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[Reply on Referee Comment 1] 

 

Comments to the manuscript 

General comments 

This paper deals with the Double Fourier Series (DFS) on the sphere where new DFS functions are 

used to represent the variables on the global domain. Discretization procedures for the spatial 

differentiations, elliptic equations, and the shallow water models are shown in some detail using the 

trigonometric identities. Combining the DFS method with the semi-Lagrangian time differentiation, 

the paper provided simulation results for a couple of shallow water model test cases, including the 

standard test cases of Williamson et al. (1992). The author emphasizes that the DFS functions in the 

present study improves the simulation results over the DFS models in the previous studies. However, 

it is hard to be convinced of the improvement of the new DFS method due to less rigorous assessment 

of the solution method for differential operators such as elliptic equations, least square method, and 

also limited test case results. Specific comments are shown below. 

 

We are very grateful to the referee #1 for the useful comments, which help to improve the paper quality. 

We reply to the specific comments below. 

 

Specific major comments 

[1] One of the most important aspect of the paper is that the DFS expansion coefficients (𝑻𝒏,𝒎
𝐜 , 𝑻𝒏,𝒎

𝐬 ) 

are calculated based on the least square method, as is shown section 2.3. I am afraid, however, that 

the derivation procedure does not seem to be the least square method which is required for 

determining the expansion coefficients. The residual function here is defined using the difference 

between the spectral representation of the function (𝑻𝒎
𝐜 , 𝑻𝒎

𝐬 ) two different sets of DFS. The fact that, 

for the spherical harmonics model (SHM), the spectral coefficients are determined in the least square 

sense on the spherical domain is explained as below: 

𝑬 ≡ න ൥𝑻𝒎
𝐜 ሺ𝜽ሻ െ ෍ 𝒄𝒏𝑷𝒏

𝐦ሺ𝜽ሻ
𝑵

𝒏ୀ𝒎

൩

𝟐

𝐬𝐢𝐧 𝜽 𝒅𝜽
𝝅

𝟎
                                                        ሺ𝐐𝟏ሻ 

𝝏𝑬
𝝏𝒄𝒏

ൌ 𝟎 …   𝐥𝐞𝐚𝐬𝐭 𝐬𝐪𝐮𝐚𝐫𝐞𝐬 𝐞𝐫𝐫𝐨𝐫                                                                              ሺ𝐐𝟐ሻ 

𝟐 න 𝑷𝒏
𝐦ሺ𝜽ሻ ൥𝑻𝒎

𝐜 ሺ𝜽ሻ െ ෍ 𝒄𝒏𝑷𝒏
𝐦ሺ𝜽ሻ

𝑵

𝒏ୀ𝒎

൩ 𝐬𝐢𝐧 𝜽 𝒅𝜽
𝝅

𝟎
ൌ 𝟎                                  ሺ𝐐𝟑ሻ 

∴ 𝒄𝒏 ൌ න 𝑷𝒏
𝐦ሺ𝜽ሻ𝑻𝒎

𝐜 ሺ𝜽ሻ 𝐬𝐢𝐧 𝜽 𝒅𝜽
𝝅

𝟎
                                                                 ሺ𝐐𝟒ሻ 
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ቈ∵  න 𝑷𝒏
𝐦ሺ𝜽ሻ𝑷𝒏ᇲ

𝐦 ሺ𝜽ሻ 𝐬𝐢𝐧 𝜽 𝒅𝜽
𝝅

𝟎
ൌ 𝜹𝒏𝒏ᇲ቉                                                        ሺ𝐐𝟓ሻ 

That is, 𝒄𝒏 is obtained with least squared error on the sphere. 

The least square method for the SHM in the present study is different from above equations. 

