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Abstract. Earth system models (ESMs) are useful tools for predicting and understanding past and future aspects of 

the climate system. However, the biological and physical parameters used in ESMs can have wide variations in their 

estimates. Even small changes in these parameters can yield unexpected results without a clear explanation of how a 10 

particular outcome was reached. The standard method for estimating ESM sensitivity is to compare spatiotemporal 

distributions of variables from different runs of a single ESM. However, a potential pitfall of this method is that ESM 

output could match observational patterns because of compensating errors. For example, if a model predicts overly 

weak upwelling and low nutrient concentrations, it might compensate for this by allowing phytoplankton to have a 

high sensitivity to nutrients. Recently, we demonstrated that neural network ensembles (NNEs) are capable of 15 

extracting relationships between predictor and target variables within ocean biogeochemical models. Being able to 

view the relationships between variables, along with spatiotemporal distributions, allows for a more mechanistically 

based examination of ESM outputs. Here, we investigated whether we could apply NNEs to help us determine why 

different ESMs produce different spatiotemporal distributions of phytoplankton biomass. We tested this using three 

cases. The first and second case used different runs of the same ESM, except that the physical circulations differed 20 

between them in the first case while the biological equations differed between them in the second. Our results indicated 

that the NNEs were capable of extracting the relationships between variables for different runs of a single ESM, 

allowing us to distinguish between differences due to changes in circulation (which do not change relationships) from 

changes in biogeochemical formulation (which do change relationships). In the third case, we applied NNEs to two 

different ESMs. The results of the third case highlighted the capability of NNEs to contrast the apparent relationships 25 

of different ESMs and some of the challenges it presents. Although applied specifically to the ocean components of 

an ESM, our study demonstrates that Earth System Modellers can use NNEs to separate the contributions of different 

components of ESMs. Specifically, this allows modellers to compare the apparent relationships across different ESMs 

and observational datasets. 

1 Introduction 30 

Earth system models (ESMs) are increasingly used to help us understand how anthropogenic greenhouse gas emissions 

will affect biological systems and how such changes will feed back on the climate system. Although these methods 

provide an avenue for examining processes on a global scale, their representations of biological and physical processes 
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of the natural world are limited by imperfect knowledge and the inability to resolve these processes with current 

models which require ever increasingly higher computational costs for additional complexity and resolution. As a 35 

result, estimates of critical biological and physical parameters can vary quite substantially. For example, from tracer 

experiments in the North Atlantic subtropical gyre, diapycnal diffusivity was estimated between 0.1 to 0.5 cm2 s-1 

(Ledwell et al., 1998), with similar values having been used in ESMs. Varying the diapycnal diffusivity within this 

range in ESMs has been shown to yield different results in the biogeochemical output (Oschlies, 2001; Duteil and 

Oschlies, 2011). Furthermore, ESMs do not agree about how to represent phytoplankton growth parameters, such as 40 

temperature dependence. In the nine ESMs compared in Laufkötter et al. (2015), the Q10 value describing the 

sensitivity of growth rate to 10 degree increases in temperature ranged from 1.68 to 3, with some models varying the 

Q10 values based on the size or type of phytoplankton.   

 

The uncertainty associated with some ESM parameters can make it difficult to understand why different ESMs may 45 

yield different predictions for biological variables ranging from productivity to carbon uptake. Bopp et al. (2013) 

demonstrated that while CMIP5 models showed the same overall global trends under climate change for variables 

such as pH, sea surface temperature, O2, and primary productivity, there were substantial cross-model differences in 

O2 and primary productivity on regional scales.  

 50 

Traditional methods used to estimate the sensitivity of ESMs often compare the spatial distributions of biological and 

physical variables from different runs of a single ESM to each other or to observations. However, occasionally changes 

in one parameter improve the simulation of one variable while degrading the simulation of another (see for example, 

Bahl et al. (2019), their Table 2). Other times, errors in one variable are due to errors in another (i.e., getting a physical 

front in the wrong place may mean that the biomass has the wrong distribution).  55 

 

The intent of ESMs is to get the correct spatial distribution both because the correct relationships between 

environmental predictors and target variables are being modelled and because the environmental predictors themselves 

are correctly modelled. However, it’s difficult to know if the correct relationships are indeed being modelled. Thus, a 

method is needed in which we can evaluate whether different ESMs yield different projections because of fundamental 60 

differences in biogeochemical formulation, or whether such differences are primarily due to differences in physical 

circulations and climate sensitivities. Of the potential methods available, neural network ensembles (NNEs) are a 

strong candidate. NNEs are a machine learning (ML) technique which use the average of many individual neural 

networks (NNs) to predict the outcome of datasets. The objective of this paper is to investigate whether the application 

of NNEs and sensitivity analyses can provide useful information for determining the most substantial sources of 65 

differences in ESM outputs. 

 

We previously demonstrated that NNEs were able to extract relationships between biological forcings and outputs 

within a simplified biogeochemical model (Holder and Gnanadesikan, 2021). NNEs were able to outperform other 

ML algorithms, such as random forests. More importantly, NNEs also had the benefits of being able to extrapolate 70 
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outside the range of the training dataset and to provide a measure of their uncertainty in their predictions. In Holder 

and Gnanadesikan (2021), we defined two types of relationships between environmental forcings and biological 

responses: intrinsic and apparent. Intrinsic relationships are those where the effect of one predictor variable on an 

outcome (target variable) can be examined, while maintaining other predictors at a constant level. An example of this 

would be the results of a laboratory experiment examining how the growth rate of a particular species of phytoplankton 75 

depends on different nutrient concentrations, while all other factors remain constant. For ESMs, an example might be 

the Michaelis-Menten relationships programmed into ESMs that represent how phytoplankton interact with each 

nutrient. Apparent relationships are determined by how the intrinsic relationships interact across space and time, where 

individual variables are not controlled but may systematically co-vary. An example of this would be the relationships 

that emerge in the output of ESMs, where the intrinsic relationships programmed into the ESM have interacted with 80 

one another across time and space and then had their outputs averaged into monthly-averaged fields. An example of 

this in the context of real-world environments would be comparing satellite observations of phytoplankton 

distributions against monthly distributions of nutrients; where low phytoplankton concentrations may result both from 

low nutrients and high irradiance in the summer in some locations, but also high nutrients and low irradiance in the 

winter in other locations. As a result, the apparent relationships between nutrients and biomass would not resemble 85 

the intrinsic Michaelis-Menten curves coded in the ESM. A proof-of-concept application of NNEs coupled with 

sensitivity analyses at the end of Holder and Gnanadesikan (2021) demonstrated the ability of NNEs to draw out the 

co-limitations in a non-linear biogeochemical model and illustrated how these co-limitations differed from the 

Michaelis-Menten curves programmed into the model.  

 90 

For this study, we focus on marine phytoplankton physiology, but these approaches are also applicable to other 

components of ESMs, including atmospheric and terrestrial. In general, there are two primary drivers that lead to 

differences in how ESMs simulate phytoplankton biogeography: physical forcings and phytoplankton physiology. 

Insofar as both of these act to affect nutrient cycling they can also act in combination to produce indirect impacts. 

Before applying this method to outputs of multiple ESMs, we investigate whether the method works well on different 95 

runs of a single ESM in which physical parameters are changed to produce different circulations. It is uncertain 

whether the NNEs are able to pick out the same apparent relationships of the same ESM when there are differences 

between runs in the physical forcings and intrinsic biological equations (phytoplankton physiology). If different 

versions of an ESM, which have different circulations, still yield the same apparent relationships between 

irradiance/nutrients and biomass, it would suggest that circulation changes do not produce new patterns of co-100 

limitation. It is worth noting that we are only stating this in the context of ESMs, as this may not necessarily be true 

in the real ocean. Furthermore, it would suggest that differences in the apparent relationships of different ESMs could 

be partitioned between those due to different physical circulations and those with different representations of biology. 

For example, if one uses the apparent relationships from model A to predict the biomass from model B given the 

environmental parameters from model B, any differences should be due to differences in the biological formulation. 105 

 

To investigate the extent to which NNEs could characterize differences across ESMs, we explore three cases: 
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1. We examine an ESM in which biomass is by construction a function of nutrients and irradiance. Using three 

different runs of this ESM, we maintain identical intrinsic biological relationships, but vary the physical 110 

parameters controlling the circulation across the different runs. The objective of the first case is to quantify the 

extent to which differences in physical circulation might affect the apparent relationships between predictor 

(irradiance, nutrient, and temperature) and target (biomass) variables found by NNEs. If models with different 

circulations produce differences in the apparent relationships, this would indicate that differences in circulation 

could push the biology into fundamentally new states, i.e., phytoplankton in one location experience new 115 

combinations of co-limitation or temporal variability (as described by Henson et al. (2021)). However, if the 

NNEs find the same apparent relationships between runs when the physical circulation is changing, this would 

indicate that the primary effect of changing the circulation is simply to change the times and locations where 

different combinations of irradiance and nutrients are found, rather than creating new patterns of co-limitation, 

i.e., phytoplankton are governed by the same dynamics/equations regardless of location. 120 

2. We use the same ESM as that of Case 1, except we maintain similar physical circulations between runs and 

change the intrinsic biological relationships (this results in a small change in circulation because within our 

ESM the biological cycle affects physical circulation by changing the absorption of shortwave radiation). The 

objective of the second case is to quantify the ability of NNEs to detect differences in the apparent relationships 

when the intrinsic biological relationships between model runs are different and to document the size of those 125 

differences. 

