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[Reply on RC1] 

We are very grateful to the referee #1 for the useful comments. They help to improve the paper quality. 

Below, we will reply to the specific comments. 

 

Specific major comments 

[1] One of the most important aspect of the paper is that the DFS expansion coefficients (𝑻𝒏,𝒎
𝐜 , 𝑻𝒏,𝒎

𝐬 ) 

are calculated based on the least square method, as is shown section 2.3. I am afraid, however, that 

the derivation procedure does not seem to be the least square method which is required for 

determining the expansion coefficients. The residual function here is defined using the difference 

between the spectral representation of the function (𝑻𝒎
𝐜 , 𝑻𝒎

𝐬 ) two different sets of DFS. The fact that, 

for the spherical harmonics model (SHM), the spectral coefficients are determined in the least square 

sense on the spherical domain is explained as below: 

𝑬 ≡ න ൥𝑻𝒎
𝐜 ሺ𝜽ሻ െ ෍ 𝒄𝒏𝑷𝒏

𝐦ሺ𝜽ሻ
𝑵

𝒏ୀ𝒎

൩

𝟐

𝐬𝐢𝐧 𝜽 𝒅𝜽
𝝅

𝟎
                                                        ሺ𝐐𝟏ሻ 

𝝏𝑬
𝝏𝒄𝒏

ൌ 𝟎 …   𝐥𝐞𝐚𝐬𝐭 𝐬𝐪𝐮𝐚𝐫𝐞𝐬 𝐞𝐫𝐫𝐨𝐫                                                                              ሺ𝐐𝟐ሻ 

𝟐 න 𝑷𝒏
𝐦ሺ𝜽ሻ ൥𝑻𝒎

𝐜 ሺ𝜽ሻ െ ෍ 𝒄𝒏𝑷𝒏
𝐦ሺ𝜽ሻ

𝑵

𝒏ୀ𝒎

൩ 𝐬𝐢𝐧 𝜽 𝒅𝜽
𝝅

𝟎
ൌ 𝟎                                  ሺ𝐐𝟑ሻ 

∴ 𝒄𝒏 ൌ න 𝑷𝒏
𝐦ሺ𝜽ሻ𝑻𝒎

𝐜 ሺ𝜽ሻ 𝐬𝐢𝐧 𝜽 𝒅𝜽
𝝅

𝟎
                                                                 ሺ𝐐𝟒ሻ 

ቈ∵  න 𝑷𝒏
𝐦ሺ𝜽ሻ𝑷𝒏ᇲ

𝐦 ሺ𝜽ሻ 𝐬𝐢𝐧 𝜽 𝒅𝜽
𝝅

𝟎
ൌ 𝜹𝒏𝒏ᇲ቉                                                        ሺ𝐐𝟓ሻ 

That is, 𝒄𝒏 is obtained with least squared error on the sphere. 

The least square method for the SHM in the present study is different from above equations. 

 

From Eq. (R18) below (fixed from Eq (37)), Eqs. (30) and (31), and from 𝜕𝐸ୗୌ 𝜕⁄ 𝑇௡,௠
ୡ,ୗୌ ൌ 0, we can 

derive Eq. (34). Equation (34) is similar to Eq. (Q4), but 𝑇෨௠
ୡ,௃ሺ𝜃ሻ  is used instead of 𝑇௠

ୡ ሺ𝜃ሻ . The 

referee probably considers the difference between 𝑇෨௠
ୡ,௃ሺ𝜃ሻ and 𝑇௠

ୡ ሺ𝜃ሻ as a problem. The use of Eq. 

(34) is one way to calculate the expansion coefficients of Legendre functions (e.g., Sneeuw and Bun, 

1996), although the coefficients calculated from Eq. (34) are different from those calculated from Eq. 