 

We have modified the description about the derivation of Eq. (Q4) (Eq. (37) in the revised paper) 

using the least-squares method. The referee probably considers the use of 𝑇෨௠
ୡ,ேሺ𝜃ሻ instead of 𝑇௠

ୡ ሺ𝜃ሻ 

as a problem. In the SH method, 𝑇෨௠
ୡ,ேሺ𝜃ሻ can be used instead of 𝑇௠

ୡ ሺ𝜃ሻ (e.g., Sneeuw and Bun, 

1996), although the values of 𝑇௡,௠
ୡ,ୗୌ  calculated from 𝑇෨௠

ୡ,ேሺ𝜃ሻ  are different from those calculated 

from 𝑇௠
ୡ ሺ𝜃ሻ. In the new DFS method, using 𝑇෨௠

ୡ,ேሺ𝜃ሻ instead of 𝑇௠
ୡ ሺ𝜃ሻ is not a problem, because 

the values of 𝑇௡,௠
ୡ  calculated using 𝑇෨௠

ୡ,ேሺ𝜃ሻ are the same as those calculated using 𝑇௠
ୡ ሺ𝜃ሻ. This is 

important, and we have described this in Sect. 3.4 and Appendix D in the paper. Moreover, we have 

changed ൫∑ 𝑇෨௠
ୡ,ேሺ𝜃ሻ cos 𝑚𝜆ெ

௠ୀ଴ ൅ ∑ 𝑇෨௠
ୱ,ேሺ𝜃ሻ sin 𝑚𝜆ெ

௠ୀଵ ൯ to 𝑇ሺ𝜆, 𝜃ሻ in the residual in Eqs. (25) and 

(39). 

 

[2] It looks like that the equations (24a)-(24d) are just algebraic equations resulted from simply 

multiplying 𝐬𝐢𝐧 𝜽  or 𝐬𝐢𝐧𝟐 𝜽  or 𝐬𝐢𝐧𝟒 𝜽  to the same equation. For instance, in the case of odd 

𝒎 ሺ൒ 𝟑ሻ, it follows: 

𝑻𝒎
𝐜 ሺ𝜽ሻ ൌ ෍ 𝑻𝒏,𝒎

𝐜 𝐬𝐢𝐧𝟐 𝜽 𝐬𝐢𝐧 𝒏𝜽
𝒏

                                                                         

ൌ ෍ 𝑻෩𝒏,𝒎
𝐜 𝐬𝐢𝐧 𝒏𝜽

𝒏

                                                                          ሺ𝐐𝟔ሻ 

𝐬𝐢𝐧𝟐 𝜽 𝑻𝒎
𝐜 ሺ𝜽ሻ ൌ ෍ 𝑻𝒏,𝒎

𝐜 𝐬𝐢𝐧𝟒 𝜽 𝐬𝐢𝐧 𝒏𝜽
𝒏

                                                                        