3. For the final case, we look at two different ESMs that have different biogeochemical codes but are run within 

the same physical model giving them identical physical circulations. The first ESM follows the framework of 

the ESMs in Cases 1 and 2, where biomass is a function of nutrients. The second ESM allows biomass to be 

advected and diffused, making biomass a function of nutrients, irradiance, and physical circulation. The 130 

objective of the third case is to apply the principles from Cases 1 and 2 to more standard ESMs, to quantify the 

extent to which physical circulation contributes to these apparent relationships, and to identify challenges in 

comparing the apparent relationships between ESMs.  

2 Methods 

2.1 Earth System Models – Biogeochemical Codes 135 

In general, ocean biogeochemical components (BCs) of ESMs predict the evolution of phytoplankton biomass, B, 

using equations that have the general form 

𝝏𝑩

𝝏𝒕
+ �⃗⃗� ∗ 𝛁𝑩 = 𝝁(𝑵, 𝑰, 𝑻) ∗ 𝑩 − 𝑮(𝑩,… ) + 𝛁 ∗ �⃗⃗⃗� ∗ 𝛁𝑩 (1) 

where �⃗�  is the three-dimensional velocity field, 𝜇 is the phytoplankton growth rate which is a function of nutrients N, 

irradiance I, and temperature T, 𝐺(𝐵,… ) represents the grazing loss rate, which may be a function of phytoplankton 

biomass and/or other variables such as temperature or zooplankton concentration, and �⃗⃗�  is the three-dimensional 140 



 

5 

 

mixing tensor. Changes in physical parameters (for example changing the values in �⃗⃗� ) would produce changes in 

transport of biomass. But the associated changes in circulation would also produce changes in other fields, such as N, 

I, and T (and thus in growth rate 𝜇). Differences in the physical parameters between models will produce both direct 

differences, due to transport, and indirect differences, due to changes in growth and/or grazing. Additionally, insofar 

as the biology affects the absorption of shortwave radiation, it can produce differences in the circulation (Sweeney et 145 

al., 2005), although for the simulations in this paper the differences are relatively small. 

 

For this paper, we focus on the ocean BCs run within two ESMs: Biogeochemistry with Light, Iron, Nutrients, and 

Gases (BLING) and Tracers of Phytoplankton with Allometric Zooplankton (TOPAZ). As described below, BLING 

can be thought of as a simplified version of TOPAZ. For Cases 1 and 2, we only use model runs within different 150 

versions of GFDL ESM2Mc, in which BLING is the BC, with the reasoning that if the NNEs are unable to distinguish 

apparent relationships in the simpler BLING model, they would not be able to do so in the more complex TOPAZ 

model. In Case 3, we use versions of the GFDL ESM2M model in which BLING and TOPAZ are used as the BCs to 

compare apparent relationships found within the ESM.  

2.2 Biogeochemistry with Light, Iron, Nutrients, and Gases (BLING) 155 

BLING is a diagnostic biogeochemical model (Fig. 1) described in Galbraith et al. (2010), which was developed as a 

relatively computationally cheap biogeochemical code that could be run in high-resolution models. Only four explicit 

tracers are included in the model: oxygen, dissolved organic phosphorus, phosphate, and iron (the last two 

corresponding to the nutrients (N) in Fig. 1). Phytoplankton are represented as two size classes: small and large 

(Biomass (B) in Fig. 1). Phytoplankton growth and grazing 𝐺(𝐵, 𝑇) are modelled using the phytoplankton size-160 

dependent loss equation developed by Dunne et al. (2005) represented as  

𝝁(𝑵, 𝑰, 𝑻) ∗ 𝑩 ≈ 𝑮(𝑩, 𝑻) = 𝝀 (
𝑩

𝑷∗
)
𝜶

𝑩 (2) 

where 𝜆 is a grazing rate, 𝑃∗ is a biomass scaling for grazing, and 𝛼 is a grazing exponent. The grazing rate includes 

all losses due to grazing, viral lysis, temperature-dependent loss, and others. For the small phytoplankton size class α 

= 1 and for the large phytoplankton size class α= 1/3. This means the large phytoplankton biomass is more sensitive 

to environmental conditions than the small phytoplankton biomass. The growth rate (μ) in Eq. (2) goes as 165 

𝝁 = 𝝁𝒐 ∙ 𝐞𝐱𝐩(𝒌𝑻) ∙ (𝟏 − 𝐞𝐱𝐩 (−
𝑰

𝑲𝑰
)) ∙ 𝐦𝐢𝐧 (

𝑭𝒆

𝑲𝑭𝒆 + 𝑭𝒆
,

𝑷𝑶𝟒

𝑲𝑷𝑶𝟒
+ 𝑷𝑶𝟒

) (3) 
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where 𝜇 is the growth rate, 𝑇 is the temperature with constant 𝑘 = 0.063°C-1 following Eppley (1972), 𝐾𝐹𝑒,𝑃𝑂4,𝐼 are 

the half-saturation constants, and 𝐼, 𝐹𝑒, and  𝑃𝑂4, are the irradiances and the concentrations of dissolved iron and 

phosphate, respectively. 𝐾𝐼  is a function of the nutrient and temperature dependent growth rate following Geider et al. 

(1997). The time averaged biomass then goes as  

�̅� ≈ (
�̅�

𝝀
)

𝟏
𝜶
𝑷∗ (4) 

Note that this means that given N, I, and T (all of which are still predicted by the circulation model), the apparent 170 

relationships between biomass, nutrients, and irradiance are potentially tightly coupled to the intrinsic relationships 

governing phytoplankton physiology that determine the growth rate. 

 

Location 1 Location 2

Time step J, 
initial values

Physical 
circulation

Biological cycling 

Time step J+1, initial 
values

DIAGNOSTIC (BLING)

Figure 1: Conceptual diagram of how biogeochemical evolution is computed within an ESM using the BLING BC. 

The letters and abbreviations represent: nutrients (N), phytoplankton biomass (B), the physical circulation component 

(phys), and the biological cycling component (bio). Each location has initial values for nutrients and biomass. These 

initial values are passed to the intrinsic biological relationships which then feed into the g function in the biological 

cycling box that are then used to calculate the changes in nutrients and biomass due to biological cycling. The initial 

nutrient concentrations between the two locations result in a change in nutrients from physical transport, which is 

equal in magnitude and opposite in sign between the two boxes (physical circulation component). When the physical 

circulation and biological cycling portions are coupled together, the nutrients and biomass for the next time step are 

calculated. 
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2.3 Tracers of Phytoplankton with Allometric Zooplankton (TOPAZ) 

TOPAZ is a prognostic biogeochemical model included in the Geophysical Fluid Dynamics Laboratory (GFDL) 175 

ESM2M (Dunne et al., 2013; Fig. 2). It includes a total of 30 tracers to model cycles such as nitrogen, phosphorus, 

iron, oxygen, carbon, and others (Nutrients (N) in Fig. 2). TOPAZ models three phytoplankton groups (small, large, 

and diazotrophic; Biomass (B) in Fig. 2) with irradiance limitation based on the equations of Geider et al. (1997). 

Additionally, phytoplankton loss/grazing and particle export are modelled using the same size-dependent formulation 

as those used in Eq. (2), though without imposing the quasi-equilibrium assumption that leads to Eq. (4). TOPAZ 180 

differs from BLING in its number of tracers (and associated limitations) and the allowance for advection/diffusion of 

nutrients and biomass (Δ𝐵𝑗
𝑝ℎ𝑦𝑠

 in Fig. 2). This means that the loss rate of phytoplankton in TOPAZ is effectively a 

function of circulation as well the temperature and biomass-dependent grazing rate, 𝜆 (
𝐵

𝐵∗
)
𝛼

. This will produce 

different biomasses in locations that have the same growth rates. Additionally, a key difference between BLING and 

TOPAZ is that the latter includes denitrification and nitrogen fixation. This then means (as suggested by Tyrrell 185 

Location 1 Location 2

Time step J, 
initial values

Physical 
circulation

Biological cycling 
,

Time step J+1, initial 
values

,

PROGNOSTIC (REAL WORLD/TOPAZ)

Figure 2: Conceptual diagram of how biogeochemical evolution is computed within an ESM using the  prognostic 

TOPAZ BC. The letters and abbreviations represent: nutrients (N), phytoplankton biomass (B), the physical 

circulation component (phys), and the biological cycling component (bio). This ESM differs from the one described 

in Fig. 1. In this prognostic model, the changes in biomass from the biological cycling component are a function of 

the nutrients and biomass, rather than nutrients alone. Additionally, a change in biomass due to physical circulation is 

added. 
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(1999)) that the nitrogen is the proximate limiting nutrient, while phosphorus is the ultimate limiting nutrient; a 

distinction that is not made in BLING. 

3 Case Descriptions 

3.1 Case 1 - Same ESM: Identical Biological Equations, Different Physical Circulations 

The aim of Case 1 is to quantify the extent to which differences in physical circulations between model runs of the 190 

same ESM with identical intrinsic biological relationships could affect the apparent relationships found by NNEs. As 

stated in Section 2.1, we compare versions of GFDL ESM2Mc in which BLING is configured identically so we can 

be certain the differences are solely due to circulation changing the environmental conditions, and not the 

phytoplankton loss rates. Within GFDL ESM2Mc, the nominal resolution is 3 degrees longitudinally and 2 degrees 

latitudinally, while the vertical resolution has 28 levels. Model runs are initialized with observations and spun up for 195 

1900 years. The final 100 years are used to generate a monthly climatology. 

