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Abstract. Earth system models (ESMs) are useful tools for predicting and understanding past and future aspects of 

the climate system. However, the biological and physical parameters used in ESMs can have wide variations in their 

estimates. Even small changes in these parameters can yield unexpected results without a clear explanation of how a 10 

particular outcome was reached. The standard method for estimating ESM sensitivity is to compare spatiotemporal 

distributions of variables from different runs of a single ESM. However, a potential pitfall of this method is that ESM 

output could match observational patterns because of compensating errors. For example, if a model predicts overly 

weak upwelling and low nutrient concentrations, it maymight compensate for this by allowing phytoplankton to have 

a high sensitivity to nutrients. Recently, it has beenwe demonstrated that neural network ensembles (NNEs) are 15 

capable of extracting relationships between predictor and target variables within ocean biogeochemical models. Being 

able to view the relationships between variables, along with spatiotemporal distributions, allows for a more 

mechanistically based examination of ESM outputs. Here, we investigated whether we could apply NNEs to help us 

determine why different ESMs produce different results.spatiotemporal distributions of phytoplankton biomass. We 

tested this using three cases. The first and second case useused different runs of the same ESM, except that the physical 20 

circulations differdiffered between them in the first case while the biological equations differdiffered between them 

in the second. Our results indicateindicated that the NNEs were capable of extracting the relationships between 

variables for different runs of a single ESM, allowing us to distinguish between differences due to changes in 

circulation (which do not change relationships) from changes in biogeochemical formulation (which do change 

relationships). In the third case, we applied NNEs to two different ESMs. The results of the third case highlighted the 25 

capability of NNEs to contrast the apparent relationships of different ESMs and some of the challenges it presents. 

Although applied specifically to the ocean components of an ESM, our study demonstrates that Earth System 

Modellers can use NNEs to separate the contributions of different components of ESMs. Specifically, this allows 

modellers to compare the apparent relationships across different ESMs and observational datasets.  
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1 Introduction 30 

Earth system models (ESMs) are increasingly used to help us understand how anthropogenic greenhouse gas emissions 

will affect biological systems and how such changes will feed back on the climate system. Although these methods 

provide an avenue for examining processes on a global scale, their representations of biological and physical processes 

of the natural world are limited by imperfect knowledge. and the inability to resolve these processes with current 

models which require ever increasingly higher computational costs for additional complexity and resolution. As a 35 

result, estimates of critical biological and physical parameters can vary quite substantially. For example, from tracer 

experiments in the North Atlantic subtropical gyre, diapycnal diffusivity was estimated between 0.1 to 0.5 cm2 s-1 

(Ledwell et al., 1998), with similar values having been used in ESMs. Varying the diapycnal diffusivity within this 

range in ESMs has been shown to yield different results in the biogeochemical output  (Oschlies, 2001; Duteil and 

Oschlies, 2011). Furthermore, ESMs do not agree about how to represent phytoplankton growth parameters, such as 40 

temperature dependence. In the nine ESMs compared in Laufkötter et al. (2015), the Q10 value describing the 

sensitivity of growth rate to 10 degree increases in temperature ranged from 1.68 to 3, with some models varying the 

Q10 values based on the size or type of phytoplankton.   

 

The uncertainty associated with some ESM parameters can make it difficult to understand why different ESMs may 45 

yield different predictions for biological variables ranging from productivity to carbon uptake. Bopp et al. (2013) 

demonstrated that while CMIP5 models showed the same overall global trends under climate change for variables 

such as pH, sea surface temperature, O2, and primary productivity, there were significantsubstantial cross-model 

differences in O2 and primary productivity on regional scales.  

 50 

Traditional methods used to estimate the sensitivity of ESMs often compare the spatial distributions of biological and 

physical variables from different runs of a single ESM to each other or to observations. However, occasionally changes 

in one parameter improve the simulation of one variable while degrading the simulation of another (see for example, 

Bahl et al. (2019), their Table 2). Other times, errors in one variable are due to errors in another (i.e., getting a physical 

front in the wrong place may mean that the biomass has the wrong distribution).  55 

 

The intent of ESMs is to get the correct spatial distribution both because the correct relationships between 

environmental predictors and target variables are being modelled. and because the environmental predictors 

themselves are correctly modelled. However, it’s difficult to know if the correct relationships are indeed being 

modelled. Thus, a method is needed in which we can evaluate whether different ESMs yield different projections 60 

because of fundamental differences in biogeochemical formulation, or whether such differences are primarily due to 

differences in physical circulations and climate sensitivities. Of the potential methods available, neural network 

ensembles (NNEs) are a strong candidate. NNEs are a machine learning (ML) technique which use the average of 

many individual neural networks (NNs) to predict the outcome of datasets. The objective of this paper is to investigate 

whether the application of NNEs and sensitivity analyses can provide useful information for determining the most 65 

substantial sources of differences in ESM outputs. 
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It wasWe previously demonstrated that neural network ensembles (NNEs) were able to extract relationships between 

biological forcings and outputs within a simplified biogeochemical model (Holder and Gnanadesikan, 2021a2021). 

NNEs were able to outperform other machine learningML algorithms, such as random forests. More importantly, 70 

NNEs also had the benefits of being able to extrapolate outside the range of the training dataset and to provide a 

measure of their uncertainty in their predictions. In Holder and Gnanadesikan (2021a)2021), we defined two types of 

relationships between environmental forcings and biological responses: intrinsic and apparent. Intrinsic relationships 

are those where the effect of one predictor variable on an outcome (target variable) can be examined, while maintaining 

other predictors at a constant level. An example of this would be the results of a laboratory experiment examining 75 

how the growth rate of a particular species of phytoplankton react todepends on different nutrient concentrations in a 

nutrient growth experiment, while all other factors remain constant. For ESMs, an example might be the Michaelis-

Menten relationships programmed into ESMs that represent how phytoplankton interact with nutrientseach nutrient. 

Apparent relationships are determined by how the intrinsic relationships interact across space and time, where 

individual variables are not controlled but may systematically co-vary. An example of this would be the relationships 80 

that emerge in the output of ESMs, where the intrinsic relationships programmed into the ESM have interacted with 

one another across time and space and then had their outputs averaged into monthly-averaged fields. An example of 

this in the context of real-world environments would be comparing satellite observations of phytoplankton 

distributions against monthly distributions of nutrients; where low phytoplankton concentrations may result both from 

low nutrients and high lightirradiance in the summer in some locations, but also high nutrients and low lightirradiance 85 

in the winter in other locations. As a result, the apparent relationships between nutrients and biomass would not 

resemble the intrinsic Michaelis-Menten curves coded in the ESM. A proof-of-concept application of NNEs coupled 

with sensitivity analyses at the end of Holder and Gnanadesikan (2021a2021) demonstrated the ability of NNEs to 

draw out the colimitationsco-limitations in a non-linear biogeochemical model and illustrated how these 

colimitationsco-limitations differed from the Michaelis-Menten curves programmed into the model.  90 

 

The objective ofFor this paper is study, we focus on marine phytoplankton physiology, but these approaches are also 

applicable to investigate whether the application of NNEsother components of ESMs, including atmospheric and 

sensitivity analyses can provide useful information for determining differences in ESM outputs.terrestrial. In general, 

there are threetwo primary drivers that lead to differences in the output of ESMshow ESMs simulate phytoplankton 95 

biogeography: physical forcings, and phytoplankton physiology, or combinations. Insofar as both of these twoact to 

affect nutrient cycling they can also act in combination to produce indirect impacts. Before applying this method to 

outputs of multiple ESMs, we chose to investigate whether the method workedworks well on different runs of a single 

ESM in which physical parameters wereare changed to produce different circulations. It wasis uncertain whether the 

NNEs would beare able to pick out the same apparent relationships of the same ESM when there wereare differences 100 

between runs in the physical forcings and intrinsic biological equations (phytoplankton physiology).  If different 

versions of an ESM, which have different circulations, still yield the same apparent relationships between 

lightirradiance/nutrients and biomass, it would suggest that circulation changes do not produce new patterns of co-
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limitation. It is worth noting that we are only stating this in the context of ESMs, as this may not necessarily be true 

in the real ocean. Furthermore, it would suggest that differences in the apparent relationships of different ESMs could 105 

be partitioned between those due to different physical circulations and those with different representations of biology. 

For example, if one uses the apparent relationships from model A to predict the biomass from model B given the 

environmental parameters from model B, any differences should be due to differences in the biological formulation. 

 

To investigate the extent to which NNEs could characterize differences across ESMs, we exploredexplore three cases: 110 

 

1. We examinedexamine an ESM in which biomass wasis by construction a function of nutrients and 

lightirradiance. Using three different runs of this ESM, we maintainedmaintain identical intrinsic biological 

relationships, but variedvary the physical parameters controlling the circulation across the different runs. The 

objective of the first case wasis to quantify the extent to which differences in physical circulation might affect 115 

the apparent relationships between predictor (lightirradiance, nutrient, and temperature) and target (biomass) 

variables found by NNEs. If models with different circulations producedproduce differences in the apparent 

relationships, this would indicate that differences in circulation could push the biology into fundamentally new 

states., i.e., phytoplankton in one location experience new combinations of co-limitation or temporal variability 

(as described by Henson et al. (2021)). However, if the NNEs foundfind the same apparent relationships 120 

between runs when the physical circulation wasis changing, this would indicate that the primary effect of 

changing the circulation wasis simply to change the times and locations where different combinations of 

lightirradiance and nutrients wereare found, rather than creating fundamentally new statesnew patterns of co-

limitation, i.e., phytoplankton are governed by the same dynamics/equations regardless of location. 

2. We useduse the same ESM as that of Case 1, except we maintainedmaintain similar physical circulations 125 

between runs and changedchange the intrinsic biological relationships. (this results in a small change in 

circulation because within our ESM the biological cycle affects physical circulation by changing the absorption 

of shortwave radiation). The objective of the second case wasis to quantify the ability of NNEs to detect 

differences in the apparent relationships when the intrinsic biological relationships between model runs wereare 

different and to document the size of those differences. 130 

3. For the final case, we lookedlook at two different ESMs that hadhave different biogeochemical codes but 

wereare run within the same physical model giving them identical physical circulations. The first ESM 

followedfollows the framework of the ESMs in Cases 1 and 2, where biomass wasis a function of nutrients. 

