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way to reduce the computational cost of a spectral model using spherical harmonics (SH) is to use double Fourier series

(DES) instead of SH. The transform method using SH usually requires O(N3) operations, where N is the truncation

wavenumber, and the computational cost significantly increases at high resolution. On the other hand, the method using DFS

requires only O(N?log N) operations. This paper proposes a new DFS method that improves the numerical stability of the
model compared with the conventional DFS methods by adopting the following two improvements: a new expansion method
that employs the least-squares method (or the Galerkin method) to calculate the expansion coefficients in order to minimize
the error caused by wavenumber truncation, and new basis functions that satisfy the continuity of both scalar and vector

variables at the poles. Partial differential equations such as the Poisson equation and the Helmholtz equation are solved by

using the Galerkin method. In the semi-implicit semi-Lagrangian shallow water model using the new DFS method, the

Williamson test cases-2-and-5- and the Galewsky test case give stable results without the appearance of high-wavenumber

noise near the poles, even without using horizontal diffusion and without a zonal Fourier filter. In the Eulerian advection

model using the new DFS method, the Williamson test cases 1, which simulates a cosine-bell advection, also gives stable

results without horizontal diffusion but with a zonal Fourier filter. The shallow water model using the new DFS method is

faster than that using SH, especially at high resolutions, and gives almost the same results, except that small oscillations near

the truncation wavenumber in the kinetic energy spectrum appear only in the shallow water model using SH. This small

oscillations in the SH model can probably be eliminated by using the vector harmonic transform which is similar to the

vector transform using the least-squares method (or the Galerkin method) in the model using the new DFS method. Fhe-new
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1 Introduction

Global spectral atmospheric models using the spectral transform method with spherical harmonics (SH) as basis functions
are widely used. They are used in the Japan Meteorological Agency (JMA, 2019) and the Meteorological Research Institute
(MRI; Yukimoto et al., 2011, 2019) for a range of applications, including operational weather prediction, operational
seasonal prediction, and global warming projection. The spectral model has the advantage that the aceuraey—in-horizontal
derivatives is-goodare accurate, and the semi-implicit scheme, which improves numerical stability, can be easily applied
because the Helmholtz equation and the Poisson equation are easily solved in spectral space. The application of the semi-
implicit semi-Lagrangian scheme allows for timesteps longer than the Courant-Friedrichs—Lewy (CFL) condition, which
makes the model computationally efficient. In the spectral model using SH, the Legendre transform used in the latitudinal
direction significantly increases the computational cost at high resolutions since the Legendre transform usually requires

O(N?) operations and O(N?®) memory usage (unless using the fast Legendre transform or on-the-fly computation of the

associated Legendre functions shown below), where N is the truncation wavenumber. One way to reduce the operation count

and the memory usage at high resolutions with large N is to use the fast Legendre transform (Suda, 2005; Tygert, 2008;
Wedi et al., 2013: Wedi 2014), which requires only O(N?(log N)*) operations_and also effectively reduces the memor

usage. In the fast [egendre transform, the threshold parameter affecting the accuracy-cost balance is chosen so that a loss of

~Dueben et al. (2020)

accuracy is sufficiently small.

presented global simulations of the atmosphere at 1.45 km grid-spacing in the SH model using the fast Legendre transform.
Another approach used-to improve the Legendre transform is on-the-fly computation of the associated Legendre functions
(Schaeffer, 2013; Ishioka, 2018), which still requires O(N®) operations but requires only O(N?) memory usage. This small
memory usage also contributes to speeding up calculations by taking advantage of the cache memory.
AnetherwayAlternatively, we can use double Fourier series (DFS) as basis functions to reduce the operation count and
s. In the DFS model,

the memory usage in the global spectral model-is

the fast Fourier transform (FFT; Cooley and Tukey, 1965; Swarztrauber, 1982) is used not only in the longitudinal (zonal)
direction but also in the latitudinal (meridional) direction. The FFT requires only O(N?logN) operations and O(N) or
O(N?) memory usage, and it is mueh-faster than the fast Legendre transform.

In DFS models (and also in SH models), the scalar variable F (4, ) is zonally expanded as

M
F(AL,0) = Z En(8)ei™m?, )
m=-M

where A is latitadelongitude, 8 is colatitude, and M is the zonal truncation wavenumber. Several methods have been
proposed for meridional expansion with DFS. Merilees (1973b), Boer and Steinberg (1975), and Spotz et al. (1998)
performed the Fourier transform meridionally along a great circle. Spotzs et al. (1998) showed that by using the spherical
harmonic filter, the explicit DFS shallow water model using the pseudo-spectral method can produce results comparable

with the SH model in terms of accuracy and stability. However, the spherical harmonic filter consists of the forward SH
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transform (from grid space to spectral space) followed by the inverse SH transform (from spectral space to grid space),
which increases the computational cost.

Orszag (1974) and Boyd (1978) expanded F,, (8) meridionally as

_ (fm(©) for even m, )
Fn(0) = {sinﬂfm(ﬂ) for odd m, (23)
N
fn(®) =) famcosne, (2b)

where N is the meridional truncation wavenumber. The coefficients f;,, for odd m are calculated frem-by the forward

Fourier cosine transform of F, (6) /sin 8. Orszag (1974) imposed the following conditions at the poles:

fin(0) = 0and f;, () = 0 for |m| = 2, 3)
which can be expressed in terms of the expansion coefficients f;, ., as
N N
fam =0 and fam =0 for|m|=2. 4)
nirslzven nins:odd

Satisfying the above conditions ensures that the scalar variable F (4, 8) and its gradient VF are continuous at the poles. In
Orszag (1974), only fy_1m and fy, were modified to satisfy Eq. (4), but this is not the best way to satisfy the same
conditions as Eq. (3) or Eq. (4), as will be shown in Sect. 43.

Yee (1981) and Layton and Spotz (2003) expanded F;, (6) as

N
r

Fym cosnf for even m,
Fn(0) = |70 )

Ln:l

In the semi-implicit semi-Lagrangian shallow water model in Layton and Spotz (2003), the spherical harmonic filter was

Fym sinné for odd m.

applied to the prognostic variables for stability and accuracy. Layton and Spotz (2003) explained that the expansion with Eq.
(5) permits discontinuity at the poles and nonisotropic waves, which may lead to a prohibitive timestep restriction and
numerical instability, and these problems can be avoided by applying the spherical harmonic filter.

Cheong (2000a, 2000b) proposed expanding F, (6) as

N

r
! Fym cosné form =0,
: n=0

N'N

Fn(0) = 4 Z Fym sinné for odd m, (6)

1n=1
IN'N
: Fimsinfsinnd  forevenm (# 0).

n=1
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The meridional basis functions sin@sinn® for even m (# 0) are different from Eq. (5). The coefficients F,
forevenm (# 0) are calculated by forward Fourier sine transform of F,,(8)/sin@. The basis functions in Eq. (6)
automatically satisfy the same conditions at the poles as Eq. (3) for even m, and guarantee the continuity of the scalar
variable F at the poles, which is an advantage compared with the basis functions in Eq. (5). HewewverOn the other hand, Eq.
(6) does not automatically satisfy the conditions in Eq. (3) for odd m, and does not guarantee the continuity of VF at the

poles. The shallow water model and the vorticity equation model using a semi-implicit Eulerian scheme ran stably without

the spherical harmonic filter by using high-order horizontal diffusion with O(N?) operations to smooth out the high-

wavenumber components (Cheong, 2000b; Cheong et al., 2002; Kwon et al., 2004). The semi-implicit Eulerian hydrostatic
atmospheric model also ran stably with high-order horizontal diffusion (Cheong, 2006; Koo and Hong, 2013; Park et al.,
2013). However, the computational results of these models appear to be a little different from (slightly worse than) the
models using SH. One reason for this seems to be the appearance of high-wavenumber oscillation resulting from the
meridional wavenumber truncation with N = N’ = 2] /3 or J /2 for even ferevenm (# 0) (See Sect. 43), and the use of
strong high-order horizontal diffusion to smooth out the oscillation, where J is the number of grid points in the latitudinal
direction.

Yoshimura and Matsumura (2005) and Yoshimura (2012) stably ran the two-time-level semi-implicit semi-Lagrangian
hydrostatic and nonhydrostatic atmospheric models using the DFS basis functions of Cheong in Eq. (6).-Fhese-models-used
space-where-t-is-the zonal wind and-v-is-the-meridional wind. These models used the same fourth-order horizontal diffusion
as the SH models, and did not require the spherical harmonics filter or the strong high-order horizontal diffusion_for stability.

The numerical stability of the models is improved due to the following reasons:

1. The semi-Lagrangian scheme is used, which avoids the numerical instability due to the nonlinear advection term.

2. The meridional truncation with N = J — 1 .and N' = ] is used, which enables to reconstruct accurately the given grid-data

with the expansion coefficients (Cheong et al., 2004) and avoid the error due to the meridional truncation.

3.U =wusinf and V = vsin 6 _instead of u/sin 6 and v /sin 6 are transformed from grid space to spectral space, where u is

the zonal wind and v _is the meridional wind.

The results of these models were very similar to those of the SH models. However, we found the following two problems in

these models:

1. High wavenumber noise appears near the poles.

2. The meridional wavenunber-truncation wavenumber AN' needs to be equal to J for even m (# 0) because AN’ < [ (e.g.,
N'N = 2] /3)- for even m (# 0) _causes the high-wavenumber oscillation- (See Sect. 4) and the numerical instability{See

To solve these problems, we propose a new DFS method that adopts the following two improvements:
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1. A new expansion method to calculate DFS expansion coefficients of scalar and vector variables, which adopts the least-
squares method (or the Galerkin method) to minimize the error due to the meridional wavenumber truncation.

2. New DFS basis functions that automatically satisfy the pole conditions in Eq. (3), which guarantee continuity of not only
scalar variables but also vector variables at the poles.

We also use the Galerkin method to solve partial differential equations such as the Poisson equation, the Helmholtz equation

and the shallow water equations.

Section 2 describes the arrangement of equally spaced latitudinal grid points used in the new DFS method. Section 32

describes the details of the new DFS method using the new DFS expansion method and the new DFS basis functions.
Section 43 examines the error due to the wavenumber truncation in the-new DES-methed,-the Orszag’s-DFS method of
Orszag (1974), and-the Cheeng’s-old DFS method (Cheong, 2000a, 2000b; Yoshimura and Matsumura, 2005), and the new

DFS method. Section 5 examines the accuracy of the old and new DFS methods and the SH method for the Laplacian

operator and the Helmholtz equation.
model-using-the-new-DES-methed-Section 65 compares the results of the shallow water test cases between the model using
the new DFS method, that-with-these using the old DFS method of Yoshimura and Matsumura (2005), and with-thesethat

using the SH method. Section 76 presents conclusions and perspectives.

2 Arrangement of equally spaced latitudinal grid pointshmpreved-double Fourier-series-on-thesphere

In DFS models, equally spaced latitudinal grid points are used. We use the following three ways of arranging equally
spaced latitudinal grid points in the model using the new DFS method:

Grid [0]: J =/°, 6, =n(+05)/°, j=0.,J°-1 (765a)
Grid[1]: J=/°+1, 6 =mj//°, j=0,..,J° (765b)
Grid[-1]: J=/°—1, 6; =mj/J°, j=1..,]°-1, (7¢)

where 6 is the latitude at each grid point, and / 0 is the number of latitudinal grid points in Grid [0]. When the grid intervals
in Grids [0], [1], and [—1] are set equal, the number of grid points / in Grid [1] is J° + 1, and the number of grid points J in
Grid [~1] is J° — 1. Figure 1 shows Grids [0], [1], and [~1] when J° = 4 and the grid interval A@ = 7 /4. Grid [0] has been

widely used in DFS models_(e.g.—for-example—in Merilees, -1973b:); Orszag, €1974:) Cheong, —42000a, 2000b;};—and
Yoshimura and Matsumura, €2005). and in DFS expansion (e.g. Cheong et al. 2004). Grid [1] was useds—for-example; in the

DFS expansion (e.g. in—Yee, €1981;) Cheong et al., 2004). Grid [~1] was used, for example, in the SH model using

Clenshaw—Curtis quadrature (in-Hotta and Ujiie, €2018). All of Grids [0], [1], and [—1] were used in the-SH expansion (in
Swarztrauber and Spotz, €2000). i fon-i ible-i i
i E Grids [0} [+ and {1} . i Seet5 below.




In the new DFS method, the wind vector components u and v (instead of u/sin 6 and v /sin 6 _or u sin @ and v sin 6) are

transformed from grid space to spectral space and vice versa, as shown in Sects. 3.5 and 3.6 below. This makes it possible to

use Grid [1] that has grid points at the poles.

5 3 Improved double Fourier series on the sphere

In Sect. 3, we describe the new basis functions for scalar and vector variables, and the new method to calculate expansion

coefficients which minimizes the error due to wavenumber truncation. We compare the new DFS method with the SH

method to see the difference between them. We also describe how to calculate the Laplacian operator, the Poisson equation,

the Helmholtz equation, and horizontal diffusion in the new DFS method.

10 3.1 New basis functions for a scalar variable

We propose the following new DFS basis functions that automatically satisfy the continuity conditions at the poles in Eq.

(3). The scalar variable T (4, 8) is expanded zonally as

M M
T(1,0) = Z TE(6) cosmA + Z T5,(0) sinmA, (87)
m=0 m=1
where Ty, (0)_and Ty, (0)_are calculated from T'(4, 8) by the forward Fourier transform as
2n
¢ _a _(1form=0
15 TO) =5, | cosmaT. )k, o= { St (9a)
1 21
T50) = - f sinmAT(2, 8)dA. (9b)
0
The and-the-variables Ty, (0) and T, () are meridionally expanded as
Nmax,m
LOO=LO"O) = ) TiRSum®) (10)
n=Nmin,m
where
cosné form =0,
_ ) sinf cosnf form=1,
20 Snm(6) = sin 6 sinn@ forevenm = 2, an
sin?@sinnd  foroddm = 3,
0 form =0, N form =0,
_ )0 form=1, _JN—-1 form=1,
Nminm =41 for even m >2, Nmaxm = N—1 forevenm > 2, a2
1 foroddm = 3, N —2 foroddm > 3.

Here, the superscript c(s) means c or s, and for example T,fl(s)(ﬁ) means Ty, (6)_or T3, (6).
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In Eq. (8%), cosmA and sinmA are used instead of e™™* as zonal basis functions for convenience in calculating the
expansion coefficients using the least-squares method described below in Sects. 3.3 and 3.6. In Eq. (1129), the meridional
basis functions sin? 6 sin nf for odd m > 3 are especially different from Cheeng’s-the basis functions of Cheong in Eq. (6).
Either sin n6 or sin 6 cosnf can be used as the basis functions for m = 1 because it can be shown using Eq. (A2) from
Appendix A thatsinf cosnf (n =0, ..., N — 1) are the linear combination of sinnf (n =1, ...,N), and vice versa. Here
we use sin 6§ cosné for m = 1 because it can be more easily divided by sin 6, which is convenient for calculating VT.

Using Eq. (A2a—c), Eq. (108) can be +ransfermedconverted as-folows:

N

N7 cosn®  forevenm,
T:’(s),N (9) - ! n:NO (139)
L z T,ﬁgi), sinné for odd m,
n=1

where
Trf’(;)’ = T m=0,.,N) form =0, (146a)
bTE) - TS)
T:’(’fl) - w n=1,.,N) form=1 (140b)

)2 -1

except for Tf,,m(sy 2 n=1),
T,f,(,fl)' = w n=0,..,N) forevenm = 2, (140¢c)
TS = T + ZZ'S'(”? = Tt (n=1,..,N) foroddm =3 (146d)
except for Tlf;sl)'é@% = w n=1)

4

The value of Ny axm_in Eq. (12) is determined so that the maximum value of n_for each m _in Eq. (13) becomes N. In Grid

[0] and Grid [1] (See Sect. 2). the upper limit of N is J® — 1 _for each m. In Grid [—1]. the upper limit of N is J® — 1 for m >

2,butj0—2 (=] — 1) form =0 or 1. This reason is shown in Appendix C.

When calculating the values of T,fl(s)'N(H) in grid space from T,fgfz) in spectral space, the coefficients T,E(;L) 1 are
calculated from T,,i (,f,) using Eq. (140) and inverse discrete cosine and sine transforms (See Appendix B) are performed using
Eq. (139)(See-AppendixB). The calculation of T,ff,f) in spectral space from T,;(S)(H) in grid space is described in Sect. 3.3

below.

The truncated variable TV (4, 6) is defined as



M M
TVM(),8) = Z TS (8) cosmA + z T3 (0) sinmA. (1511)
m=0 m=1

From Egs. (108)-and—9), the values of T%(S)G’N(H) at the poles are finite for m = 0, and the values of T%(S)G’N(H) and

Té(S)S'N(G) at the poles are zero for m # 0. Therefore TV (4, 6) is continuous at the poles.