(Q4) with Gaussian quadrature (or Clenshaw–Curtis quadrature), that is, 

න 𝑃௡
୫ሺ𝜃ሻ𝑇௠

ୡ ሺ𝜃ሻ sin 𝜃 𝑑𝜃
గ

଴
് න 𝑃௡

୫ሺ𝜃ሻ𝑇෨௠
ୡ,௃ሺ𝜃ሻ sin 𝜃 𝑑𝜃

గ

଴
.                                  ሺR1ሻ 

On the other hand, when we use sine series (for odd m) as basis functions, 𝑇෨௡,௠
ୡ   in Eq. (19) is 

calculated by the forward Fourier sin transform as 
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𝑇෨௡,௠
ୡ ൌ

2
𝜋

න sin 𝑛𝜃 𝑇௠
ୡ ሺ𝜃ሻ𝑑𝜃

గ

଴
.                                                                 ሺR2ሻ 

From Eq. (19), 

2
𝜋

න sin 𝑛𝜃 𝑇෨௠
ୡ,௃ሺ𝜃ሻ𝑑𝜃

గ

଴
ൌ 𝑇෨௡,௠

ୡ                                                                   ሺR3ሻ 

is also derived. Therefore,  

2
𝜋

න sin 𝑛𝜃 𝑇௠
ୡ ሺ𝜃ሻ𝑑𝜃

గ

଴
ൌ

2
𝜋

න sin 𝑛𝜃 𝑇෨௠
ୡ,௃ሺ𝜃ሻ𝑑𝜃

గ

଴
൫ൌ 𝑇෨௡,௠

ୡ ൯                               ሺR4ሻ 

is satisfied. Eq. (R4) is in contrast to Eq. (R1). 

From Eqs. (R4) and (A2c),  

2
𝜋

න sinଶ 𝜃 sin 𝑛𝜃 𝑇௠
ୡ ሺ𝜃ሻ𝑑𝜃

గ

଴
ൌ

2
𝜋

න sinଶ 𝜃 sin 𝑛𝜃 𝑇෨௠
ୡ,௃ሺ𝜃ሻ𝑑𝜃

గ

଴
                             ሺR5ሻ 

is derived. From Eqs. (R4) and (R5), 𝑇෨௠
ୡ,௃ሺ𝜃ሻ in Eq. (R7) below for odd 𝑚 ሺ൒ 3ሻ can be changed to 

𝑇௠
ୡ ሺ𝜃ሻ. The same thing can be said for other 𝑚. Therefore, in Eq. (21), 𝑇෨௠

ୡ,௃ሺ𝜃ሻ can be changed to 

𝑇௠
ୡ ሺ𝜃ሻ. This is important and we will describe this in the paper (or in the supplement). 

 

[2] It looks like that the equations (24a)-(24d) are just algebraic equations resulted from simply 

multiplying 𝐬𝐢𝐧 𝜽  or 𝐬𝐢𝐧𝟐 𝜽  or 𝐬𝐢𝐧𝟒 𝜽  to the same equation. For instance, in the case of odd 

𝒎 ሺ൒ 𝟑ሻ, it follows: 

𝑻𝒎
𝐜 ሺ𝜽ሻ ൌ ෍ 𝑻𝒏,𝒎

𝐜 𝐬𝐢𝐧𝟐 𝜽 𝐬𝐢𝐧 𝒏𝜽
𝒏

                                                                         

ൌ ෍ 𝑻෩𝒏,𝒎
𝐜 𝐬𝐢𝐧 𝒏𝜽

𝒏

                                                                          ሺ𝐐𝟔ሻ 

𝐬𝐢𝐧𝟐 𝜽 𝑻𝒎
𝐜 ሺ𝜽ሻ ൌ ෍ 𝑻𝒏,𝒎

𝐜 𝐬𝐢𝐧𝟒 𝜽 𝐬𝐢𝐧 𝒏𝜽
𝒏

                                                                        