ൌ ෍ 𝑻෩𝒏,𝒎
𝐜 𝐬𝐢𝐧𝟐 𝜽 𝐬𝐢𝐧 𝒏𝜽

𝒏

                                                            ሺ𝐐𝟕ሻ 

෍ 𝑻𝒏,𝒎
𝐜 𝐬𝐢𝐧𝟒 𝜽 𝐬𝐢𝐧 𝒏𝜽

𝒏

ൌ ෍ 𝒉𝒏,𝒎
𝐜 𝐬𝐢𝐧 𝒏𝜽

𝒏

                                                                  ሺ𝐐𝟖ሻ 

⇒  ൦

𝟓 െ 𝒅𝒊𝒂𝒈𝒐𝒏𝒂𝒍
𝒎𝒂𝒕𝒓𝒊𝒙 ൪

⎣
⎢
⎢
⎡
𝑻𝟏,𝒎

𝐜

𝑻𝟑,𝒎
𝐜

𝑻𝟓,𝒎
𝐜

⋮ ⎦
⎥
⎥
⎤

ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ
𝐥𝐡𝐬 𝐨𝐟 ሺ𝟐𝟒𝒅ሻ

ൌ

⎣
⎢
⎢
⎡
𝒉𝟏,𝒎

𝐜

𝒉𝟑,𝒎
𝐜

𝒉𝟓,𝒎
𝐜

⋮ ⎦
⎥
⎥
⎤
                                       ሺ𝐐𝟗ሻ 

෍ 𝑻෩𝒏,𝒎
𝐜 𝐬𝐢𝐧𝟐 𝜽 𝐬𝐢𝐧 𝒏𝜽

𝒏

ൌ ෍ 𝒉𝒏,𝒎
𝐜 𝐬𝐢𝐧 𝒏𝜽

𝒏

                                                                 ሺ𝐐𝟏𝟎ሻ 
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⇒  ൦

𝟑 െ 𝒅𝒊𝒂𝒈𝒐𝒏𝒂𝒍
𝒎𝒂𝒕𝒓𝒊𝒙 ൪

⎣
⎢
⎢
⎢
⎡𝑻෩𝟏,𝒎

𝐜

𝑻෩𝟑,𝒎
𝐜

𝑻෩𝟓,𝒎
𝐜

⋮ ⎦
⎥
⎥
⎥
⎤

ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ
𝐫𝐡𝐬 𝐨𝐟 ሺ𝟐𝟒𝒅ሻ

ൌ

⎣
⎢
⎢
⎡
𝒉𝟏,𝒎

𝐜

𝒉𝟑,𝒎
𝐜

𝒉𝟓,𝒎
𝐜

⋮ ⎦
⎥
⎥
⎤
                                    ሺ𝐐𝟏𝟏ሻ 

It should be explained why above equations are the same as those the author derived. 

 

This is interesting. We have changed the derivation of Eq. (30), and we have explained in Appendix 

E in the paper why above equations are the same as those we derived. 

 

[3] The largest wavenumber (truncation wavenumber) in (8b) should be determined considering the 

grid structure, grid[0] or grid[1] or grid[-1] to make completeness of spectral expansion issue clear 

(refer to Cheong et al. 2004). 

 

Thank you for the advice. In the old DFS method using the Cheong’s basis functions in Eq. (6) with 

Grid [0], the upper limit of 𝑁 is 𝐽 െ 1 for 𝑚 ൌ 0, and 𝐽 for 𝑚 ് 0 (Cheong et al. 2004). We have 

described in Sect. 1 in the paper as follows:  

2. The meridional truncation with 𝑁 ൌ 𝐽 െ 1 and 𝑁ᇱ ൌ 𝐽 is used, which enables to reconstruct 

accurately the given grid-data with the expansion coefficients (Cheong et al., 2004) and avoid 

the error due to the meridional truncation. 

We have also described the upper limit of 𝑁 in the new DFS method in Appendix C. We have also 

cited Cheong et al. (2004) in Sect. 2. 

 

[4] Section 2.12 presents the Laplacian operator and the Poisson’s equation. The accuracy of the new 

DFS method for these basic operators and others such as biharmonic diffusion operator should be 

addressed with detailed error magnitude. Also important is the global mean associated with the 

Poisson’s equation. 

 

This kind of accuracy test is important, and we have described the results of the test in Sect. 5. The 

global mean associated with the Poisson’s equation is also important, and we have described in Sect. 

3.7 as follows: 

In Eq. (65) (𝑔 ൌ ∇ଶ𝑓), the global mean of 𝑔 must be zero because the global mean of the right-

hand side of Eq. (65) is zero. Before calculating 𝑓 from a given 𝑔 in the Poisson equation, we 

should subtract the global mean from 𝑔 (Cheong 2000b). See Eq. (G1) about the calculation of 

the global mean. 
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[5] One of the most basic test case is the cosine-bell advection, which is not included in this manuscript. 

The test case is simple but useful to demonstrate the advantage and disadvantages of a numerical 

method. 

 

Thank you for the advice. Since the advection equation is highly non-linear, it is challenging to solve 

the equation in the longitude-latitude grid using the Eulerian scheme with the DFS spectral method 

instead of the semi-Lagrangian scheme. We have run the Williamson test case 1 simulating the cosine-

bell advection in the Eulerian and semi-Lagrangian models to examine the advantage and the 

disadvantage of the DFS methods. The Eulerian advection model using the new DFS method is stable 

without horizontal diffusion, but that using the old DFS method is not stable. The results of this test 

are important, and we have described the results in Sect. 6.3. We also change the title of this paper to 

“Improved double Fourier series on a sphere and its application to a semi-implicit semi-Lagrangian 

shallow water model and an Eulerian advection model”. 

 

[6] It is very nice to see that the simulations are carried out without numerical instability even without 

horizontal diffusion. The author may address why it is possible. Is it due to the diffusive property of 

the semi-Lagrangian? 

 

One reason is due to the stability of the semi-Lagrangian scheme, which avoids numerical instability 

due to the nonlinear advection term. Especially, the old DFS method needs to use the semi-Lagrangian 

scheme for stability. We have described this in Sect.1. 