32.2 Gradient of a scalar variable

5 The gradient VTVM = (TAN'M ) Tg M ) is obtained as follows:

1 oM M
M = Tl 9 Z T (6) cosmA + Z Ty (0) sinma, (1612a)
m=1 m=1
Nmax,m
m mS,m(6)
T’fﬁ(e) = asinGTzN(a) - Z Tam a’;j’;g > = (1612b)
n=Nminm
Nmax,m
mS,m(6)
TSNy = — TN (9) = Z e MonmlY) 1
m(0) asing m (@) B L (16¢)
n=Nminm
M M
19TVM  19TNM )
Tg,M =- 2% = = Z T‘;%(B) cosmad + Z T;:’,Vn(e) sinma, (173a)
m=0 m=1
C(§)EN Nmux,m
10T, 7" (6 105, 6
10 Ty N (0) == =" @ _ Z (—T,fﬁ?;—”g;( )>———. =— — - (173b)
n=Nminm
where a is the radius of the earth, and ¢ is the latitude. From Egs. (1642b.c);48) and (A2b), we obtain
{271 form =0,
1Y TS cosnd form=1,
' n=01
N-1
c(s),N _
Tm ™ (0) = g Tf(n?n sinné@ forevenm > 2, (184)
! n=1
I N-1 N-2%
PNTTES) cosn (: Z L&) sin @ sin n9> foroddm = 3,
Ln=0 n=1
where
C 1 S
Tinm = ET"'"‘ -—— (n=0,.,N-1) form=1, -——(195a)
C 1 S
15 Tinm = Ean,m - n=1..,N-1) —forevenm > 2, -——(195b)
1m(=T5_1m + T3
Tfnm :Ew — =0,..,N—-1) for oddm > 3. — (190



—The equations for T}, ,, are the same

as Eq. (195), except that Tf,, ,, and T3, are replaced with T}, ,,, and —Ty,, respectively. From Egs. (173b), (139) and (146),

we obtain
r N
I Z TC,(rSL,)m sinng form =0,
| n=1
|
' Z T, cosnd form =1,
Tc(s) N(g) 4 n=01 016)
Z Tq(s:(;)m sinné forevenm > 2,
! n=1
! Z T, cosnf ( Z T(;(:l)m sin 6 sin n9> for oddm > 3,
(&
5 where
TG — 1 T -1 N f -0 -
¢nm__E(_n nm (n=1,...N) - form=0 —— < a)
1[n(Te),, = Tasd
T(;(;)m - __ (T‘% — =0,..,N)- - form=1 — (2117b)
1 ZTC(S) _ TC(S)
except for Tg(f)m = —Z"' (=1,
(159, — TS
Tdf(rst)m:_a[ L n+1m) =1,..,N) — forevenm=2, ——— - (2117¢)
n _TC(<) + 2TC(<) T
10 Tomm =~ (T nn = Toszm)| N) —foroddm >3, ——— — (2147d)
1[(3TES) — 158
except for T3 = - [M (n=1)
~From Egs.

(184)-(21)-te-(}7), it can be seen that T (6), Ty (6), T(;ﬁl(e), and T3y (6) at the poles are finite for m = 1 and zero for

m # 1, and moreover the following relations are satisfied form = 1:
N-1

1
15 TEN_L(8) = ~T3N_,(9) <= = Z T;mzl) at@ = 0 (North Pole), (2218a)
un 0+
s,N c,N 1 c
Times(9) = Tymes (0) = = Z TSmei| atf =0 (North Pole), (2218b)
n=0%+
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N-1

1
TSN (0) =T3N_,(6) <= = z (—1)"T,§,m=1) at@ = m (South Pole), (2218¢)
a n=0%
1 N-1
TSN _L(6) = ~TS™ . (0) (: - Z (—1)"T;,m=1> at§ = r (South Pole). (2218d)
n=0%

Thus, it is guaranteed that VTV = (TAN'M, Td')v ’M) is continuous at the poles.

32.3 New method to calculate expansion coefficients for a scalar variable

One way to calculate the coefficients T,f,(,,sl) O-from T,,Ci(s)(B) O-in Eq. (108) is to perform a forward cosine transform of
T,;(S)(H)/sine O-form =1, a eosine transform of Tjs* (8)/sin@ O—for even m (> 2)=2, and a sine transform of

T (6)/sin? 6-0) for odd m (= 3)=-3. However, this approach with the meridional wavenumber truncation N < J leads

to the large high-wavenumber oscillation as-in-Cheong’s-basi

sin? @ reduces the numerical stability of the model more significantly than dividing T,,Ci(s) (6) by sin 6.

Here we propose a new method to calculate expansion coefficients using the least-squares method to minimize the error
due to the meridional wavenumber truncation. This method also avoids dividing T,;(S)(B) by sin 6 or sin? @ before the
forward cosine or sine transforms. The coefficients T,fﬁ,sl) and—in Eq. (108) are calculated as follows. First, T;l(s)(e)% in

Eq. (108) are expanded like Eq. (5) as

A
- Z T5) cosné for even m,
@) =100 = | " (2319
! Z 750 sinnd for odd m,
n=1

where/ is-the-number-of meridional-grid-points;-and-the expansion coefficients T,f, (;) are calculated by the forward discrete

cosine transform for even m and the forward discrete sine transform for odd m from the values of T,;(S)(G) at the grid points
(See Seet—210Appendix B).

—Next, Ty, and Ty, are calculated using the least-squares method to minimize the following error E (the squared L, nor

m of the residual):
1 2 .m
E=-— R 2 I — 24
— fo fo (2,6)2d6dA, (24)

where the residual R(4, 8) is

M M
R(A0) = (Z TSN (8) cosmA + z 75" (8) sin m/l) —~T(A,6). (259
m=0 m=1

10
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is—minimized-From Eqgs. (240) and (254)_and the equations 0E /0Ty, = 0_and 0E /0Ty, = 0_used in the least-squares

method to minimize E-used-in-the-feast-squares-method, we obtain

2 .m aTcN( )
anj f T ———cosmAR(A,0)d6dA =0, (26a)
nm
2 .m aTsN( )
. j f o, SnmAR,0)d6d1 = 0. (26b)

From Eq. (108), we derive

aTN (6) 6T5N(9)
T¢m ~ 0Tm

Snm(0), (278)

Equations (267)_and (27) shows that the residual R(4,6) is orthogonal to each of the new DFS basis functions
Sinn(6) cosmA and S, ,, (0) sinmA, which means that Eq. (267) is the same as the equation derived using the Galerkin
method —Fhus.—the-equations—=0-and-=0-used
derivedwith-the Galerkinmethod:
From Egs. (267a), (278), (254), (9) and (A3a), we derive

f S (OO (0)d6 = f S ()T ()0, @8)
0 0

From Egs. (28) and (D4) in Appendix D, we obtain

f S (TS (00 = f S (@TEOY @) (29)
0 0

From Egs. (293)y49—29), the following equations for Ty, and T, are derived, as shown in Appendix E.

e _

2 - 3
3 N
L2 -

[7/7‘&‘ Fe \* o NVrmet g \3] -0 for-evenimn (232)
= l Fom—Hm)—+ ) e MIJ for-even-m; (23a)
an =
2 N

[Y‘ (T Fe \2] -0 for-oddan (23b)
- lL‘\.nﬁ .m}J for-odd-m- (23h)
E oy =
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Form =0,
Tos) = Tos) (0<n<N).
Form =1,
=T+ 2T = Ty = —2T5) 4 2T58), 0<n<N-1),
with the exception of the following underlined values:
AT = T3y = 21530 (n=1),

—2Tg,) + 2T, — o) = —2T) +2T55) (n=2).

Forevenm (= 2),
T+ 2T = T3 = 2T = 2T (1SRN -1,
with the exception of the following underlined values:
§T1c,$) - T;”ﬁl? = ifoc,i) - ZTzc,g) (n=1.

For odd m (= 3),

(3024a)

(3024b)

(3024¢)

TG = ATES) L+ 6Tet) — 4TES)  + TEl) = — aTS) | + 8755 — 4T5) (1 <n< N-2), (3024d)

n+2,m

with the exception of the following underlined values:

1_0T1C,§ysg) - ET;;SL) + TSC,;? = QT;}VSL) - 4'T3C,£rsz) (n=1),
ST, — AT + TEW) = 8T50) — 4TS (n=2),

—STLY) + 6T5) — 4TSS + T = —4T(S) + 8T50) — 4T5%)  (n=3).

From Eq. (30a), T,{%) for m = 0is obtained. From Eqs. (3024d), the &we-following linear simultaneous equations for m > 3

with-penta-diagenal-matrieesare derived:;
o o2 000 0 — oFEm x x ox o= 000 0 — orFEm %
[ ¢ N R Ql:%: F1ox o+ & % 0 0 e 9|: 5 : 11
I+ * * % % 0 o QIIL];C I_Msl I+ * * * * 0 o= QII G_ml_l*l [0y
T« + + =+ = — 9'|$e 1 =TT e e e s« s QTipe T i
S T T L B S Gl SRS
oo o w0« « ] loeo o« ;] 4
L L T
'Tzc,grsl)l IT;,EVSL)I |T;§Z)| IT:}?I
10 el = DL 1 sors 2 — D21
&

171 151 17O 171

R T e T e I et
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where the matrices C},_and C2, are penta-diagonal. From Egs. (30b.c). the equations similar to Eq. (31) for m = 1.and even

m (= 2)_with tri-diagnoal matrices C3, and C2, are derived.are-derived: By using Eq. (31), the expansion coefficients T,fv(ri)

are calculated from T‘,fgfl).fA penta-diagonal matrix C can be LU decomposed as

r***@@@w% r*99999-~91 r«l**@@@m(ﬁ
1+ = * +x 0 0 -~ 9 1+ = 8 0 8 8 —~— 9 19+ + = 0 06 —~ 0
I+ % % * % 0 - 01 1+ = * 0 0 0 — 01 19 6 1 = %= 0 -~ 01
Lo 9l="LU L=19 o 9L U=1g 5 o 1 9L—(26)
| _ IR _ _1 M _ IR N _1 o N _or ~ _1
' 0 o 0+ = & & 'g 0 == 0 « + =+ o g o - 0 0 1
e 8 — 6 6 « « « l6 0 — 6 8 « « le 0 — 06 06 06 0 4
@ 0 0 00 0 0, [l ox % 00 0 0,
|**0000 O| |01**00 0|
1= % = 0 0 0 01 10 0 1 = %= 0 01
C=LU, L=10 %« % % 0 0 0, USI0 0 0 1 * = 0. (32)
1 . 1 1
o0« 0 % % « 0 "o o 000 1 «
lo o - 00 » = = loo 000 0 1

To solve LUx = b, we solve Ly = b with forward substitution first, and then solve Ux = y with backward substitution.
There are also other methods to solve Eq. (3125). For example, the method using LU decomposition considering penta-
diagonal matrices as 2 x 2 block tri-diagonal matrices makes SIMD operations more effective. The method using cyclic
reduction for block tri-diagonal matrices (e.g., Gander and Golub, 1997) is suitable for vectorization and parallelization. The

calculation with these methods for each m requires O(N) operations. The simultaneous equations with tri-diagonal matrices

C _-derived-fromEgs—(24b.e)-can be solved in a similar way-to-E¢—25). Therefore, the calculation of T, ) for all m and n
with Eq. (3024) requires only O(N?) operations.

Her e the relation-between-the east-squares mcthod-deseribed-ab and-the Galerkinmcethod-when-caleulating
E E L20N aand (D1 d ¢k 41 AL /AT€ =0 d AL /ATS =0 d s 4l 1 s thad
b SEEAN 7 \ 7 1 RERY 7 H 1
ebtain
N
1 27 7 QLS EQ}
( { kil mARA)dGdA =0 27a)
2 € g ’ e
2‘"7.}9 .’9 @%
SN
1 27 7 QLS Eg}
( { kil A RGA-6)dOdA =10 27b)
2 s d . e
2‘?{7.}9 .’9 @%
EromEq{8)—we-derive
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32.45 Comparison of new DFS with SH

Here we compare the new DFS method with the SH method to see the difference between them. In the SH method, Ty, (0)

and Ty, () in Eq. (87) are expanded with the associated Legendre functions P, ,,, (0) as

N
L0 =TSN @) = ) TN B(6), — (3362)
n=m

== 30
\CAcy

==

where m > 0. The functions B, ,, (6) satisfy the following orthogonality relations for each m:

f"P (8)P,s,.(6)sin6 do = {1 (or2) forn=n', (34)
p e mm 0 forn #n'.

By the modified Robert expansion (Merilees, 1973a; Orszag, 1974), the associated Legendre functions P, ,,, (8) are expressed

as

n-|m|
Pom(0) = Z; Gy Sin™ 8 cos16. (35)
when n-|m|Lis even
Conversely, the functions sin™ 6 cos(n — |m|)8 (n = |m|) can be expressed as the linear combination of Py, (6) (I =

|m|, ..., n). Substituting Eq. (352) into Eq. (330) gives the following equations.

N-m
TEOSHN (g = Z TS sin™ g cos no), (3632)
n=0

= (33b)
where m > 0. Equation (363) is similar to Eq. (108) in the following sense: the basis functions form = 0 and m = 1 in Eq.
(36) are—33) the same as in—Eq. (118). The basis functions sin? 6 cosné n=0,..,N=2) for m=2 and

sin® 6 cos nf (n=0,..,N—3) form = 3 in Eq. (363) are the linear combinations of sin@sinnf (n=1,..,N — 1) and

14
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sin?@sinnd (n=1,..,N —2) in Eq. (118), respectively (see Eq. (A2a)), and vice versa. The basis functions for m > 4 in
Eq. (363) are different from these-in-Eq. (118). The number of expansion coefficients in Eq. (3360) or Eq. (362) in the SH
method is smaller than in Eq. (108) in the new DFS method for each m > 4. From Egs. (87) and (336), the number of
expansion coefficients T,f:,S,,H in the SH model is about N?/2 when M = N. ThisThe triangular truncation used in the SH
method gives a uniform resolution over the sphere. From Egs. (87) and (108), the number of the expansion coefficients Ty,
in the DFS method is about N2 when M = N. ThisThe rectangular truncation used in the DFS model gives almost the same
resolution as the grid spacing of the regular longitude-latitude grids. Therefore, the zonal Fourier filter (see Appendix FSeet:
2-41) is used in the DFS model to give a more uniform resolution.

We compare the method used to calculate the expansion coefficients in the new DFS method with that in the SH method.

The SH expansion coefficients T,ﬁ(,fl)'SH in Eq. (33) are calculated from T,fl(s) (0) by the forward Legendre transform as

T
TEESH = f Py (0TS (8) sin 6 do, 37
0

where Gaussian quadrature or Clenshaw—Curtis quadrature (e.g., Hotta and Ujiie, 2018) is usually used for integration. They

can also be calculated using the same equations as Eq. (37) except that T,.™ (6)_are replaced with T2 (6)_(e.g., Sneeuw

and Bun, 1996), although the values of Trf’(,f[)’SH calculated from Trﬁ(s)’N(H) are different from those calculated from T,,C,L(S)(H)L

In the new DFS method, the values ofT,f‘(,fl) calculated from T;;(S)'N(f)) in Eq. (29) are the same as those calculated from

75 (6).in Eq. (28) (See Eq. (D4) in Appendix D).~

Eq. (37) can be derived using = £34a3
= 3445
ALyl
where—is-thelatitudinal-weight—The-coefficients—and—ean-also-be-ealenlated-with-the least-squares method that minimizes
the error ESH (the squared L, norm of the residual):
1 2 .m
ESM = —f f RSH(2,0)? sin 0 dOda, (385)
AT Jo  Jo
where the residual RSH(4, 6) is
M M
RSH(A,0) = (Z TSN () cosma + Z TSN (9) sinml) —T(A,0). (396)
m=0 m=1

From Egs. (385). +(396) and (33).; and-_ the equations 6E5”/6T,ﬁ,an = 0.and BESH/a"F,fjan = O_used in the least-squares

method to minimize FS"¢A3), we derive

2m us
f f Py m(0) cosmARSH(2,0) sin6 dodA = 0, (40a)
0 0
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2m us
f f P, (6) sinmARSH(2, 0) sin 6 d0dA = 0. (40b)
0 0

Eqgs. (40) is the same as the equation obtained using the Galerkin method. From Egs. (40), (33). (34). (9) and (A3), we derive

The SII expansion cocllicients and in E

20V gy 1 1
-ar 225

] Fo Eq"'(g )’ (QG)? (g l )J 'd*ld t‘hi‘ equa“e“s = g a"d = g 5 - g St
equations-as-Egq—34-—In Eqs. (375) and (38)-(and-Eg—~34)), the latitudinal weight sin 8 appears, unlike in Eqgs. (240) and
(29)and-Eg—27)), which is another difference between the SH and the new DFS methods. In the DFS method, the constant

S 5

latitudinal weight is used in Eq. (249), although the latitudinal area weight described below in Appendix GB is usually used

as the latitudinal weight at the grid points, for example, for the calculation of the global mean.