The second ESM allowedallows biomass to be advected and diffused, making biomass a function of nutrients, 

lightirradiance, and physical circulation. The objective of the third case wasis to apply the principles from 135 

Cases 1 and 2 to more standard ESMs, to quantify the extent to which physical circulation contributes to these 

apparent relationships, and to identify challenges in comparing the apparent relationships between ESMs.  
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2 Methods 

2.1 Earth System Models – Biogeochemical Codes 

In general, ocean biogeochemical components (BCs) of ESMs predict the evolution of phytoplankton biomass, B, 140 

using equations that have the general form 

𝝏𝑩

𝝏𝒕
+ 𝒖⃗⃗ ∗ 𝛁𝑩 = 𝝁(𝑵, 𝑳𝒊𝒈𝒉𝒕, 𝑻)(𝑵, 𝑰, 𝑻) ∗ 𝑩 − 𝑮(𝑩,… ) + 𝛁 ∗ 𝑲⃗⃗⃗ ∗ 𝛁𝑩 (1) 

where 𝑢⃗  is the three-dimensional velocity field, 𝜇 is the phytoplankton growth rate which is a function of nutrients N, 

lightirradiance I, and temperature T, 𝐺(𝐵,… ) represents the grazing loss rate, which may be a function of 

phytoplankton biomass and/or other variables such as temperature or zooplankton concentration, and 𝐾⃗⃗  is the three-

dimensional mixing tensor. Changes in physical parameters (for example changing the values in 𝐾⃗⃗ ) would produce 145 

changes in transport of biomass. But the associated changes in circulation would also produce changes in other fields, 

such as N, LightI, and T (and thus in growth rate 𝜇). Differences in the physical parameters between models will 

produce both direct differences, due to transport, and indirect differences, due to changes in growth and/or grazing. 

Additionally, insofar as the biology affects the absorption of shortwave radiation, it can produce differences in the 

circulation, (Sweeney et al., 2005), although for the simulations in this paper the differences are relatively small. 150 

 

For this paper, we chose to focus on biogeochemistry components (the ocean BCs) run within two ESMs: 

Biogeochemistry with Light, Iron, Nutrients, and Gases (BLING) and Tracers of Phytoplankton with Allometric 

Zooplankton (TOPAZ). In general termsAs described below, BLING iscan be thought of as a simplified version of 

TOPAZ. For Cases 1 and 2, we chose to only use model runs within different versions of GFDL ESM2Mc, in which 155 

BLING is the BC, with the reasoning that if the NNEs wereare unable to distinguish apparent relationships in the 

simpler BLING model, they would not be able to do so in the more complex TOPAZ model. In Case 3, we use versions 

of the GFDL ESM2M model in which BLING and TOPAZ are used as the BCs to compare apparent relationships 

found within the ESM.  

2.2 Biogeochemistry with Light, Iron, Nutrients, and Gases (BLING) 160 

BLING is a diagnostic biogeochemical model (Fig. 1) described in Galbraith et al. (2010), which was developed as a 

relatively computationally cheap biogeochemical code that could be run in high-resolution models. Only four explicit 

tracers are included in within the model: oxygen, dissolved organic phosphorus, phosphate, and iron (the last two 

corresponding to the nutrients (N) in Fig. 1). Phytoplankton are represented as two size classes: small and large 

(Biomass (B) in Fig. 1). Phytoplankton growth and grazing 𝐺(𝐵, 𝑇) are modelled using the phytoplankton size-165 

dependent loss equation developed by Dunne et al. (2005) represented as  

𝝁(𝑵, 𝑳𝒊𝒈𝒉𝒕, 𝑻)(𝑵, 𝑰, 𝑻) ∗ 𝑩 ≈ 𝑮(𝑩, 𝑻) = 𝝀(
𝑩

𝑷∗
)

𝜶

𝑩 (2) 

where 𝜆 is a grazing rate, 𝑃∗ is a biomass scaling for grazing, and 𝛼 is a grazing exponent. The grazing rate includes 

all losses due to grazing, viral lysis, temperature-dependent loss, and others. For the small phytoplankton size class α 
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= 1 and for the large phytoplankton size class α= 1/3. This means the large phytoplankton biomass is more sensitive 

to environmental conditions that thenthan the small phytoplankton biomass. The growth rate (μ) in Eq. (2) goes as 170 

𝝁 = 𝝁𝒐 ∙ 𝐞𝐱𝐩(𝒌𝑻) ∙ 𝐦𝐢𝐧 (
𝑭𝒆

𝑲𝑭𝒆 + 𝑭𝒆
,

𝑷𝑶𝟒

𝑲𝑷𝑶𝟒
+ 𝑷𝑶𝟒

) ∙ (𝟏 − 𝐞𝐱𝐩(−
𝑰𝒓𝒓

𝑲𝑰𝒓𝒓
))  𝝁

=  𝝁𝒐 ∙ 𝐞𝐱𝐩(𝒌𝑻) ∙ (𝟏 − 𝐞𝐱𝐩 (−
𝑰

𝑲𝑰
))  ∙ 𝐦𝐢𝐧(

𝑭𝒆

𝑲𝑭𝒆 + 𝑭𝒆
,

𝑷𝑶𝟒

𝑲𝑷𝑶𝟒
+ 𝑷𝑶𝟒

) 

(3) 

Location 1 Location 2

Time step J, 
initial values

Physical 
circulation

Biological cycling 

Time step J+1, initial 
values

DIAGNOSTIC (BLING)

Figure 1: Conceptual diagram of how biogeochemical evolution is computed within an ESM using the BLING BC. 

The letters and abbreviations represent: nutrients (N), phytoplankton biomass (B), the physical circulation component 

(phys), and the biological cycling component (bio). Each location has initial values for nutrients and biomass. These 

initial values are passed to the intrinsic biological relationships which then feed into the g function in the biological 

cycling box that are then used to calculate the changes in nutrients and biomass due to biological cycling. The initial 

nutrient concentrations between the two locations result in a change in nutrients from physical transport, which is 

equal in magnitude and opposite in sign between the two boxes (physical circulation component). When the physical 

circulation and biological cycling portions are coupled together, the nutrients and biomass for the next time step are 

calculated. 
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where 𝜇 is the growth rate, 𝑇 is the temperature with constant 𝑘 = 0.063°C-1 following Eppley (1972), 

𝐾𝐹𝑒,𝑃𝑂4,𝐼𝑟𝑟𝐾𝐹𝑒,𝑃𝑂4 ,𝐼 are the half-saturation constants, and 𝐼, 𝐹𝑒, and  𝑃𝑂4, and 𝐼𝑟𝑟 are the irradiances and the 

concentrations of dissolved iron, and phosphate, and irradiance, respectively. 𝐾𝐼𝑟𝑟𝐾𝐼 is a function of the nutrient anand 

temperature dependent growth rate. following Geider et al. (1997). The time averaged biomass then goes as  

𝑩̅ ≈ (
𝝁̅

𝝀
)

𝟏
𝜶
𝑷∗ (4) 

Note that this means that given N, LightI, and T (all of which are still predicted by the circulation model), the apparent 175 

relationships between biomass, nutrients, and lightirradiance are potentially tightly coupled to the intrinsic 

relationships governing phytoplankton physiology that determine the growth rate. 

Location 1 Location 2

Time step J, 
initial values

Physical 
circulation

Biological cycling 

Time step J+1, initial 
values

DIAGNOSTIC (BLING)

Figure 1: Conceptual diagram of how biogeochemical evolution is computed within an ESM using the BLING BC. 

The letters and abbreviations represent: nutrients (N), phytoplankton biomass (B), the physical circulation component 

(phys), and the biological cycling component (bio). Each location has initial values for nutrients and biomass. These 

initial values are passed to the intrinsic biological relationships which then feed into the g function in the biological 

cycling box that are then used to calculate the changes in nutrients and biomass due to biological cycling. The initial 

nutrient concentrations between the two locations result in a change in nutrients from physical transport, which is 

equal in magnitude and opposite in sign between the two boxes (physical circulation component). When the physical 

circulation and biological cycling portions are coupled together, the nutrients and biomass for the next time step are 

calculated. 
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Location 1 Location 2

Time step J, 
initial values

Physical 
circulation

Biological cycling 
,

Time step J+1, initial 
values

,

PROGNOSTIC (REAL WORLD/TOPAZ)

Figure 2: Conceptual diagram of how biogeochemical evolution is computed within an ESM using the prognostic 

TOPAZ BC. The letters and abbreviations represent: nutrients (N), phytoplankton biomass (B), the physical 

circulation component (phys), and the biological cycling component (bio). This ESM differs from the one described 

in Fig. 1. In this prognostic model, the changes in biomass from the biological cycling component are a function of 

the nutrients and biomass, rather than nutrients alone. Additionally, a change in biomass due to physical circulation is 

added. 
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2.3 Tracers of Phytoplankton with Allometric Zooplankton (TOPAZ) 

TOPAZ is a prognostic biogeochemical model included in the Geophysical Fluid Dynamics Laboratory (GFDL) 180 

ESM2M (Dunne et al., 2013; Fig. 2). It includes a total of 30 tracers to model cycles such as nitrogen, phosphorus, 

iron, oxygen, carbon, and others (Nutrients (N) in Fig. 2). TOPAZ models three phytoplankton groups (small, large, 

and diazotrophic; Biomass (B) in Fig. 2) with lightirradiance limitation based on the equations of Geider et al. (1997). 