ൌ ෍ 𝑻෩𝒏,𝒎
𝐜 𝐬𝐢𝐧𝟐 𝜽 𝐬𝐢𝐧 𝒏𝜽

𝒏

                                                            ሺ𝐐𝟕ሻ 

෍ 𝑻𝒏,𝒎
𝐜 𝐬𝐢𝐧𝟒 𝜽 𝐬𝐢𝐧 𝒏𝜽

𝒏

ൌ ෍ 𝒉𝒏,𝒎
𝐜 𝐬𝐢𝐧 𝒏𝜽

𝒏

                                                                  ሺ𝐐𝟖ሻ 

⇒  ൦

𝟓 െ 𝒅𝒊𝒂𝒈𝒐𝒏𝒂𝒍
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⎢
⎢
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⋮ ⎦
⎥
⎥
⎤
                                       ሺ𝐐𝟗ሻ 

෍ 𝑻෩𝒏,𝒎
𝐜 𝐬𝐢𝐧𝟐 𝜽 𝐬𝐢𝐧 𝒏𝜽
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ൌ ෍ 𝒉𝒏,𝒎
𝐜 𝐬𝐢𝐧 𝒏𝜽

𝒏

                                                                 ሺ𝐐𝟏𝟎ሻ 
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⇒  ൦

𝟑 െ 𝒅𝒊𝒂𝒈𝒐𝒏𝒂𝒍
𝒎𝒂𝒕𝒓𝒊𝒙 ൪
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⎢
⎢
⎢
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⋮ ⎦
⎥
⎥
⎥
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ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ
𝐫𝐡𝐬 𝐨𝐟 ሺ𝟐𝟒𝒅ሻ

ൌ
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⎢
⎢
⎡
𝒉𝟏,𝒎

𝐜
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⋮ ⎦
⎥
⎥
⎤
                                    ሺ𝐐𝟏𝟏ሻ 

It should be explained why above equations are the same as those the author derived. 

 

For instance, in the case of odd 𝑚 ሺ൒ 3ሻ, the following equation are obtained from Eqs. (27a), (28), 

(29) and (21): 

1
2𝜋ଶ න න ሺsinଶ 𝜃 sin 𝑛𝜃ሻ cos 𝑚𝜆 ൥ ෍ ቀ𝑇௠

ୡ,ேሺ𝜃ሻ െ 𝑇෨௠
ୡ,௃ሺ𝜃ሻቁ cos 𝑚𝜆

ெ

௠ୀ଴

൩
గ

଴

ଶగ

଴
𝑑𝜃𝑑𝜆 ൌ 0             

ሺ𝑛 ൌ 1, … , 𝑁 െ 2ሻ      ሺR6ሻ 

From Eq. (R6), 

1
2𝜋

න sinଶ 𝜃 sin 𝑛𝜃 ቀ𝑇௠
ୡ,ேሺ𝜃ሻ െ 𝑇෨௠

ୡ,௃ሺ𝜃ሻቁ 𝑑𝜃 ൌ 0
గ

଴
                                     ሺR7ሻ 

is derived. From Eqs. (R7), (8a) and (19), we derive 

1
2𝜋

න sin 𝑛𝜃 ቎෍ 𝑇௡,௠
ୡ sinସ 𝜃 sin 𝑛𝜃

ேିଶ

௡ୀଵ

െ ෍ 𝑇෨௡,௠
ୡ sinଶ 𝜃 sin 𝑛𝜃

௃

௡ୀଵ

቏ 𝑑𝜃 ൌ 0.
గ

଴
         ሺR8ሻ 

Here, we define ℎ௡,௠
ୡ  and ℎ෨௡,௠

ୡ  as 

෍ ℎ௡,௠
ୡ sin 𝑛𝜃

ேାଶ

௡ୀଵ

≡ ෍ 𝑇௡,௠
ୡ sinସ 𝜃 sin 𝑛𝜃

ேିଶ

௡ୀଵ

,                                                           ሺR9ሻ 

෍ ℎ෨௡,௠
ୡ sin 𝑛𝜃

௃ାଶ

௡ୀଵ

≡ ෍ 𝑇෨௡,௠
ୡ sinଶ 𝜃 sin 𝑛𝜃

௃

௡ୀଵ

.                                                           ሺR10ሻ 

From Eqs. (R8), (R9) and (R10), we obtain 

ℎ௡,௠
ୡ ൌ ℎ෨௡,௠

ୡ           ሺ𝑛 ൌ 1, . . , 𝑁 െ 2ሻ.                                                                  ሺR11ሻ 

Thus, Eqs. (Q8), (Q9), (Q10) and (Q11) are derived. This is interesting. We will describe this in the 

paper or in the supplement. 