 

We use three configurations of GFDL ESM2Mc. The three model runs consist of: a standard historical pre-industrial 

model spin-up (BLING – PI Control), a similar case to the first but where the carbon dioxide concentration is four 

times higher (BLING – 4x CO2), and a case similar to the historical spin-up except that the horizontal mixing parameter 200 

is three times higher (BLING – 3x Mixing). These model runs are described in greater detail in Gnanadesikan et al. 

(2013), Pradal and Gnanadesikan (2014), and Bahl et al. (2020). With the standard historical model essentially serving 

as a form of a “control,” the two remaining cases allow us to examine if changes in the physical circulation could 

result in changes to the apparent relationships. 

 205 

The predictor variables for each model run are macronutrient (e.g., phosphate), micronutrient (e.g., dissolved iron), 

irradiance, and temperature. The target variables are small phytoplankton biomass and large phytoplankton biomass. 

One NNE is trained for each target variable of each model run for a total of six NNEs in Case 1 (three model runs and 

two target variables in each run). Details of the NNE training and the construction of the individual NNs making up 

each NNE can be found in Section 3.4. 210 

3.2 Case 2 - Same ESM: Different Diagnostic Biological Equations, Near-Identical Physical Circulations 

The purpose of Case 2 is to quantify the differences found by NNEs between the apparent relationships of model runs 

from the same ESM when the biological equations differ between runs, but the physical circulations are nearly 

identical. 

 215 

As in Case 1, we use different configurations of ESM2Mc, but this time we keep the physical parameterizations 

constant but change constants within the BLING BC. We use two model runs: the standard historical pre-industrial 

model spin-up used in Case 1 (BLING – PI Control) and one with similar distributions to PI Control but different half-

saturation coefficients (KFe and KPO4 in Eq. (3)) for small and large phytoplankton (BLING – LgSm). Changing the 
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half-saturation coefficients, which directly affects phytoplankton growth, is analogous to changing the biological 220 

equations. Relative to the PI Control, the half-saturation coefficients in LgSm are decreased by √3 for small 

phytoplankton and increased by √3 for large phytoplankton. While these changes produce differences in circulation 

and SST via changing the absorption of shortwave radiation, these differences are small (R2 = 0.9949 for SST between 

the two model runs). The primary impact of these changes is to affect the distribution of nutrients, as increasing the 

half-saturation coefficients for large phytoplankton makes it harder for these phytoplankton to grow and efficiently 225 

export nutrients.  

 

The predictor variables for the model runs of Case 2 are the same as those in Case 1 (macronutrient, micronutrient, 

irradiance, and temperature). Likewise, the target variables are also the same as those in Case 1 (small and large 

phytoplankton biomass). A total of four NNEs are trained for Case 2 (two model runs and two target variables).  230 

3.3 Case 3 - Different ESMs: Prognostic vs. Diagnostic Biological Equations, Identical Physical Circulations 

For Case 3, the goal is to examine whether the results from a diagnostic BC from Cases 1 and 2 still hold when a 

prognostic BC is used. Our goal is to examine any differences in apparent relationships, along with identifying 

challenges when comparing apparent relationships across more realistic ESMs. In this experiment, the BCs are 

governed by different biological equations but are run within the same physical model so that the temperatures and 235 

irradiance seen by the two BC codes are identical. 

 

One of our model simulations uses a version of BLING as the BC, while the other uses TOPAZ. For the BLING model 

run, the iron concentrations are fixed at their climatological values since this formulation was previously used to 

develop a model for very high-resolution studies (miniBLING). We use this pair of simulations since the miniBLING 240 

code is run in an identical physical circulation to the TOPAZ model run and so the irradiance and temperature 

experienced by the two model ecosystems are identical. The ESM2M uses a 1 degree latitude/longitude resolution 

with 50 vertical layers and the model is spun up for 2400 years. These simulations are described in more detail in 

Galbraith et al. (2015), which shows that BLING and miniBLING yield essentially identical predictions for carbon 

uptake and ocean deoxygenation under increased CO2. 245 

 

The predictor variables for Case 3 are limited to variables that are present in both ESMs: macronutrient, micronutrient, 

and irradiance. The target variable is total biomass. The biomass is not split into small and large phytoplankton 

biomass because the miniBLING output only contains total biomass. For consistency, the small and large 

phytoplankton biomass values in TOPAZ are combined to give total biomass. Two NNEs are trained for Case 3 (two 250 

ESM runs and one target variable).  

3.4 Neural Network Ensembles (NNEs) 

NNEs are an ensemble ML method. NNEs are comprised of a collection of individual neural networks (NNs) where 

the predictions of each NN are averaged into a single prediction. This ensemble approach has been shown to 
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outperform individual NNs and reduce the generalization error within a dataset (Hansen and Salamon, 1990) by 255 

turning individual “weak learners” into a single “strong learner.” Individual NNs can fit a non-linear function to a 

dataset without assuming any prior knowledge of the system. For a more thorough discussion of NNs, please refer to 

Schmidhuber (2015). The basic structure of the NN approach that we use here is described in Appendix 1 of Scardi 

(1996). 

 260 

We use NNEs for several reasons: 

1. The ensemble approach of NNEs allows us to view the uncertainty in any given prediction based on the 

individual predictions of each NN. 

2. NNEs possess some capability of extrapolating outside the range of the data on which they are trained (Holder 

and Gnanadesikan, 2021).  265 

3. As recently shown in Holder and Gnanadesikan (2021), NNEs were able to more closely reproduce the 

underlying intrinsic relationships compared to random forests, mainly because of their ability to extrapolate. 

 

The structure of the individual NNs is consistent between the three cases with each NN containing 25 nodes in the 

hidden layer with a hyperbolic tangent sigmoid activation function and 1 node in the output layer with a linear 270 

activation function. We demonstrated in previous work that the NNE predictions were not greatly improved with the 

addition of a second hidden layer or with hidden layer node quantities greater than 25 (Holder and Gnanadesikan, 

2021). Additionally, the activation function of the hidden layer nodes did not see a substantial increase in performance 

either as long as a non-linear function was used (Holder and Gnanadesikan, 2021). The settings specified here allow 

for reasonable training times while maintaining high performance metrics relative to the other formulations tested in 275 

our previous work (Holder and Gnanadesikan, 2021). For more detailed information, see Appendix B2 in Holder and 

Gnanadesikan (2021).  

 

The difference between each case is in the number of input nodes: Cases 1 and 2 each contain four input nodes (one 

for each predictor) and Case 3 has three input nodes. The predicted concentration of each target variable (second 280 

column of Table 1) in individual NNs can be thought of as a function of the respective predictors (first column of 

Table 1). For example, one NN of the NNE for the small phytoplankton biomass target variable in Case 1 would have 

the following structure: 

1. The four predictor variables for Case 1 (first column of Table 1) correspond to the four nodes in the input layer 

of the NN. 285 

2. Each of the four input nodes is connected by weights to each of the 25 nodes in the hidden layer. Additionally, 

a bias term is connected to each of the hidden nodes. 
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3. Each of the nodes in the hidden layer is connected by weights to the single node in the output layer, which, for 

this instance, would correspond to the target variable of small phytoplankton biomass. As with the hidden layer, 

a bias term is connected to the single output node. 290 

 

The training of each NN is carried out using the “feedforwardnet” function in MATLAB 2019b (MATLAB, 2019). 

For each trained NN, the “feedforwardnet” function is provided the training dataset, which it then automatically 

separates into training, validation, and testing subsets, with 70% of the observations from the training dataset going 

to the training subset, 15% to the validation subset, and 15% to the testing subset. The training stops when the error 295 

between the predictions and observations increases for six consecutive epochs.  