Additionally, phytoplankton loss/grazing and particle export are modelled using the same size-dependent formulation 

as those used in Eq. (2), though without imposing the quasi-equilibrium assumption that leads to Eq. (4). TOPAZ 185 

differs from BLING in its number of tracers (and associated limitations) and the allowance for advection/diffusion of 

nutrients and biomass (Δ𝐵𝑗
𝑝ℎ𝑦𝑠

 in Fig. 2). This means that the loss rate of phytoplankton in TOPAZ is effectively a 

function of circulation as well the temperature and biomass-dependent grazing rate, 𝜆 (
𝐵

𝐵∗
)
𝛼

.  This will produce 

different biomasses in locations that have the same growth rates. Additionally, a key difference between BLING and 

TOPAZ is that the latter includes denitrification and nitrogen fixation. This then means (as suggested by Tyrrell 190 

Location 1 Location 2

Time step J, 
initial values

Physical 
circulation

Biological cycling 
,

Time step J+1, initial 
values

,

PROGNOSTIC (REAL WORLD/TOPAZ)

Figure 2: Conceptual diagram of how biogeochemical evolution is computed within an ESM using the  prognostic 

TOPAZ BC. The letters and abbreviations represent: nutrients (N), phytoplankton biomass (B), the physical 

circulation component (phys), and the biological cycling component (bio). This ESM differs from the one described 

in Fig. 1. In this prognostic model, the changes in biomass from the biological cycling component are a function of 

the nutrients and biomass, rather than nutrients alone. Additionally, a change in biomass due to physical circulation is 

added. 
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(1999)) that the nitrogen is the proximate limiting nutrient, while phosphorus is the ultimate limiting nutrient; a 

distinction that is not made in BLING. 

3 Case Descriptions 

3.1 Case 1 - Same ESM: Identical Biological Equations, Different Physical Circulations 

The aim of Case 1 wasis to quantify the extent to which differences in physical circulations between model runs of 195 

the same ESM with identical intrinsic biological relationships wouldcould affect the apparent relationships found by 

NNEs. As stated in Section 2.1, we chose to compare versions of GFDL ESM2Mc in which BLING is configured 

identically so we can be certain the differences are solely due to circulation changing the environmental conditions, 

and not the phytoplankton loss rates. Within GFDL ESM2Mc, the nominal resolution is 3 degrees longitudinally and 

2 degrees latitudinally, while the vertical resolution has 28 levels. Model runs are initialized with observations and 200 

spun up for 1900 years. The final 100 years are used to generate a monthly climatology. 

 

We chose to use three configurations of GFDL ESM2Mc. The three model runs consistedconsist of: a standard 

historical pre-industrial model spin-up (BLING – PI Control), a similar case to the first but where the carbon dioxide 

concentration wasis four times higher (BLING – 4x CO2), and a case similar to the historical spin-up except that the 205 

horizontal mixing parameter wasis three times higher (BLING – 3x Mixing). These model runs are described in greater 

detail in Gnanadesikan et al. (2013), Pradal and Gnanadesikan (2014), and Bahl et al. (2020). With the standard 

historical model essentially serving as a form of a “control,” the two remaining cases allowedallow us to examine if 

changes in the physical circulation wouldcould result in changes to the apparent relationships. 

 210 

The predictor variables for each model run wereare macronutrient (ex.e.g., phosphate), micronutrient (ex.e.g., 

dissolved iron), irradiance, and temperature. The target variables wereare small phytoplankton biomass and large 

phytoplankton biomass. One NNE wasis trained for each target variable of each model run for a total of six NNEs in 

Case 1 (three model runs and two target variables in each run). Details of the NNE training and the construction of 

the individual NNs making up each NNE can be found in Section 2.3.4. 215 

3.2 Case 2 - Same ESM: Different Diagnostic Biological Equations, Near-Identical Physical Circulations 

The purpose of Case 2 wasis to quantify the differences found by NNEs between the apparent relationships of model 

runs from the same ESM when the biological equations differ between runs, but the physical circulations are nearly 

identical. 

 220 

As in Case 1, we again chose to use different configurations of ESM2Mc, but this time we keep the physical 

parameterizations constant but change constants within the BLING BC. We useduse two model runs: the standard 

historical pre-industrial model spin-up used in Case 1 (BLING – PI Control) and one with similar distributions to PI 

Control but different half-saturation coefficients (KFe and KPO4 in Eq. (3)) for small and large phytoplankton (BLING 
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– LgSm). Changing the half-saturation coefficients, which directly affects phytoplankton growth, is analogous to 225 

changing the biological equations. Relative to the PI Control, the half-saturation coefficients in LgSm wereare 

decreased by √3 for small phytoplankton and increased by √3 for large phytoplankton. While these changes produce 

small differences in circulation and SST (R2 = 0.9949 for SST between the two model runs) via changing the 

absorption of shortwave radiation, these differences are small. (R2 = 0.9949 for SST between the two model runs). 

The primary impact of these changes affectsis to affect the distribution of nutrients, as increasing the half-saturation 230 

coefficients for large phytoplankton makes it harder for these phytoplankton to grow and efficiently export nutrients.  

 

The predictor variables for the model runs of Case 2 wereare the same as those in Case 1 (macronutrient, micronutrient, 

irradiance, and temperature). Likewise, the target variables wereare also the same as those in Case 1 (small and large 

phytoplankton biomass). A total of four NNEs wereare trained for Case 2 (two model runs and two target variables).  235 

3.3 Case 3 - Different ESMs: Prognostic vs. Diagnostic Biological Equations, Identical Physical Circulations 

For Case 3, the goal wasis to examine whether the results from a diagnostic BC from Cases 1 and 2 still heldhold 

when a prognostic BC wasis used. Our goal wasis to examine any differences in apparent relationships, along with 

identifying challenges when comparing apparent relationships across more realistic ESMs. In this experiment, the BCs 

wereare governed by different biological equations, but wereare run within the same physical model so that the 240 

temperatures and lightirradiance seen by the two BC codes wereare identical. 

 

One of our model simulations uses a version of BLING as the BC, while the other uses TOPAZ. For the BLING model 

run, the iron concentrations wereare fixed at their climatological values since this formulation was previously used to 

develop a model for very high-resolution studies (miniBLING). We choseuse this pair of simulations assince the 245 

miniBLING code wasis run in an identical physical circulation to the TOPAZ model run and so the lightirradiance 

and temperature experienced by the two model ecosystems are identical. AsThe ESM2M uses a 1 degree 

latitude/longitude resolution with 50 vertical layers and the model is spun up for 2400 years.  These simulations are 

described in more detail in Galbraith et al. (2015), the output is from thewhich shows that BLING and miniBLING 

yield essentially identical predictions for carbon uptake and ocean component of ESM2M forced with historical 250 

atmospheric forcing which we denote as ESM2Mo. deoxygenation under increased CO2. 

 

The predictor variables for Case 3 wereare limited to variables that wereare present in both ESMs: macronutrient, 

micronutrient, and irradiance. The target variable wasis total biomass. The biomass wasis not split into small and large 

phytoplankton biomass because the miniBLING output only containedcontains total biomass. For consistency, the 255 

small and large phytoplankton biomass values in TOPAZ wereare combined to give total biomass. Two NNEs wereare 

trained for Case 3 (two ESM runs and one target variable).  
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3.4 Neural Network Ensembles (NNEs) 

Neural network ensembles (NNEs) are an ensemble machine learning (ML) method. NNEs are comprised of a 

collection of individual neural networks (NNs) where the predictions of each NN are averaged into a single prediction. 260 

This ensemble approach has been shown to outperform individual NNs and reduce the generalization error within a 

dataset (Hansen and Salamon, 1990) by turning individual “weak learners” into a single “strong learner.”  Individual 

neural networks (NNs) can fit a non-linear function to a dataset without assuming any prior knowledge of the system. 

For a more thorough discussion of NNs, please refer to Schmidhuber (2015). The basic structure of the NN approach 

that we use here is described in Appendix 1 of Scardi (1996). 265 

 

We chose to use NNEs for several reasons: 

1. The ensemble approach of NNEs allows us to view the uncertainty in any given prediction based on the 

individual predictions of each NN. 

2. NNEs possess some capability of extrapolating outside the range of the data on which they are trained. (Holder 270 

and Gnanadesikan, 2021).  

3. As recently shown in Holder and Gnanadesikan (2021a2021), NNEs were able to more closely reproduce the 

underlying intrinsic relationships compared to RFsrandom forests, mainly because of their ability to 

extrapolate. 

 275 

The structure of the individual NNs wasis consistent between the three cases with each NN containing 25 hidden 

nodes in the hidden layer with a hyperbolic tangent sigmoid activation function and 1 node in the output layer with a 

linear activation function. We demonstrated in previous work that the NNE predictions were not greatly improved 

with the addition of a second hidden layer or with hidden layer node quantities greater than 25 (Holder and 

Gnanadesikan, 2021). Additionally, the activation function of the hidden layer nodes did not see a substantial increase 280 

in performance either as long as a non-linear function was used (Holder and Gnanadesikan, 2021). The onlysettings 

specified here allow for reasonable training times while maintaining high performance metrics relative to the other 

formulations tested in our previous work (Holder and Gnanadesikan, 2021). For more detailed information, see 

Appendix B2 in Holder and Gnanadesikan (2021).  

 285 

The difference between each case wasis in the number of input nodes: Cases 1 and 2 each containedcontain four input 

nodes (one for each predictor) and Case 3 containedhas three input nodes. The predicted concentration of each target 

variable (second column of Table 1) in individual NNs can be thought of as a function of the respective predictors 

(first column of Table 1). For example, one NN of the NNE for the small phytoplankton biomass target variable in 

Case 1 would have the following structure: 290 

1. The four predictor variables for Case 1 (first column of Table 1) correspond to the four nodes in the input layer 

of the NN. 

2. Each of the four input nodes is connected by weights to each of the 25 nodes in the hidden layer. Additionally, 

a bias term is connected to each of the hidden nodes. 



 

13 

 

3. Each of the nodes in the hidden layer is connected by weights to the single node in the output layer, which , for 295 

this instance, would correspond to the target variable of small phytoplankton biomass. As with the hidden layer, 

a bias term is connected to the single output node. 

 

The training of each NN wasis carried out using the “feedforwardnet” function in MATLAB 2019b (MATLAB, 2019). 