 

[3] The largest wavenumber (truncation wavenumber) in (8b) should be determined considering the 

grid structure, grid[0] or grid[1] or grid[-1] to make completeness of spectral expansion issue clear 

(refer to Cheong et al. 2004). 

 

Thank you for the advice. In the old DFS method using the Cheong’s basis functions in Eq. (6) with 

Grid [0], 𝑁 can be up to 𝐽଴ െ 1 for 𝑚 ൌ 0, and 𝐽଴ for 𝑚 ് 0 (Cheong et al. 2004). In the new 

DFS method using Eqs. (8), (19), (53) and (54) with Grid [0], 𝑁 can be up to 𝐽଴ െ 1 for each 𝑚 

because Eq. (66) is used for a scalar variable when 𝑚 is even and vector components when 𝑚 is 
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odd. In the new DFS method with Grid [1], 𝑁 can be up to 𝐽଴ െ 1 for each 𝑚 because Eq. (69) is 

used for a scalar variable when 𝑚 is odd and vector components when 𝑚 is even. In the new DFS 

method with Grid [−1], 𝑁 can be up to 𝐽଴ െ 1 for 𝑚 ൒ 2 because Eq. (69) is used for a scalar 

variable when 𝑚 ሺ൒ 3ሻ is odd and vector components when 𝑚 ሺ൒ 2ሻ is even. With Grid [−1], 𝑁 

can be up to 𝐽଴ െ 2 for 𝑚 ൌ 0,1 because Eqs. (73) and (75) are used for a scalar variable when 

𝑚 ൌ 1, and vector components when 𝑚 ൌ 0. When we use the model at the resolution 𝑁 ൌ 63 and 

𝐽଴ ൌ 64 using the new DFS method in Sect. 5, we set 𝑁 ൌ 63 for each 𝑚 except that we set 𝑁 ൌ

62 for 𝑚 ൌ 0,1, with Grid [−1]. We will describe this in the paper. 

 

[4] Section 2.12 presents the Laplacian operator and the Poisson’s equation. The accuracy of the new 

DFS method for these basic operators and others such as biharmonic diffusion operator should be 

addressed with detailed error magnitude. Also important is the global mean associated with the 

Poisson’s equation. 

 

The Laplacian operator and the Poisson equation is represented as 

𝑔 ൌ ∇ଶ𝑓.                                                                                                                ሺR12ሻ 

Here, the global mean of 𝑔  must be zero. Before calculating 𝑓  from a given 𝑔  in the Poisson 

equation, we should subtract the global mean from 𝑔 (Cheong 2000b). We will describe this in the 

paper. 

We examined the accuracy of the old and new DFS methods for the Laplacian operator in Eq. (R12) 

and the Helmholtz equation 

ℎ ൌ ሺ1 െ 𝜀∇ଶሻ𝑓.                                                                                                  ሺR13ሻ 

Here, we give the function 𝑓 as 

𝑓 ൌ ൝
𝐻
4

ቀ1 ൅ cos
𝜋𝑟
𝑅

ቁ
ଶ

               if 𝑟 ൏ 𝑅

            0                                 if 𝑟 ൒ 𝑅
,                                                         ሺR14ሻ 