 

Separate NNEs are trained for each response variable in each model run, which equates to six NNEs (2 target variables, 

3 simulations) in Case 1, four NNEs in Case 2, and two NNEs in Case 3. For consistency, the same framework and 

settings are used for the construction of the NNEs with each one consisting of 25 individuals NNs. 300 

 

Each variable is also scaled between -1 and 1 relative to each variable’s maximum and minimum 

𝑽𝑺 =  
𝒎𝒂𝒙𝑺 − 𝒎𝒊𝒏𝑺

𝒎𝒂𝒙𝑼 − 𝒎𝒊𝒏 𝑼
 (𝑽𝑼 − 𝒎𝒊𝒏𝑼) + 𝒎𝒊𝒏𝑺 (5) 

Where V is the value of a variable being scaled, S (subscript) is the scaled value, and U (subscript) is the unscaled 

value. This scaling puts the predictor values in the same range, so more weight is not given to variables with larger 

ranges. Additionally, this step decreases the training time of the NNs so that no values are too close to the limits of 305 

the hyperbolic tangent sigmoid activation function. The variables and predictions are then scaled back to their original 

1

Macronutrient (mol kg
-1

); 

Micronutrient (mol kg
-1

); 

Irradiance (W m
-2

); 

Temperature (°C)

Small Phytoplankton 

Biomass (mol P kg
-1

); 

Large Phytoplankton 

Biomass (mol P kg
-1

)

BLING
PI Control; 4xCO2; 

3x Mixing

Identical diagnostic BC 

across model runs

Predicted by different versions of 

ESM2Mc produced by significant 

changes in phyical parameters

2

Macronutrient (mol kg
-1

); 

Micronutrient (mol kg
-1

); 

Irradiance (W m
-2

); 

Temperature (°C)

Small Phytoplankton 

Biomass (mol P kg
-1

); 

Large Phytoplankton 

Biomass (mol P kg
-1

)

BLING PI Control; LgSm
Different diagnostic BC 

across model runs

Nearly identical circulations 

produced by ESM2Mc

3

Macronutrient (mol kg
-1

); 

Micronutrient (mol kg
-1

); 

Irradiance (W m
-2

)

Total Phytoplankton 

Biomass (mol P kg
-1

)

miniBLING and 

TOPAZ

One model run 

from miniBLING; 

one model run from 

TOPAZ

Simple diagnostic vs complex 

pronostic BC

Identical physical circulations 

produced by ocean component of 

ESM2M

Biogeochemical 

Component
Model Runs Biological Specifications Physics/Circulation SpecificationsCase # Predictor Variables Target Variables

Table 1: Summary of each case which includes information on the predictor variables, the target variables, the ESMs, 

the model runs, the biological specifications, and the physical circulation specifications. 
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values for analysis and presentation of the results (Eq. (6)). The letter representations in Eq. (6) are the same as those 

in Eq. (5). 

𝑽𝑼 = 
𝒎𝒂𝒙𝑼 − 𝒎𝒊𝒏𝑼

𝒎𝒂𝒙𝑺 − 𝒎𝒊𝒏 𝑺
 (𝑽𝑺 − 𝒎𝒊𝒏𝑺) + 𝒎𝒊𝒏𝑼 (6) 

 

When using ML, it is possible to produce overly complex relationships that “overfit” the data. This provides a good 310 

match for the data on which an ML model is trained but leads to poor predictions when new data is presented to the 

model. This can be avoided by splitting a dataset into training and testing subsets. For this manuscript, this means 

each NNE is trained using only the observations in the training subset and tested on the observations from the testing 

subset. The data from each model run is randomly split into training and testing subsets with 60% of the observations 

from a dataset going to the training subset and the other 40% going to the testing subset. The observations set aside in 315 

the testing subset are ones that the NNEs never see during their training phase. This provides a way to evaluate each 

trained NNE and its generalizability. If performance metrics of a trained NNE are similar between the training and 

testing subsets, it suggests that the variance of the dataset is well captured in the training phase and the NNE is 

generalizable to the entire dataset. 

 320 

To assess the performance of each NNE, we calculate the standard R2 values and root mean squared error (RMSE) by 

comparing the monthly biomass predictions from each NNE to the “true” monthly biomass values of the model runs 

within the respective training and testing subsets. 

 

The NNEs in each case and matching size class are also asked to make predictions on the testing subsets of the other 325 

model runs. For example, in Case 1 the NNE trained on the small phytoplankton of PI Control is asked to make 

predictions for small phytoplankton of 4xCO2 using the values of the predictors from the testing subset of the 4xCO2 

model run. These results are then compared to the actual values of the target variable to calculate the RMSE. This 

RMSE is then used to calculate the percent increase/decrease in error when compared against the RMSE calculated 

from a point-by-point comparison of each model run against the others. The purpose of this is to provide another 330 

metric for testing if the NNEs are finding common apparent relationships across model runs. If an NNE trained on 

one model run is able to predict the outcomes of the other model runs with errors that are similar in magnitude to the 

NNEs that were trained on those runs, it would suggest that the NNEs are finding similar apparent relationships 

between the model runs. On the other hand, if it shows an increase in RMSE, it suggests that the apparent relationships 

between the model runs are different in biologically important ways.  335 

 

To view the apparent relationships found by the NNEs, we conduct sensitivity analyses in which we present each NNE 

with a unique set of values for the predictors. Compared to spatiotemporal distributions and time series, sensitivity 

analyses allow for the visualization of relationships between predictor and target variables. In each sensitivity analysis, 

one predictor is varied across its minimum and maximum range, while the other variables are held at a specified value, 340 

such as each variable’s 25th percentile. This is repeated for the 50th and 75th percentile values of each variable as well. 

This allows us to visualize how the biomass predictions change across one variable’s range when the other variables 
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are held at a specified value. An example of this is varying the macronutrient concentration while holding the 

micronutrient, irradiance, and temperature variables at their 25th or 75th percentile values. This allows us to see how 

the macronutrient concentration affects biomass when other nutrients are low or high, respectively. 345 

4 Results and Discussion 

4.1 Case 1 – Same ESM: Identical Biological Equations, Different Physical Circulations 

In Case 1, our objective is to quantify the extent to which differences in physical circulation might affect the apparent 

relationships found by NNEs when the intrinsic biological relationships remain the same between the model runs and 

the physical circulation parameters differ. It is uncertain whether changing the circulation would lead to new patterns 350 

of co-limitation (i.e., different apparent relationships) or whether the physical circulation would simply act to change 

the location of where combinations of irradiance and nutrients are found (i.e., same apparent relationships).  

 

Our results support the latter outcome, that the locations of particular environments are simply being shuffled around. 

The sensitivity analysis shows that each NNE finds similar apparent relationships between biomass and each of the 355 

predictors for the respective size classes, insofar as each line falls within the standard deviation of the others (Fig. 3 

and 4). For example, the standard deviation (gray region) around the predicted apparent relationships for the large 

phytoplankton (dashed lines) all overlap one another (Fig. 3). The same is seen for the predicted apparent relationships 

for the small phytoplankton (Fig. 4). Additionally, we are confident in the apparent relationships since each NNE 

acquires high performance metrics in both the training and testing subsets (highest RMSE = 3.11x10-9 mol P kg-1; 360 

Table 2) relative to the mean value of the total biomass (1.24x10-8 mol P kg-1).  

 

Case # Phytoplankton Size ESM/Model Run/BC

R-squared RMSE R-squared RMSE

ESM2Mc / PI Control / BLING 0.9912 6.24 x 10
-10 0.9908 6.35 x 10

-10

ESM2Mc / 4x CO2 / BLING 0.9906 6.18 x 10
-10 0.9903 6.26 x 10

-10

ESM2Mc / 3x Mixing / BLING 0.9912 6.22 x 10
-10 0.9906 6.35 x 10

-10

ESM2Mc / PI Control / BLING 0.9790 3.00 x 10
-9 0.9771 3.11 x 10

-9

ESM2Mc / 4x CO2 / BLING 0.9749 2.74 x 10
-9 0.9740 2.77 x 10

-9

ESM2Mc / 3x Mixing / BLING 0.9804 3.00 x 10
-9 0.9778 3.11 x 10

-9

ESM2Mc / PI Control / BLING 0.9912 6.24 x 10
-10 0.9908 6.35 x 10

-10

ESM2Mc / PI Control / BLING-LgSm 0.9762 1.00 x 10
-9 0.9761 1.00 x 10

-9

ESM2Mc / PI Control / BLING 0.9790 3.00 x 10
-9 0.9771 3.11 x 10

-9

ESM2Mc / PI Control / BLING-LgSm 0.9862 2.34 x 10
-9 0.9855 2.38 x 10

-9

ESM2Mo / Historical / miniBLING 0.9511 8.97 x 10
-9 0.9507 9.11 x 10

-9

ESM2Mo / Historical / TOPAZ 0.5893 8.97 x 10
-9 0.5867 8.99 x 10

-9

Training Data Testing Data

Small Phytoplankton

Large Phytoplankton

Small Phytoplankton

Large Phytoplankton

Case 1

Case 2

Case 3 Total Phytoplankton

Table 2: The performance metrics for the training and testing subsets for the trained NNEs from each case separated 

into their respective size classes and ESM/model runs. 
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This result can be better understood by considering the conceptual diagram of how the diagnostic BC BLING works 

within an ESM (Fig. 1). For each time step, nutrients are calculated as a function of three terms: the initial nutrients, 

the change in nutrients from biology, and the change in nutrients from physical circulation. In contrast, the biomass is 365 

only a function of two terms: the initial biomass values and the change in biomass due to biological cycling. Thus, 

biomass is not directly affected by changes in the physical circulation. Additionally, this means that when given 

information on the biological predictors, but not the physical parameters, the NNEs are able to back out the apparent 

relationships quite well. Although it would seem obvious from Fig. 1 that the biomass is not directly affected by 

changes in the physical circulation, we were unsure whether indirect impacts of such changes (changing patterns of 370 

co-limitation or temporal variability) would affect the results. Our results indicate that such indirect effects were absent 

or, at most, minor. 