When calculating the coefficients T"C, (:[){-and—) in Eq. (108), we can also consider the least-squares method, not using E in
Eq. (2460) but using -E' with latitudinal weight sin 8 like Eq. (385). However, minimizing E’ derives the simultaneous
equations for calculating T,i(;) with dense matrices, which leads to O(N®) operations. When using E, the simultaneous
equations with penta-diagonal or tri-diagonal matrices require only O(N?) operations. Therefore, we choose to use E instead
of E'-.

The new DFS meridional basis functions S,, ,,(6)_for each m are not orthogonal but independent. Therefore, by using

Gram-Schmidt orthogonalization, the basis functions can be converted to orthogonalized basis functions SY,,(6). which

satisfy
1" o 1 forn=n'
;J;, Sm(0)Snm(0) 40 = {0 forn = n'. 1)
This is similar to Eq. (34), but the latitudinal weight is constant. T,f[(s)(G) in Eq. (8) are expanded with 52, (6) as
Nmax,m
7O (0) = TEOON (9) = z TE$050,.(6) (42)
N=Nminm

By using the least squares method or the Galerkin method with Eq. (42), we obtain the same equations as Egs. (24)—(29)

except that T (8) and S, ,,, () are replaced with TN (6) and SQm(6) respectively. From Eq. (29) with T (6)

and S, (0) replaced by T,5®°" (6) and S2,, (0), and Egs. (41) and (42), we derive

17 _
Tee = = f S0, ()TN (6)de. (43)
0

- {FREE ATV BROG 1 F
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Thus. T,¢° and T2°" (6) in Egs. (43) and (42) are calculated uniquely. This unique solution T, *" (6) is the same as

TN (6) in_Eq. (29) obtained by the least-squares method with the non-orthogonal basis functions Spm(6). because

S,?m(H) (n = Npinms - Nimax.m ).are the linear combination of S,, ,, (6) (n = Npinms - Nimax,m ) for each m, and vice versa.

32.56 Applieation-of-the-nNew basis functions forte a wind vector

The velocity potential y and the stream function ¥ can be converted into the wind vector components u and v using the
equations

1 oy 10y 1 oy, 19y

= - = Ao 44
U= cospA adp asinoA a6’ (442)
1 ap 1ay 1 oy 1oy
- 9y Lox_ dv_1% 44
v acos¢ﬁal+a6¢> asinf oA  adb’ (44b)

where u = acos ¢ dA/dt is the zonal wind, and v = ad¢ /dt is the meridional wind. The scalar variables y and 1 are
expanded like Eqgs. (87) and (108) as

= 39
=t (403
@O . < [x5(0) O [10(0)
A = Z [Xm cosml + Z [X"‘ sinma 45
o) = 2. ke >, Loy ™ (45)
m=0 m=1

== (41
=
== 42N
== “2)

. Nmaxm

(O] L [xe > (0)] _ Xnm
c(s = c(s),N = c(s S"rm(g)‘ (46)

UASIC)) BN e ) IR A

. : N.M N.M
replaced-with-s—Here-theThe truncated variables ™" (4, 8) and """ (4, 6) are defined as

=+ €43y
X0 _ X [15 ) NIECHGIR
[1/)N'M(l.9)] = "Z;] [w;,\,(e) cosmad + 7; [lp,ﬁ;"’(e) sinmA4, (47)

+
L
R
S
e

From Eqs. (44)-(47). tFhe equations for the wind vector components uV™(2,60) and vV (2,0) are—ebtained—from
PAM 0N and MM )0y using Eq(38)are derived as
M M
1 ax"Ma,8) 109NM(A,0)
M = -~ = oy SN (6)si 485
u™M(2,6) ppene a + 2 20 Z Uy, (0)cosma + Zum (0)sinma,  (485a)
=

m=0

17



uSH gy = M (0) | 10U (6)
m ~ asin6 a a0
e Spm(0) 10S,m(0)
- s Monm(®) e 20nm0) _
p wmasme T ¥Ry o0 ) (485b)
N=Nminm
w9 = _mye(0) | 13y (0)
m T asin a 96
Nmax,m
mSy,m(6) 108,m(6)
_ _ € 3 s 3 o
= p < Ynm—sne T¥amT 68 ) (485¢)
N=Nminm
M M
1 opNMLe)  19xMM(4,0)
NM = = 2= N SN (0)si 496,
5 vV (2,8) 2sind a1 2 0 Z Vp, (0) cosmA + va (0)sinmA,  (496a)
= =
i (6) = mpn () 1axy"(8)
m asin a 90
Nmax,m
mSym(6) 108,m(0)
— S i — yC — -~
- <wn,m g XimT5a ) (496b)
N=Nminm
o5 (6) = _myp'(6) 19x3"(6)
m ~  asin®@ a 06
e Spm(6) 10S,m(0)
_ _c Moy m _ s —Yonm
£ < 1»bn,m asin@ nm 96 > (496C)
N=Nminm
10  The vector (uM™, v™™M) in Egs. (48) and (49) can also be represented as
M Nmaxm
@M@OVM@A0) =D N (Ui Vim + iV + WiVl + WimViim),  (50)
m=0 n=Nminm
where we define the new DFS vector basis functions Vy . VZ,,. V3, and Vi, as
1 _ [ mSum(6) . _108,m(8)
Vam(4,0) 7< “Zsnd sinmA, T cosmi |, (51a)
2 _ (mSnm(6) _10S,m(0) .
Vim(4,0) = (—asina cosmi, PRI sinmA |, (51b)
, 10S,m(0) MS, 1 (6)
3 — (29nm _ nm .
15 Vim(4,0) = (a—BG cosmi, Zsnd sin ml), (51¢)
10Sm(0) . . MSum(6)
4 — [19%nm nm
Vim(4,0) = (a 28 sinmA, 2sin 6 cosma |. (51d)

From Egs. (485b,c), (496b,c¢). and (18)—(21)}41)-and(42), we obtain

18



= (48N
N
(L Tue®
|Z M sinnd form =0,
HE©
| n=1L"nm
(PO
. ' Z(Y:; cosnf form =1,
L(s>. Q) 411:0 Unm (52)
B e
| Ynm | o ng forevenm > 2,
| p°®
n=1L"nm
LAOY NLr s
I :(:; cosnf ( ”m, sin @ sin n9> forodd m = 3,
kn 0 n=1 71"1
where
n
5 Upm = 2 m n=1,.,N) form=0 — —— (53a)
n(yps<_ )€
Ufym = 7[m)($,‘m +M] (n=0,..,N) form=1, ——— (53b)
1 2 c —_ C
except for u§ ,, = A [m)(f,m + w] n=1),
1 n C_ — {3
U, = E[m)(fl’m + M] (m=1,..,N)- forevenm >2, ———— (53¢)
m + n +2
unm_ [ ( Xn 17; Xn+1m) ( Ipn 2,m ;pnm Ipn+2m):| TL=0,...,N) foroddm23—(53d)
1[m 3 -
10 except for u§ ,, = E[ );2"" + ( ¢1'm4 ¥im) n=1);

with-s—The equations for uj, ,, are the same as Egs. (5349b—e.d), except that ug n,, x5 m, and ¥y, ,, are replaced with u3, ,,,,

—Xnm» and Py, ., respectively. The equations for vy ,,, are the same as Eqs. (5349a—bse;d), except that ug; ,,, X5 m. and ¥y,
are replaced with vy ., Y5 1, and —xy, ., respectively. The equations for vy, ,, are the same as Eqs. (5349b—e;d), except that

15 Ugm. Xnm, and Yy, ,, are replaced with vy, =5 m, and —x5 . respectively.
From Egs. (5247) and -te-(5349), it can be seen that ug)" (8), uSy' (6), v (), and v (8) at the poles are finite for m =

1 and zero for m # 1. Moreover, the following relations are satisfied for m = 1:
N-1

N o) = v (9)< ! Z (Xomet + Wme 1)) at® = 0 (North Pole), (540a)

=0+
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N-1

e
S () = v, () <= - Z (At + Ipf,,m:l)) at® = 0 (North Pole), (546b)
n=0%+
1 N-1
[BANCIERANC)) <= 2 D"(nm=1 + z/},ﬁ'mzl)> at @ = 7 (South Pole), (540¢)
n=0o
1 N-1
uS . (0) = —vEN. (6) <= 7)) D (Xim= + z/;;m:l)) at@ = (South Pole).  (540d)

n=0

Thus, it is guaranteed that the wind vector (™™, v"'M) in Egs. (485) and (496) is continuous at the poles.

32.67 New method to calculate expansion coefficients for a wind vector

We propose a new method that calculates the expansion coefficients x5, ., Xnm» Yrnm and Y5 ,, in Eqs. (48) and (49)
using the least-squares method to minimize the error of uM* (2, 8) and vV'™ (2, 0) from with-respeet-to-u(4, 0) and v(2,6)

due to the meridional wavenumber truncation. First, the wind vector components u and v are expanded zonally as

U= 651
= (52)
u(4,0)] L N [4n(0) O]
[V(A, 9)] = mZ:O [Vrcn(f))] cosmi + mZ:l [Vrsn(g) sinmA, (55)

where u,C,ES)(f)) and vfn(s)(ﬁ) are calculated from u(4,0) and v(4,0) by the forward Fourier transform as ==

(53}
< 7
uR @) _ @ (" u(, ) _(1form=0
[vfn(e) N zfrfo cosmA [v(/l, 9>] i, a= { 2 form > 1, (56)
w0 _ 1 (7w, 0) B »
[Vﬁn(e)] - HJ; sinma [v(/l, 9)] da. (56b) == 54y
The variables 1% (6).and v (6) are meridionally expanded as
(& 1E®
(s c(s)N : Z [NYC”S’;] sinnf for even m,
[unf )(9)] - [ﬁnf N (6) _ anl Dot -
S T | 5ee)N - N r_c(s
o (6) T (6) ! i cosné for odd m,
k ~c(s) d
n=0 L "nm

with-s—whereHere—_the—expansion—coefficients-Tigo 5 and— D, o) s—and- are calculated from ui(™ (6) and v5™ (6) by the
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forward discrete cosine or sine transform fromthegrid-peoint-values-of ———and {See Seet-2.10)-(See Appendix B).Fhe
truncated variables and-are defined as

I
+

55
>

o~ ™

3
7
56
7

+

Next, X5m»> Xnm> Prm»> and Y5, ,, are calculated to minimize the following error F (the squared L, norm of the residual
vector):
1

F=—
2m?

2 .m
J‘ J‘(R;m(Le)z+-R;m(L9)2)d9da, (587)
0 0

where the residual vector (R;,‘}m(l, 0), Ry (A, 9)) is defined as
R¥m(A,0) =uMM(2,0) —u(A,0), (598a)
Ry (A,60) = vVM(2,6) — v(4,0). (598b)

caleulate———and——so—that-F-is-minimized-From Egs. (587), (598), and the equations 0F /05, = 0,0F /0x; m = 0.

OF /05, = 0,and OF /0, ,, = 0_used in the least-squares method, we obtain

ifznf” MR“ (19)+wkv (L,6)|dodr=0 (603a)
2m? 0 0 3Xﬁ,m e aXT":L,m i ’

LJ-ZTEJ‘“ Mm (19)+MR" (}Lg) df dAl =0 (603b)
)y Jo | Oim T pm '

ifznf” wRu (10)+MRV A,6)|dodr=0 (603c)
2wty Jo | 0w T 0im ’

Lf”f” O pu 2,040 RO pu 3 )| agar = o. (603d)
w2y Jo | Oim T W

From Egs. (5045), (46)-and(28)-we derive
oulM(2,0) ovNM(4,0)
im  OXim

) =Vi.(40),= —(61a)
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auNM(2,0) avVM(1,6) —V2,.06) (614b)
sm  OXim e
oulM(2,0) avVM(4,6) VS (16 614
(7 7 AL T e
ouNM(2,0) avVM(4,0)
’ =V (16). _ ——  (614d
( Wi Wi ) m(6) 1)

6)—Equations
5 (603) and (61) shows that the residual vector (R,lf,m (4,6), Ry (A, 0)) is orthogonal to each of the vector basis functions—n

Eg-64), which means that Eq. (603) is the same as the equation obtained by the Galerkin method. From
Egs. (602), (614). (51). (485a). (4962).(55)456)- (56). (A3) and (D6), we derive
[ mSym(6) 10S,m(0)

1 s,N ~sN 2 c,N ~CN —
n_‘; asin6 ( m (8) = (6)) a 06 ( m () = i (6) ) 6=0 (623)
mSnm(G) cN ~cN 1asnm( ) s,N ~sN _
3 [ ot (w0 - 5 (0)) - = (w3 (0) - 73 (6)) | d6 = 0 (62b)
1 asnm(g) c,N ~cN mSnm(H) ~sN _
10 f PR ( ®) - (9)) Ty (v (9)) dg =0 (62¢)
105nm(9) P mSpm(0) N _
f [ (i (0) — T () + 2 (v (6) — 5" (6)) [ d6 = 0 (62d)
€ .
R b
a N
v/.ﬁ% :im\z-l =0 form-=0, (60a)
Fr “é}\ > J
a N N
v’u,‘{;ﬁ s 2+Y‘/v§m ;;;m\z] =0 forevenm =2, (60b)
FR nL:i\ g J né}\ 5 J
N
15
Piarereplaced-with-vm b mand— o respeetively, we-derive-the following equations for y;; ,, and ¥y, , are derived
as shown in Appendix H.-
20 Form =0,
1
2 [nxfn] = Pin (1<n<N). (631a)
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The coefficient xy,-on=o is determined so that the global means of y are zero. See Eq. (G1) AppendixB-aboutfor the
calculation of the global mean.
Form =1,
1
a [_(n - l)ercl—z,m - Zmlpi—Lm + (4m2 +2n? + 2) Xrm — 2m¢§+1,m -(n+ 1)2X§+2,m]
=20 = 1)y — AT — 2+ D41 0Sn<N-—1), (631b)
with the exception of the following underlined values:
1
~[(8m + ) xS — Al — 205 | = —BMUy — 4PE (0 =0),

1
2 [—4mydm + (4m? + )i + | = (n=1),

1
E[_zxg,m_zmlpim-"'"] = (n=2),
Forevenm > 2,
1
E [_(n - 1)2chl—z,m - Zmlprsl—l,m + (4'm2 + znz + Z)chl,m - 2m¢$1+1,m - (n + 1)2X§+Z,m]
=2 = D)0y =AM — 2(n+ DSy (LSnSN-—1),  (631c)
with no exceptions
Forodd m > 3,
1
2 [(n =22 X5 am + 2m5 g + (—4M® — AN + 81 = B) X5 — 25y gy + (BM* + 60 + 8) x5
—2my3 1 m + (_4m2 —4n?® —8n — 8)Xn+zm + 2mMPyizm + (n + 2)2)(;:1+4,m]
= 4N = )Ty — BMES_ gy — BTy + BNy 1y + 4N+ 2) Ty (1SN SN—2), (631d)

with the exception of the following underlined values:

1
~[(12m? + 18)x5 — 4y + (—4m? = 215 + | = —16miLypy — 1205, + - (n= 1),
1
(A + (B 4 32 g ] = n=2),
1
C[(—4m? = 20)x5p, - 2myg 4] = (n=3).

Similarly, from_Eq. (6259b), -0F/855==0-we derive the same equations as Egs. (63+b—e:d), except that €, ¥°, ¥, and
u® are replaced with x5, —¢, ¥5, and —u, respectively. From_Eq. (6259¢), we derive the same equations as Eqgs. (63+a—
shsesd), except that €, ®, ¥€, and @® are replaced with —¢, x5, @€, and —¥°, respectively. From Eq.- (62d), we derive the

same equations as Eqgs. (63+b—e;d), except that €, 5, v¢, and @° are replaced with %, x€, —u®, and —°¢, respectively.
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Eq. (63a) is easily solved. From Egs. (63+db;e;¢), and from the same equations as Eqs. (63+db:e;¢), except that x€, y°, v°,

c

and @° are replaced with °, x¢, —1i°, and —v¢, respectively, we derive the following twe-linear simultaneous equations with

nine-diagonal matrices for cach-oddm = 33:

Xem1 o -

1351 |r“‘1| 1 ¥ | |r*1|

I
QII*PZSWI—:::, nll%f"'—?l—:::’ (6_2)

:%{W: I*I :%: I*I

I%I L |%§?T‘*| L

|5 | i W

[Xim ridm1 riml r~5m1

15 1 1T 1 1 Xom | 1 =5 |
En! g5 ! = Pl Enlys,! = Ful =55, )

11
lpz,m

I O B G E B
where wherethe matrices PE,,,,-and-B; are nine-diagonal. From Egs. (63b.c), we derive the equations similar to Eq. (64) for
m = 1and even m (= 2) with penta-diagonal matrices E,, .—matrices—We—also—derive—two—similarJinear—simultaneous

=1~ ae =-2- The simultaneous equations with nine-diagonal or
penta-diagonal matrices E,, can be solved in a similar way to Eq. (3125), and the expansion coefficients yy, ,,, and 15, ,,, in Eq.