For each trained NN, the “feedforwardnet” function is provided the training dataset, which it then automatically 300 

separates into training, validation, and testing subsets, with 70% of the observations from the training dataset going 

to the training subset, 15% to the validation subset, and 15% to the testing subset. The training was stoppedstops when 

the error between the predictions and observations increasedincreases for six consecutive epochs.  

 

Separate NNEs wereare trained for each response variable in each model run, which equatedequates to six NNEs (2 305 

target variables, 3 simulations) in Case 1, four NNEs in Case 2, and two NNEs in Case 3. For consistency, the same 

framework and settings wereare used for the construction of the NNEs with each one consisting of 25 individuals 

NNs. 

 

It was demonstrated in Holder and Gnanadesikan (2021a) that the predictions produced by this approach were 310 

insensitive to the particular configuration of the NNEs. They tested various conditions that could affect the NNE 

performance including activation functions of the hidden layer nodes, number of hidden layers, and number of nodes 

in the hidden layer. The settings specified here allowed for reasonable training times while maintaining high 

performance metrics. For more detailed information, see Appendix B2 in Holder and Gnanadesikan (2021a). 

 315 
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Table 1: Summary of each case which includes information on the predictor variables, the target variables, the ESMs, 

the model runs, the biological specifications, and the physical circulation specifications. 
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Each variable wasis also scaled between -1 and 1 relative to each variable’s maximum and minimum 

𝑽𝑺 =  
𝒎𝒂𝒙𝑺 − 𝒎𝒊𝒏𝑺

𝒎𝒂𝒙𝑼 − 𝒎𝒊𝒏 𝑼
 (𝑽𝑼 − 𝒎𝒊𝒏𝑼) + 𝒎𝒊𝒏𝑺 (5) 

Where V is the value of a variable being scaled, S (subscript) is the scaled value, and U (subscript) is the unscaled 

value. This scaling puts the predictor values in the same range, so more weight is not given to variables with larger 

ranges. Additionally, this step decreases the training time of the NNs so that no values are too close to the limits of 

the hyperbolic tangent sigmoid activation function. The variables and predictions wereare then scaled back to their 320 

original values for analysis and presentation of the results (Eq. (6)). The letter representations in Eq. (6) are the same 

as those in Eq. (5). 

𝑽𝑼 = 
𝒎𝒂𝒙𝑼 − 𝒎𝒊𝒏𝑼

𝒎𝒂𝒙𝑺 − 𝒎𝒊𝒏 𝑺
 (𝑽𝑺 − 𝒎𝒊𝒏𝑺) + 𝒎𝒊𝒏𝑼 (6) 

 

When using ML, it is possible to produce overly complex relationships that “overfit” the data. This provides a good 

match for the data on which an ML model is trained but leads to poor predictions when new data is presented to the 325 

model. This can be avoided by splitting a dataset into training and testing subsets. For this manuscript, this means 

each NNE wasis trained using only the observations in the training subset and tested on the observations from the 

testing subset. The data from each model run wasis randomly split into training and testing subsets with 60% of the 

observations from a dataset going to the training subset and the other 40% going to the testing subset. The observations 

set aside in the testing subset wereare ones that the NNEs never sawsee during their training phase. This provides a 330 

way to evaluate each trained NNE and its generalizability. If performance metrics of a trained NNE are similar between 

the training and testing subsets, it suggests that the variance of the dataset is well captured in the training phase and 

the NNE is generalizable to the entire dataset. 

 

To assess the performance of each NNE, we calculatedcalculate the standard R2 values and root mean squared error 335 

(RMSE) by comparing the monthly biomass predictions from each NNE to the actual“true” monthly biomass values 

of the model runs within the respective training and testing subsets. 
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The NNEs in each case and matching size class wereare also asked to make predictions on the testing subsets of the 

other model runs. For example, in Case 1 the NNE trained on the small phytoplankton of PI Control wasis asked to 340 

make predictions for small phytoplankton of 4xCO2 using the values of the predictors from the testing subset of the 

4xCO2 model run. These results wereare then compared to the actual values of the target variable to calculate the 

RMSE. This RMSE wasis then used to calculate the percent increase/decrease in error when compared against the 

RMSE calculated from a point-by-point comparison of each model run against the others. The purpose of this wasis 

to provide another metric for testing if the NNEs had foundare finding common apparent relationships across model 345 

runs. If an NNE trained on one model run wasis able to accurately predict the outcomes of the other model runs 

leadingwith errors that are similar in magnitude to a reduction in the RMSENNEs that were trained on those runs, it 

would suggest that the NNE had foundNNEs are finding similar apparent relationships between the model runs. On 

the other hand, if it showedshows an increase in RMSE, it would suggestsuggests that the apparent relationships 

between the model runs wereare different in biologically important ways.  350 

 

To view the apparent relationships found by the NNEs, we conductedconduct sensitivity analyses in which we 

presentedpresent each NNE with a unique set of values for the predictors. Compared to spatiotemporal distributions 

and time series, sensitivity analyses allow for the visualization of relationships between predictor and target variables. 

In each sensitivity analysis, one predictor wasis varied across its minimum and maximum range, while the other 355 

variables wereare held at a specified value, such as each variable’s 25 th percentile. This wasis repeated for the 50th and 

75th percentile values of each variable as well. This allowedallows us to visualize how the biomass predictions 

changedchange across one variable’s range when the other variables wereare held at a specified value. An example of 

1

Macronutrient (mol kg
-1

); 

Micronutrient (mol kg
-1

); 

Irradiance (W m
-2

); 

Temperature (°C)

Small Phytoplankton 

Biomass (mol kg
-1

); 

Large Phytoplankton 

Biomass (mol kg
-1

)

BLING
PI Control; 4xCO2; 

3x Mixing

Identical diagnostic BC 

across model runs

Predicted by different versions of 

ESM2Mc produced by significant 

changes in phyical parameters

2

Macronutrient (mol kg
-1

); 

Micronutrient (mol kg
-1

); 

Irradiance (W m
-2

); 

Temperature (°C)

Small Phytoplankton 

Biomass (mol kg
-1

); 

Large Phytoplankton 

Biomass (mol kg
-1

)

BLING PI Control; LgSm
Different diagnostic BC 

across model runs

Nearly identical circulations 

produced by ESM2Mc

3

Macronutrient (mol kg
-1

); 

Micronutrient (mol kg
-1

); 

Irradiance (W m
-2

)

Total Phytoplankton 

Biomass (mol kg
-1

)

miniBLING and 

TOPAZ

One model run 

from miniBLING; 

one model run from 

TOPAZ

Simple diagnostic vs complex 

pronostic BC

Identical physical circulations 

produced by ocean component of 

ESM2M

Biogeochemical 

Component
Model Runs Biological Specifications Physics/Circulation SpecificationsCase # Predictor Variables Target Variables

Table 1: Summary of each case which includes information on the predictor variables, the target variables, the ESMs, 

the model runs, the biological specifications, and the physical circulation specifications. 
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this would beis varying the macronutrient concentration while holding the micronutrient, irradiance, and temperature 

variables at their 25th or 75th percentile values. This allowedallows us to see how the macronutrient concentration 360 

affectedaffects biomass when other nutrients wereare low or high, respectively. 

4 Results and Discussion 

4.1 Case 1 – Same ESM: Identical Biological Equations, Different Physical Circulations 

In Case 1, our objective wasis to quantify the extent to which differences in physical circulation might affect the 

apparent relationships found by NNEs when the intrinsic biological relationships remainedremain the same between 365 

the model runs and the physical circulation parameters differeddiffer. It wasis uncertain whether changing the 

circulation would push the biology into fundamentallylead to new statespatterns of co-limitation (i.e., different 

apparent relationships) or whether the physical circulation would simply act to change the location of where 

combinations of lightirradiance and nutrients wereare found (ie.i.e., same apparent relationships).  

 370 

Our results support the latter case, inoutcome, that the locations of particular environments wereare simply being 

shuffled around. The sensitivity analysis showedshows that each NNE foundfinds similar apparent relationships 

between biomass and each of the predictors for the respective size classes, insofar  as each line fellfalls within the 

standard deviation of the others (Fig. 3 and 4). For example, the standard deviation (gray region) around the predicted 

apparent relationships for the large phytoplankton (dashed lines) all overlap one another (Fig. 3).  The same can beis 375 

seen for the predicted apparent relationships for the small phytoplankton (Fig. 4). Additionally, we wereare confident 

in the apparent relationships since each NNE acquiredacquires high performance metrics in both the training and 

testing subsets (highest RMSE = 3.11x10-9 mol P kg-1; Table 2) relative to the mean value of the total biomass 

(1.24x10-8 mol P kg-1).  
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 380 

This result can be better understood by considering the conceptual diagram of how the diagnostic BC BLING works 

within an ESM (Fig. 1). For each time step, nutrients are calculated as a function of three terms: the initial nutrients, 

the change in nutrients from biology, and the change in nutrients from physical circulation. In contrast, the biomass is 

only a function of two terms: the initial biomass values and the change in biomass due to biological cycling. Thus, 

biomass is not directly affected by changes in the physical circulation. Additionally, this means that when given 385 

information on the biological predictors, but not the physical parameters, the NNEs were able to back out the apparent 

relationships quite wellare able to back out the apparent relationships quite well. Although it would seem obvious 

from Fig. 1 that the biomass is not directly affected by changes in the physical circulation, we were unsure whether 

indirect impacts of such changes (changing patterns of co-limitation or temporal variability) would affect the results. 