We have shown in Sect. 4 that the error due to the wavenumber truncation is small in the new DFS 

method because the expansion coefficients are calculated using the least-squares method (or the 

Galerkin method) to minimize the error. This improves the stability of the model using the new DFS 

method. In the new DFS method, probably it is not always necessary to use the semi-Lagrangian 

scheme from the results of the Williamson test case 1. We have added the following description in 

Sect. 7: 

In the old DFS model, the use of the semi-Lagrangian scheme is important for numerical stability. 

On the other hand, the advection model using the new DFS method is stable, even when the 

Eulerian scheme is used instead of the semi-Lagrangian scheme. The Eulerian shallow water 

model using the new DFS method is also likely to be stable, although we have not tested it yet. 

 

[7] Figure 2. The problem setting is quite strange. In principle, any scalar function with 𝒎 ൐ 𝟎 

should vanish at poles. Nevertheless, the ‘original’ function is given to have value of unity at north 

pole. Therefore, the computation and comparison are not meaningful. 
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In Figure 2, Grid [0] is used and there are no grid points at the poles. The original (initial) values are 

set to one at the grid points north of 30°N (except for the North pole). Since the values at the North 

and South poles are zero due to the pole conditions in Eq. (3), the initial values abruptly change around 

the North pole. This explanation is necessary, and we have modified the explanation in Sect. 4. 

 

[8] Figure 5. Result of DFS0 appears to be too much smooth compared to DFS_old. Why is it? 

 

This is because the least squares method (or the Galerkin method) is used to calculate the expansion 

coefficients in new DFS [0]. In DFS_old, the latitudinal derivative at the grid points can be 

unrealistically large even when 𝑁ᇱ ൌ 𝐽 for even 𝑚 ሺ൒ 2ሻ as described in Sect. 4 (Fig. 3b). The new 

DFS expansion method with the least-squares method does not have this problem. We have described 

this in Sect. 6.5. 

 

Specific minor comments 

[1] The right hand side of (25) should be represented with matrix-vector multiplication as in the left 

hand side. 

 

Thank you for the advice. We have modified it. 

 

[2] Terms associated with 𝑻෩𝟏,𝒎
𝐜,𝑱   and 𝑻෩𝟏,𝒎

𝐜,𝑱   in (36) do not appear in (37). The reason should be 

explained. 

 

I am sorry this is a typo. 𝑇෨௠ୀ଴
ୡ,ୗୌ,௃ሺ𝜃ሻ should be 𝑇෨௠ୀ଴

ୡ,௃ ሺ𝜃ሻ, and 𝑇෨௠ୀ଴
ୱ,ୗୌ,௃ሺ𝜃ሻ should be 𝑇෨௠ୀ଴

ୱ,௃ ሺ𝜃ሻ. We no 

more use this equation in the revised paper. 

 

[3] Equation (B1) can be found in Cheong 2000a. 

 

Thank you for the information. We forgot to cite Cheong 2000a. We have cited Cheong 2000a in 

Appendix G. 
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[Reply on Referee Comment 2] 

 

Review: Improved double Fourier series on a sphere ... 

General Comment: 

The Double Fourier Series on the sphere approach historically is compared to the spherical harmonic 

representation, e.g. Boer & Steinberg (1975) state: "the ease of calculation using the FFT must be 

weighed against the "pole problem" and the fact that the expansion functions are not orthogonal 

with respect to area weighting on the sphere." In this sense, the author makes a very good case 

resolving the "pole problem" with the improved DFS, and the result of the very high resolution 

Galewsky test is convincing. I like the approach and comparison to spherical harmonics and I 

certainly recommend publication. But I have a few comments below that should be addressed. 

 

We are very grateful to the referee #2 for the useful comments, which help to improve the paper quality. 

We reply to the specific comments below. 

 

[1]As I understand it the author approximates orthogonality and it is strictly satised for 𝒎 ൑ 𝟑. We 

know that the spherical harmonics are eigensolutions of the barotropic vorticity equation on the 

sphere. Hough functions as eigensolutions of Laplace's tidal equation go further in providing 

eigensolutions for atmospheric Rossby and gravity wave dynamics of the linearised primitive 

equations (see also a recent article Vasylkevych & Zagar, Q J R Meteorol Soc. 2021;147:1989?2007). 

