N=106 1.7270E-5 1.7263E-5 1.5884E5 1.5907E-5 3.0100E-5
1°=320, N=213 1.0970E—6 1.0965E—6 1.2557E—6 1.2602E—6 2.7348E-6
J°=960, N=639 43114E-8 43114E-8 3.8081E-8 3.8253E-8 3.7720E-8-
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Table 4. Normalized L, errors of the predicted height after a 12-day integration in the Williamson test case 1 when using the

Eulerian advection models. The truncation wavenumber N = 2] /3.

Resolution \ Model | Old DFS [0] DFS [0] DFS [1] DFS [1] SH
=64, N=42 Unstable 1.1557E-1 1.1559E-1 1.1559E-1 1.1554E-1
=160, N=106 Unstable 5.0956E—2 5.0954E—2 5.0954E—2 5.0955E2
=320, N=213 Unstable 2.4619E2 2.4619E2 2.4619E2 2.4619E2
J°=960, N=639 Unstable 8.2424E-3 8.2424E-3 8.2424E3 8.2424E3
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Table 5. Same as Table 4 except for using the semi-Lagrangian models and the truncation wavenumber N = J° — 1.

Resolution \ Model | Old DFS [0] DFS [0] DFS [1] DFS [1] SH
=64, N=63 1.6782E-1 1.6782E-1 1.6795E-1 1.6849E1 1.6464E-1
=160, N=159 2.0076E-2 2.0076E-2 2.0074E-2 2.0080E—2 1.9887E-2
J°=320, N=319 3.4033E-3 3.4033E-3 3.4029E-3 3.4033E-3 3.3855E-3
J°=960, N=959 2.1503E—4 2.1503E—4 2.1503E—4 2.1504E—4 2.1514E—4
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Table 6. Same as Table 5 except for the errors after a 5-day integration in the Williamson test case 2

Resolution \ Model | Old DFS [0] DFS [0] DFS [1] DFS [-1] SH
J0=64, N=63 2.4468E-05 | 2.4468E-05 | 2.4453E-05 | 2.4434E-05 | 2.4147E-05
J9=160, N=159 13462E-06 | 13462E-06 | 13463E-06 | 13458E-06 | 1.3402E-06
J0=320, N=319 4.1918E-07 | 4.1918E-07 | 4.1918E-07 | 4.1916E-07 | 4.1927E-07
19960, N=959 1.1800E-07 | 1.1800E-07 | 1.1800E-07 | 1.1800E-07 | 1.1800E—07
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Table 7. Same as Table 5 except for the errors after a 15-day integration in the Williamson test case 5. The result of the

high-resolution SH model with J® = 960 and N = 958 is regarded as the reference solution.

Resolution \ Model | OId DFS [0] DFS [0] DFS [1] DFS [1] SH
=64, N=63 8.2998E—4 8.2972E—4 8.2559E—4 8.2533E-4 8.2575E—4
=160, N=159 9.2568E—4 9.2569E—4 9.2571E—4 9.2607E—4 9.2578E—4
J°=320, N=319 8.3815E-4 8.3815E—4 8.3813E—4 8.3807E—4 8.3812E—4
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Table 8. Same as Table 7 except for N = 2J°/3.

Resolution \ Model | Old DFS [0] DFS [0] DFS [1] DFS [1] SH
=64, N=42 Unstable 8.2985E—4 8.2555E—4 8.2545E—4 8.2587E—4
=160, N=106 Unstable 9.2571E—4 9.2573E—4 9.2571E—4 9.2584E—4
J°=320, N=259 Unstable 8.3814E—4 8.3813E-4 8.3812E-4 8.3812E—4
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Table 9. Same as Table 7 except for the errors after a 14-day integration in the Williamson test case 6

Resolution \ Model | Old DFS [0] DFS [0] DFS [1] DFS [-1] SH
J0=64, N=63 1.0319E-2 1.0361E-2 7.2824E-3 8.7423E-3 1.0118E-2
J9=160, N=159 2.7830E-3 2.7830E-3 1.5615E-3 2.0704E-3 2.7766E-3
J0=320, N=319 9.3546E—4 9.3546E—4 5.6164E-3 6.8201E—4 9.3560E—4
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Grid [0] Grid [1] Grid [-1]
\orth Pole (90°N)

South Pole (90°S)
Figure 1. Grid [0], Grid[1], and Grid [—1] are three ways of arranging equally spaced latitudinal grid points. Red circles
5 show the positions of the grid points when the grid interval A9 = /4.
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Figure 2. Change in values at the grid points due to the meridional wavenumber truncation. We use Grid [0] with the
number of latitudinal grid points /] = 64. Initial values (black) are meridionally transformed from grid space to spectral space,
truncated with N = 42, and transformed back from spectral space to grid space. (a) Values for even [m| = 2 when using the
DFS method of Orszag (blue), the old DFS method (green), and the new DFS method (red) with Grid [0]. (b) Values for
m = 2 (orange), 14 (deep sky blue), 30 (lime) when using the SH expansion method with the gaussian grid. (c) Same as (a)
except for the values for odd [m| = 3. (d) Same as (b) except for the values for m =3 (orange), 15 (deep sky blue), 31