Our results indicate that such indirect effects were absent or, at most, minor. 390 

 

Case # Phytoplankton Size ESM/Model Run/BC

R-squared RMSE R-squared RMSE

ESM2Mc / PI Control / BLING 0.9912 6.24 x 10
-10 0.9908 6.35 x 10

-10

ESM2Mc / 4x CO2 / BLING 0.9906 6.18 x 10
-10 0.9903 6.26 x 10

-10

ESM2Mc / 3x Mixing / BLING 0.9912 6.22 x 10
-10 0.9906 6.35 x 10

-10

ESM2Mc / PI Control / BLING 0.9790 3.00 x 10
-9 0.9771 3.11 x 10

-9

ESM2Mc / 4x CO2 / BLING 0.9749 2.74 x 10
-9 0.9740 2.77 x 10

-9

ESM2Mc / 3x Mixing / BLING 0.9804 3.00 x 10
-9 0.9778 3.11 x 10

-9

ESM2Mc / PI Control / BLING 0.9912 6.24 x 10
-10 0.9908 6.35 x 10

-10

ESM2Mc / PI Control / BLING-LgSm 0.9762 1.00 x 10
-9 0.9761 1.00 x 10

-9

ESM2Mc / PI Control / BLING 0.9790 3.00 x 10
-9 0.9771 3.11 x 10

-9

ESM2Mc / PI Control / BLING-LgSm 0.9862 2.34 x 10
-9 0.9855 2.38 x 10

-9

ESM2Mo / Historical / miniBLING 0.9511 8.97 x 10
-9 0.9507 9.11 x 10

-9

ESM2Mo / Historical / TOPAZ 0.5893 8.97 x 10
-9 0.5867 8.99 x 10

-9

Training Data Testing Data

Small Phytoplankton

Large Phytoplankton

Small Phytoplankton

Large Phytoplankton

Case 1

Case 2

Case 3 Total Phytoplankton

Table 2: The performance metrics for the training and testing subsets for the trained NNEs from each case separated 

into their respective size classes and ESM/model runs. 
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That similar apparent relationships wereare found between the model runs wasis further supported when we taskedtask 

each trained NNE with making predictions on the testing subsets of the other model runs for the same size class. For 

example, the NNE trained on the PI Control for small phytoplankton wascan be tasked with making predictions for 

the small phytoplankton biomass of 4xCO2 and 3xMixing using the predictor values from their testing subsets. This 395 

test allowedallows for the evaluation of the robustness of the relationships that each NNE foundfinds. If the NNEs 

wereare finding different relationships between the model runs, the NNE from one model run wouldwill likely perform 

poorly when predicting on the other model runs. Our results show that the NNEs performedperform well when applied 

to the other model runs (highest RMSE = 3.74x10-9 mol P kg-1; Table 3) relative to the average value of total biomass 

Case # Phytoplankton Size ESM/Model Run/BC

R-squared RMSE R-squared RMSE

ESM2Mc / PI Control / BLING 0.9912 6.24 x 10
-10 0.9908 6.35 x 10

-10

ESM2Mc / 4x CO2 / BLING 0.9906 6.18 x 10
-10 0.9903 6.26 x 10

-10

ESM2Mc / 3x Mixing / BLING 0.9912 6.22 x 10
-10 0.9906 6.35 x 10

-10

ESM2Mc / PI Control / BLING 0.9790 3.00 x 10
-9 0.9771 3.11 x 10

-9

ESM2Mc / 4x CO2 / BLING 0.9749 2.74 x 10
-9 0.9740 2.77 x 10

-9

ESM2Mc / 3x Mixing / BLING 0.9804 3.00 x 10
-9 0.9778 3.11 x 10

-9

ESM2Mc / PI Control / BLING 0.9912 6.24 x 10
-10 0.9908 6.35 x 10

-10

ESM2Mc / PI Control / BLING-LgSm 0.9762 1.00 x 10
-9 0.9761 1.00 x 10

-9

ESM2Mc / PI Control / BLING 0.9790 3.00 x 10
-9 0.9771 3.11 x 10

-9

ESM2Mc / PI Control / BLING-LgSm 0.9862 2.34 x 10
-9 0.9855 2.38 x 10

-9

ESM2Mo / Historical / miniBLING 0.9511 8.97 x 10
-9 0.9507 9.11 x 10

-9

ESM2Mo / Historical / TOPAZ 0.5893 8.97 x 10
-9 0.5867 8.99 x 10

-9

Training Data Testing Data

Small Phytoplankton

Large Phytoplankton

Small Phytoplankton

Large Phytoplankton

Case 1

Case 2

Case 3 Total Phytoplankton

Table 2: The performance metrics for the training and testing subsets for the trained NNEs from each case separated 

into their respective size classes and ESM/model runs. 
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(1.24x10-8 mol P kg-1). Given that these values are close to the performance metrics of their original datasets (Table 2 400 

vs Table 3), it seems logical to say that this wasis because they wereare finding the same relationships.  
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Figure 3: Sensitivity analysis plots for the small and large phytoplankton of Case 1. Each line is the prediction for the 

NNE specific to each model run and the color of each line represents the model run (PI Control – Red; 4xCO2 – Blue; 

3xMixing - Green). The solid lines correspond to the small phytoplankton and the dashed lines to the large 

phytoplankton. The gray region around each line shows one standard deviation in the predictions of the individual 

NNs that make up each NNE (ex. The gray region around the solid red curves shows the standard deviation in the 

predictions of the 25 NNs that make up that particular NNE). The rows correspond to the percentile value at which 

the other predictor variables were held constant (ex. Box (a) varies the macronutrient across its min-max range and 

holds the micronutrient, irradiance, and temperature at their respective 25th percentile values). Columns show the x-

axis variables as they vary between their min-max range. The y-axis in all subplots is the biomass concentration. Note 

that the biomass scale changes with each subplot. 
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Additionally, using the NNEs to predict the other runs ledleads to decreases in error relative to the error from 

comparing each run against the others. For example, the initial point-by-point comparison of 4xCO2 and PI Control 

for small phytoplankton (Fig. 5 d) showedshows an RMSE of 3.06x10-9 mol P kg-1, while using the NNEs from each 405 

model run to predict the other saw the RMSE go down with a reduction in error of about 76% (Table 3). This reduction 

of error wasis consistent across the other model runs and size classes with error reductions varying from 54-79% 
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Figure 3: Sensitivity analysis plots for the small and large phytoplankton of Case 1. Each line is the prediction for the 

NNE (i.e., the average prediction of 25 NNs) specific to each model run and the color of each line represents the model 

run (PI Control – Red; 4xCO2 – Blue; 3xMixing - Green). The solid lines correspond to the NNE predictions for small 

phytoplankton and the dashed lines to the NNE predictions for large phytoplankton. The gray region around each line 

shows one standard deviation in the predictions of the individual NNs that make up each NNE (e.g., the gray region 

around the solid red curves shows the standard deviation in the predictions of the 25 NNs that make up that particular 

NNE). The rows correspond to the percentile value at which the other predictor variables are held constant (e.g., box 

(a) varies the macronutrient across its min-max range and holds the micronutrient, irradiance, and temperature at their 

respective 25th percentile values). Columns show the x-axis variables as they vary between their min-max range. The 

y-axis in all subplots is the biomass concentration. Note that the biomass scale changes with each subplot.  
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Figure 4: Sensitivity analysis plots for the small phytoplankton of Case 1. This figure is provided to allow for 

examination of the apparent relationships for the small phytoplankton, since the large phytoplankton apparent 

relationships made it difficult to see those for the small phytoplankton in Fig. 3. Each line is the prediction for the 

NNE specific to each model run and the color of each line represents the model  run (PI Control – Red; 4xCO2 – Blue; 

3xMixing - Green). The gray region around each line shows one standard deviation in the predictions of the individual 

NNs that make up each NNE (ex. The gray region around the solid red curves shows the standard deviation in the 

predictions of the 25 NNs that make up that particular NNE). The rows correspond to the percentile value at which 

the other predictor variables were held constant (ex. Box (a) varies the macronutrient across its min-max range and 

holds the micronutrient, irradiance, and temperature at their respective 25th percentile values). Columns show the x-

axis variables as they vary between their min-max range. The y-axis in all subplots is the biomass concentration. Note 

that the biomass scale changes with each subplot. 
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(Table 3). This implies the NNEs applied to the other runs wereare better able to predict the outcome than the point-

by-point analysis, once again reinforcing our previous result.  

PI Control 4x CO2 3x Mixing PI Control 4x CO2 3x Mixing

PI Control - (0.829) 0.9874 (0.9287) 0.9902 - - -

4x CO2 (0.829) 0.9887 - (0.788) 0.9878 - - -

3x Mixing (0.9287) 0.9901 (0.788) 0.9849 - - - -

PI Control - - - - (0.7842) 0.9683 (0.8831) 0.9772

4x CO2 - - - (0.7842) 0.9722 - (0.7306) 0.969

3x Mixing - - - (0.8831) 0.9738 (0.7306) 0.963 -

PI Control - (3.06 x 10⁻⁹) 7.38 x 10⁻¹⁰ (1.84 x 10⁻⁹) 6.55 x 10⁻¹⁰ - - -

4x CO2 (3.06 x 10⁻⁹) 7.15 x 10⁻¹⁰ - (3.56 x 10⁻⁹) 7.3 x 10⁻¹⁰ - - -

3x Mixing (1.84 x 10⁻⁹) 6.64 x 10⁻¹⁰ (3.56 x 10⁻⁹) 7.97 x 10⁻¹⁰ - - - -

PI Control - - - - (1 x 10⁻⁸) 3.11 x 10⁻⁹ (7.34 x 10⁻⁹) 3.2 x 10⁻⁹

4x CO2 - - - (1 x 10⁻⁸) 3.44 x 10⁻⁹ - (1.17 x 10⁻⁸) 3.74 x 10⁻⁹

3x Mixing - - - (7.34 x 10⁻⁹) 3.34 x 10⁻⁹ (1.17 x 10⁻⁸) 3.33 x 10⁻⁹ -

PI Control - 75.90% 64.45% - - -

4x CO2 76.66% - 79.53% - - -

3x Mixing 63.98% 77.64% - - - -

PI Control - - - - 69.09% 56.32%

4x CO2 - - - 65.71% - 67.99%

3x Mixing - - - 54.45% 71.50% -

NNE being used 

for predicting

Small 

Phytoplankton

Large 

Phytoplankton

Percent 

Decrease in 

Error

NNE being used 

for predicting

Small 

Phytoplankton

Large 

Phytoplankton

Case being predicted

Small Phytoplankton Large Phytoplankton

RMSE
NNE being used 

for predicting

Small 

Phytoplankton

Large 

Phytoplankton

R-squared

Table 3: The performance metrics for the NNEs being used to predict the outcome of the other model runs for the 

same size class of Case 1. In the top half of the table, the R-squared and RMSE are listed. The values in paratheses 

are the values from comparing the respective cases against one another (these are the same values listed in the 

respective scatter plots of Fig. 5 and 6). The values outside the parentheses are the values from using the trained NNE 

of the model listed in the row to predict the outcome of the model run in the column (ex. The NNE trained on 4xCO2 

was used to predict the PI Control outcome using the predictor values of PI Control. These values were compared 

against the actual values of the PI Control to compute the RMSE of 7.15x10-10). In the bottom half of the table is the 

percent decrease in RMSE from the number listed inside the parentheses to the RMSE outside the parentheses. 
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Figure 5: Comparison of the model runs for small phytoplankton biomass in Case 1. The units for biomass in all 

subplots are mol kg-1. The subplots show point-by-point scatter plots comparing the model runs against one another 