So the DFS approach is still a deviation from the "normal mode approach", although this does not 

mean of course that the fundamental modes of predictability are not well captured. It would neverth-

eless be interesting so see Rossby and gravity waves somehow in separation and the effect of the 

numerical method on these (and in combination with the time-stepping on propagation speed). For 

example, one could force a particular set of Hough modes for the shallow water equations and test 

this ? Also, if the Galewsky test was set simultaneously in the southern and the northern hemisphere 

(possibly with an onset delay between the two), would one expect more differences between DFS and 

SH ? 

 

Since we do not know how to perform simulations using a particular set of Hough modes, we have 

run Williamson test case 6 to simulate Rossby-Haurwitz wave. We have described the results of the 

test case 6 in Sect. 6.6. 

To set the Galewsky test simultaneously in the southern and the northern hemisphere, we have run 

the Galewsky-like test case using the north-south symmetric initial conditions created by adding the 

north-south opposite distribution of height and winds with perturbations in the southern and the 

northern hemisphere. We have described the results of the Galewsky-like test case in the supplement. 
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The results of the Galewsky-like test case are similar to those of the Galewsky test case. 

 

[2] The author focusses on computational performance and memory requirement as a primary reason 

for the advantage of the DFS to the SH. However, while memory may be an issue in the short term, 

there is a large trend towards very high memory nodes in the future. The fast Legendre transform 

(FLT) also effectively reduces the memory requirement. It is wrong to state that the FLT compromises 

accuracy (see also Wedi, 2014 Phil. Trans. R. Soc. A 372: 20130289). The FLT is not very sensitive to 

the threshold epsilon which is essentially a 'selection of zeros (that do not need to be computed)' 

threshold parameter. 

 

Thank you for the information about FLT. I have described in the paper that the FLT effectively reduces 

the memory usage. I have understood that the FLT does not compromises accuracy. I have described 

instead that “In the fast Legendre transform, the threshold parameter affecting the accuracy-cost 

balance is chosen so that a loss of accuracy is sufficiently small.” I have also cited Wedi (2014) in the 

paper. 

 

[3] In above paper there is also the case made for cubic truncation with increasing resolution, which 

aligns much better the cost of grid point and spectral calculations in global numerical weather 

prediction (NWP) and climate models. In terms of grid point calculations, the DFS operates on a 

latitude-longitude grid (and associated area weighting of the basis functions is similar) and the author 

makes a case for applying the spherical harmonics filter in practical applications (even if in the 

idealised cases shown this may not be necessary). But in today's models 50 percent of the 

computations are done in grid point space (e.g. physics computations, SL advection). Can the DFS be 

applied on a reduced grid saving 50 percent of these grid point computations ? What would it do to 

the accuracy ? What is the average grid distance near the pole at 1km resolution with the latitude 

longitude grid ? 

 

Our DFS models do not need the spherical harmonics filter. In our atmospheric DFS model, we use 

the same fourth-order horizontal diffusion as in our atmospheric SH model (Yoshimura and 

Matsumura, 2005; Yoshimura, 2012). We have described this in Sect. 1. 

We can use a reduced grid instead of the latitude-longitude grid. In our atmospheric DFS model, we 

use the reduced grid. In this study, we use the longitude–latitude grid with the zonal Fourier filter, not 

the reduced grid, for the simplicity of the source code. We have described this in APPENDIX F. 

If we use an octahedral reduced grid (Malardel, 2016), about 50 % of the grid point computations 

are saved. When the cubic truncation is used, the octahedral reduced grid probably does not reduce 

the accuracy in the DFS and SH models. We have cited Malardel (2016) in APPENDIX F. 
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The longitudinal grid distance near the pole at 1km resolution with the latitude-longitude grid is 

about 0.08 m. The resolution near the pole is not so high when the zonal Fourier filter is used. 

Numerical instability occurs in some test cases in the old DFS model without the zonal Fourier filter, 

but stable integration is possible in all test cases shown here in the new DFS model even without the 

zonal Fourier filter as described in Sect. 6.2. 

 

 

[4] The differentiation and advantage of methods will not be decided, as done in this paper, on the 

computational order of complexity (n^3 or n^2 log n) but rather on how well a method computes on 

accelerators such as GPUs and how well the method parallelises across MPI nodes. In my experience 

on GPUs the matrix-matrix multiplies, regardless of complexity, are so fast that these parts of the 

computation in practice reduce to c*n^2 where c-> 0. Can the author say more about the inherent 

parallelism that may be exploited in the DFS method in comparison to SH models ? 