𝑟 ൌ 𝑎 cosିଵሾsin 𝜙௖ sin 𝜙 ൅ cos 𝜙௖ cos 𝜙 cosሺ𝜆 െ 𝜆௖ሻሿ,                                ሺR15ሻ 

where 𝐻 ൌ 1000, 𝑅 ൌ 𝑎 3⁄ , 𝜙 is latitude, 𝜆 is longitude, a is the radius of the earth and 𝑟 is the 

distance between ሺ𝜆, 𝜙ሻ and the center ሺ𝜆௖, 𝜙௖ሻ ൌ ሺ3𝜋 2⁄ , 𝜋 2⁄ െ 0.05ሻ. The function 𝑓 is similar 

to the cosine bell in the Williamson test case 1, but ሺ1 ൅ cos 𝜋𝑟 𝑅⁄ ሻ is squared so that the second 

derivative of 𝑓 is continuous. To easily calculate the exact values of ∇ଶ𝑓, the center is temporarily 

set to the North Pole, that is, ሺ𝜆௖, 𝜙௖ሻ ൌ ሺ0, 𝜋 2⁄ ሻ  and 𝑟 ൌ 𝑎 cosିଵሾsin 𝜙ሿ ൌ 𝑎𝜃 , where 𝜃  is 

colatitude. At this time, 𝑔 is calculated as follows: 

𝑔 ൌ ∇ଶ𝑓 ൌ
1

𝑎ଶ ቈ
1

sinଶ 𝜃
𝜕ଶ𝑓
𝜕𝜆ଶ ൅

1
sin 𝜃

𝜕
𝜕𝜃

൬sin 𝜃
𝜕𝑓
𝜕𝜃

൰቉                                                                                        

ൌ െ
cos 𝜃
sin 𝜃

𝐻
2𝑎ଶ

𝜋𝑎
𝑅

ቂቀ1 ൅ cos
𝜋𝑟
𝑅

ቁ sin
𝜋𝑟
𝑅

ቃ ൅
𝐻

2𝑎ଶ ቀ
𝜋𝑎
𝑅

ቁ
ଶ

ቂsinଶ 𝜋𝑟
𝑅

െ ቀ1 ൅ cos
𝜋𝑟
𝑅

ቁ cos
𝜋𝑟
𝑅

ቃ.  ሺR16ሻ 
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Equation ሺR16ሻ is satisfied at any position of the center. The function ℎ is calculated by 

ℎ ൌ ሺ1 െ 𝜀∇ଶሻ𝑓 ൌ 𝑓 െ 𝜀𝑔,                                                                                     ሺR17ሻ 

where 𝜀 ൌ 0.01𝑎ଶ, and 𝑓 and 𝑔 are given by Eqs. (R14) and (R16). 

  To examine the accuracy for the Laplacian operator, 𝑓 is given by (R14), and ∇ଶ𝑓 is calculated 

from 𝑓 with the old DFS method, the new DFS method (See Sect. 2.12) and the SH method. The 

calculated values are compared with the exact values of ∇ଶ𝑓 in Eq. (16). Here, the exact values of 

∇ଶ𝑓 are truncated by the forward transform followed by the inverse transform in order to see the error 

that does not include the error due to the wavenumber truncation. Table R1 shows the root mean 

squared errors (RMSEs) between the calculated values and the exact values. The differences in error 

between the methods are small, and which is better depends on the resolution. Table R2 shows the 

global mean value of calculated ∇ଶ𝑓. The exact value of the global mean of ∇ଶ𝑓 is zero. In Table 

R2, the global mean values calculated with each method are very close to zero. 

  To examine the accuracy of the solution of the Helmholtz equation, ℎ is given in Eq. (R17) and 

the Helmholtz equation in Eq. (R13) is solved with the old DFS method, the new DFS method (See 

Sect. 2.13) and the SH method. The calculated values are compared with the exact solution 𝑓 in Eq. 

(R14). The exact values of 𝑓 are also truncated as described above. Table R3 shows the RMSEs 

between the calculated values and the exact values. The difference in error between the methods are 

small, and which is better depends on the resolution and the arrangement of the grid points. This kind 

of accuracy test is important, and we will describe this in the paper or in the supplement. 