 

That similar apparent relationships are found between the model runs is further supported when we task each trained 

NNE with making predictions on the testing subsets of the other model runs for the same size class. For example, the 375 

NNE trained on the PI Control for small phytoplankton can be tasked with making predictions for the small 

phytoplankton biomass of 4xCO2 and 3xMixing using the predictor values from their testing subsets. This test allows 

for the evaluation of the robustness of the relationships that each NNE finds. If the NNEs are finding different 

relationships between the model runs, the NNE from one model run will likely perform poorly when predicting the 

other model runs. Our results show that the NNEs perform well when applied to the other model runs (highest RMSE 380 

= 3.74x10-9 mol P kg-1; Table 3) relative to the average value of total biomass (1.24x10-8 mol P kg-1). Given that these 

values are close to the performance metrics of their original datasets (Table 2 vs Table 3), it seems logical to say that 

this is because they are finding the same relationships.  
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Additionally, using the NNEs to predict the other runs leads to decreases in error relative to the error from comparing 385 

each run against the others. For example, the initial point-by-point comparison of 4xCO2 and PI Control for small 

phytoplankton (Fig. 5 d) shows an RMSE of 3.06x10-9 mol P kg-1, while using the NNEs from each model run to 

predict the other saw the RMSE go down with a reduction in error of about 76% (Table 3). This reduction of error is 

consistent across the other model runs and size classes with error reductions varying from 54-79% (Table 3). This 

implies the NNEs applied to the other runs are better able to predict the outcome than the point-by-point analysis, 390 

once again reinforcing our previous result.  

25th Percentile
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Figure 3: Sensitivity analysis plots for the small and large phytoplankton of Case 1. Each line is the prediction for the 

NNE (i.e., the average prediction of 25 NNs) specific to each model run and the color of each line represents the model 

run (PI Control – Red; 4xCO2 – Blue; 3xMixing - Green). The solid lines correspond to the NNE predictions for small 

phytoplankton and the dashed lines to the NNE predictions for large phytoplankton. The gray region around each line 

shows one standard deviation in the predictions of the individual NNs that make up each NNE (e.g., the gray region 

around the solid red curves shows the standard deviation in the predictions of the 25 NNs that make up that particular 

NNE). The rows correspond to the percentile value at which the other predictor variables are held constant (e.g., box 

(a) varies the macronutrient across its min-max range and holds the micronutrient, irradiance, and temperature at their 

respective 25th percentile values). Columns show the x-axis variables as they vary between their min-max range. The 

y-axis in all subplots is the biomass concentration. Note that the biomass scale changes with each subplot.  
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That the NNEs from one model run are able to reproduce the results from the other model runs is not simply due to 

the models producing similar spatiotemporal patterns. To ensure that distinct differences between the model runs are 

present, we compare each model run against the others (Fig. 5 and 6). Differences in the biomass values between the 395 

three model runs are evident (Fig. 5 and 6). First, we compare each model run against the others in a point-by-point 

analysis and observe that different biomasses are occurring at the same spatiotemporal locations (Fig. 5 and 6 d, g, h). 

For example, in the small phytoplankton scatter plot for PI Control vs 4xCO2, PI Control shows a tendency of having 

25th Percentile
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(mol kg-1)

Micronutrient 
(mol kg-1)

Irradiance
(W m-2)

Temperature
(o C)

B
io

m
as

s
(m

o
l P

 k
g-1

)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4: Sensitivity analysis plots for the small phytoplankton of Case 1. This figure is provided to allow for 

examination of the apparent relationships for the small phytoplankton, since the large phytoplankton apparent 

relationships made it difficult to see those for the small phytoplankton in Fig. 3. Each line is the prediction for the 

NNE (i.e., the average prediction of 25 NNs) specific to each model run and the color of each line represents the model 

run (PI Control – Red; 4xCO2 – Blue; 3xMixing - Green). The gray region around each line shows one standard 

deviation in the predictions of the individual NNs that make up each NNE (e.g., the gray region around the solid red 

curves shows the standard deviation in the predictions of the 25 NNs that make up that particular NNE). The rows 

correspond to the percentile value at which the other predictor variables were held constant (e.g., box (a) varies the 

macronutrient across its min-max range and holds the micronutrient, irradiance, and temperature at their respective 

25th percentile values). Columns show the x-axis variables as they vary between their min-max range. The y-axis in 

all subplots is the biomass concentration. Note that the biomass scale changes with each subplot. 



 

17 

 

higher biomass values than 4xCO2 across most locations (Fig. 5 d). Additionally, we look at the contour plots and 

log10 relative ratios using the yearly averaged biomass for each case (Fig. 5 and 6 a-c, e, f, i). Specific large differences 400 

that we note are higher biomass in the Pacific and Northern Atlantic in PI Control and 3xMixing relative to 4xCO2 

(Fig. 5 and 6 b, f) and the highest biomass occurring in 3xMixing in the subtropical regions of the Pacific (Fig. 5 and 

6 c). Similar patterns are observed in the large phytoplankton, as well (Fig. 6). These differences between the model 

runs are relatively large (exceeding a factor of three in some locations) and allow us to dismiss the possibility that the 

similar apparent relationships are only due to strong similarities between the model runs. 405 

 

Although the sensitivity analysis allows us to see that the apparent relationships were the same for each size class, it 

also allows us to see how the two size classes react differently to the same conditions. Most notably, the large 

phytoplankton seem to be very sensitive to the micronutrient compared to the small phytoplankton (Fig. 3; closer view 

of small phytoplankton in Fig. 4). When the other predictors are held at their 75th percentile values (high macronutrient, 410 

high irradiance, and warm temperature), the large phytoplankton reach biomass values almost an order of magnitude 

higher than the small phytoplankton (Fig. 3 and 4 j). This is what would be expected given the cubic relationship of 

large phytoplankton with growth rate. Another interesting relationship is the stark asymptotes in both size classes of 

the macronutrient plots, suggesting limitations by other nutrients, likely the micronutrient (Fig. 3 a, e, i). One 

unexpected relationship is the decreasing biomass with increasing temperature in both size classes (Fig. 3 d, h, l). This 415 

PI Control 4x CO2 3x Mixing PI Control 4x CO2 3x Mixing

PI Control - (0.829) 0.9874 (0.9287) 0.9902 - - -

4x CO2 (0.829) 0.9887 - (0.788) 0.9878 - - -

3x Mixing (0.9287) 0.9901 (0.788) 0.9849 - - - -

PI Control - - - - (0.7842) 0.9683 (0.8831) 0.9772

4x CO2 - - - (0.7842) 0.9722 - (0.7306) 0.969

3x Mixing - - - (0.8831) 0.9738 (0.7306) 0.963 -

PI Control - (3.06 x 10⁻⁹) 7.38 x 10⁻¹⁰ (1.84 x 10⁻⁹) 6.55 x 10⁻¹⁰ - - -

4x CO2 (3.06 x 10⁻⁹) 7.15 x 10⁻¹⁰ - (3.56 x 10⁻⁹) 7.3 x 10⁻¹⁰ - - -

3x Mixing (1.84 x 10⁻⁹) 6.64 x 10⁻¹⁰ (3.56 x 10⁻⁹) 7.97 x 10⁻¹⁰ - - - -

PI Control - - - - (1 x 10⁻⁸) 3.11 x 10⁻⁹ (7.34 x 10⁻⁹) 3.2 x 10⁻⁹

4x CO2 - - - (1 x 10⁻⁸) 3.44 x 10⁻⁹ - (1.17 x 10⁻⁸) 3.74 x 10⁻⁹

3x Mixing - - - (7.34 x 10⁻⁹) 3.34 x 10⁻⁹ (1.17 x 10⁻⁸) 3.33 x 10⁻⁹ -

PI Control - 75.90% 64.45% - - -

4x CO2 76.66% - 79.53% - - -

3x Mixing 63.98% 77.64% - - - -

PI Control - - - - 69.09% 56.32%

4x CO2 - - - 65.71% - 67.99%

3x Mixing - - - 54.45% 71.50% -

Percent 

Decrease in 

Error

NNE being used 

for predicting

Small 

Phytoplankton

Large 

Phytoplankton

Case being predicted

Small Phytoplankton Large Phytoplankton

RMSE
NNE being used 

for predicting

Small 

Phytoplankton

Large 

Phytoplankton

R-squared
NNE being used 

for predicting

Small 

Phytoplankton

Large 

Phytoplankton

Table 3: The performance metrics for the NNEs being used to predict the outcome of the other model runs for the 

same size class of Case 1. In the top half of the table, the R-squared and RMSE are listed. The values in paratheses 

are the values from comparing the respective cases against one another (these are the same values listed in the 

respective scatter plots of Fig. 5 and 6). The values outside the parentheses are the values from using the trained NNE 

of the model listed in the row to predict the outcome of the model run in the column (e.g., the NNE trained on 4xCO2 

was used to predict the PI Control outcome using the predictor values of PI Control. These values were compared 

against the actual values of the PI Control to compute the RMSE of 7.15x10-10). In the bottom half of the table is the 

percent decrease in RMSE from the number listed inside the parentheses to the RMSE outside the parentheses. 
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could be a result of warmer regions having less available nutrients or because of the temperature dependent 

chlorophyll-to-carbon (Chl:C) ratios (Geider et al., 1997) which would lead to phytoplankton needing higher 

irradiance in warmer waters.  