 

Thank you for providing information about execution speed on the GPU. Since we have not performed 

our model on the GPU yet, we have described the computational order of complexity and the elapsed 

time on the CPU in the paper. We should enable the execution of our model on the GPU and test it in 

the future. The execution on the GPU is a big issue and is beyond the scope of this paper. We have 

described in Sect. 7 as follows: 

We have executed our shallow water models on Intel CPUs. The execution on GPUs is one 

important topic, but we have not tested our models on GPUs because the execution on GPUs is 

not an easy task. 

Our shallow water model in the paper is parallelized only with OpenMP. We think that when we 

perform the DFS or SH model with the truncation wavenumber 𝑁 and 𝐾 vertical levels using 𝑇 

threads with OpenMP and 𝑃 processes with MPI, 𝑇 ൈ 𝑃 can be up to ሺ𝑁 ൅ 1ሻ ൈ 𝐾. If the FFT, the 

Legendre transform, and the matrix calculations such as Eq. (31) are parallelized with OpenMP, 

𝑇 ൈ 𝑃 can be more than ሺ𝑁 ൅ 1ሻ ൈ 𝐾. These are the same between the DFS and SH models. In the 

future, we will write a paper about the DFS atmospheric model with MPI and OpenMP parallelization, 

where we will discuss the parallelization. We have described in Sect. 7 as follows: 

MPI parallelization is another important topic. However, in our shallow water models, we use 

only OpenMP parallelization, not MPI parallelization for the simplicity of the source code. 

We will describe the nonhydrostatic DFS model and the MPI parallelization in another paper 

after improving the nonhydrostatic dynamical core as needed. 

 

[5] Necessarily this paper needs the mathematical detail to be able to reproduce the results. This is 

good. However, it would be much more readable by potentially moving some of the repetition 
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(scalar/vector) into the appendix and pointing just out where there are differences. The semi-implicit 

time-integration is fairly standard now and could also be in the appendix or supplementary material ? 

I think it otherwise distracts to much from what is new and what is already elsewhere in the literature. 

I think this will improve readership of this article. Also the discussion on the different grids is a little 

confusing and may be moved, eg to the beginning of the article ? 

 

Thank you for the advice. We have moved the description about the semi-implicit time-integration 

scheme to the appendix I. We have moved the description about the different grids to Sect. 2. Some 

topics, such as the zonal Fourier filter and the Fourier discrete cosine and sine transforms, are also 

moved into the appendices. To avoid repetition, we use 𝑆௡,௠ሺ𝜃ሻ to show the basis functions of the 

new DFS method, and use 𝑇௠
ୡሺୱሻሺ𝜃ሻ  instead of 𝑇௠

ୡ ሺ𝜃ሻ  and 𝑇௠
ୱ ሺ𝜃ሻ . We also use the following 

expression to reduce the number of lines. 

൤
𝜒ሺ𝜆, 𝜃ሻ
𝜓ሺ𝜆, 𝜃ሻ൨ ≅ ෍ ൤

𝜒௠
ୡ ሺ𝜃ሻ

𝜓௠
ୡ ሺ𝜃ሻ൨ cos 𝑚𝜆

ெ

௠ୀ଴

൅ ෍ ൤
𝜒௠

ୱ ሺ𝜃ሻ
𝜓௠

ୱ ሺ𝜃ሻ൨ sin 𝑚𝜆

ெ

௠ୀଵ

,                                            ሺ45ሻ 

 

[6] On the least squares approach for spherical harmonics, the author may want to refer to appendix 

A6 in www.ppsloan.org/publications/StupidSH36.pdf, a nice article on SH. 

 

Thank you for introducing us to a nice article. It is interesting to minimize some form of variational 

function instead of just the standard least-squares error in order to minimize ringing artifacts. 

 

[7] The author compares with a specific implementation of the SH, and refers to the oscillations near 

the pole and the cost benefit as advantages of the DFS method. This may be read as rather general 

statements, e.g. in the abstract: "The new DFS model is faster than the SH model, especially at high 

resolutions, and gives almost the same results." Is the SH model the one used operationally at JMA ? 

The author states that the oscillations near the pole can be overcome in the SH method, so how 

relevant is Figure 10 in comparing the two methods ? I would also suggest to slightly rephrase the 

abstract in light of this comment. 