 

 Old DFS [0] New DFS [0],[1],[−1] SH [Gaussian] 

128x64, N=42 7.479772 ൈ 10ିଵଷ 

4.179854 ൈ 10ିଵଷ 

4.089208 ൈ 10ିଵଷ 

4.772618 ൈ 10ିଵଷ 

5.278089 ൈ 10ିଵଷ 

320x160, N=106 4.033842 ൈ 10ିଵସ 

4.302001 ൈ 10ିଵସ 

4.242989 ൈ 10ିଵସ 

4.244875 ൈ 10ିଵସ 

3.933373 ൈ 10ିଵସ 

1920x960, N=639 4.407625 ൈ 10ିଵ଺ 

6.478465 ൈ 10ିଵ଺ 

6.514562 ൈ 10ିଵ଺ 

6.478465 ൈ 10ିଵ଺ 

4.257350 ൈ 10ିଵ଺ 

Table R1. The RMSEs of Laplacian operator calculation (∇ଶ𝑓) with the old and new DFS methods 

and the SH method. In the new DFS method, the results of Grid [0], Grid [1] and Grid [−1] are shown 

in this order. The number of longitudinal (I) and latitudinal (J) grid points is shown in the form I  J. 

N is the truncation wavenumber. 
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 Old DFS [0] New DFS [0],[1],[-1] SH [Gaussian] 

128x64, N=42 2.766693 ൈ 10ିଶ଺ 

1.474223 ൈ 10ିଶ଺ 

െ1.303193 ൈ 10ିଶହ 

െ6.176935 ൈ 10ିଶହ 

െ4.644813 ൈ 10ିଶ଻ 

320x160, N=106 െ1.647899 ൈ 10ିଶ଺ 

2.035640 ൈ 10ିଶ଺ 

3.226382 ൈ 10ିଶହ 

െ4.130437 ൈ 10ିଶହ 

3.004992 ൈ 10ିଶ଺ 

1920x960, N=639 െ4.215168 ൈ 10ିଶ଺ 

െ3.068185 ൈ 10ିଶ଺ 

2.356491 ൈ 10ିଶସ 

4.677050 ൈ 10ିଶହ 

9.469697 ൈ 10ିଶ଻ 

Table R2. Same as Table R1 except that the global mean values of calculated ∇ଶ𝑓 are shown. 

 

 Old DFS [0] New DFS [0],[1],[-1] SH [Gaussian] 

128x64, N=42 3.814822 ൈ 10ିଶ 

3.597815 ൈ 10ିଶ 

3.731604 ൈ 10ିଶ 

3.856617 ൈ 10ିଶ 

3.335080 ൈ 10ିଶ 

320x160, N=106 8.785639 ൈ 10ିସ 

8.781645 ൈ 10ିସ 

8.080622 ൈ 10ିସ 

8.091810 ൈ 10ିସ 

1.531216 ൈ 10ିଷ 

1920x960, N=639 2.193258 ൈ 10ି଺ 

2.193256 ൈ 10ି଺ 

1.937225 ൈ 10ି଺ 

1.945943 ൈ 10ି଺ 

1.918862 ൈ 10ି଺ 

Table R3. Same as Table R1 except that the RMSEs of the solution of the Helmholtz equation are 

shown. 

 

[5] One of the most basic test case is the cosine-bell advection, which is not included in this manuscript. 

The test case is simple but useful to demonstrate the advantage and disadvantages of a numerical 

method. 