(642) can be solved efficiently. From the same equations as Eqgs. (63+b—e;d), except that x€, 1%, ¢, and @ are replaced

¢, and u° are

with x5, —y€, U, and —u€, respectively, and the same equations as Eqgs. (631b—e;d), except that €, Y*, ¥
replaced with —y°, x*, 4€, and —¥%, respectively, twe-similarthelinear simultaneous equations with-nine-diagonal-matrices

for h m 3 and-t iH

auats 1 form= 1 and
HS-e¢ IS-W TOF -t

P tagonal 5 and-each-evensimilar to Eq.

64) m-—=-2-are also derived. Thus, the expansion coefficients xy, ,n, Xn.m> Wnm, and Yy, p, are obtained-calculated from iy, ,,,
Uy, m» Uyym» and ¥ , using Egs. (63+a—bse:d) and the similar equations.

The expansion coefficients uy; p,, U m, Viim, and vy, are calculated ebtained—from x5 m, Xnm> Ynm, and Y5, using Eq.

(5349) for uy, ,, and the similar equations for u3, ,,, Vs 1, and vy, .
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This method to calculate the DFS expansion coefficients of y and 1 from u and v using the least-squares method (or the
Galerkin method with the DFS vector basis functions) is similar to the vector harmonic transform method (Browning et al.,

15 1989; Temperton, 1991; Swarztrauber, 1993), where the SH expansion coefficients of the divergence D = VZy and the
vorticity ¢ = V2 are calculated from the grid-point values of u and v using the Galerkin spectral method with the

orthogonal vector SH basis functions.
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2-123.7 Laplacian operator and Poisson equation

The calculation of the Laplacian operator and the Poisson equation in the new DFS method is described in-thisseetionhere.

In the equation

2,0) =V? 19—1 ! 62f+ Lo 'Baf 6577
946) =TF A0 = | g o+ s as (0 ag) | (€572
where V2 is the Laplacian operator, the variables f and g are expanded zonally using like Eq. (87) as
e )
g =+ 79y
FO00] 2 N [f5®) [ ®)
e mn cosma + Z [ i sinma, 66
[g(l. 9)] Z [gfn(ﬁ) i Lgm(0) (€e)
m=0 m=1
The variables f,5;(0), fin(6), g5 (6), and g;,(0) are expanded meridionally using-like Eq. (108) as
== £80)
== e
== Q1)
Ny
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Nmax,m
() (g C(S)N g ' c(s)
o ()] Jm O = [ Sum(©) 7)
n Nmmm

g >@)] g o) o

nm

with-s—We define the truncated variables f¥"(8) and g™ (6) as

= (82a)
=4 £82h)
== o=9)
2,8 N [ ©) £ (0)
[ o ]EZ["C‘N cosm/1+2[";,v sinma, (68)
g AN L |gn (0) Im (0)
From Egs. (6582a) and (68), we obtain
M
1 " (6)
2 £N.M — cN m
VZFNM (), 0) Z e sn20f’" (9)+Sn960(sm9 b )}cosm/l
=0
L[-m® oy 1o 0 (0)\]
+ Z; [sinz SO+ o <51nBT>} sinmA. (6983)
=
Here we use the Galerkin method to calculate the Laplacian operator and the Poisson equation, and obtain
cosmA] g _
e f f Snum(8 )[ N ]R (4,6)d6d2 = 0, (70)
where the residual
RI(2,0) = g"M(A,6) — V2 fNM(2,0) (7185)

is orthogonal to each of the new DFS basis functions S,, ,(6) cosmA and Sy, ,, (0) sin mA<{see-Seet-2:4).
We can also use the least-squares method-deseribed-in-Seet—2-3 instead of the Galerkin method so that the following error

H (the squared L, norm of the residual) is minimized:

l T
H= —Zf f RI(2,0)%d6 dA. (7286)
2% Jo Jo

When calculating g by applying the Laplacian operator to a given f, g5, and g;, ,, can also be calculated from 0H /d gy,
and 0H /0 g;, , using the least-squares method. The equations dH /09y, ., and 0H /0 g5, », give the equivalent equations to Eq.
(7084). When calculating f from a given g in the Poisson equation, f,,, and f;,, can also be calculated from 0H /0 f,, and
0H /0f;m using the least-squares method. However, the equations derived from 0H /0f,{,, and 0H /0, are different from
Eq. (7084). If we use different equations for calculating g from f and f from g, the original values are changed when
calculating g from f followed by calculating f from g, which may beis not good for numerical stability. Therefore, we use
Eq. (7084) obtained with the Galerkin method for calculating both g from f and f from g. Generally it cannot be said that
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the least-squares method is superior to the Galerkin method or vice versa, and here we choose to use the Galerkin method

because of the reason described above.

From Egs. (6882)—te-(7185) and Eq. (A3) we derive

- 1 9 A (')
c(s).N _ = c(s),N — [sing2™_ "7 = — 7 €
f snm(e){ ®) az szef )+ <sm9 — 9 =0, (7387a)
do=0— (a7n)
For m = 0, we calculate gc(s) by using
—m2 9 afc(s)rN(e)
c(s) N m c(s) N ; m
® = az snze’™ @ FGnaae (Sme 0 )| (7488)

instead of Eq. (7387) following Yee (1981) and Cheong (2000a) for ease of calculation. For 0 < m < 3, the exact solutions
of g,i(,s,f can be obtained from Eq. (7488) because the new DFS meridional basis functions for 0 < m < 3 are the linear
combination of the associated Legendre functions for 0 < m < 3 and vice versa as described in Sect. 3.42.5.
For m = 0, by substituting Eqs. (6780) and-(81)-into Eq. (7488) multiplied by sin? 6, transforming using Eqs. (A2d) and
(ASb), and comparing both sides of the equation, we obtain
~0n am + 20 ¢8m=$kn—nm—2v“> =20 o+ (M D+ Dfn] 0 <nSN), (758%)

except for the following underlined values:

197! = i = m=1
~205m + 2950 — Gam = (n=2)

For m = 1, by substituting Eqs. (6780) and(81H-into Eq. (7387a) and using Egs. (A2d), (A4a) and (A5b), we obtain
1
=95 + 2055 = S = —=ln- Dnfym — (202 +4m2) ) + (n+ Dnfiy), ] (0<n<N-—1) (7589b)
except for the following underlined values:

i = Gom = (n=1),

191m
~206m + 205 — ﬁ%ﬂﬂjw+] (n=2).
For even m > 2, by substituting Egs. (6780) and-(81)-into Eq. (7387a) and using Eqs. (A2c), (A4b) and (A5d), we obtain
1

05+ 29550 — 95 1 = 2 [(n—DnfS),, — @n? +4mP) i + (n+ Dnfiy,,] (1<Sn<N-1) (7589)

except for the following underlined values:
3gc(s) gc(s) _ (71 - 1)

with no exceptions.

For odd m > 3, by substituting Eqs. (6780) and-{8H-into Eq. (73872) and using Eqgs. (A2c.¢), (A4b) and (A5d), we obtain
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c(s) €(s) c(s) _

In-am — 4'gn—zm + 6gn,m Nl Ml

49nv2m T In+am

1 ;
=5[--2n- Dfm + (4n? —6n + 4+ 4m?) £ — (6n? + 4 + 8m?) £

+AN2 + 6+ 4+ AmA S — 4+ 2)(n+ D] — (1<n<N-2) (7589d)
except for the following underlined values:
1
10055 = 595m + G5 = gz [~(12+12mM)f50 + ] (=1,
595m ~ 4Gam + Gop =+ n=2),

. . . . 1 .
=591 + 6050 — 4050 + g7 = 5 [(24+AMNEED + ] (n=3).
From Eq. (7589), we obtain the following two linear simultaneous equations with tri-diagonal or penta-diagonal matrices:

c(s) _ C(S) c(s)
An,even,mgm—,ppmn,even,m - Bn,even,m/n,even,mmﬁaﬁeven? ’ An,ndd,mgniodd}mm:odd

= Bn,odd,771]-::\(7?))(1cl,m,«lajeé:d7 ’ (7699)

where g5 yen n and g5, are the vectors whose components are gy, (n is even) and gno (7 is odd), respectively, and

Foenm and fﬁf?dd'm are the vectors whose components are fi$, (n is even) and f,$y, (n is odd), respectively;

A evenseenms Bn_evenms An_oddms and By, oqq,, are tri-diagonal or penta-diagonal matrices. g%?ﬁ_even and g%i{odd are
calculated by

c(s) — Aﬂ B

<(s)
n,even,mfn,even,m ’ gn,odd,m n_odd,m

() = A1

In_evenm n_even,m

B n,odd,mfﬁ{?ddm ’ (77)

g 7

which can be solved efficiently as in Eq. (3125).

We have verified that all the eigenvalues of the matrices Ay'oyen B evenm and Ay'uaq mBn oddm are negative real

numbers for several truncation wavenumbers M and N, but we have not yet proved that this is true for all truncation
wavenumbers.
In the Poisson equation, f is calculated from given g in Eq. (6577). We calculate f from g by the reverse calculation of g
from f in Eq. (7794). That is, we calculate f from g by
(S) c(s)

R c(s) _p-1 C(s)
n_even,m _Bn,even,mAn,even,mgnieven,m ’ gn,odd,m - Bn,odd,mAlLO(l(l,mflLodd,m ’ (78)

== 92y
except when m = 0 and n is even. For m = 0, fi7_y m=o disappears in Eq. (7589a). The coefficients f,{,,—o (even n > 2) are

calculated from g5 = (even n = 2) by Eq. (7589a). The value f;i—o = is calculated from f;{,,—, (even n = 2) so that the
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global mean of f is zero using Eq. (GE1).—
laced-wi .

In Eq. (6577), the global mean of g must be zero because the global mean of the right-hand side of Eq. (6577) is zero.

Before calculating f from a given g in the Poisson equation, we should subtract the global mean from g (Cheong 2000b).

See Eq. (GE1)_about the calculation of the global mean.

23.8-43 The Helmholtz equation

The Helmholtz equation is

V=11 ! laz+1a'0a = 7994
foevf =11 nzgan sineae(sm ae) f=9 (7999)
where f is calculated from given g. From Eq. (76). the Poisson equation in Eq. (65) is represented as

Ag = Bf, (80)

where the subscripts n_even, n_odd and m, and the superscripts ¢ and s are omitted. Similarly, by using the Galerkin method,
Equation-Eq. (7994) is represented-represented as
Af — ¢Bf = Ag. (8195)
From Eq. (8195), f is calculated from g by
f=(A—¢B) lAg. (8296)
Since A — ¢B is a penta-diagonal or tri-diagonal matrix, Eq. (8296) can be efficiently solved as in Eq. (3125).
-Similarly, the Helmholtz-like equation

f—eVif =V2g (8397
is represented as
Af — ¢Bf = Bg. (8498)
From Eq. (8498), f is calculated from g by
f=(A—-¢B)"1Bg. (8599)

2-143.9 Horizontal diffusion

The horizontal diffusion is calculated in the same-similar way as in Cheong et al. (2004). Here we describe how to

calculate fourth-order diffusion. Higher-order diffusion can be calculated similarly.

The equation for fourth-order hyperdiffusion is

32



10

15

20

25

30

f+eVif=g, (+0086)
where f is calculated from g. Equation (86160) can be converted into
(1+1/eV?)(1-iyeV?)f =g, (87101)

where i = le The calculation of Eq. (86) is accomplished by successive calculations of the following Helmholtz

equations:

(1+iyeV?)f' =g, (88a)
(1-iyeV?)f = £/, (88h)
which are represented as
(A+iyeB)f' = Ag. (89a)
(A - iyeB)f = Af'. (89b)
=9 €102)

from-From Egs. (89).whieh we obtain the equation to calculate f from g as

f=(A-iJeB) 'A(A+i/sB) Ag. (90103)
Here, A — i\/gB and A + i\/;B are complex matrices and f and g are real column vectors. For efficient computation, two
real column vectors can be combined into one complex column vector (Cheong et al., 2004); for example, f = f¢ +—if*
and g = g€ +—ig®, where the superscript ¢ indicates the zonal cosine component, and the superscript s indicates the zonal

sine component.

43 The error due to meridional wavenumber truncation in DFS expansion methods

Here we examine the error due to the meridional wavenumber truncation when the same continuity conditions at the poles
as Eq. (3) are satisfied. In the DFS method of Orszag (1974)_using Eq. (2), only fy_1 ., and fy ,,, are modified to satisfy Eq.
(4) equivalent to Eq. (3). In_the old DFS method using Eq. (6), which is proposed in Cheong (2000a. 2000b) and used in
Yoshimura and Matsumura (2005), Fhe-the DFS meridional basis functions_-ef-CheensinEg—6)}-automatically satisfy the

pole conditions in Eq. (3) for even m, but not for odd m. In the new DFS method using Eq. (10), tF*he newDFS meridional

basis functions in-Eq—(8)-automatically satisfy the condition in Eq. (3) for both even and odd m. We examine eempare-the

error due to the wavenumber truncation ameng-in these DFS methods while comparing it with the SH method.

Figure 2 shows the error due to the wavenumber truncation. when-we-use-Grid-{0}{see-Seet-2.9)-with-tThehe number of
latitudinal grid points_is /] = 64. The eriginal-initial values of £, (Hj) are set to one at the grid points north of 30°N_(except
for the North pole), and zero at the grid points south of 30°N. Grid [0] is used in the DFS methods, and the Gaussian grid is
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used in the SH methods. There are no grid points at the poles. Since the values at the poles are zero due to the pole

conditions in Eq. (3), the initial values abruptly change around the North pole. The initialeriginal values are meridionally

transformed from grid space to spectral space (forward transform), truncated with N = 42, and then transformed back from
spectral space to grid space (inverse transform) to obtain the truncated reconstruction of Fm(gj).

In the DFS method of Orszag using Eq. (2). a very large error occurs, especially for odd |m| (= 3) (Fig. 2¢). when fy_4 .,
and fy ,, are modified to satisfy the pole conditions in Eq. (4). Dividing Fm(Bj) by sin @ before the forward Fourier cosine
transform for odd -m also contributes to the large error.

In the old DFS method ef-Cheeng-using Eq. (6).; large high wavenumber oscillations appear for even m (# 0) in Fig. 2a.
Although the basis functions in-the-method-of Cheong-for even m (# 0) in the old DFS method are the same as those in the
new method, the expansion coefficients are calculated differently in the two methods. In the old DFS method-ef Cheong, the
simple meridional truncation with N < J after the forward Fourier sine transform of a variable divided by sin 6 causes the
large high-wavenumber oscillations. The large oscillations appear especially when the initialeriginal values abruptly change
around the poles. In the case shown in Fig. 2, the initialeriginal values near the North Pole are one, but the value at the North

due to the pole conditions of Eq. (3). WhenN-—=-/Ffor-evenm(+0)—theforwardtransform

Pole abruptly becomes zero

OHOWEa DY a S €O O a S Vartes; € S S €010 S asoh;

Yoshimura and Matsumura (2005) and Yoshimura (2012) set A= [or cven m. to improve stability. The result in the old
DFS method-ef-Cheong for odd |m| (= 3) is not shown in Fig. 2¢c because the method does not satisfy the condition of Eq.
(3) for odd m.

In the new DFS method described in Sect. 32, the usual small oscillations from the Gibbs phenomenon appear in Fig. 2;
but. Tthe error is small because the expansion coefficients are calculated using the least-squares method (or the Galerkin
method) to minimize the error. Because of this, the truncation with arbitrary N < J does not cause large oscillations in the

new DFS method. The values for even m (= 2)_and odd m (= 3)_in the new DFS method are similar to those for m = 2_and

m = 3_in the SH method, respectively. In the SH method, when m is large, the values become close to zero at high latitudes.

Even-wheaWhen using the basis functions of Orszag in Eq. (2), we can also obtain results equivalent to the new DFS
method by calculating the expansion coefficients using the least-squares method with Lagrange multipliers to minimize the
error while satisfying the pole conditions in Eq. (4).