(d, g, h), yearly averaged log10 biomass plots for each model run (a, e, i), and the log10 relative ratios comparing the 

yearly averaged contour plots of the model runs (b, c, f). The x-axis and y-axis of the scatter plots (d, g, h) correspond 

to the horizonal/vertical model run labels, respectively (ex. Box (d) shows PI Control on the x-axis and 4xCO2 on the 

y-axis). The yearly averaged log10 contour plots (a, e, i) correspond to the matching horizontal/vertical model run 

labels (ex. Box (a) shows the yearly averaged log10 biomass of PI Control). The log10 relative ratios (b, c, f) were 

calculated as the model run listed on the horizontal axis divided by the model run listed on the vertical axis (ex. Box 

(b) shows 4xCO2 divided PI Control). 
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That the NNEs from one model run wereare able to reproduce the results from the other model runs wasis not simply 

due to the models producing similar spatiotemporal patterns. To ensure that distinct differences between the model 

runs wereare present, we comparedcompare each model run against the others (Fig. 5 and 6). Differences in the 

biomass values between the three model runs wereare evident (Fig. 5 and 6). First, we comparedcompare each model 

run against the others in a point-by-point analysis and observedobserve that different biomasses wereare occurring at 415 

the same spatiotemporal locations (Fig. 5 and 6 d, g, h). For example, in the small phytoplankton scatter plot for PI 
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Figure 4: Sensitivity analysis plots for the small phytoplankton of Case 1. This figure is provided to allow for 

examination of the apparent relationships for the small phytoplankton, since the large phytoplankton apparent 

relationships made it difficult to see those for the small phytoplankton in Fig. 3. Each line is the prediction for the 

NNE (i.e., the average prediction of 25 NNs) specific to each model run and the color of each line represents the model 

run (PI Control – Red; 4xCO2 – Blue; 3xMixing - Green). The gray region around each line shows one standard 

deviation in the predictions of the individual NNs that make up each NNE (e.g., the gray region around the solid red 

curves shows the standard deviation in the predictions of the 25 NNs that make up that particular NNE). The rows 

correspond to the percentile value at which the other predictor variables were held constant (e.g., box (a) varies the 

macronutrient across its min-max range and holds the micronutrient, irradiance, and temperature at their respective 

25th percentile values). Columns show the x-axis variables as they vary between their min-max range. The y-axis in 

all subplots is the biomass concentration. Note that the biomass scale changes with each subplot. 
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Control vs 4xCO2, PI Control showedshows a tendency of having higher biomass values than 4xCO2 across most 

locations (Fig. 5 d). Additionally, we lookedlook at the contour plots and loglog10 relative ratios using the yearly 

averaged biomass for each case (Fig. 5 and 6 a-c, e, f, i). Specific large differences that we noted werenote are higher 

biomass in the Pacific and Northern Atlantic in PI Control and 3xMixing relative to 4xCO2 (Fig. 5 and 6 b, f) and the 420 

highest biomass in occurring in 3xMixing in the subtropical regions of the Pacific (Fig. 5 and 6 c). Similar patterns 

wereare observed in the large phytoplankton, as well (Fig. 6). These differences between the model runs are relatively 
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Figure 6: Comparison of the model runs for large phytoplankton biomass in Case 1. The units for biomass in all 

subplots are mol kg-1. The subplots show point-by-point scatter plots comparing the model runs against one another 

(d, g, h), yearly averaged log10 biomass plots for each model run (a, e, i), and the log10 relative ratios comparing the 

yearly averaged contour plots of the model runs (b, c, f). The x-axis and y-axis of the scatter plots (d, g, h) correspond 

to the horizonal/vertical model run labels, respectively (ex. Box (d) shows PI Control on the x-axis and 4xCO2 on the 

y-axis). The yearly averaged log10 contour plots (a, e, i) correspond to the matching horizontal/vertical model run 

labels (ex. Box (a) shows the yearly averaged log10 biomass of PI Control). The log10 relative ratios (b, c, f) were 

calculated as the model run listed on the horizontal axis divided by the model run listed on the vertical axis (ex. Box 

(b) shows 4xCO2 divided PI Control). 
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large (exceeding a factor of three in some locations) and allow us to dismiss the possibility that the similar apparent 

relationships wereare only due to strong similarities between the model runs. 

 425 

Although the sensitivity analysis allowedallows us to see that the apparent relationships were the same for each size 

class, it also allows us to see how the two size classes react differently to the same conditions. Most notably, the large 

phytoplankton seem to be very sensitive to the micronutrient compared to the small phytoplankton (Fig. 3; closer view 

of small phytoplankton in Fig. 4). When the other predictors are held at their 75th percentile values (high macronutrient, 

high irradiance, and warm temperature), the large phytoplankton are able to reach biomass values almost an order of 430 

magnitude higher than the small phytoplankton (Fig. 3 and 4 j). This is what would be expected given the cubic 

relationship of large phytoplankton with growth rate. Another interesting relationship is the stark asymptotes in both 

size classes of the macronutrient plots, suggesting limitations by other nutrients, likely the micronutrient (Fig. 3 a, e, 

i). One unexpected relationship wasis the decreasing biomass with increasing temperature in both size classes (Fig. 3 

d, h, l). This could be a result of warmer regions having less available nutrients or because of the temperature 435 

PI Control 4x CO2 3x Mixing PI Control 4x CO2 3x Mixing

PI Control - (0.829) 0.9874 (0.9287) 0.9902 - - -

4x CO2 (0.829) 0.9887 - (0.788) 0.9878 - - -

3x Mixing (0.9287) 0.9901 (0.788) 0.9849 - - - -

PI Control - - - - (0.7842) 0.9683 (0.8831) 0.9772

4x CO2 - - - (0.7842) 0.9722 - (0.7306) 0.969

3x Mixing - - - (0.8831) 0.9738 (0.7306) 0.963 -

PI Control - (3.06 x 10⁻⁹) 7.38 x 10⁻¹⁰ (1.84 x 10⁻⁹) 6.55 x 10⁻¹⁰ - - -

4x CO2 (3.06 x 10⁻⁹) 7.15 x 10⁻¹⁰ - (3.56 x 10⁻⁹) 7.3 x 10⁻¹⁰ - - -

3x Mixing (1.84 x 10⁻⁹) 6.64 x 10⁻¹⁰ (3.56 x 10⁻⁹) 7.97 x 10⁻¹⁰ - - - -

PI Control - - - - (1 x 10⁻⁸) 3.11 x 10⁻⁹ (7.34 x 10⁻⁹) 3.2 x 10⁻⁹

4x CO2 - - - (1 x 10⁻⁸) 3.44 x 10⁻⁹ - (1.17 x 10⁻⁸) 3.74 x 10⁻⁹

3x Mixing - - - (7.34 x 10⁻⁹) 3.34 x 10⁻⁹ (1.17 x 10⁻⁸) 3.33 x 10⁻⁹ -

PI Control - 75.90% 64.45% - - -

4x CO2 76.66% - 79.53% - - -

3x Mixing 63.98% 77.64% - - - -

PI Control - - - - 69.09% 56.32%

4x CO2 - - - 65.71% - 67.99%

3x Mixing - - - 54.45% 71.50% -

Percent 

Decrease in 

Error

NNE being used 

for predicting

Small 

Phytoplankton

Large 

Phytoplankton

Case being predicted

Small Phytoplankton Large Phytoplankton

RMSE
NNE being used 

for predicting

Small 

Phytoplankton

Large 

Phytoplankton

R-squared
NNE being used 

for predicting

Small 

Phytoplankton

Large 

Phytoplankton

Table 3: The performance metrics for the NNEs being used to predict the outcome of the other model runs for the 

same size class of Case 1. In the top half of the table, the R-squared and RMSE are listed. The values in paratheses 

are the values from comparing the respective cases against one another (these are the same values listed in the 

respective scatter plots of Fig. 5 and 6). The values outside the parentheses are the values from using the trained NNE 

of the model listed in the row to predict the outcome of the model run in the column (e.g., the NNE trained on 4xCO2 

was used to predict the PI Control outcome using the predictor values of PI Control. These values were compared 

against the actual values of the PI Control to compute the RMSE of 7.15x10-10). In the bottom half of the table is the 

percent decrease in RMSE from the number listed inside the parentheses to the RMSE outside the parentheses. 
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dependent chlorophyll-to-carbon (Chl:C) ratios (Geider et al., 1997) which would lead to phytoplankton needing more 

lighthigher irradiance in warmer waters.  