 

The cosine-bell advection test case is certainly one of the most basic test cases. Since the advection 

equation is highly non-linear, it is challenging to solve the equation on the longitude-latitude grid 

using the Eulerian scheme with the DFS spectral method instead of the semi-Lagrangian scheme. We 

have run the Williamson test case 1 simulating the cosine-bell advection in the old DFS, new DFS, 

and SH Eulerian models. The advection equation is integrated by the leap-frog scheme with the 

Robert-Asselin time filter (Robert, 1969; Asselin, 1972) with a coefficient of 0.1. The horizontal 

diffusion is not used, but the zonal Fourier filter is used in the old and new DFS methods. In Eq. (76), 
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the value 𝑀଴ ൌ 20 is used in the DFS shallow water models. However, the larger the value 𝑀଴ is, 

the higher the longitudinal resolution around the pole is. Because of this, when the Eulerian scheme 

is used and 𝑀଴  is large, a timestep must be very short due to the CFL condition. Therefore 𝑀଴ 

should be as small as possible. We have tested 𝑀଴ ൌ 0, but this degrades the result of the Williamson 

test case 1. We have also tested 𝑀଴ ൌ 1 and this result is good. Therefore, we use 𝑀଴ ൌ 1 here. 

  Figure R1 shows the predicted height after a 12-day integration in the Williamson test case 1. The 

number of grid points is around 128  64. The truncation wavenumber N is 42 because the 2/3 rule 

(Orszag, 1971) is used in order to avoid aliasing in the nonlinear advection term. The timestep is 30 

minutes. The results for DFS [0], DFS [1], DFS [-1] and SH are very similar. Instability occurs in the 

old DFS model without horizontal diffusion. Table R4 shows the errors of the predicted height after a 

12-day integration in Williamson test case 1 (See Fig. 1) in the models at the resolution N=42 with 

around 128  64 grid points, and Table R5 shows the same as Table R4 except that the resolution is N 

= 639 with around 1920  960 grid points and the timestep is 150 seconds. The errors are very close 

among the models. At the resolution N = 639, the new DFS model without horizontal diffusion is 

unstable when the timestep is 200 seconds. The SH model without horizontal diffusion is stable when 

the timestep was 240 seconds and unstable when the timestep is 300 seconds. One reason for this 

difference in timestep is probably that the longitudinal resolution near the poles is higher in the new 

DFS model than in the SH model when 𝑀଴ ൌ 1. When the fourth order horizontal diffusion in Eq. 

(100) is used, the both new DFS and SH models are stable when the timestep is 240 seconds and are 

unstable when the timestep is 300 seconds. The old DFS model is unstable even when the same fourth 

order horizontal diffusion is used. Higher-order horizontal diffusion, which effectively smooths out 

the high wavenumber components, stabilizes the Eulerian old DFS model (Cheong, 2000b; Cheong et 

al., 2002). 

These results are very important and we will describe this in the paper. 

 

Asselin, R. A.: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487–490, 1972. 

 

Robert, A. J.: The integration of a low order spectal form of the primitive meteorological equations. J. 

Meteor. Soc. Japan, 44, 237–245, 1966. 
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Figure R1. Predicted height (m) after a 12-day integration in Williamson test case 1. In the upper 

figures, the black contour shows the predicted height, and the red contour shows the reference solution. 

In the lower figures, color shading shows the difference between the predicted height and the reference 

solution. 

 

 DFS Grid[0] DFS Grid[1] DFS Grid[-1] SH Gaussian grid 

L1 error 0.16761 0.163979 0.164086 0.167435 

L2 error 0.115567 0.115594 0.115593 0.115539 

Lmax error 0.09711 0.0934617 0.0934646 0.0954416 

Table R4. The error of predicted height after a 12-day integration in Williamson test case 1 (See Fig. 

1). The number of grid points is around 128  64, and the truncation wavenumber N is 42. 

 

 DFS Grid[0] DFS Grid[1] DFS Grid[-1] SH Gaussian grid 

L1 error 0.00980851 0.00980841 0.00980842 0.00981044 

L2 error 0.00824238 0.00824238 0.00824238 0.00824238 

Lmax error 0.0067255 0.0067281 0.0067281 0.00672429 

Table R5. Same as Table R4 except that the number of grid points is around 1920  960, and the 

truncation wavenumber N is 639. 

 

[6] It is very nice to see that the simulations are carried out without numerical instability even without 

horizontal diffusion. The author may address why it is possible. Is it due to the diffusive property of 

the semi-Lagrangian? 