 

Thank you for the suggestion. In the paper, the SH model is the shallow water model (or the advection 

model) using SH. The oscillations near the pole appear in the old DFS model, and do not appear in 

the new DFS model and SH model. In the SH shallow water model, small oscillations appear near the 

truncation wavenumber in the kinetic energy spectrum, but not in the new DFS model. The small 

oscillations in the SH model can probably be eliminated by using the vector harmonic transform as 

described in the paper. We will modify “The new DFS model is faster than the SH model, especially 

at high resolutions, and gives almost the same results” in the abstract as follows: 
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The shallow water model using the new DFS method is faster than that using SH, especially at 

high resolutions, and gives almost the same results, except that small oscillations near the 

truncation wavenumber in the kinetic energy spectrum appear only in the shallow water model 

using SH. This small oscillations in the SH model can probably be eliminated by using the vector 

harmonic transform which is similar to the vector transform using the least-squares method (or 

the Galerkin method) in the model using the new DFS method. 

 

Specific comments: 

page 2, line 7 "The FFT ... and is much faster than the fast Legendre transform", this is not 

necessarily true (e.g. with GPUs) and is purely judged on computational complexity, I would delete 

this phrase or qualify. 

 

I will delete “much” and describe “The FFT ... and is faster than the fast Legendre transform” in the 

paper. 

 

page 10, on the least-squares approach, how do you know the solution found is unique ? 

 

We have described the reason that the solution is unique in the following part in Sect. 3.4: 

The new DFS meridional basis functions 𝑆௡,௠ሺ𝜃ሻ for each m are not orthogonal but independent. 

Therefore, by using Gram-Schmidt orthogonalization, the basis functions can be converted to 

orthogonalized basis functions 𝑆௡,௠
୓ ሺ𝜃ሻ, … 

… , we derive  

𝑇௡,௠
ୡሺୱሻ,୓ ൌ

1
𝜋

න 𝑆௡,௠
୓ ሺ𝜃ሻ𝑇෨௠

ୡሺୱሻ,ேሺ𝜃ሻ𝑑𝜃.
గ

଴
                                                                         ሺ43ሻ 

Thus, 𝑇௡,௠
ୡሺୱሻ,୓  and 𝑇௠

ୡሺୱሻ,୓,ேሺ𝜃ሻ  in Eqs. (43) and (42) are calculated uniquely. This unique 

solution 𝑇௠
ୡሺୱሻ,୓,ேሺ𝜃ሻ is the same as 𝑇௠

ୡሺୱሻ,ேሺ𝜃ሻ in Eq. (29) obtained by the least-squares method 

with the non-orthogonal basis functions 𝑆௡,௠ሺ𝜃ሻ , because 𝑆௡,௠
୓ ሺ𝜃ሻ ൫𝑛 ൌ 𝑁୫୧୬,௠, … , 𝑁୫ୟ୶,௠൯ 

are the linear combination of 𝑆௡,௠ሺ𝜃ሻ ൫𝑛 ൌ 𝑁୫୧୬,௠, … , 𝑁୫ୟ୶,௠൯ for each 𝑚, and vice versa. 

 

page 25, line 4-5, what does the choice eq 84 imply more generally and thus not strictly satisfying the 

differential relationships stated ? 

 

We use Eq. (84) (Eq. (70) in the revised paper) obtained from the Galerkin method instead of the 

equation obtained from the least-squares method when calculating 𝑓  from a given 𝑔 . Both the 

equations obtained from the Galerkin method and from the least-square method strictly satisfy 

𝑔ே,ெሺ𝜆, 𝜃ሻ ൌ ∇ଶ𝑓ே,ெሺ𝜆, 𝜃ሻ  for 0 ൑ 𝑚 ൑ 3 , but approximately satisfy the equation for 𝑚 ൒ 4 . 
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Generally, it cannot be said that the least-squares method is superior to the Galerkin method or vice 

versa. We have described in Sect. 3.7. as follows. 

Generally it cannot be said that the least-squares method is superior to the Galerkin method or 

vice versa, and here we choose to use the Galerkin method because of the reason described above. 

 

page 33, Test case 5 topography can give rise to spectral ringing in the SH model, what happens in 

the DFS model, did the author test this ? 