Figure 3a shows the same figure as Fig. 2a except for N = 63. In the old DFS method using Eq. (6), we set N = 63_for

m = 0,and N' = 64 form # 0. Because N = ] for even m (= 2), the forward transform followed by the inverse transform

does not change the original values at the grid points, and the oscillations do not appear in the old DFS method. For this

reason, Yoshimura and Matsumura (2005) and Yoshimura (2012) set N = ] for even m (= 2)_to improve stability. However,

there is a problem with the latitudinal derivative in the old DFS method even when N = ] for even m (= 2). Fig. 3b is the

same as Fig. 3a except that it also shows the values between grid points calculated from the expansion coefficients by using
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Eq. (6) or Eq. (10). The large oscillations appear in the old DFS method with Grid [0]. and it makes the latitudinal derivative

at the grid points unrealistically large. In the new DFS method with the least-squares method, the large oscillations do not

appear.
5 Tests of the DFS methods with the Laplacian operator and the Helmholtz equation - - { HREE: RHUL 1

We examine the accuracy of the old and new DFS methods for the Laplacian operator in Eq. (6577) and the Helmholtz+ - - { EREHE: VTV E 0F

equation
(1—&V2)f = h. O« -~ FEREEAVTUF £ 0F BOOT: | F
Here, we give the function f as . ‘[ BXEH: AVTUME0F
i %(1 N COS%)Z itr <R A A FRET AT E R BEOT: 1T
0 ifr >R
r = acos™*[sin ¢ sin ¢ + cos ¢, cos ¢ cos(A — A.)], 93)
where H = 1000, R = a/3, ¢ _is latitude, A is longitude, a is the radius of the earth and r is the distance between (4, ¢p) and+ - - {%‘ﬁiﬁi: AVTIME 0OF
the center (A, ¢.) = (3m/2,m/2 — 0.05)._The function f is similar to the cosine bell in the Williamson test case 1, but
(1 + cosmr/R)_is squared so that the second derivative of f _is continuous. To easily calculate the exact values of V?f, the
center is temporarily set to the North Pole, that is, (A, ¢.) = (0,7/2) and r = a cos™[sin ¢] = a6, where 0 is colatitude.
At this time, g is calculated as follows:
; =V2f=% ﬁg ﬁ%(smgg)] L (EET S E 0 BY0G: 1 F
= —Z?TSZ%% [(1 + cos%) sin%] + % (%)2 [sin2 % - (1 + cos %) cos%]. 94)
Equation (R}694) is satisfied at any position of the center. The function h in Eq. (R1391) is calculated by <~ { FEREE: (VTVME 0F
h=(1-eV3)f =f —gg, (95) ~ ~ {EFREE:AVFUM £ 0F BOOT: | F
where & = 0.01a?, and f and g are given by Egs. (92) and (94). - - - {%‘ﬁ?ﬁi: AVTINE 0OF
To examine the accuracy for the Laplacian operator, f is given by (92), and V?f is calculated from f with the old DFS+ — — {%KEEE: AVTURE 0F, &OOIT: 1 F

U U

method (Cheong 2000a), the new DFS method (See Sect. 3.7) and the SH method. The calculated values are compared with

the exact values of V2f in Eq. (94). Here, the exact values of Vf are truncated by the forward transform followed by the

inverse transform in order to see the error that does not include the error due to the wavenumber truncation. Table 1 shows

the normalized L, error between the calculated values and the exact values, which is normalized by the L, norm of the exact

values. The differences in error between the methods are small, but the results of the SH method are a little better than the

old and new DFS methods. Table 2 shows the global mean of calculated V?f. The exact value of the global mean of V£ is

zero. In Table 2, the global means calculated with each method are very close to zero. The global means of V2 in the DFS

methods using Grid [1] and Grid [-1] are not as close to zero as those in the DFS methods using Grid [0] and the SH method.
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This seems to be because the accuracy of the meridional discrete

cosine and sine transforms in the DFS methods using Grid

[1] and Grid [-1] is not as good as that in the DFS methods using Grid [0].

To examine the accuracy of the solution of the Helmholtz equation, h is given in Eq. (95) and the Helmholtz equation in

Eq. (91) is solved with the old DFS method (Cheong 2000a), the

new DFS method (See Sect. 3.8) and the SH method. The

S calculated values are compared with the exact solution f in Eq. (92). The exact values of f are also truncated as described
above. Table 3 shows the normalized L, error between the calculated values and the exact values. The differences in error
between the methods are small, and which is better depends on the resolution and the arrangement of the grid points,
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65 Evaluation of the DFS methods using sResults-of-shallow water test cases

We ran the Williamson test cases 1, 2, 5 and 6 (Williamson et al., 1992), and the Galewsky test case (Galewsky et al..+ — — {%ﬁﬂii: BE ATV BYOT: 1F

2004) in the model using the new DFS method described in Sect. 3. the model using the old DFS method of Yoshimura and

Matsumura (2005), and the model using the SH method. By comparing the results of these model, we evaluated the old and

15 new DFS methods - {%‘n"’&ii: JAVk(B)MS B38A, (58 1) BAE

65.1 Shallow water equations on a sphereMedels

The prognostic equations of the shallow water model on a sphere are
dv
T —2(2 X v)y—gVh, (96164)
dth—hy)
e~

20 where t is time, v is the horizontal wind vector, h is the height, hg is the surface height, g is the acceleration due to gravity.

—(h—h)V v, (97105)

s the 3-dimensional angular velocity of the earth’s rotation, and the subscript H indicates the horizontal component.
Equation (96+64) is transformed for the advective treatment of the Coriolis term (Temperton, 1997) into
dw+202xT1)
dt
where r_is the 3-dimensional position vector from the Earth’s center. Equation (+0597) is transformed for the spatially
25 averaged Eulerian treatment of mountains (Ritchie and Tanguay, 1996) into
dh

5=~ (h=h)V v +v Vhy (99107)

—gvh, (98106)
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Equations (98+66) and (99+67)_are integrated in time using a two-time-level semi-implicit semi-Lagrangian scheme (See

Appendix I), - { ERREE: AV (B) MS B, (

6.2 Models

We ran the shallow water test cases

(Galewskyet-al-2004)-in the semi-implicit semi-Lagrangian shallow water model or the Eulerian advection model (See Sect.

=i

a0

1) BAE

6.3) using the new improved-DFS method deseribed-in-Seet—2-(hereafter the new DFS model). We also ran the same test
cases in the semi-implicit-semi-Lagrangian-shallow—water-model using the old DFS method of Yoshimura and Matsumura
(2005) with the basis functions of Cheong (2000a, 2000b) (hereafter the old DFS model), and in the model using the SH
method (hereafter the SH model) for comparison. The new DFS model was run for each of Grid [0], [1], and [-1]. In the old
DFS model, Grid [0] was-is used. In the SH model, the Gaussian grid iswas used. We use a regular longitude-latitude grid,
not a reduced grid. We use the timestep At = 3600 s at about 300 km resolution with /* = 64-areund 128-x64-grid points,
At = 1800_s at about 120 km resolution with J° = 160, At = 1200 s at about 60 km resolution with J° = 320, -At = 600 s
at about 20 km resolution with /% = 9601920-<-960-gridpeints, and At = 90 s at about 1.3 km resolution with /° =
1536030720-x-15360-grid points, where | °128-x-64.for example;indicates -is the number of latitudinal grid points in Grid
[0]. The number of latitudinal grid points /] = /°_in Grid [0] (and in the Gaussian grid), ] = J° + 1.in Grid [1],and ] = J* —
1.in Grid [—1] (See Sect. 2). The number of longitudinal grid points is I = 2/°.the-number-of longitudinal-grid-peints I =
128-and-the-number-of Jatitudinal-grid-pointsf{—=-64- The meridional truncation wavenumber N _and the zonal wavenumber

M are set to be equal. In the Eulerian advection model, shorter timesteps are used as shown in Sect. 6.3. Horizontal diffusion

is not used in all test cases. The zonal Fourier filter described in Appendix FSeet—2-1+ is used in the DFS models. We have
confirmed that numerical instability occurs in some test cases in the old DFS shallow water model without the zonal Fourier
filter, but stable integration is possible in all test cases shown here in the new DFS shallow water model, even without the
zonal Fourier filter.

The zonal Fourier transforms in all ef-the models and the meridional Fourier cosine and sine transforms in the DFS

models are calculated using the Netlib BIHAR library, which includesis a double precision version of the Netlib FFTPACK

library (Swarztrauber, 1982). The meridional Legendre transform in the SH model is calculated using the ISPACK library
(Ishioka, 2018), which adopts on-the-fly computation of the associated Legendre functions. We use the ISPACK library’s
optimization option for Intel AVXS512, which is highly optimized by using assembly language together with Fortran.

6.3 Williamson test case 1

The Williamson test case 1 simulates a cosine-bell advection. In the semi-Lagrangian models, the advection is calculated

in the semi-Lagrangian scheme and the horizontal derivatives calculated from the expansion coefficients are not used for the
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advection calculation. Therefore, we also use the Eulerian scheme here to simulate the advection in the DFS and SH models

to test the expansion methods. The advection equation is
dh 0h
dt ot

In the Eulerian models, the advection term v - Vh is evaluated using the spectral transform method. The advection equation is+ — — { ERER: AVTUN  BIOT: 0F

integrated by the leap-frog scheme with the Robert-Asselin time filter (Robert, 1969; Asselin, 1972) with a coefficient of

0.05. The horizontal diffusion is not used, but the zonal Fourier filter is used in the old and new DFS methods. In Eq. (FE1),

the value M, = 20_is used in the DFS shallow water models. However, the larger the value M is. the higher the longitudinal

resolution around the pole is. Because of this, when the Eulerian scheme is used and M, is large, a timestep must be very

short due to the CFL condition. Therefore M, should be as small as possible. We have tested M, = 0, but this degrades the

result of the Williamson test case 1. We have also tested M, = 1 and this result is good. Therefore, we use M, = 1 in the

Eulerian models.

Figure 4 shows the predicted height after a 12-day integration in the Williamson test case 1 when using the Eulerian

advection models at the resolution J° = 64. The meridional truncation wavenumber N and the zonal truncation wavenumber

M are set as N = M = 42 = 2 J° /3 because the 2/3 rule (Orszag, 1971) is used in order to avoid aliasing in the nonlinear

advection term. The timestep is 30 minutes. The results for DFS [0], DFS [1], DFS [—1] and SH are very similar. Instability
occurs in the old DFS model without horizontal diffusion. This is probably because of the appearance of high-wavenumber

oscillations due to the wavenumber truncation with N = 2 J° /3 for even m (# 0)_in the old DFS method. as shown in Sect.

4. Table 4 shows the normalized L, errors of the predicted height after a 12-day integration when using the Eulerian

advection models. The timesteps are 30, 15, 7.5, and 2.5 minutes at the resolution /° = 64, 160, 320 and 960 (N = 42, 106,

213 and 639), respectively. The errors are very close between the models at each resolution. At the resolution N = 639, the

new DFS model without horizontal diffusion is unstable when the timestep is 200 seconds. The SH model without horizontal
diffusion is stable when the timestep was 240 seconds and unstable when the timestep is 300 seconds. One reason for this
difference in timestep is probably that the longitudinal resolution near the poles is higher in the new DFS model with M, = 1

than in the SH model. When the fourth order horizontal diffusion in Eq. (86) with & = 7.2[107 /(N + 1)]?_is used. the both

new DFS and SH models are stable when the timestep is 240 seconds and are unstable when the timestep is 300 seconds.

The old DFS model is unstable even when the same fourth order horizontal diffusion is used. Higher-order horizontal

diffusion, which effectively smooths out the high wavenumber components, is necessary to stabilize the Eulerian old DFS
model (Cheong, 2000b; Cheong etal., 2002),

Table 5 shows the same as Table 4 except for using the semi-Lagrangian scheme. In the semi-Lagrangian models, the
forward transform followed by the inverse transform are executed at every timestep, but the expansion coefficients are not

used for the advection calculation. The timesteps are the same as described in Sect. 6.2. The errors are very close between

the models. At the resolution J© = 64, the errors in the semi-Lagrangian models are larger than those in the Eulerian models,
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but at the resolutions J° =_160. 320 and 960, the errors in the semi-Lagrangian models are smaller than those in the Eulerian

models.

The conservation of mass in the Williamson test case 1 was also examined, and the results are shown in Sect. S2 in the

supplement, - { #REEE: 74V (B) MS BE, (

65.42 Williamson test case 2

The Williamson test case 2 simulates a steady state non-linear zonal geostrophic flow. In this test case, the angle between
the solid body rotation and the polar axis « is given, and the zonal and meridional components of 202 X r become

20 X r = (2Qa[cos O cosa + cos Asin 6 sin ], —2Qa sin A sin a). (10124)

Figure 53 shows the time series of forecast errors of the height for a 5-day integration in the Williamson test case 2 with

a =m/2 — 0.05 in the models at the resolutionwith | = 64 areund128-x64-grid-points-and truncation-wavenumberN =

63 (DFS) or N = 62 (SH), using no horizontal diffusion. The normalized Ly, L,, and L, errors are almost the same ameng

between the new DFS models using Grids [0], [1] and [—1], the old DFS model, and the SH model._Table 6 shows the

normalized L, errors of the predicted height after a 5-day integration. The errors are almost the same between the old DFS,

new DFS and SH models at each resolution.

The conservation of mass, energy and vorticity in the Williamson test cases 2, 5 and 6 was also examined, and the results

are shown in Sect. S2 in the supplement,

65.53 Williamson test case 5

The Williamson test case 5 simulates zonal flow over an isolated mountain. Figure 64 shows the predicted height after a
15-day integration in Williamson test case 5 with hy = 5960 m. The result of the high-resolution SH model at the
resolutionwith | = 960 and N = 958 1920-x-960-grid peints-is regarded as the reference solution. Horizontal diffusion is not
used. The errors with respect to the reference solution are almost the same for the new DFS models, the old DFS model, and

the SH model at the resolution /° = 64with-areund-128-x-64-grid-peints. Table 7 shows the normalized L, errors of the

predicted height after a 15-day integration. The errors are almost the same between the old DFS, new DFS and SH models at

each resolution. The errors do not decrease when the resolution increases, which is different from the results in the other test

cases. This may be because the mountain topography is not a differentiable function, and the mountain is added impulsively

on to a initially balanced flow (Galewsky et al. 2004).

Figure 75 shows the longitudinal distributions of meridional wind at the grid points near the South Pole after a 15-day
integration in the old and new DFS models using Grid [0] at the resolutions /* = 64with-128-x-64 and /° = 9604920960
erid-peints. While the zonal wavenumber 1 component is dominant in the new DFS model at the resolutionwith J° = 64 and
N = 631428-x-64-grid-points, high zonal wavenumber noise appears in the old DFS model at the same resolution-with-128-x

64-grid-peints. One possible reason is that the latitudinal derivative at the grid points can be unrealistically large in the old
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DFS method even when N’ = J° for even m (= 2) as described in Sect. 4 (Fig. 3b). The Fhis-difference-is-because-the-new
DFS expansion method with the least-squares method impreves—numerical-stabilitydoes not have this problem. By using

thethis new expansion method with the least-squares method, the high zonal wavenumber noise does not appear even in the

model that

uses the same DFS basis functions as in Eq. (117) except

that the basis function for odd m (= 3) =3 is sin  cos n6 instead of sin? 6 sinnf. T
re—not-shown)—In the old DFS model at high resolution with / = 960 and N =
9591920-<-960-grid-peints, the high wavenumber noise is not seen in Fig. 75. The higher the resolution, the smaller the high

ame. f tho nows + del (E
¥ ne— +—F

wavenumber noise becomes. Figure 86 shows the kinetic energy spectra of the horizontal winds (Lambert, 1984) after a 15-
day integration in Williamson test case 5. The kinetic energy spectra in the DFS models are calculated from the SH
expansion coefficients, which are obtained by firstly calculating the Gaussian grid-point values from the DFS coefficients
using Eq. (108) for the new DFS method and Eq. (6) for the old DFS method, and secondly calculating the SH expansion

coefficients from the Gaussian grid-point values by using a forward Legendre transform. In the old DFS model with /° = 64

and N = 631428-x-64-grid-peints, the high wavenumber components are larger than in the other models, which is related to
the high wavenumber noise near the South Pole in Fig. 75. In the old DFS model with /© = 9601920-%-960-grid-peints, the

high wavenumber components are a little larger than in the other models, but the differences are slight.