 

Relative to our main objective in Case 1 to quantify the extent to which differences in physical circulation affect the 420 

apparent relationships, our results indicate that the different physical circulations do not produce differences in the 

R2 = 0.829
RMSE = 3.06 x 10-9

R2 = 0.929
RMSE = 1.84 x 10-9

R2 = 0.788
RMSE = 3.56 x 10-9
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Figure 5: Comparison of the model runs for small phytoplankton biomass in Case 1. The units for biomass in all 

subplots are mol P kg-1. The subplots show point-by-point scatter plots comparing the model runs against one another 

(d, g, h), yearly averaged log10 biomass plots for each model run (a, e, i), and the log10 relative ratios comparing the 

yearly averaged contour plots of the model runs (b, c, f). The x-axis and y-axis of the scatter plots (d, g, h) correspond 

to the horizonal/vertical model run labels, respectively (e.g., box (d) shows PI Control on the x-axis and 4xCO2 on the 

y-axis). The yearly averaged log10 contour plots (a, e, i) correspond to the matching horizontal/vertical model run 

labels (e.g., box (a) shows the yearly averaged log10 biomass of PI Control). The log10 relative ratios (b, c, f) were 

calculated as the model run listed on the horizontal axis divided by the model run listed on the vertical axis (e.g., box 

(b) shows 4xCO2 divided PI Control). 
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apparent relationships found by NNEs. When the biological equations remain the same, changing the physical 

parameters simply changes where combinations of nutrients and irradiance occur. The NNEs can find the same 

apparent relationships between the model runs when the equations and constants governing those runs are identical, 

even if the inputs differ. In contrast to changes in nutrients, changes in biomass in the BLING ESM are not a function 425 

of the physical circulation.  
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R2 = 0.784
RMSE = 1.00 x 10-8

R2 = 0.883
RMSE = 7.34 x 10-9

R2 = 0.731
RMSE = 1.17 x 10-8

Figure 6: Comparison of the model runs for large phytoplankton biomass in Case 1. The units for biomass in all 

subplots are mol P kg-1. The subplots show point-by-point scatter plots comparing the model runs against one another 

(d, g, h), yearly averaged log10 biomass plots for each model run (a, e, i), and the log10 relative ratios comparing the 

yearly averaged contour plots of the model runs (b, c, f). The x-axis and y-axis of the scatter plots (d, g, h) correspond 

to the horizonal/vertical model run labels, respectively (e.g., box (d) shows PI Control on the x-axis and 4xCO2 on the 

y-axis). The yearly averaged log10 contour plots (a, e, i) correspond to the matching horizontal/vertical model run 

labels (e.g., box (a) shows the yearly averaged log10 biomass of PI Control). The log10 relative ratios (b, c, f) were 

calculated as the model run listed on the horizontal axis divided by the model run listed on the vertical axis (e.g., box 

(b) shows 4xCO2 divided PI Control). 
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4.2 Case 2 – Same ESM: Different Diagnostic Biological Equations, Near-Identical Physical Circulations 

In Case 1, it is clear from our results that when the biological cycling is identical between model runs, the NNEs find 430 

the same apparent relationships because the biomass is not a function of the physical circulation. Since the biomass is 

clearly a function of the biological equations, it would be reasonable to assume that the apparent relationships could 

be different between model runs that are governed by different biological equations. So, for Case 2, the objective is to 

quantify the extent to which NNEs can detect differences in the apparent relationships when the intrinsic biological 
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Figure 7: Sensitivity analysis plots for the small and large phytoplankton of Case 2. Each line is the prediction for the 

NNE (i.e., the average prediction of 25 NNs) specific to each model run and the color of each line represents the model 

run (PI Control – Red; LgSm – Blue). The solid lines correspond to the small phytoplankton and the dashed lines to 

the large phytoplankton. The gray region around each line shows one standard deviation in the predictions of the 

individual NNs that make up each NNE (e.g., the gray region around the solid red curves shows the standard deviation 

in the predictions of the 25 NNs that make up that particular NNE). The rows correspond to the percentile value at 

which the other predictor variables were held constant (e.g., box (a) varies the macronutrient across its min-max range 

and holds the micronutrient, irradiance, and temperature at their respective 25th percentile values). Columns show the 

x-axis variables as they vary between their min-max range. The y-axis in all subplots is the biomass concentration. 

Note that the biomass scale changes with each subplot. 
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relationships between model runs are different, while maintaining similar physical circulations and still using a 435 

diagnostic model which guarantees that identical nutrient, irradiance, and temperature at two different points will 

produce identical biomass. 

 

Our results show that NNEs can differentiate the apparent relationships between model runs when the biological 

equations differ. The sensitivity analysis for Case 2 shows that different apparent relationships are found between 440 

model runs and within the same size classes, relative to the non-overlapping gray standard deviation regions around 
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Figure 8: Sensitivity analysis plots for the small phytoplankton of Case 2. This figure is provided to allow for 

examination of the apparent relationships for the small phytoplankton, since the large phytoplankton apparent 

relationships made it difficult to see those for the small phytoplankton in Fig. 7. Each line is the prediction for the 

NNE (i.e., the average prediction of 25 NNs) specific to each model run and the color of each line represents the model 

run (PI Control – Red; LgSm – Blue). The gray region around each line shows one standard deviation in the predictions 

of the individual NNs that make up each NNE (e.g., the gray region around the solid red curves shows the standard 

deviation in the predictions of the 25 NNs that make up that particular NNE). The rows correspond to the percentile 

value at which the other predictor variables were held constant (e.g., box (a) varies the macronutrient across its min-

max range and holds the micronutrient, irradiance, and temperature at their respective 25th percentile values). Columns 

show the x-axis variables as they vary between their min-max range. The y-axis in all subplots is the biomass 

concentration. Note that the biomass scale changes with each subplot. 
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each line (Fig. 7 and 8). Additionally, we can be fairly confident in these predictions given the high-performance 

metrics in both the training and testing subsets (highest RMSE = 3.11x10-9 mol P kg-1 [Table 2] vs. the average total 

biomass of 1.36x10-8 mol P kg-1).  

 445 
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This result of different relationships, when the model runs are governed by different biological equations, reinforces 

what we found in Case 1. Changing the biological equations can be likened to changing how the nutrients affect the 

phytoplankton biomass (the function g(NJ,L1,L2) in Fig. 1). While it might seem obvious that changing the biological 

equations will change the biomass values, it remains unclear whether NNEs would be able to pick out these differences 

in the apparent relationships.  450 
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Figure 9: Comparison of the model runs for small phytoplankton biomass in Case 2. The units for biomass in all 

subplots are mol P kg-1. The subplots show point-by-point scatter plots comparing the model runs against one another 

(c), yearly averaged log10 biomass plots for each model run (a and d), and the log10 relative ratios comparing the 

yearly averaged contour plots of the model runs (b). The x-axis and y-axis of the scatter plots (c) correspond to the 

horizonal/vertical model run labels, respectively (e.g., box (c) shows PI Control on the x-axis and LgSm on the y-

axis). The yearly averaged log10 contour plots (a and d) correspond to the matching horizontal/vertical model run 

labels (e.g., box (a) shows the yearly averaged log10 biomass of PI Control). The log10 relative ratios (b) were 

calculated as the model run listed on the horizontal axis divided by the model run listed on the vertical axis (e.g., box 

(b) shows LgSm divided PI Control). 
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We want to ensure there are noticeable differences between the model runs (Fig. 9 and 10). We did this in Case 1 to 

ensure that the similar apparent relationships found by the NNEs were not simply because of similarities in the model 

output. In Case 2, the difference in model outputs serves to reinforce the different apparent relationships found by the 

NNEs. In the point-by-point comparison, the large phytoplankton show more agreement between model runs (Fig. 10 455 
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R2 = 0.847
RMSE = 8.18 x 10-9

(a) (b)
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Figure 10: Comparison of the model runs for large phytoplankton biomass in Case 2. The units for biomass in all 

subplots are mol P kg-1. The subplots show point-by-point scatter plots comparing the model runs against one another 

(c), yearly averaged log10 biomass plots for each model run (a and d), and the log10 relative ratios comparing the 

yearly averaged contour plots of the model runs (b). The x-axis and y-axis of the scatter plots (c) correspond to the 

horizonal/vertical model run labels, respectively (e.g., box (c) shows PI Control on the x-axis and LgSm on the y-

axis). The yearly averaged log10 contour plots (a and d) correspond to the matching horizontal/vertical model run 

labels (e.g., box (a) shows the yearly averaged log10 biomass of PI Control). The log10 relative ratios (b) were 

calculated as the model run listed on the horizontal axis divided by the model run listed on the vertical axis (e.g., box 

(b) shows LgSm divided PI Control). 
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c) than the small phytoplankton (Fig. 9 c). However, when we examine the contour and log10 relative ratios (Fig. 9 

and 10 a, b, d), it is evident that large, systematic, spatially coherent differences exist between the model runs. Both 

the small and large phytoplankton show higher concentrations in the LgSm model run compared to PI Control for the 

subtropical and polar regions of the Pacific and Indian Oceans, along with higher concentrations in the equatorial 

Atlantic (Fig. 9 and 10).  460 

 

Although the gray regions in Figs. 7 and 8 overlap toward the higher concentrations of each predictor, this is likely 

due to the lack of observations in the training data meeting those criteria, without which the NNEs cannot be 

constrained. For example, in Fig. 7 (j), the apparent relationships of the large phytoplankton overlap past about 5x10-

10 mol kg-1 of the micronutrient, because there are no observations in the training data that are greater than 5x10-10 mol 465 

kg-1 of the micronutrient while simultaneously being at the 75th percentile level of the macronutrient, irradiance, and 

temperature (data not shown). Without observations to constrain them, the NNEs cannot be constrained and, therefore, 

are less certain about the extrapolated relationships in those regions which leads to higher uncertainty and overlapping 

standard deviations.  