(lime).
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Figure 3. (a) Same as Fig 2(a) except for N = 63. (b) Same as (a) except that the values between grid points calculated from

the expansion coefficients are also shown.
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.{a) DFs [0] 128x64 N=42 (b) DFS [1] 128x65 N=42 (c) DFS [-1] 128x63 N=42  (d) SH 128x64 N=42
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Figure 4. Predicted height (m) in the Eulerian models after a 12-day integration in Williamson test case 1. (a) New DFS
model with Grid [0]. (b) New DFS model with Grid [1]. (¢) New DFS model with Grid [—1]. (d) SH model. The number of
longitudinal (1) and latitudinal (J) grid points is shown in the form | x J. In the upper figures, the black contour shows the
predicted height, and the red contour shows the reference solution. In the lower figures, color shading shows the difference

between the predicted height and the reference solution.
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Figure 5. Time series of prediction error of height (m) for 5 days (120 hours) integration in Williamson test case 2 (¢ =
m/2 — 0.05). The number of longitudinal grid points I = 128. The number of latitudinal grid points in Grid [0] J° = 64.
The truncation wavenumber N = 63. Solid, dashed, and dotted lines represent normalized L4, L,, and L ., errors, respectively.
The colors blue, green, red, purple, and orange represent the models using SH, old DFS with Grid [0], new DFS with Grid
[0], new DFS with Grid [1], and new DFS with Grid [—1], respectively.
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Figure 6. Predicted height (m) after a 15-day integration in Williamson test case 5. (a) New DFS model with Grid [0]. (b)
New DFS model with Grid [1]. (¢) New DFS model with Grid [—1]. (d) Old DFS model with Grid [0]. (¢) SH model. (f) SH
model at high resolution, which is regarded as the reference solution. The number of longitudinal (1) and latitudinal (J) grid
points is shown in the form | x J. N is the truncation wavenumber. Color shading shows the error with respect to the

reference solution.
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Figure 7. Longitudinal distributions of meridional wind (m s~1) at the grid points near the South Pole after a 15-day

integration in Williamson test case 5. Results of the models using Grid [0] with (a) I = 128, J° = 64 and N = 63, and (b)
I =1920,J° =960 and N = 959. Green (red) lines represent the old (new) DFS models.
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Figure 8. Kinetic energy spectrum of horizontal winds (m?s~2) after a 15-day integration in Williamson test case 5. Results
of the models with (a) I = 128, J° = 64, and N = 63 (DFS) or N = 62 (SH), and (b) I = 1920, J° = 960 and N = 959
(DFS) or 958 (SH). The colors blue, green, red, purple, and orange represent the models using SH, old DFS with Grid [0],
new DFS with Grid [0], new DFS with Grid [1], and new DFS with Grid [—1], respectively.
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Figure 9. Same as Fig. 6, except with truncation wavenumber N.
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Figure 10. Same as Fig. 8, except with truncation wavenumber N.

(a) 128x64 N=42

\ —— SH
\ —— DFS[0]
Z\ | |— orsiy
'\.\ ___// -._\- - DFS[-1]
\ \
\'\/ \
\.,\
A
,\\\\
10° 10?
Wavenumber

(b) 1920x960 N =639
0%y — SH
100 X ’/'/',\.\\‘_\ e DFS[U]
\ / s 9 —— DFS[1]
1072 L DFS[-1]
\
10-4 Sy
\
10-6 \’“\
\'\.
10-8 S
10—-10 \\
N
10° 10! 102
Wavenumber

68




" (c) DFS [-1] 128x63 N=63

Figure 11. Same as Fig. 6 except for predicted height (m) after a 14-day integration in Williamson test case 6.
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Figure 12. Predicted vorticity (s™1) after a 6-day integration in the Galewsky test case. (a) The new DFS model with Grid
[0], and (b) the SH model at 1.3 km resolution with I = 30720, J® = 15360 and N = 10239.
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Figure 13. Kinetic energy spectrum of horizontal winds (m?s~2) after a 6-day integration in the Galewsky test case. (a)
Results of the models with I = 30720, J° = 15360 and N = 10239. The colors blue, , red, purple, and orange represent the
models using SH, DFS with Grid [0], DFS with Grid [1], and DFS with Grid [—1], respectively. (b) As (a), but showing the

high-wavenumber region.
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Figure 14. Elapsed time (s) for (a) 15-day integration in Williamson test case 5 in the SH model and the new DFS model at
20 km resolution with I = 1920, J° = 960 and N = 959, and (b) 6-day integration in the Galewsky test case at 1.3 km

5 resolution with I = 30720, J° = 15360 and N = 10239. There is no monitoring output during elapsed time measurement
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