Figure 97 shows the predicted height after a 15-day integration in Williamson test case 5, which is the same as Fig. 64+ - - {%KEE: AVTUL &

except for the truncation wavenumber AN = 2/°/3. In our semi-implicit semi-Lagrangian models, we usually use N
satisfying N = J°F — 1/-is
determined to satisfy N = 2/°/3 to eliminate aliasing errors with quadratic nonlinearity—(Osszag,—+971), which is called

s), which is called linear truncation. However, here N is

quadratic truncation. When using the quadratic truncation N = 42, the new DFS models with Grids [0], [1], and [-1] are
stable without horizontal diffusion, but the old DFS model without strong high-order horizontal diffusion is unstable. The
numerical instability in the old DFS model probably occurs because of the high-wavenumber oscillations due to the
quadratic wavenumber truncation for even m (# 0) (See ;-as-explained-in-Sect. 4) as in the Williamson test case 1 with the

Eulerian model3. The results offer the new DFS models are almost the same as those offer the SH model. Table 8 is the

same as Table 7 except for N = 2J°/3. The results of the new DFS models and the SH model with N = 2/°/3 in Table 8

are very similar to those with N = /% — 1 in Table 7 when /° is the same. Figure 108 shows the kinetic energy spectrum of
the horizontal winds after a 15-day integration in Williamson test case 5, which is the same as Fig. 86 except for the
truncation wavenumber N = 2J° /3. At the resolution J° = 64 and N = 42-with-128-«64-grid-peints, the high wavenumber
components are a little larger in the SH model than in the new DFS model. At the resolution /° = 960 and N = 639-with
1920-%-960-grid-peints, small oscillations appear in the high wavenumber region in the SH model, but not in the new DFS
models. In the SH model, the wind components u and v divided by sin 6 are transformed from grid space to spectral space
(Ritchie, 1988; Temperton, 1991), which seems to be the cause of the small oscillations in the high wavenumber region.

Another way to transform u and v from grid space to spectral space in the SH model is to use the vector harmonic transform
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(see Sect. 3.62-8), which avoids dividing u and v by sin  and improves the stability of the model (Swarztrauber, 2004). This
approach is similar to the expansion method for u and v using the least-squares method in the new DFS method described in
Sects. 3.62-7—and—2-8, and probably selves—the—problemeliminates the small oscillationswith—the—high—wavenumber
compeonents in the SH model. Alternatively, using D and { instead of u and v as prognostic variables may eliminate the
small oscillationsmitigate-this-preblem.

6.6 Williamson test case 6 - - - ‘[%ﬁ."?ii: AFLE: 30.76 F, ERiX

Figure 11 shows the predicted height after a 14-day integration in Williamson test case 6. The error is similar between the+ — — { FRER: (VT ROOIT: | F

old and new DFS models using Grid [0] and the SH model. The error in the new DFS model using Grid [1] is the smallest.

This is probably because Grid [1] has grid points at the poles, where the minimum height exists, and on the equator, where

the maximum height exists. The error in the new DFS model using Grid [—1] is the second smallest. This is probably because

Grid [—1] has grid points on the equator, where the maximum height exists. Table 9 shows the normalized L, errors of the

predicted height after a 14-day integration. The error in the new DFS model using Grid [1] is the smallest, and that in the

new DFS model using Grid [—1] is the second smallest, at each resolution. The errors in the old and new DFS models using

Grid [0] and in the SH model are very close,

65.74 Galewsky test case

The Galewsky test case simulates a barotropically unstable mid-latitude jet. Figure 129 shows the predicted vorticity after
a 6-day integration in the Galewsky test case for the models at 1.3 km resolution with J° = 1536030720~ x15360-grid
peints-and the quadratic truncation N = 10239, without horizontal diffusion. The result in the new DFS model using Grid

_ - { #REET: 74Uk (B) MS B, (

=

Saa

1) BAE

[0] is almost the same as in the SH model. The old DFS model is unstable for the same reason as that shown in Sect. 6.5 (Fig.

9)7. Figure 130 shows the kinetic energy spectrum of horizontal winds after a 6-day integration in the Galewsky test case.
The results are almost the same for the DFS models using Grid [0], [1] and [—-1], and the SH model, but small oscillations
appear near the truncation wavenumber in the SH model. This is probably for the same reason as in Williamson test case 5 in
Fig. 108.

The results of the Galewsky-like test case using the north-south symmetric initial conditions are shown in Sect. S3 in the

supplement,

5:56.8 Elapsed time

Figure 14+ shows the elapsed time for the 15-day integration in the Williamson test case 5 in the SH model and the new
DFS model using Grid [0] at 20 km resolution with /° = 960 1920960 grid-peints-and N = 958 (SH) or N = 959 (DFS),
and that for the 6-day integration in the Galewsky test case at 1.3 km resolution with /° = 15360 3072015360 gridpoints
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and N = 10239. We use one node (with two Intel Xeon Gold 6248 CPUs with 20 cores per CPU) of the FUJITSU Server
PRIMERGY CX2550 M5 in the MRI. The source code written in Fortran is compiled with the Intel compiler. OpenMP

parallelization is used, but MPI parallelization is not used. The elapsed time in the SH model is larger than in the DFS model,
although the Legendre transform used in the SH model is highly optimized for Intel AVX512. The higher the resolution, the
larger is the difference of the elapsed time between the models. This is because the Legendre transform used in the SH model
requires O(N %) operations while the Fourier cosine and sine transforms used in the DFS model require only O(N?log N)

operations. If the fast Legendre transform, which requires only N?(log N)* operation, is used instead of the usual Legendre

transform in the SH model, the difference of the elapsed time between the models will be reduced at high resolutions. We

have not tested the fast Legendre transform yet because we do not have subroutines for the fast Legendre transform.

67 Conclusions and perspectives

We have developed the new DFS method to improve the numerical stability of the DFS model, which has the following
two improvements:

1. A new expansion method with the least-squares method is used to calculate the expansion coefficients so that the error due
to the meridional wavenumber truncation is minimized. The method also avoids dividing by sin 6 before taking the forward
Fourier cosine or sine transform.

2. New DFS basis functions that guarantee that not only scalar variables, but also vector variables and the gradient of scalar
variables, are continuous at the poles.

The equations obtained with the least-squares method are equivalent to those obtained with the Galerkin method. We also
use the Galerkin method to solve partial differential equations such as the Poisson equation, the Helmholtz equation, and the
shallow water equations.

To test the new DFS method, we conducted experiments for the Williamson test cases 2. 5 and 65, and the Galewsky test
case in semi-implicit semi-Lagrangian shallow water models using the new DFS method with the three types of equally
spaced latitudinal grids with or without the poles. We also ran the Williamson test case 1. which simulates a cosine-bell
advection, in the Eulerian and semi-Lagrangian advection models. We compared the results betweenef the new DFS models
using the new DFS method-with, the old DFS model using the method of Yoshimura and Matsumura (2005) with the basis
functions of Cheong (2000a, 2000b), and with-the SH model.

The high zonal wavenumber noise of the meridional wind appears near the poles in the old DFS model, but not in the new
DFS models_in the Williamson test case 5. 51 : ‘ St :
improves-the-medel’s-stability: One possible reason is that the latitudinal derivative at the grid points can be unrealistically
large in the old DFS method even when the truncation wavenumber N’ for even m (# 0) is equal to the number of

latitudinal grid points J, while the new DFS expansion method with the least-squares method does not have this problem. In

the old DFS model, N' < ] a-truncation-wavenumber N-owerthanthe-number-of latitudinal-grid-pointsf/-for even m (#
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0) -0 causes numerical instability. In the new DFS model, an arbitrary meridional wavenumber truncation N (< )</ can
be used without the stability problem because the error due to meridional wavenumber truncation is small when using the
new DFS expansion method with the least-squares method. This is one of the merits of the new DFS method because the
quadratic truncation (N = 2//3) or the cubic truncation (N = //2) is usually used in the Eulerian model and is also
becoming to be used in the semi-Lagrangian model instead of the linear truncation (N = J — 1) for stability and efficiency at
high resolutions (Hotta and Ujiie, 2018; Dueben et al., 2020). We have also confirmed that in the new DFS model, stable
integration is possible in all test cases shown here even without using the zonal Fourier filter unlike in the old DFS model.
Thus, the numerical stability of the semi-implicit semi-Lagrangian model using the new DFS method is very good. In the

Williamson test cases 1, the Eulerian advection model using the new DFS method also gives stable results without horizontal

diffusion but with a zonal Fourier filter. The Eulerian advection model using the old DFS method is unstable without

horizontal diffusion or with the weak fourth-order horizontal diffusion. In the old DFS model, the use of the semi-

Lagrangian scheme is important for numerical stability. On the other hand, the advection model using the new DFS method

is stable, even when the Eulerian scheme is used instead of the semi-Lagrangian scheme. The Eulerian shallow water model

using the new DFS method without horizontal diffusion is also likely to be stable, although we have not tested it yet.

The results of the new DFS shallow—water-model are almost the same as the SH shallow—water-model. But in the SH

shallow water model without horizontal diffusion, small oscillations appear in the high wavenumber region of the kinetic
energy spectrum in some cases, unlike in the new DFS model. This seems to be because the wind components u and v
divided by sin 6 are transformed from grid space to spectral space in the SH model. TheFhis small oscillationspreblem with
the SH model can probably be climinatedselved by using the vector harmonic transform, which is similar to the expansion

method for u and v using the least-squares method in the new DFS model. Alternatively, using divergence and vorticity

instead of u_and v as prognostic variables may eliminate the small oscillations.
The elapsed time in the new DFS model is shorter than in the SH model especially at high resolution because the Fourier

transform requires only O(N? log N) operations, and the Legendre transform in the SH model requires O(N®) operations.

We have executed our shallow water models on Intel CPUs. The execution on GPUs is one important topic, but we have not

tested our models on GPUs because the execution on GPUs is not an easy task. MPI parallelization is another important

topic. However, in our shallow water models, we use only OpenMP parallelization, not MPI parallelization for the simplicity

of the source code

We developed hydrostatic and nonhydrostatic global atmospheric models using the old DFS method (Yoshimura and
Matsumura, 2005; Yoshimura, 2012) and conducted typhoon prediction experiments in the nonhydrostatic global
atmospheric model using the old DFS method in the Global 7 km mesh nonhydrostatic Model Intercomparison Project for
improving TYphoon forecast (TYMIP-G7; Nakano et al., 2017). We have already developed a nonhydrostatic (or
hydrostatic) atmospheric model using the new DFS method, where both OpenMP and MPI parallelization are used. We will

describe the nonhydrostatic DFS model and the MPI parallelization;—whieh will-be—deseribed—in another paper after

improving the nonhydrostatic dynamical core as needed.
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Supplement. The supplement related to this article is available online at ...

Code availability. The source codes of the DFS and SH shallow water models isare available in the sSupplement to the
article and are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-
SA 4.0) license. These models utilize the Netlib BIHAR library and the ISPACK library. The Netlib BIHAR library is
available at https://www.netlib.org/bihar/ and is also included in the sSupplement. The ISPACK library is available at
https://www.gfd-dennou.org/arch/ispack/ispack-3.0.1.tar.gz.

Data availability. The results of  model experiments are available at https://climate.mri-

jma.go.jp/prepub/archives/Yoshimura DFS_SW_Testcasce—2621/.

Appendix A: Trigonometric identities

We list here the trigonometric identities used in transforming the expressions in this paper.

The following identities are satisfied:

1
sinnf cosn'g = 3 [sin(n +n")@ + sin(n — n")6)] (Ala)
1
cosnfsinn'g = 3 [sin(n +n")0 — sin(n —n")0)] (A1b)
1
cosnf cosn'6 = 5 [cos(n+ n")6 + cos(n —n')0] (Alc)
1
sinnfsinn'g = 3 [=cos(n+n")8 + cos(n —n")0)] (A1d)
From Eq. (A1), the following identities are derived:
1
sinf cosnf = 2 [sin(n + 1)8 — sin(n — 1)8] (A2a)
1
sin 6 sinnf = 5 [—cos(n+ 1)8 + cos(n — 1)6] (A2b)
1
sin? @ sinnf = 7 [—sin(n — 2)8 + 2sinnf — sin(n + 2)6] (A2¢)
1
sin? 6 cosnf = z [—cos(n —2)0 + 2 cosnf — cos(n + 2)0] (A2d)

1
sin* 0 sinnb = e [sin(n — 4)0 — 4sin(n — 2)8 + 6sinnf — 4sin(n + 2)0 + sin(n + 4)0] (A2e)

From Eq. (A1), the following orthogonal relations in longitude are derived:
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2n 2 form=m'=0
f cosmAcosm'Adi={g form=m'#0 (A3a)
0 0 form=m

2n

f cosmAsinm'Adi =0 (A3b)
0
o form=m'# 0
f sinmAsinm'AdA = {n orm=m * (A3¢c)
o 0 form=#m
Similarly, from Eq. (A1), the following orthogonal relations in latitude are derived:
bia forn=n"=0
T 1
5 f cosnf cosn'6 dh = o forn=n'#0 (A4a)
o
0 forn#n'
n 1 .,
f sinn sinn' do = {5” forn=mn"#0 (A4b)
0 0 forn #n'

By using Eq. (A1), the following relations are derived:

L. n—1
sint"' @ cos(n + 1)0 —

. a n+
sindo (sin' 8 cosnd) = sint~* @ cos(n — 1) (A5a)

:(n+l)(n+l+1)

2 sin 6 cos(n + 2)80

'Ga '90 in 6 0
sin 20 sin 60(Sm cosn )]

2n? —212+21 m=Dmn-1-1)
10 I — sin’ 6 cosnf + e — sin' 6 cos(n — 2)6 (A5b)
. 0 n+l n—l.k1 X
sm#%(sm 6sinnb) = sin"' @ sin(n + 1)6 — sin~' @sin(n —1)6 (A5c)
_96 _96 in' 0 sinnd _(n+l)(n+l+1)_le_ +200
sinf oo |sin6 = (sin* @sinnf)| = 2 sin® @ sin(n + 2)
2n* =200 +21 m-hn-1-1)
Y E—— 0 sinné +f5m Osin(n —2)6 (A5d)
a . . n-— 2n n+2
%(sanHSm no) = — cos(n — 2)6 +Tcosn9 - cos(n +2)0 (A5e)
15

- \[ FREEFE: 74U+ : (B) Times New Roman

Forward discrete Fourier cosine and sine transforms are performed in Eqgs. (2349)_and; (573)—and—(54); and inverse
20 discrete Fourier cosine and sine transforms are performed in- Eqgs. (139), (5247)-and(48), in the latitudinal direction. The
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calculation of the discrete cosine and sine transforms in Grids [0], [1], and [~1] is shown below. Here, g(6;).and h(6;).are

grid-point values, and g,, and h,, are expansion coefficients.

When using Grid [0], ferward-and-inverse and forward discrete cosine transforms are performedas——————

=—b=

7

Jo-1
5 9(8;) = Z gn cosné;.
n=0
b
_ (1 forn=0
In _]_OZ 9(9;)cosn;, b :{2 forn#0,
J=0

When using Grid [0], ferward-and-inverse and forward discrete sine transforms are performed as

— h—=
b=

(Blay« - — { BREE: 5THE: 47.02 F, BHix

(B1ba)

(B1b)

g

IO

h(g;) = Z hy, sinng;.
n=1
J°-1

b ) (1 forn=]°
10 h, :/_OZO h(@,-)smn&-, b :{2 Forn %O,
=

When using Grid [1], ferward-and-inverse and forward discrete cosine transforms are performed as

g

< -~ {BAEE: ATV BUOFT 1T

]0
9(8;) = Z gn cOSY;.
n=0
/D
b
15 In =]—0ch(9]-) cosnd;,
7=0

b= 1 forn=0,J° . 1/2 forj=0,J°
_{2f0r0<n<]°’ _{1 foro<j<Jo

When using Grid [1], ferward-and-inverse and forward discrete sine transforms are performed as

(B33
Ay

(B3ba)

Jo-1
h(6)) = z hy sinnb;, h(6p) = h(8)0) = 0.
n=1
7°-1

2
20 hn =15 Z h(6)) sinng;,

J=1

49



10

15

20

Grid [—1] is the same as Grid [1], except that there are no grid points at the North and South poles. The zonal wavenumber
components of scalar variables at the poles are zero except for m = 0_(See Eq. (108)), and those of vector variables at the
poles are zero except for m = 1 (See Egs. (5247)-and(48)). When we use Grid [—1] and the values at the poles are known to
be zero, forward and inverse discrete cosine transforms can be performed using Eq. (B3) and forward and inverse discrete
sine transforms can be performed using Eq. (B4) in the same way as for Grid [1]. When we use Grid [—1] and the values at

the poles are unknown (i.e., the zonal wavenumber components of scalar variables for m = 0, and those of vector variables

for m = 1), the inverse discrete cosine transform can be performed like Eq. (B3b) as

Jo-2
9(9)) = Z gn cosnb;, (B5)
n=0
where n is from 0 to J° — 2 (= ] — 1) because the number of the meridional grid points is J* — 1 (= J)_in Grid [~1].using* - - {%‘n"?ﬁi: AVTIN  BODIT: 0F
Eg-B3b);but However, the forward discrete cosine transform cannot be performed likeusing Eq. (B3ba). We can calculate
the expansion coefficients g, from g(6;).in the following way. Eq. (B53b) is multiplied by sin 6, and we define §(6;)as - {%KE‘EE: TAVE: (B)MS BiH, (5 ) BAE

J0-2
9(6;) = g(6;)sing; = Z g Sin 6; cosnd;. (B65)
n=0
Sinee-the-values—atthe poles—arezerorwWe can expand §(6;) as
Jo-1
9(9) = Z G sinn;. (B76)
n=1
The expansion coefficients g, can be obtained from 17(6]-) in the same way as in Eq. (B4b) by forward discrete sine
transform:
2
=7 Z §(6))sinng;. (B87)
Jj=1
From Egs. (B65) and (B76), we obtain
J°-2 Jo0-1
Z gnsinf cosnf = Z Jnsinné, (B98a)
n=0 n=1
==20

g

By using Eq. (A2a), we obtain

J°-2 J0-3

. _ 92\ . In-1_ Gn+1\ . 95°-3 .0 _ 9°-2 .o
Z) gnsinf cosnf = (go 2 )smB + Z (—2 - )sm né + > sin(J° —2)0 + -5 sin(J° —1)8. (B109)
n= n=

By substituting Eq. (B109) into Eq. (B98&) and comparing the left and right sides of the equation, we obtain
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g

g > forn=1,
'91;2-1 - g"2+1 forn=2,..,/°—3,
gn=] % g, (B110)
. - forn=J°-2,
|
| % forn=J°—12.