 

Relative to our main objective in Case 1 to quantify the extent to which differences in physical circulation affect the 

apparent relationships, our results indicatedindicate that the different physical circulations diddo not produce 440 

differences in the apparent relationships found by NNEs. When the biological equations remainedremain the same, 
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Figure 5: Comparison of the model runs for small phytoplankton biomass in Case 1. The units for biomass in all 

subplots are mol P kg-1. The subplots show point-by-point scatter plots comparing the model runs against one another 

(d, g, h), yearly averaged log10 biomass plots for each model run (a, e, i), and the log10 relative ratios comparing the 

yearly averaged contour plots of the model runs (b, c, f). The x-axis and y-axis of the scatter plots (d, g, h) correspond 

to the horizonal/vertical model run labels, respectively (e.g., box (d) shows PI Control on the x-axis and 4xCO2 on the 

y-axis). The yearly averaged log10 contour plots (a, e, i) correspond to the matching horizontal/vertical model run 

labels (e.g., box (a) shows the yearly averaged log10 biomass of PI Control). The log10 relative ratios (b, c, f) were 

calculated as the model run listed on the horizontal axis divided by the model run listed on the vertical axis (e.g., box 

(b) shows 4xCO2 divided PI Control). 
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changing the physical parameters simply changedchanges where combinations of nutrients and light 

occurred.irradiance occur. The NNEs can find the same apparent relationships between the model runs when the 

equations and constants governing those runs are identical, even if the inputs differ.  In contrast to changes in nutrients, 

changes in biomass in the BLING ESM wereare not a function of the physical circulation.  445 
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Figure 6: Comparison of the model runs for large phytoplankton biomass in Case 1. The units for biomass in all 

subplots are mol P kg-1. The subplots show point-by-point scatter plots comparing the model runs against one another 

(d, g, h), yearly averaged log10 biomass plots for each model run (a, e, i), and the log10 relative ratios comparing the 

yearly averaged contour plots of the model runs (b, c, f). The x-axis and y-axis of the scatter plots (d, g, h) correspond 

to the horizonal/vertical model run labels, respectively (e.g., box (d) shows PI Control on the x-axis and 4xCO2 on the 

y-axis). The yearly averaged log10 contour plots (a, e, i) correspond to the matching horizontal/vertical model run 

labels (e.g., box (a) shows the yearly averaged log10 biomass of PI Control). The log10 relative ratios (b, c, f) were 

calculated as the model run listed on the horizontal axis divided by the model run listed on the vertical axis (e.g., box 

(b) shows 4xCO2 divided PI Control). 
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4.2 Case 2 – Same ESM: Different Diagnostic Biological Equations, Near-Identical Physical Circulations 

In Case 1, it wasis clear from our results that when the biological cycling wasis identical between model runs, the 

NNEs foundfind the same apparent relationships because the biomass wasis not a function of the physical circulation. 450 

Since the biomass is clearly a function of the biological equations, it would be reasonable to assume that the apparent 

relationships wouldcould be different between model runs that are governed by different biological equations. So, for 

Case 2, the objective wasis to quantify the extent to which NNEs couldcan detect differences in the apparent 

relationships when the intrinsic biological relationships between model runs wereare different, while maintaining 
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Figure 7: Sensitivity analysis plots for the small and large phytoplankton of Case 2. Each line is the prediction for the 

NNE (i.e., the average prediction of 25 NNs) specific to each model run and the color of each line represents the model 

run (PI Control – Red; LgSm – Blue). The solid lines correspond to the small phytoplankton and the dashed lines to 

the large phytoplankton. The gray region around each line shows one standard deviation in the predictions of the 

individual NNs that make up each NNE (e.g., the gray region around the solid red curves shows the standard deviation 

in the predictions of the 25 NNs that make up that particular NNE). The rows correspond to the percentile value at 

which the other predictor variables were held constant (e.g., box (a) varies the macronutrient across its min-max range 

and holds the micronutrient, irradiance, and temperature at their respective 25th percentile values). Columns show the 

x-axis variables as they vary between their min-max range. The y-axis in all subplots is the biomass concentration. 

Note that the biomass scale changes with each subplot. 



 

29 

 

similar physical circulations and still using a diagnostic model which guarantees that identical nutrient, lightirradiance, 455 

and temperature at two different points will produce identical biomass. 

 

Our results show that NNEs can differentiate the apparent relationships between model runs when the biological 

equations differ. The sensitivity analysis for Case 2 shows that different apparent relationships wereare found between 

model runs and within the same size classes, relative to the non-overlapping gray standard deviation regions around 460 

each line (Fig. 7 and 8). Additionally, we can be fairly confident in these predictions given the high-performance 
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Figure 8: Sensitivity analysis plots for the small phytoplankton of Case 2. This figure is provided to allow for 

examination of the apparent relationships for the small phytoplankton, since the large phytoplankton apparent 

relationships made it difficult to see those for the small phytoplankton in Fig. 7. Each line is the prediction for the 

NNE (i.e., the average prediction of 25 NNs) specific to each model run and the color of each line represents the model 

run (PI Control – Red; LgSm – Blue). The gray region around each line shows one standard deviation in the predictions 

of the individual NNs that make up each NNE (e.g., the gray region around the solid red curves shows the standard 

deviation in the predictions of the 25 NNs that make up that particular NNE). The rows correspond to the percentile 

value at which the other predictor variables were held constant (e.g., box (a) varies the macronutrient across its min-

max range and holds the micronutrient, irradiance, and temperature at their respective 25th percentile values). Columns 

show the x-axis variables as they vary between their min-max range. The y-axis in all subplots is the biomass 

concentration. Note that the biomass scale changes with each subplot. 
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metrics in both the training and testing subsets (highest RMSE = 3.11x10-9 mol P kg-1 [Table 2] vs. the average total 

biomass of 1.36x10-8 mol P kg-1).  
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Figure 7: Sensitivity analysis plots for the small and large phytoplankton of Case 2. Each line is the prediction for the 

NNE specific to each model run and the color of each line represents the model run (PI Control – Red; LgSm – Blue). 

The solid lines correspond to the small phytoplankton and the dashed lines to the large phytoplankton. The gray region 

around each line shows one standard deviation in the predictions of the individual NNs that make up each NNE (ex. 

The gray region around the solid red curves shows the standard deviation in the predictions of the 25 NNs that make 

up that particular NNE). The rows correspond to the percentile value at which the other predictor variables were held 

constant (ex. Box (a) varies the macronutrient across its min-max range and holds the micronutrient, irradiance, and 

temperature at their respective 25th percentile values). Columns show the x-axis variables as they vary between their 

min-max range. The y-axis in all subplots is the biomass concentration. Note that the biomass scale changes with each 

subplot. 
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This result of different relationships, when the model runs are governed by different biological equations, reinforces 

what we found in Case 1. Changing the biological equations can be likened to changing how the nutrients affect the 

phytoplankton biomass (the function g(NJ,L1,L2) in Fig. 1).  While it might seem obvious that changing the biological 

equations will change the biomass values, it remainedremains unclear whether NNEs would be able to pick out these 

differences in the apparent relationships.  470 
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Figure 9: Comparison of the model runs for small phytoplankton biomass in Case 2. The units for biomass in all 

subplots are mol P kg-1. The subplots show point-by-point scatter plots comparing the model runs against one another 

(c), yearly averaged log10 biomass plots for each model run (a and d), and the log10 relative ratios comparing the 

yearly averaged contour plots of the model runs (b). The x-axis and y-axis of the scatter plots (c) correspond to the 

horizonal/vertical model run labels, respectively (e.g., box (c) shows PI Control on the x-axis and LgSm on the y-

axis). The yearly averaged log10 contour plots (a and d) correspond to the matching horizontal/vertical model run 

labels (e.g., box (a) shows the yearly averaged log10 biomass of PI Control). The log10 relative ratios (b) were 

calculated as the model run listed on the horizontal axis divided by the model run listed on the vertical axis (e.g., box 

(b) shows LgSm divided PI Control). 



 

32 

 

 

25th Percentile

50th Percentile

75th Percentile

Macronutrient 
(mol kg-1)

Micronutrient 
(mol kg-1)

Irradiance
(W m-2)

Temperature
(o C)

B
io

m
as

s
(m

o
lk

g-1
)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8: Sensitivity analysis plots for the small phytoplankton of Case 2. This figure is provided to allow for 

examination of the apparent relationships for the small phytoplankton, since the large phytoplankton apparent 

relationships made it difficult to see those for the small phytoplankton in Fig. 7. Each line is the prediction for the 

NNE specific to each model run and the color of each line represents the model run (PI Control – Red; LgSm – Blue). 

The gray region around each line shows one standard deviation in the predictions of the individual NNs that make up 

each NNE (ex. The gray region around the solid red curves shows the standard deviation in the predictions of the 25 

NNs that make up that particular NNE). The rows correspond to the percentile value at which the other predictor 

variables were held constant (ex. Box (a) varies the macronutrient across its min-max range and holds the 

micronutrient, irradiance, and temperature at their respective 25th percentile values). Columns show the x-axis 

variables as they vary between their min-max range. The y-axis in all subplots is the biomass concentration. Note that 

the biomass scale changes with each subplot. 
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Figure 9: Comparison of the model runs for small phytoplankton biomass in Case 2. The units for biomass in all 

subplots are mol kg-1. The subplots show point-by-point scatter plots comparing the model runs against one another 

(c), yearly averaged log10 biomass plots for each model run (a and d), and the log10 relative ratios comparing the 

yearly averaged contour plots of the model runs (b). The x-axis and y-axis of the scatter plots (c) correspond to the 

horizonal/vertical model run labels, respectively (ex. Box (c) shows PI Control on the x-axis and LgSm on the y-axis). 