 

One reason is due to the stability of the semi-Lagrangian scheme. Especially, the old DFS method 



9 

 

needs to use the semi-Lagrangian scheme for stability without horizontal diffusion. The new DFS 

method probably does not need to use the semi-Lagrangian scheme from the results obtained in the 

reply to the comment [5] above. We will add this explanation in the paper. 

 

[7] Figure 2. The problem setting is quite strange. In principle, any scalar function with 𝒎 ൐ 𝟎 

should vanish at poles. Nevertheless, the ‘original’ function is given to have value of unity at north 

pole. Therefore, the computation and comparison are not meaningful. 

 

In Figure 2, Grid [0] is used and there are no grid points at the poles. The original values are set to one 

at the grid points north of 30°N, and the value at the north pole is zero at the same time. This means 

that the original values abruptly change around the north pole. In the method of Cheong using Eq. (6), 

this abrupt change around the poles causes the large oscillations when the truncation wavenumber N 

for even 𝑚 ሺ൒ 2ሻ is lower than J. This explanation is necessary, and we will modify the explanation 

in Sect. 3. 

 

[8] Figure 5. Result of DFS0 appears to be too much smooth compared to DFS_old. Why is it? 

 

This is because the least squares method is used to calculate the expansion coefficients in DFS [0]. In 

Fig. 2, the number of latitudinal grid points 𝐽 is 64, and the truncation wavenumber 𝑁 is 63. Figure 

R2(a) shows the same figure as Fig. 2(a) except that 𝐽 ൌ 64 and 𝑁 ൌ 63. When 𝑁 ൌ 63, in the old 

DFS method using the Cheong’s basis functions in Eq. (6), we set 𝑁 ൌ 63 for 𝑚 ൌ 0, and 𝑁 ൌ 64 

for 𝑚 ് 0 . Because 𝑁 ൌ 𝐽  for even 𝑚 ሺ൒ 2ሻ , the forward transform followed by the inverse 

transform does not change the original values at the grid points, and the oscillations do not appear in 

the old DFS method. Fig. R2(b) is the same as Fig. R2(a) except that it also shows the values between 

grid points calculated from the expansion coefficients by using Eq. (6) or Eq. (8). The large oscillations 

appear in the old DFS method, and it makes the latitudinal derivative at the grid points large. This is 

probably one reason that high zonal wavenumber noise appears near the noise in the old DFS model 

without horizontal diffusion. In the new DFS method, only small ocillations appear in Fig. R2(b) 

because the error is minimized by using the least squares method when calculating the expansion 

coefficients. We think that this is important and we will add this explanation and Fig. R2 in this paper. 
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Figure. R2. Change in values due to the meridional wavenumber truncation for even |𝑚| ሺ൒ 2ሻ. We 

use Grid [0] with the number of latitudinal grid points 𝐽 ൌ 64 . Original values (black) are 

meridionally transformed from grid space to spectral space, truncated with 𝑁 ൌ 63, and transformed 

back from spectral space to grid space. Green: Cheong’s expansion method. Red: the new expansion 

method. (a) Values at the grid points. (b) Values at the grid points and between grid points calculated 

from the expansion coefficients. 

 

Specific minor comments 

[1] The right hand side of (25) should be represented with matrix-vector multiplication as in the left 

hand side. 

 

Thank you for the advice. We will modify Eq. (25). 

 

[2] Terms associated with 𝑻෩𝟏,𝒎
𝐜,𝑱   and 𝑻෩𝟏,𝒎

𝐜,𝑱   in (36) do not appear in (37). The reason should be 

explained. 

 

I am sorry this is a typo. The right equation for Eq. (37) is  

𝐸ୗୌ ൌ
1
2

න ൥ቀ𝑇௠ୀ଴
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ଶ

ெ

௠ୀଵ
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൩ sin 𝜃 𝑑𝜃.                             

 

[3] Equation (B1) can be found in Cheong 2000a. 

 

We have forgotten to cite Cheong 2000a. We will fix it. 

 

 