We can calculate §(6;) from g(6;) using Eq. (B63), calculate g, from §(6;)using Eq. (B87), and calculate g, from g,
using Eq. (B116).

Appendix C: The upper limit of the meridional truncation wavenumber N

In the new DFS method, the meridional truncation wavenumber N is used for the new DFS meridional basis functions in+ — — {%‘n"ﬂii: ATV BRHOIT: 1 F

Egs. (12). and for the discrete cosine or sine transform of a scalar variable (Egs. (13) and (23)). derivatives of a scalar

variable (Egs. (18) and (20)) and a wind vector (Egs. (52) and (57)). In Grid [0], the upper limit of N is J° — 1 for each m

because the discrete cosine transform in Eq. (B1), where the maximum value of n is / — 1, is used for a scalar variable

when m_is even, and for vector components when m_is odd. In Grid [1], the upper limit of N_is J° — 1 _for each m because

the discrete sine transform in Eq. (B4), where the maximum value of n_is J® — 1, is used for a scalar variable when m_is odd

and for vector components when m is even. In Grid [~1], the upper limit of N is J® — 1 for m > 2 because of the same

reason as in Grid [1]. However, form =0 or 1 in Grid [—1], the upper limit of N_is J° — 2 because the discrete cosine

transform in Eq. (B5), where the maximum value of nis /% — 2, is used for a scalar variable when m = 0, and for vector

components when m = 1, Thus, the upper limit of N is J° — 1, except that the upper limit of N for m = 0 or 1 in Grid [-1] is

J° — 2. For example, in the model using the new DFS method with Grid [—1] at the resolution J° = 64 and N = 63, we set

N =63 form = 2but N = 62_form =0or 1 _ | #EEE: 74+ : (B) Times New Roman, (555 1) B

)

Appendix D: Equations for the derivation of Egs. (29) and (62)
Ty (%) in Bq. (23) is calculated by the forward Fourier cosine or sine transform as

‘ éfﬂcos no T (6)do, b= {21 ffor =0 forevenm,
~c(s)_JT[ o orn # 0,
Taw=1,"n (b1)
L;J sinnd T (6)d6 for odd m,
0

The equations for the forward discrete Fourier cosine or sine transform are described in Appendix B. From Eq. (23) and (Ad)g ~__ — { FREEFE: 74V (B)MS B8R, (§5E 1) BAE

(FREE AT EOF

b ™ - -
;f cosnd TPV (0)do = T,S) (n=0,...,N) forevenm, (D2a)
0
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2 (" - -
;f sinnd TePN(0)do = T,S) (n=1,..,N) for oddm
0

are also derived. From Egs. (D1) and (D2)

us us
J. cosnf TS (6)d6 = J. cosnf TeN(0)dd (n =0, ...,N) forevenm,
0 0

s us
f sinnf T (6)d6 = f sinnd Te®ON(0)do (n=1,...,N) for odd m
0 0

are satisfied. From Egs. (D3), (11) and (A2a—c), we derive

™ T
[ Sum@10 @) = [ 5., @TOV 0)a6.
0 0
From Egs. (28) and (D4), we derive Eq. (29).
We can also derive the following equations from Eq. (57) in the similar way to the derivation of (D3):

™
f sinnf ut® (8)do = J’ sinng ag™"(6)dg (n = 1,...,N) forevenm,
0 0

™ us
f cosnfui™ (6)do = J. cosn8 g™ (6)d0 (n=0,..,N) for oddm
0 0

From Egs. (D5), (11). and (A2a—c). we derive

mSn m(e) c(s) mSn m (9) ~c(s) N
J’ sin 6 (6)d6 = f sin @ (63,

 0Spm(6 g
j wn(®) <) g g =f %()ﬁ%S),N(G)dG’.
0 0

a6

(D2b)

(D3a)

(D3b)

(D9

(D5a)

(D5b)

(D6a)

(D6b)

< (B AT BHOG 0F

- { #REEE: 74V (B)MS B, (55 ) BAE

__(EEm s 0F

«

< (ERAE AT BHOG 0F
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We can also derive the same equations as Eq. (D6) except that u is replaced with v. Equation (D6) are used to derive Eq.

62,

Appendix E: Derivation of Eq. (30) from Eq. (29)

Here we derive Eq. (3024d) for odd (m > 3) _from Eq. (293). Eq. (30b.c24) can be derived similarly.

By using Egs. (1129) and_(A2c,e), the following equations are derived.

N-2

us U
(I.h.s of Eq. (29) for odd m = 3) = J’ Sum(@ TN (6)d6 = f sin? 6 sinnf Z Ty Sin? 0sinn’'0 do
0 0

n'=1

T

n

S5Tsm — 4TS + TE
Zm L S in 20 +

= sinnf sin 6 +

TS
= f sinnf Z % [sin(n’ —4)8 — 4sin(n’ — 2)0 + 6sinn’' — 4sin(n’ + 2)6 + sin(n’ + 4)0] do
0

—5T{p + 6T5, — 4T + Ty,

10T, — 5T3m +Tsm
16 16
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. Ni S am — ATy 6T — AT, + TS

"vam .,
16 sinn 9] de. (E1)

n'=4
s _ s J _
(r.h.s of Eq. (29) for odd m = 3) = fo Sn,m(e)T,f;] (0)do = fo sin? 6 sinnf Z Ty, sinn'6 do
n'=1

J

P c

1

- J- sinnf Z "A:’m [—sin(n’ —2)8 + 2sinn' — sin(n’ + 2)0] do
0 n'=1
w 3Fc _ e 2T _ ¢ s -7 +2T  —TS
- f sinné 1'm4 3 5in 6 + 2’m4 27 5in 26 + Z nonm 4" M NAZM Ginn'e|de. (E2)
0 n'=3
5 From Egs. (293), (E€1), (E€2) and (A4b), Eq. (3024d) are derived. = { FEREER: 72V (B) MS B8, (

Appendix F: Zonal Fourier filter - - {%ﬂﬁf: ATGIE: 18.92 F, iz

211 Zonal Fourier filter
In a regular longitude—latitude grids, the longitudinal grid spacing becomes narrow at high latitudes. In DFS methods, the
10  zonal Fourier filter (Merilees 1974; Boer and Steinberg 1975; Cheong 2000a), which filters out the high zonal wavenumber
components at high latitudes, is usually used to obtain a more uniform resolution. The use of a reduced grid (Hortal and
Simmons, 1991; Juang, 2004; Miyamoto, 2006; Malardel, 2016) has a similar effect to the zonal Fourier filter. In our

atmospheric model using the old DFS method (Yoshimura and Matsumura, 2005; Yoshimura, 2012), we use the reduced
grid of Miyamoto (2006).

15 In this study, we use the longitude—latitude grid with the zonal Fourier filter, not the reduced grid. for the simplicity of the

source code. Wwve set the largest zonal wavenumber M at each latitude as
Mf(Bj) = min(M, My +M sin(Hj)) . (FE1)

of 7:5,(6;).and T35, (6;).in Eq. (87) are set to zero for m > M(6;)_during the spectral transform. We use the value M, = 20 in
20 the DFS shallow water models to make the resolution similar to that in the reduced grid of Miyamoto (2006). In the DES

Eulerian advection model, we use the value M, = 1 _as described in Sect. 6.3. The useof a reduced grid (Hortal and

mons—1991: Juane 2004: Mivameoto
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Appendix GB: Calculation of global mean and latitudinal area weight

The global mean value of TN (2, 8) in Eq. (15+1)) can be calculated in spectral space by the following equation (Cheong
2000a):

M M
6= o S C vl TN (8) sinmA | sin 6 d9dA
= m (0)cosmad + m (0)sinmAa |sin
0 0 \m=o0 m=1

1 s N N TC
5 = 7-]. Z T n=o COSNO SN O dO = n’m:2 . (GE1)
2 Jo ’ - 1-n
n=0 n=
when nis even
The latitudinal area weight at each latitude ; is calculated as follows:
1. The latitudinal distribution of T2 Y) (6,,) for each j is given as
i 1 fork=j
<) - J _
%00 ={g ork»j OSk</-D). (GF2)

2. From T,f,gg (), the meridional expansion coefficients T,ﬁ ,(,{io (0 =n < N) are calculated by forward discrete cosine
10 transform described in Seet-2-+0Appendix B.

3. The value of G calculated from T,f, ,(,{):0 using Eq. (GE1) is considered as the latitudinal area weight W(Qj) at latitude 6;.

In Grid [0] and Grid[1], the distribution ofW(Gj\ is smooth. However, In Grid [—1], the distribution OfW(Gj\ is not smooth+ — - {?ﬁ?iﬁ: AVFVRE: 001 F, BHODT: 0F

because of the irregularity with Grid [—1] (See Egs. (B5)—(B11) in Appendix B),

The latitudinal area weight Wj(Gj) is used, for example, to calculate the global mean in the grid space., «

15 Appendix H: Derivation of Eq. (63) from Eq. (62)

Here we describe the derivation of Eq. (63d) for odd m (= 3)_from Eq. (62a). Eq. (63b,c) can be derived similarly.
From Egs. (62a). (11). (52), (57). (A2b) and (A5e), and from the same equations as Egs. (53b.c.d) except that ug . X7 m.

and vy, ., are replaced with u3, ,,,. — Xy m. and 5, ., respectively, and the same equations as Eqgs. (53a,b.c.d) except that uy, ,,.

Xnmsand g ., are replaced with v .. Py, 1. and — x5 . respectively, we derive the following equation for odd m = 3:

” —cos(n+ 1)0 + cos(n — 1)0 1 [—-mys —my$ 3Y:,, — s
20 J‘ —-m ( ) ( ) = X1,m _ ﬁ[s)m + XZ,m + lllm wa,m _ ﬁim cos @
) 2 al” 2 ' 2 4 '

N c c s N s
m(xSr_, . — x5 n(=y,r_,. +2¢ =P,
+ Z ( ( n 1,m2 n +1,m) + ( n'-2,m . n',m n +2,m) _ ai’,m) cosn'f
n'=2

_3Xf,m +X§,m ~c

2 + 2 - v1'm> cos@

n—2 2n n+2 myy mp;
7(7 7 cos(n72)0+7cosn6’7 Mim _ g +< Vi

1
cos(n + 2)6)5[ 2 Vom
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N s s 1r.,C c c
m(=y.r_,  + P, N (X1 _gm = 2Xpt T Xt
+ Z ( ( n 1,7721 n +1,m) + ( n-2,m 4‘n m n +2,m) _ ﬁ;’,m> cos TL’G do =0 (Hl)

n'=2

When n > 4, by using Eq. (A4a), Eq. (H1) can be converted into

T(m m(Xnm — Xn n+1)(=Yn_1m + 205 -y
f {Zcos(n " 1)9< (Xn,m - Xn+2,m) n ( )( Yn-1m . Yhs1m 1L»[’n+3,m) -~ a;+1,m> cos(n +1)8
0

m m(Xn-2m — X5 n—D(—Y5p_sm+ 205 1. — V5
I osn—1)8 (Xn 2,m Xn,m) " ( )( Yr-3m + 2¥n-1m ¢n+1,m) — @5, | cos(n — 1)8
2a 2 4 ’
n-— m(—y5_sm +¥5_ N —2)(Xn-am — 2Xn-2.m + Xn
5 + COS(Tl _ 2)9 ( lI)n 3m lpn l,m) + ( )(Xn 4,m Xn 2m Xn,m) _ ﬁ;_zm COS(Tl _ 2)9
4a 2 4 ’
_Z_HCOS no m(_lﬂfl—Lm + 1/’?1+1,m) " n()(rcl—z,m - ZXTCL,TH + chw-z,m) — ¢, )cosnd
4a 2 4 ’
n+2 m(—y; + 5 n+2)(xim — 2X5 + xs
+ p cos(n + 2)9( ( wn+1,rr2L I»b'rL+3,m) + ( )(Xn,m frwz,m Xn+4,m) _ 17;;”2’7") COS(n + 2)9} do =0
(H2)
From Eq. (H2) and (A4a), Eq. (63d) for n > 4 is derived. Equation (63d) for n < 3 _can also be derived from (H1) and (A4a).
10
Appendix I: 42 Two-time-level semi-implicit semi-Lagrangian scheme for Time integrationn-methed <~ { FRER: RHL1
Time-Level Scheme (SETTLS; Hortal, 2002) are adopted to discretize the shallow water equations in Eqgs. (98486) and
(99467) in time as
v+ 20 X1)* — (v + 20 X713 VhS + VRO VASY + VRO VhS + VR*
5 ( ) At( )D:_{g( 2 )_ﬁvg( b )+va( b ) (61

h* —hY { [(h=he)D]S” + [(h—he)D]®  [v-Vhy]S” + [v- VAg]°
=- +
At 2 2

Z (4 0 Z 0
hD| =+ [hD hD|_ + [hD
NG N A )
where
D=v- _1p 1 ou 1 dvcos¢g 163
= V_E[cosqbal cos¢p P (63

20 is horizontal divergence; At is a timestep; the superscripts —, 0, and + mean past time (t — At), present time (t), and future
time (¢ + At), respectively, and the superscript (+) means future time (¢ + At) extrapolated in time, for example, h(¥) =
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2h° — h~;_the subscript D means the departure point, and the absence of the subscript D means the arrival point; h is a

constant value of height for semi-implicit linear terms; f3,, and 3}, are second-order decentering parameters (Yukimoto et al.,
2011). Using f3,, and B, larger than 1.0 (e.g., 1.2) increases the effect of the semi-implicit scheme improving computational

stability, but 8, = B, = 1.0_is used here because h larger than h_is enough for stable calculations in the shallow water model.
5 The departure point xp_is the upstream horizontal position from the arrival point x along the wind vector between present
time (t)_and future time (t + At). Here, the arrival point x is on a grid point, and the departure point xp _is not generally on a

grid point. Since the right-hand sides of Egs. (IG1) and (1G2) are the time average between present time (t)_and future time
(t + At)_and the spatial average between the departure point and the arrival point, these equations have second-order

precision in time and space. In SETTLS, xp is calculated using
v +v°
2

However, when At is longer than 30 minutes, using v](;) extrapolated in time to calculate x, causes numerical instability in

our experiments. To avoid instability when At is 1 hour, here we use

10 X=X At. (164)

v+ vt
Xp =X — DTAt, (165a)
. o 9(Vhy” +Vh?)
vVI=vp+ 22 X1T)p 22 X1 — 2 At, (I&5b)

15 instead of Eq. (I64), where v'~* is a provisional future value obtained by discretizing Eq. (98406) in an explicit semi-
Lagrangian scheme. From Eq. (IG5), we obtain

xp =x—At m r— ” . (166)

(+) 0
(v°+.ﬂxr—ﬂ> —0x gALVh
D

This method using a provisional future value to calculate xp_is similar to the method in Gospodinov et al., (2001). Since the
value with the subscript D_depends on xp, xp_is calculated iteratively from Eq. (IG6) (e.g., Ritchie, 1995; Temperton et al.,
20 2001). Since xp, is not generally on the grid point, the value at xp_is calculated by spatial interpolation from nearby grid
points. In the right-hand side of Eq. (IG6), the value at xp with the subscript D is calculated by third-order Lagrange

interpolation.
Egs. (IG1) and (1G2) are transformed into.