 470 

PI Control LgSm PI Control LgSm

PI Control - (0.5591) 0.8192 - -

LgSm (0.5591) 0.7899 - - -

PI Control - - - (0.8465) 0.9334

LgSm - - (0.8465) 0.9171 -

PI Control - (4.98 x 10⁻⁹) 3.95 x 10⁻⁹ - -

LgSm (4.98 x 10⁻⁹) 3.07 x 10⁻⁹ - - -

PI Control - - - (8.18 x 10⁻⁹) 1.56 x 10⁻⁸

LgSm - - (8.18 x 10⁻⁹) 1.01 x 10⁻⁸ -

PI Control - 20.59% - -

LgSm 38.20% - - -

PI Control - - - -90.87%

LgSm - - -23.11% -

Percent 

Decrease in 

Error

NNE being used 

for predicting

Small 

Phytoplankton

Large 

Phytoplankton

Case being predicted

Small Phytoplankton Large Phytoplankton

RMSE
NNE being used 

for predicting

Small 

Phytoplankton

Large 

Phytoplankton

R-squared
NNE being used 

for predicting

Small 

Phytoplankton

Large 

Phytoplankton

Table 4: The performance metrics for the NNEs being used to predict the outcome of the other model runs for the 

same size class of Case 2. In the top half of the table, the R-squared and RMSE are listed. The values in paratheses 

are the values from comparing the respective cases against one another (these are the same values listed in the 

respective scatter plots of Fig. 9 and 10). The values outside the parentheses are the values from using the trained 

NNE of the model listed in the row to predict the outcome of the model run in the column (e.g., the NNE trained on 

LgSm was used to predict the PI Control outcome using the predictor values of PI Control. These values were 

compared against the actual values of the PI Control to compute the RMSE of 3.07x10-9). In the bottom half of the 

table is the percent decrease in RMSE from the number listed inside the parentheses to the RMSE outside the 

parentheses (a negative percent means that the error increased). 
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As in Case 1, our result is supported by the additional test in which the NNEs trained on one model run are tasked 

with making predictions on the other. Had the NNEs found similar apparent relationships, the reductions in error 

would have been of similar magnitude as those in Case 1 (Table 3 vs Table 4). For this second case, we see that there 

are only modest decreases in RMSE for the small phytoplankton and increases in RMSE for large phytoplankton 

(Table 4). For example, relative to the RMSE of the point-by-point comparison, the RMSE decreases about 21% when 475 

LgSm makes predictions on PIControl for the small phytoplankton (Table 4). Additionally, it is observed that even 

though the RMSE increases in the large phytoplankton, the R2 values improve in the cross-model comparison 

compared to the point-by-point comparison (0.92-0.93 vs 0.85; Table 4). This suggests that the NNEs improve the 

simulation in terms of the overall pattern, but not the magnitude. These results make sense since the apparent 

relationships of the small phytoplankton show greater similarities than the apparent relationships of the large 480 

phytoplankton (Fig. 7). 

 

With respect to the apparent relationships that the NNEs uncover, the large phytoplankton once again appear to be 

more sensitive to the micronutrient concentrations compared to the small phytoplankton (Fig. 7 b, f, j). Both size 

classes show asymptotes around the same concentrations for the macronutrient, albeit at different biomass values (Fig. 485 

7 a, e, i). As with Case 1, the decreasing biomass with increasing temperature is an unexpected relationship (Fig. 7 d, 

h, l), which might be explained by the temperature dependent Chl:C ratios causing phytoplankton in warmer regions 

to need higher irradiance.  

 

As previously stated, our main objective with Case 2 is to quantify the extent to which NNEs can detect differences 490 

in the apparent relationships when the physical conditions between model runs are identical and the biological 

relationships differ. With the biomass being a function of changes in biomass from biology (i.e. the equations 

governing how nutrients affect biomass), it is unsurprising that different biological equations produce differences in 

biomass. What was unclear was whether NNEs would be able to highlight these differences in the apparent 

relationships. Our results indicate that NNEs can find noticeable differences in the apparent relationships, insofar as 495 

the standard deviation region of the sensitivity analysis curves do not overlap. 

4.3 Case 3 – Different ESMs: Prognostic vs. Diagnostic Biological Equations, Identical Physical Circulations 

From Cases 1 and 2, we learn from our results that NNEs are capable of discerning differences in apparent relationships 

between model runs of the same ESM. For Case 3, we apply these principles to different ESMs to quantify the 

differences in the apparent relationships and highlight challenges that arise in comparing relationships between ESMs. 500 

The model runs of Cases 1 and 2 using BLING as a BC affords us the opportunity to test a “best-case” scenario for 

predicting biomass from nutrients and irradiance because of the tight coupling of growth rate and biomass (i.e., 

knowing the growth rate means we know the biomass). In Case 3, the ESMs have different biogeochemical codes 

(i.e., different biological equations) and identical physical circulations. One ESM (ESM2Mo with miniBLING as BC, 

referred to as miniBLING) is comparable to the BLING formulation in that the growth rate is tightly coupled with the 505 

biomass. However, the other ESM (ESM2Mo with TOPAZ as BC, referred to as TOPAZ) does not have as tight of a 



 

27 

 

coupling. The TOPAZ simulation allows biomass to be advected and diffused in the same way as nutrients, effectively 

making biomass a function of nutrients and physical circulation, which is more typical of ESMs and likely true in the 

real ocean, as well. 

 510 

Our results indicate that the phytoplankton in the two ESMs react differently to the same conditions. It should be noted 

that total phytoplankton biomass is used for Case 3, rather than splitting the biomass into large and small because 

phytoplankton output by the miniBLING BC is not differentiated into size classes. The sensitivity analysis shows that 

the miniBLING simulation produces higher biomass concentrations than the TOPAZ simulation under the same 

25th Percentile
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Figure 11: Sensitivity analysis plots for phytoplankton biomass for Case 3. Each line is the prediction for the NNE 

(i.e., the average prediction of 25 NNs) specific to each ESM and the color of each line represents the ESM 

(miniBLING – Red; TOPAZ – Blue). The gray region around each line shows one standard deviation in the predictions 

of the individual NNs that make up each NNE (e.g., the gray region around the solid red curves shows the standard 

deviation in the predictions of the 25 NNs that make up that particular NNE). The rows correspond to the percentile 

value at which the other predictor variables were held constant (e.g., box (a) varies the macronutrient across its min-

max range and holds the micronutrient and irradiance at their respective 25th percentile values). Columns show the x-

axis variables as they vary between their min-max range. The y-axis in all subplots is the biomass concentration. Note 

that the biomass scale changes with each subplot. 
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conditions (Fig. 11), except at lower concentrations of nutrients where they seem to react similarly (Fig. 11 a, b, c). 515 

This is not entirely unexpected since the biomass values in the miniBLING simulation are generally much higher than 

those in the TOPAZ simulation, as can be seen in the point-by-point comparison (Fig. 12 c). However, not all the 

biomass values in the miniBLING simulation are larger than those in the TOPAZ simulation. The subtropical Atlantic 

regions and northern subtropical Pacific have higher yearly averaged biomass values in the TOPAZ simulation 

compared to the miniBLING simulation (Fig. 12 a, b, d). As with Case 2, the additional test of asking the NNEs trained 520 



 

29 

 

on the output of one ESM to predict the output from the other ESM reinforces the result that different apparent 

relationships are found from an increase in error for both ESMs (Table 5).  

 

The challenge of comparing the results of different ESMs is evident in Case 3. For example, the performance metrics 

for the model runs in Cases 1 and 2 are relatively high in both the training and testing subsets, but the performance 525 
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R2 = 0.290
RMSE = 3.72 x 10-8
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(c) (d)

Figure 12: Comparison of the ESMs for total phytoplankton biomass in Case 3 in which circulation is given by 

ESM2Mo, but the BCs are different. The units for biomass in all subplots are mol P kg-1. The subplots show point-by-

point scatter plots comparing the ESMs against one another (c), yearly averaged log10 biomass plots for each ESM (a 

and d), and the log10 relative ratios comparing the yearly averaged contour plots of the ESMs (b). The x-axis and y-

axis of the scatter plots (c) correspond to the horizonal/vertical ESM labels, respectively (e.g., box (c) shows the 

miniBLING simulation on the x-axis and the TOPAZ simulation on the y-axis). The yearly averaged log10 contour 

plots (a and d) correspond to the matching horizontal/vertical ESM labels (e.g., box (a) shows the yearly averaged 

log10 biomass of miniBLING). The log10 relative ratios (b) were calculated as the ESM listed on the horizontal axis 

divided by the ESM listed on the vertical axis (e.g., box (b) shows TOPAZ divided by miniBLING). 
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metrics for the TOPAZ simulation in Case 3 are much lower (R2 > 0.97 vs ~0.58, respectively; Table 2). From these 

results alone, it is unclear whether this drop in performance is because we are unable to characterize the TOPAZ 

simulation with NNEs using predictors common to both runs or whether we simply do not include enough relevant 

variables. To understand this, we perform a brief analysis in which we train NNEs on specific variables and measure 

their performance with ESM output from CMIP5 ESM2M, which has TOPAZ as its BC (Table 6). One NNE is trained 530 

using only variables that directly affected the phytoplankton growth rate (biology), one is trained using only variables 

that do not directly affect the growth rate (physics), and another is trained with both sets of variables (all). Our results 

indicate that we are able to characterize ESM2M (and, by extension, results produced by using TOPAZ as a BC) with 

NNEs with the inclusion of more relevant variables, such as nitrate, ammonium, and silicate (RMSE ~ 5.90x10-5 mol 

N m-3 [Table 6] vs. the average biomass value of 3.14 x10-4 mol N m-3). Without the inclusion of all the relevant 535 

variables as predictors, the performance of the NNE trained on output from the TOPAZ simulation suffers compared 

to the NNE trained on the miniBLING simulation. 