 

In test case 5, spectral ringing seen in the test caes 5 in Jakob-Chien et al. (1995) does not appear in 

our SH and DFS models. This is probably because the semi-Lagrangian scheme improves numerical 

stability. 

 

Jakob-Chien, R., Hack, J. J., and Williamson, D. L.: Spectral transform solutions to the shallow water 

test set, J. Comput. Phys. 119, 164-187, doi:10.1006/jcph.1995.1125, 1995. 

 

Figure 11, Does the SH model employ the FLT, what would this look like if it had (e.g. based on 

complexity arguments?) ? This could be stated explicitly in the caption. 

 

The operation count of FLT is proportional to 𝑁ଶሺlog 𝑁ሻଷ, and that of the usual Legendre transform 

is proportional to 𝑁ଷ. However, since we do not know their proportional coefficients, it is difficult to 

estimate the elapsed time when FLT is used. We have added the description below in Sect. 6.8. 

If the fast Legendre transform, which requires only 𝑁ଶሺlog 𝑁ሻଷ operation, is used instead of the 

usual Legendre transform in the SH model, the difference of the elapsed time between the models 

will be reduced at high resolutions. We have not tested the fast Legendre transform yet because 

we do not have subroutines for the fast Legendre transform. 
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[Reply on Referee Comment 3] 

 

Comments on “Improved double Fourier series on a sphere and its application to a semi-implicit 

semi-Lagrangian shallow water model” by Hiromasa Yoshimura. 

General comments 

The author proposes an alternative formulation to alleviate the pole problem used in a shallow water 

model using double Fourier series. The paper presents specific forms for the gradient of a scalar, 

vectors, and Laplacian and Helmholtz operators. The comparison against spherical harmonics and 

the new double Fourier series provides insights into the properties of the former. I recommend the 

publication of the paper provided that the following concern is appropriately addressed. 

 

We are very grateful to the referee #3 for the useful comments, which help to improve the paper quality. 

We reply to the specific comments below. 

 

Major comments 

As the other reviewers noted, the tests seem to be randomly chosen. I recommend the author to 

investigate at least the convergence (error vs horizontal resolution) and conservation (energy, 

vorticity, etc.). Avoid visual comparison where possible and conduct quantitative evaluation. The 

errors should be given in standard error norms by numerical values. 

 

Thank you for the advice. We have given the errors by numerical values at several horizontal 

resolutions in the tables of the paper. We have also given the conservation (height, energy, vorticity) 

in the tables of the supplement. 

 

The presentation of the paper can be improved. For example, Subsection 5.2 and 5.4 are short and 

5.3 is of two long paragraphs. Author’s intention for the tests should be provided. The author 

discusses the pole problem, but Figures 4, 7 and 9 are shown in longitude–latitude; Figure 9 omits the 

polar region. It would be nice to add a diagram to show the differences of expansion visually. 

 

Thank you for the advice. We have described our intention for the tests in the first part of Sect. 6 as 

follows: 

We ran the Williamson test cases 1, 2, 5 and 6 (Williamson et al., 1992), and the Galewsky test 

case (Galewsky et al., 2004) in the model using the new DFS method described in Sect. 3, the 

model using the old DFS method of Yoshimura and Matsumura (2005), and the model using the 

SH method. By comparing the results of these model, we evaluated the old and new DFS methods. 

 We have shown the northern hemisphere region including the polar region in Fig. 12, and the global 
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region including the polar region in Fig. S1 in the supplement. Figure 2 explains the differences 

between the DFS expansion methods. We have also given the same figures for the SH expansion 

method for comparison. Sections 6.3 and 6.5 have become long because we have a lot of things to 

describe. 

 

Minor comments 

Page 1, Line 21: more accurate rather than good 

 

We have changed “the accuracy in horizontal derivatives is good” to “the horizontal derivatives are 

accurate”. 

 

Page 1, Line 25: O(N3) memory usage, unless calculated on-the-fly 

 

We have added “(unless the fast Legendre transform or on-the-fly computation of the associated 

Legendre functions shown below is not used)”. 

 

Page 2, Line 4: Alternatively (avoid repeating the same word, another). 

 

We have changed the sentence to “Alternatively, we can use double Fourier series (DFS) as basis 

functions to reduce the operation count and the memory usage in the global spectral model.” 

 

 