At
v+ BVT gVh* =R, (167a)
At At
25 R, = [v" +20 X7 =~ g(Vh®) — B,V + ﬁvVhO)] —20 X7 =~ g(Vh® = B,VA°), (IG7b)
D
At
Rt + B"ThD+ =Ry, (168a)

At _ _
R,=h"+ 7{[(—(h —hg)D + v Vhy)|™) + BhD™ — D}
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At _
+7{[(—(h —he)D +v-Vhy)|® + ,hD°}. (168b)

In Egs. (IG7b) and (IG8b), the values at xp, with the subscript D are calculated by fifth-order and third-order Lagrange
interpolations, respectively, since high-order interpolation of wind vector components increases the accuracy of the model’s
results in our experiments. From Eq. (IG7), we obtain

At
D* +ﬁngV2h+ =Ry, (169)

* =R, (1610)
where

1 1 ov 1 OJucos¢
(Ek-VXv=E———— (1611)

is vorticity, k = r/|r| s the vertical unit vector, R, =V R, and R; = k-V X R,,.

We calculate h* and v* using the spectral transform method and the Galerkin method with the new DFS method as
follows.

1. The scalar variable R, is transformed from grid space to spectral space using Egs. (2349)—te-(3125). The components of
the vector variable R,, = (Ry, R,)in grid space are transformed to R, and Ry, in spectral space using Eqgs. (55+)—te-(642),
where R, and Ry, are the velocity potential and the stream function of R,, respectively.

2. Rp_and R, are calculated by

Rp = V’R,, (1612)
R; = V?Ry, (1613)
using Egs. (7589) and (7794). {* is obtained from R; using Eq. (1610).

3. Equations (IG8a) and (IG12) are substituted into Eq. (IG9) and we obtain
2

D+ - (%) B.BaghV2D* = V2 (Rx - %ﬁvgza,,). (1614)
D* is calculated by solving the Helmholtz-like equation Eq. (I614) using Egs. (8397) and (8599).
4. h* is calculated from D* and R, using Eq. (IG8).
5. x* and ™ are calculated from D* and {* by solving the Poisson equations
VZyt = D, (1615)
V2t =, (I&16)
using Eqgs. (7589) and (7892).
6.v* = (u*,v*) s calculated from y* and 1" using Eq. (5349) for u§ ,, and the similar equations for us, ;. Vs . and v ..

7.u*, v*, h*, D", and Vh* in spectral space are transformed to grid space. h* and D™ are transformed meridionally using
Egs. (139) and (1460). u™ and v* are transformed meridionally using Eq. (5248). Vh* = (hf,h}) is_transformed

meridionally using Egs. (184)—te~(2147). h} can also be calculated from ht" (Gj) and b (Qj) at the latitudinal grid
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points using Eq. (16+2), and additionally using Eq. (2218) at the poles when using Grid [1], which is more efficient than

using Egs. (184) and (195) because the meridional inverse discrete cosine and sine transforms of h} become unnecessary.
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DFS methods with Grid [0], Grid [1] and Grid [-1]. and the SH method. J° is the number of latitudinal grid points in Grid [0].

The truncation wavenumber N = 2/°/3,

Resolution\ Method Old DFS [0] DES [0] DFS [1] DFS [-1] SH
TN | - 41208E3 | 23019E3 | 22530E3 | 2.6281E-3 | 20927E-3 _
J°=160, N=106 2.2221E-4 2.3678E—4, | _ 2.3369E-4, | 2.3374E-4 | 2.1668E—4,
J°=320, N=213 3.8070E—5 3.7931E-5 3.8752E-5 3.8740E—5 3.7565E-5
J°=960, N=639 2.4281E-6 3.5687E=6, | _3.5888E—6 | 3.5904E—6, | _2.3453E—6, _
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Table 2. Same as Table |

Resolution\ Method | Old DFS [0] DFS [0] DFS [1] DFS [-1] SH
J°=64, N=42 3.4331E-26 2.2012E-26 —1.2242E-25 | —6.4414E-25 | —3.8370E—27
J°=160, N=106 —6.1392E-27 2.9404E-26 3.1530E-25 —4.1152E-25 3.0050E—26,
J°=320, N=213 —2.9272E-26 | —4.4429E-28 1.3779E-24 —1.0004E—24 3.3190E—26
3°=960. N=639 —4.6309E-26 | —3.5020E—26 2.3521E-24 4.7404E-25 9.4697E-27,
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Resolution\ Method | Old DFS [0] DFS [0] DFS [1] DFS [-1] SH
J0=64, N=42 7.5000E—4 7.0729E—-4 7.3360E-4 7.5868E—4 6.4564E—4
=160, N=106 1.7270E—5 1726365, | 15884E-5 | 1590765 | 3.0100E-5,
J0=320, N=213 1.0970E—6 1.0965E-6 1.2557E—6 1.2602E—6 2.7348E—6
3=960, N=639 43114E-8 43114E-8_ | 3.8081E-8 | 3.8253E-8 | 3.7720E-8;
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Eulerian advection models. The truncation wavenumber N = 2] /3.

Resolution \ Model | Old DFS [0] DFS [0] DFS [1] DFS [-1] SH
J0=64, N=42 Unstable 1.1557E-1 1.1559E-1 1.1559E—-1 1.1554E-1
J=160, N=106 Unstable 5.0956E-2 5.0954E-2 5.0954E-2 5.0955E-2
J0=320, N=213 Unstable 2.4619E-2 2.4619E-2 2.4619E-2 2.4619E-2
J=960, N=639 Unstable 8.2424E-3 8.2424E-3 8.2424E-3 8.2424E-3
A | HREEE: 74V (F) Times New Roman, (B) +AX D74 b
- BAFE (SimSun)
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Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [-1] SH
J°=64, N=63 1.6782E—1 1.6782E—1 1.6795E—1 1.6849E—1 1.6464E—1
J°=160, N=159 2.0076E—2 2.0076E—2 2.0074E—2 2.0080E—2 1.9887E—2
J°=320, N=319 3.4033E-3 3.4033E-3 3.4029E-3 3.4033E-3 3.3855E-3
J°=960, N=959 2.1503E—4 2.1503E—4 2.1503E—4 2.1504E—4 2.1514E—4
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Table 6. Same as Table 5 except for the errors after a 5-day integration in the Williamson test case 2

Resolution \ Model Old DFS [0] DES [0] DFS[1] DFS [-1] SH
J=64, N=63 2.4468E—-05 2.4468E—-05 2.4453E-05 2.4434E-05 2.4147E-05
J°=160, N=159 1.3462E-06 1.3462E-06 1.3463E-06 1.3458E—06 1.3402E-06
J°=320, N=319 4.1918E—-07 4.1918E—07 4.1918E-07 4.1916E-07 4.1927E-07
J°=960, N=959 1.1800E-07 1.1800E-07 1.1800E-07 1.1800E-07 1.1800E-07
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high-resolution SH model with J° = 960 and N = 958_is regarded as the reference solution.

Resolution \ Model | Old DFS [0] DFS [0] DFS [1] DFS [-1] SH
J0=64, N=63 8.2998E—4 8.2972E-4 8.2559E-4 8.2533E—4 8.2575E-4
J=160, N=159 9.2568E—4 9.2569E—4 9.2571E—4 9.2607E—4 9.2578E—4
J°=320, N=319 8.3815E—4 8.3815E—4 8.3813E—4 8.3807E—4 8.3812E—4
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Table 8. Same as Table 7 except for N = 2J°/3,

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [-1] SH
J°=64, N=42 Unstable 8.2985E—4 8.2555E—4 8.2545E—4 8.2587E—4
J°=160, N=106 Unstable 9.2571E—4 9.2573E—4 9.2571E—4 9.2584E—4
J°=320, N=259 Unstable 8.3814E—4 8.3813E—4 8.3812E—4 8.3812E—4
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Resolution \Model, | OIdDFS[0] | _DES[0] | _DES[1] | _ DFES[-1] | _ _ _SH _ _
J°=64, N=63 1.0319E—2 1.0361E—2 7.2824E—-3 8.7423E-3 1.0118E—2
J°=160, N=159 2.7830E-3 2.7830E-3 1.5615E-3 2.0704E-3 2.7766E-3
J°=320, N=319 9.3546E—4 9.3546E—4 5.6164E—3 6.8201E—4 9.3560E—4
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Grid [0] Grid [1] Grid [-1]
~North Pole (90°N)
NS

)
O )

)
--------- P —

O}
(} ....................... ()

)

m
~South Pole (90°S)

Figure 1. Grid [0], Grid[1], and Grid [—1] are three ways of arranging equally spaced latitudinal grid points-when-the-grid
5 interval-Af8—=. Red circles show the positions of the grid points when the grid interval A = 7 /4.
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. (a)J=64 N=42 DFS evenm =2 a5 (b)J=64 N=42 SH m=2,14,30

—e— Initial —s— |Initial
L R Orszag 20 SH m=2
1.5{ —— DFS_old[0] 151 —— SHm=14
1.0/ —— DFs[o] 1ol —— SHm=30 7
0.5 0.5 I.' \
' - ' J ALY
0.0 T N Jiag: 4! 0.0 S lng el
-0.5 -0.5
-1.0 -1.0
-1.5 -1.5 ——
-80 -60 —-40 -20 0 20 40 60 80O -80 -60 —-40 -20 0 20 40 60 80
Latitude Latitude
(c)J=64 N=42 DFS oddm =3 (d)J=64 N=42 SH m=3,15,31
2.5 TTTTTTTTTITITT 2.5
—e— Initial —— |nitial
20 —— Orszag 20 g SH m=3
1.5 ’1 —— DF5[0] 1.5{ —— SH m=15
1.0 pojEre. Shn=a M«—
0.5 0.5 ! k‘ \ 1
0.0 | Y Q‘O-WM \-.....Lu.l.
-0.5 -0.5
-1.0 -1.0
-1.5 y =15
-80 -60 —-40 =20 0 20 40 60 80 -80 -60 —-40 -20 0 20 40 60 B0
Latitude Latitude

Figure 2. Change in values at the grid points due to the meridional wavenumber truncation-for{a)-even=2,and-(b)odd =3
We use Grid [0] with the number of latitudinal grid points J = 64. InitialOriginal values (black) are meridionally
transformed from grid space to spectral space, truncated with N = 42, and transformed back from spectral space to grid
i d-(a) Values
for even |m| = 2 when using the DFS method of Orszag (blue), the old DFS method (green). and the new DFS method (red)

space. Bhae:

with Grid [0]. (b) Values for m =2 (orange), 14 (deep sky blue), 30 (lime) when using the SH expansion method with the

gaussian grid. (c) Same as (a) except for the values for odd |m| > 3. (d) Same as (b) except for the values form =3

(orange), 15 (deep sky blue), 31 (lime),
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(a)J=64 N=63 SH evenm =2 - (b)J=64 N=63 SH evenm =2
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5% (a)J=64 N=63 DFS evenm =2 G (b)J=64 N=63 DFS evenm = 2
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Figure 3. (a) Same as Fig 2(a) except for N = 63, (b) Same as (a) except that the values between grid points calculated from+ - — { HFRER: AVTVME 0F

the expansion coefficients are also shown, = { BREEFE: 74V (B)MS B8, (§5E 1) BAE
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(a) DFS [0] 128x64 N=42 (b) DFS [1] 128x65 N=42 (c} DFS 1] 128x63 N=42_ (d) SH 128x64 N=42
Y V

n
T % = e -
2

80
40
u 20
-2

*ie 1ios ios wm me Me T Tie 1w lcos se ae  mm e Time i0s loor se me % o ioe wew e wm T em

$8s

model with Grid [0]. (b) New DFS model with Grid [1]. (c) New DFS model with Grid [~1]. (d) SH model. The number of ~ { BAEE: AVTUh & 0F

longitudinal (1) and latitudinal (J) grid points is shown in the form | x J. In the upper figures, the black contour shows the

predicted height, and the red contour shows the reference solution. In the lower figures, color shading shows the difference

between the predicted height and the reference solution.
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128x64 N=63
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Figure 53. Time series of prediction error of height (m) for 5 days (120 hours) integration in Williamson test case 2
(a =m/2 —0.05). The number of longitudinal grid points / = 128. The+28 number of latitudinal grid points in Grid [0]
J° = 64-x-64-indicates-the numbers-of longitudinal-and-latitudinal-grid-points. N-is-Thethe truncation wavenumber N = 63.
Solid, dashed, and dotted lines represent normalized L,, L,, and L. errors, respectively. The colors blue, green, red, purple,
and orange represent the models using SH, old DFS with Grid [0], new DFS with Grid [0], new DFS with Grid [1], and new
DFS with Grid [—1], respectively.
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(e) SH 128x64 N=62 -
\ . = ——— }gg\\“ =
2

Figure 64. Predicted height (m) after a 15-day integration in Williamson test case 5. (a) New DFS model with Grid [0]. (b)
New DFS model with Grid [1]. (¢) New DFS model with Grid [—1]. (d) Old DFS model with Grid [0]. (¢) SH model. (f) SH
model at high resolution, which is regarded as the reference solution. The number of longitudinal (I) and latitudinal (J) grid
points is shown in the form | x J. N is the truncation wavenumber. Color shading shows the error with respect to the

reference solution.

77



a) 128x64 N=63 Lat=88.594°S (b) 1920x960 N=959 Lat=89.906°S
2 .

2.5
2
1.5 = 151
1 i 1
0.5 1
04 0.5
-0.51 0+
=14
—15] 0.5
_2 - L _I -
-2.54 Green: DFS_old[0] .1.5- Green: DFS_old[0]
-31 Red :DFS[0] _, | Red :DFS[0]
T35TTe0E 120e 180 120w 60W 0 0 BOE 120E 180 120W 60W O
Longitude Longitude

Figure 75. Longitudinal distributions of meridional wind (ms™) at the grid points near the South Pole after a 15-day
integration in Williamson test case 5. Results of the models using Grid [0] with (a) [ = 128, /% = 64 and N = 6312864

erid-points—and—truncation—wavenumber N-=-63, and (b) I = 1920, J° = 960 _and1920-x960—gridpeints—and N = 959.

Green (red) lines represent the old (new) DFS models.
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(a) 128x64 N=63 (b) 1920x960 N =959

— SH
10!
& 10t —— DFS_old[0]
la 1071 —— DFS[0]
.g.lo—l 10-? — DF5[1]
] . DFS[-1]
5 10-
£.,3] — SH "
S0 — DFs_oldfo] 107 L
1] —— DFs[0] o
£10-%f — oFs(1] 10 L
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10° 10! 10° 10! =3 10°
Wavenumber Wavenumber

Figure 86. Kinetic energy spectrum of horizontal winds (m?s~2) after a 15-day integration in Williamson test case 5.

Results of the models with (a) I = 128, J° = 64, i ints and N = 63 (DFS) or N = 62 (SH), and (b)
1 =1920,J° =960 = ints-and N = 959 (DFS) or 958 (SH). The colors blue, green, red, purple,

and orange represent the models using SH, old DFS with Grid [0], new DFS with Grid [0], new DFS with Grid [1], and new
DFS with Grid [—1], respectively.
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(d) DFS_old [0] 128x64 N=42

Unstable

Figure 97. Same as Fig. 64, except with truncation wavenumber N.
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(a) 128x64 N=42

(b) 1920x960 N =639

10%) 5 —sH 107 — SH
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Figure 108. Same as Fig. 86, except with truncation wavenumber N.
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_.(b) DFS [1] 128x65

53 (c) DFS [-1] 128x63 N=

63
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(a) DFS[0] 30720x 15360 N =10239

120E 180 120w
(b) SH 30720x 15360 N =10239
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—! —! —! —! H ! E 5 g 1! !; 1'4)(10‘5

Figure 129. Predicted vorticity (s™') after a 6-day integration in the Galewsky test case. (a) The new DFS model with Grid
[0], and (b) the SH model at 1.3 km resolution with I = 30720, J° = 15360 30720-x15360-grid-peints-and N = 10239.
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10;a] 30720 x 15360 N =10239
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Figure 130. Kinetic energy spectrum of horizontal winds (m
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(b) High wavenumber region

10

SH
DFS[0]
DFS[1]
DFS[-1]

Ll LoIe e LOlsei0'  LOiwigt

Wavenumber

) after a 6-day integration in the Galewsky test case. (a)

Results of the models with | = 30720, /% = 15360 and N = 1023930720-%-15360-grid-peints. The colors blue, green, and

red. purple, and orange represent the models using SH, eld-DES-with-Grid-{0},-and-DFS with Grid [0], DFS with Grid [1],
and DFS with Grid [—1]. respectively. (b) As (a), but showing the high-wavenumber region.
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5] (a) 1920 x960 N =959 s (b) 30720 x 15360 N =10239
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Figure 141. Elapsed time (s) for (a) 15-day integration in Williamson test case 5 in the SH model and the new DFS model at
20 km resolution with 1920-%-960-grid-peints] = 1920, J° = 960 and N = 959, and (b) 6-day integration in the Galewsky
test case at 1.3 km resolution with / = 30720, /% = 15360 and N = 10239 30720-x15360—gridpeints. There is no

monitoring output during elapsed time measurement-
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