 

An additional challenge with comparing different ESMs is that certain variables may not be present in all ESMs. For 

example, one ESM may have phosphate included as a variable and another ESM may not. This presents a problem 540 

when using the sensitivity analyses, because each NNE needs to be presented with the same conditions for direct 

comparability. One potential method for mitigating this could be to use proxy-variables, such that variables not 

miniBLING TOPAZ

miniBLING - (0.29) 0.3985

TOPAZ (0.29) 0.5405 -

miniBLING - (3.72 x 10⁻⁸) 7.79 x 10⁻⁸

TOPAZ (3.72 x 10⁻⁸) 3.91 x 10⁻⁸ -

miniBLING - -109.29%

TOPAZ -5.03% -

Percent 

Decrease in 

Error

NNE being used 

for predicting

Case being predicted

RMSE
NNE being used 

for predicting

R-squared
NNE being used 

for predicting

Table 5: The performance metrics for the NNEs being used to predict the outcome of the other ESM of Case 3. In the 

top half of the table, the R-squared and RMSE are listed. The values in paratheses are the values from comparing the 

respective ESMs against one another (these are the same values listed in the respective scatter plot of Fig. 12). The 

values outside the parentheses are the values from using the trained NNE of the ESM listed in the row to predict the 

outcome of the ESM in the column (e.g., the NNE trained on the TOPAZ simulation was used to predict the outcome 

of the miniBLING using the predictor values computed using the miniBLING simulation. These values were 

compared against the actual values of the miniBLING simulation to compute the RMSE of 3.91x10-8). In the bottom 

half of the table is the percent decrease in RMSE from the number listed inside the parentheses to the RMSE outside 

the parentheses (a negative percent means that the error increased). 
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common to both ESMs could be modified to represent the missing variables. For example, if one ESM has phosphate 

as a variable and another ESM does not, it might be possible to modify a variable that would be equivalent to 

phosphate, such as nitrate. Using the Redfield ratio of 16:1 for the N:P ratio, the nitrate variable could be divided by 545 

16 and thus be considered a proxy variable for phosphate. This proxy phosphate variable could then be used in training 

the NNE particular to the applicable ESM, so all NNEs would be trained using the same predictors.  

5 Summary and Conclusions 

A challenge of using ESMs is understanding why different ESMs yield different results, even when they are run under 

similar conditions. Our objective with this manuscript was to investigate the extent to which NNEs could characterize 550 

differences across ESMs through differences in circulation vs differences in biological formulations. We approached 

this objective by exploring three cases: 

1. In the first case, we compared three configurations of an ESM that had identical intrinsic biological 

relationships but different physical circulations. The purpose of this case was to quantify the extent to which 

R-squared RMSE R-squared RMSE

1) Nitrate (mol m
-3

)

2) Ammonium (mol m
-3

)

3) Phosphate (mol m
-3

)

4) Dissolved Iron (mol m
-3

)

5) Silicate (mol m
-3

)

6) Temperature (K)

7) Net Downward Shortwave Flux 

(W m
-2

)

8) Mixed Layer Thickness (m)

9) Surface X-Velocity (m s
-1

)

10) Surface Y-Velocity (m s
-1

)

11) Upward Ocean Mass Transport 

at 45 m Depth (kg s
-1

)

1) Nitrate (mol m
-3

)

2) Ammonium (mol m
-3

)

3) Phosphate (mol m
-3

)

4) Dissolved Iron (mol m
-3

)

5) Silicate (mol m
-3

)

6) Temperature (K)

7) Net Downward Shortwave Flux 

(W m
-2

)

1) Mixed Layer Thickness (m)

2) Surface X-Velocity (m s
-1

)

3) Surface Y-Velocity (m s
-1

)

4) Upward Ocean Mass Transport 

at 45 m Depth (kg s
-1

)

1.91 x 10
-4

Only Variables 

Directly Affecting 

Phytoplankton 

Growth Rate

Phytoplankton Concentration 

(mol N m
-3

)
0.9358 5.87 x 10

-5 0.9352 5.93 x 10
-5

Only Variables NOT 

Directly Affecting 

Phytoplankton 

Growth Rate

Phytoplankton Concentration 

(mol N m
-3

)
0.3268 1.90 x 10

-4 0.3279

Testing Data

Phytoplankton Concentration 

(mol N m
-3

)
All Variables 0.9756 3.61 x 10

-5 0.9754 3.65 x 10
-5

Variable Groupings Target VariablePredictor Variables
Training Data

Table 6: The performance metrics for the training and testing subsets of NNEs trained on different variable 

combinations of CMIP5 ESM2M output and details about the predictor/target variables. 
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differences in physical circulations between model runs of the same ESM could affect the apparent 555 

relationships found by NNEs. 

2. In the second case, we compared two model runs from the same ESM, except that the intrinsic biological 

equations were different, and the physical circulations were similar. The purpose of this case was to quantify 

the extent to which NNEs found differences in the apparent relationships and the size of those differences. 

3. In the third case, we used two different ESMs that had different intrinsic biological relationships but identical 560 

physical circulations. The greatest difference between them was that in one ESM (ESM2Mo with TOPAZ as 

BC), biomass was able to be advected and diffused making it a function of nutrients, irradiance, and circulation. 

This was in contrast to the other ESM (ESM2M with miniBLING embedded as BC) where biomass was only 

a function of nutrients. The purpose of this case was to apply what we had learned in the first two cases to a 

more realistic ESM to quantify differences in the apparent relationships and identify any challenges. 565 

 

Our results indicated that when all the relevant variables were included as predictors, the NNEs served as a 

parsimonious representation of the ESMs. With the first and second cases, NNEs were able to attribute differences 

between the model runs to physics and biological factors, respectively. The third case demonstrated that NNEs could 

be used to compare apparent relationships between different ESMs and find their key differences, along with 570 

highlighting some of the challenges in applying this to more realistic models. 

 

The results of our study suggest that oceanographers and climate scientists could use the methods we have 

demonstrated to compare apparent relationships between ESMs, in addition to using spatiotemporal distributions and 

time series. This is not to say that spatiotemporal information is not important; rather, the relationships and 575 

spatiotemporal information can be used to inform one another. For example, in a side-by-side comparison of contour 

plots between biomass and nitrate concentrations, one might expect to see high biomass in high nitrate regions. 

However, if low biomass is observed in a high nitrate region, this would suggest that another factor (such as phosphate) 

is limiting phytoplankton growth. By visualizing the apparent relationships, one would be able to observe that 

phosphate has a strong limitation factor on the phytoplankton. This could then be verified with the spatial contour plot 580 

of phosphate against the original biomass and nitrate contour plots.  

 

In addition to comparing relationships between ESMs, the methods presented here can allow for the comparison of 

relationships found in observational datasets to the relationships in ESMs, allowing for better tuning of the models 

and more accurate representations of the natural world and what changes we might expect under climate change. Our 585 

results here show the “best case” for comparing models with observations. The prevailing assumption is that 

environmental conditions set biomass and that ecological details do not matter; if two places have the same nutrients, 

irradiance, and mixing, they will have the same phytoplankton biomass. Our methods demonstrate that we can evaluate 

the extent to which such dynamics usually hold. In a follow-up paper, our preliminary results show that these methods 

can explain a large portion of the variance (60-80%) in two satellite-derived observational datasets, along with greater 590 

than 90% across a suite of CMIP6 ESMs.   
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Appendix A 

This appendix provides additional information about the datasets used in each of the three cases, along with 

information about how each dataset was randomly sampled.  

 595 

The sizes of the datasets were as follows: 77,328 datapoints for each model run in Case 1, 77,328 datapoints for each 

model run in Case 2, and 577,332 datapoints for each model run in Case 3. Each dataset was split into training and 

testing subsets with 60% of the full dataset going to the training subset and 40% going to the testing subset. The 

training subset for each model run contained 46,397 datapoints in Case 1, 46,397 datapoints in Case 2, and 364,399 

datapoints in Case 3. The testing subsets for each model run contained 30,932 datapoints in Case 1, 30,932 datapoints 600 

in Case 2, and 230,934 datapoints in Case 3. 

 

The composition of the training and testing subsets were determined by random sampling, such that they randomly 

sampled the full dataset in both space and time. Specifically, the random number generator function for MATLAB, 

2019b was set to “twister” and the seed was set as “123” for reproducibility. Each datapoint was either part of the 605 

training subset or the testing subset; no observations were part of both. 
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Code Availability 

The Matlab scripts (MATLAB, 2019) for processing the outputs of the ESM model runs, training the NNEs, and 610 

constructing the tables and figures are available in the following Zenodo repository: 

https://doi.org/10.5281/zenodo.4774438 (Holder et al., 2021).  

Data Availability 

The output of the ESM model runs (which serve as the input for training the NNEs) for each case are available in the 

following Zenodo repository: https://doi.org/10.5281/zenodo.4774438 (Holder et al., 2021). 615 
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