The yearly averaged log10 contour plots (a and d) correspond to the matching horizontal/vertical model run labels 

(ex. Box (a) shows the yearly averaged log10 biomass of PI Control). The log10 relative ratios (b) were calculated as 

the model run listed on the horizontal axis divided by the model run listed on the vertical axis (ex. Box (b) shows 

LgSm divided PI Control). 
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We wantedwant to ensure there wereare noticeable differences between the model runs (Fig. 9 and 10). We did this 

in Case 1 to ensure that the similar apparent relationships found by the NNEs were not simply because of similarities 

in the model output. In Case 2, the difference in model outputs serves to reinforce the different apparent relationships 475 

found by the NNEs. In the point-by-point comparison, the large phytoplankton showedshow more agreement between 

model runs (Fig. 10 c) than the small phytoplankton (Fig. 9 c). However, when we examinedexamine the contour and 
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Figure 10: Comparison of the model runs for large phytoplankton biomass in Case 2. The units for biomass in all 

subplots are mol P kg-1. The subplots show point-by-point scatter plots comparing the model runs against one another 

(c), yearly averaged log10 biomass plots for each model run (a and d), and the log10 relative ratios comparing the 

yearly averaged contour plots of the model runs (b). The x-axis and y-axis of the scatter plots (c) correspond to the 

horizonal/vertical model run labels, respectively (e.g., box (c) shows PI Control on the x-axis and LgSm on the y-

axis). The yearly averaged log10 contour plots (a and d) correspond to the matching horizontal/vertical model run 

labels (e.g., box (a) shows the yearly averaged log10 biomass of PI Control). The log10 relative ratios (b) were 

calculated as the model run listed on the horizontal axis divided by the model run listed on the vertical axis (e.g., box 

(b) shows LgSm divided PI Control). 
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loglog10 relative ratios (Fig. 9 and 10 a, b, d), it wasis evident that clearlarge, systematic, spatially coherent differences 

existedexist between the model runs. Both the small and large phytoplankton showedshow higher concentrations in 

the LgSm model run compared to PI Control for the subtropical and polar regions of the Pacific and Indian Oceans, 480 

along with higher concentrations in the equatorial Atlantic (Fig. 9 and 10 b).  
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Figure 10: Comparison of the model runs for large phytoplankton biomass in Case 2. The units for biomass in all 

subplots are mol kg-1. The subplots show point-by-point scatter plots comparing the model runs against one another 

(c), yearly averaged log10 biomass plots for each model run (a and d), and the log10 relative ratios comparing the 

yearly averaged contour plots of the model runs (b). The x-axis and y-axis of the scatter plots (c) correspond to the 

horizonal/vertical model run labels, respectively (ex. Box (c) shows PI Control on the x-axis and LgSm on the y-axis). 

The yearly averaged log10 contour plots (a and d) correspond to the matching horizontal/vertical model run labels 

(ex. Box (a) shows the yearly averaged log10 biomass of PI Control). The log10 relative ratios (b) were calculated as 

the model run listed on the horizontal axis divided by the model run listed on the vertical axis (ex. Box (b) shows 

LgSm divided PI Control). 
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Although the gray regions in Figs. 7 and 8 overlap toward the higher concentrations of each predictor, this is likely 

due to the lack of observations in the training data meeting thatthose criteria, without which the NNEs could notcannot 

be constrained. For example, in Fig. 7 (j), the apparent relationships of the large phytoplankton overlap past about 5 485 

x 105x10-10 mol kg-1 of the micronutrient, because there wereare no observations in the training data that wereare 

greater than 5 x 105x10-10 mol kg-1 of the micronutrient while simultaneously being at the 75 th percentile level of the 

macronutrient, irradiance, and temperature (data not shown). Without observations to constrain them, the NNEs were 

unable tocannot be constrained and, therefore, are less certain about the extrapolated relationships in those regions 

which leadleads to higher uncertainty and overlapping standard deviations.  490 

 

As in Case 1, our result wasis supported by the additional test in which the NNEs trained on one model run wereare 

tasked with making predictions on the other. Had the NNEs found similar apparent relationships, the reductions in 

error would have been of similar magnitude as those in Case 1 (Table 3 vs Table 4). For this second case, we sawsee 

that there wereare only modest decreases in RMSE for the small phytoplankton and increases in RMSE for large 495 

phytoplankton (Table 4). For example, relative to the RMSE of the point-by-point comparison, the RMSE 

decreaseddecreases about 21% when LgSm mademakes predictions on PIControl for the small phytoplankton (Table 

PI Control LgSm PI Control LgSm

PI Control - (0.5591) 0.8192 - -

LgSm (0.5591) 0.7899 - - -

PI Control - - - (0.8465) 0.9334

LgSm - - (0.8465) 0.9171 -

PI Control - (4.98 x 10⁻⁹) 3.95 x 10⁻⁹ - -

LgSm (4.98 x 10⁻⁹) 3.07 x 10⁻⁹ - - -

PI Control - - - (8.18 x 10⁻⁹) 1.56 x 10⁻⁸

LgSm - - (8.18 x 10⁻⁹) 1.01 x 10⁻⁸ -

PI Control - 20.59% - -

LgSm 38.20% - - -

PI Control - - - -90.87%

LgSm - - -23.11% -

Percent 

Decrease in 

Error

NNE being used 

for predicting

Small 

Phytoplankton

Large 

Phytoplankton

Case being predicted
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Table 4: The performance metrics for the NNEs being used to predict the outcome of the other model runs for the 

same size class of Case 2. In the top half of the table, the R-squared and RMSE are listed. The values in paratheses 

are the values from comparing the respective cases against one another (these are the same values listed in the 

respective scatter plots of Fig. 9 and 10). The values outside the parentheses are the values from using the trained 

NNE of the model listed in the row to predict the outcome of the model run in the column (e.g., the NNE trained on 

LgSm was used to predict the PI Control outcome using the predictor values of PI Control. These values were 

compared against the actual values of the PI Control to compute the RMSE of 3.07x10-9). In the bottom half of the 

table is the percent decrease in RMSE from the number listed inside the parentheses to the RMSE outside the 

parentheses (a negative percent means that the error increased). 
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4). Additionally, it wasis observed that even though the RMSE increasedincreases in the large phytoplankton, the R2 

values improvedimprove in the cross-model comparison compared to the point-by-point comparison (0.92-0.93 vs 

0.85; Table 4). This suggests that the NNEs improvedimprove the simulation in terms of the overall pattern, but not 500 

the magnitude. These results make sense since the apparent relationships of the small phytoplankton showedshow 

greater similarities than the apparent relationships of the large phytoplankton (Fig. 7). 

 

With respect to the apparent relationships that the NNEs uncovereduncover, the large phytoplankton once again 

appearedappear to be more sensitive to the micronutrient concentrations compared to the small phytoplankton (Fig. 7 505 

b, f, j). Both size classes showedshow asymptotes around the same concentrations for the macronutrient, albeit at 

different biomass values (Fig. 7 a, e, i). As with Case 1, the decreasing biomass with increasing temperature wasis an 

unexpected relationship (Fig. 7 d, h, l), which might be explained by the temperature dependent Chl:C ratios causing 

phytoplankton in warmer regions to need more lighthigher irradiance.  

 510 

OurAs previously stated, our main objective with Case 2 wasis to quantify the extent to which NNEs couldcan detect 

differences in the apparent relationships when the physical conditions between model runs wereare identical and the 

biological relationships differeddiffer. With the biomass being a function of changes in biomass from biology (iei.e. 

the equations governing how nutrients affect biomass), it is unsurprising that different biological equations 

producedproduce differences in biomass. What was unclear was whether NNEs would be able to highlight these 515 

differences in the apparent relationships. Our results indicate that NNEs couldcan find noticeable differences in the 

apparent relationships, insofar as the standard deviation regions did not often overlap inregion of the sensitivity 

analysis curves do not overlap. 
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4.3 Case 3 – Different ESMs: Prognostic vs. Diagnostic Biological Equations, Identical Physical Circulations 

From Cases 1 and 2, we learnedlearn from our results that NNEs wereare capable of discerning differences in apparent 520 

relationships between model runs of the same ESM. For Case 3, we wanted to apply these principles to different ESMs 

to quantify the differences in the apparent relationships and highlight challenges that arise in compar ing relationships 

between ESMs. The model runs of Cases 1 and 2 using BLING as a BC affordedaffords us the opportunity to test a 
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LgSm (0.5591) 0.7899 - - -
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PI Control - - - (8.18 x 10⁻⁹) 1.56 x 10⁻⁸

LgSm - - (8.18 x 10⁻⁹) 1.01 x 10⁻⁸ -

PI Control - 20.59% - -

LgSm 38.20% - - -

PI Control - - - -90.87%

LgSm - - -23.11% -
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Table 4: The performance metrics for the NNEs being used to predict the outcome of the other model runs for the 

same size class of Case 2. In the top half of the table, the R-squared and RMSE are listed. The values in paratheses 

are the values from comparing the respective cases against one another (these are the same values listed in the 

respective scatter plots of Fig. 9 and 10). The values outside the parentheses are the values from using the trained 

NNE of the model listed in the row to predict the outcome of the model run in the column (ex. The NNE trained on 

LgSm was used to predict the PI Control outcome using the predictor values of PI Control. These values were 

compared against the actual values of the PI Control to compute the RMSE of 3.07x10-9). In the bottom half of the 

table is the percent decrease in RMSE from the number listed inside the parentheses to the RMSE outside the 

parentheses (a negative percent means that the error increased). 
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“best-case” scenario for predicting biomass from nutrients and lightirradiance because of the tight coupling of growth 

rate and biomass (ie.i.e., knowing the growth rate means we know the biomass). In Case 3, the ESMs have different 525 

biogeochemical codes (ie.i.e., different biological equations) and identical physical circulations. One ESM (ESM2Mo 

with miniBLING as BC, referred to as miniBLING) wasis comparable to the BLING formulation in that the growth 

rate wasis tightly coupled with the biomass. However, the other ESM (ESM2Mo with TOPAZ as BC, referred to as 

TOPAZ) diddoes not have as tight of a coupling. The TOPAZ simulation allowedallows biomass to be advected and 
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Figure 11: Sensitivity analysis plots for phytoplankton biomass for Case 3. Each line is the prediction for the NNE 

specific to each ESM and the color of each line represents the ESM (miniBLING – Red; TOPAZ – Blue). The gray 

region around each line shows one standard deviation in the predictions of the individual NNs that make up each NNE 

(ex. The gray region around the solid red curves shows the standard deviation in the predictions of the 25 NNs that 

make up that particular NNE). The rows correspond to the percentile value at which the other predictor variables were 

held constant (ex. Box (a) varies the macronutrient across its min-max range and holds the micronutrient and irradiance 

at their respective 25th percentile values). Columns show the x-axis variables as they vary between their min-max 

range. The y-axis in all subplots is the biomass concentration. Note that the biomass scale changes with each subplot. 
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diffused in the same way as nutrients, effectively making biomass a function of nutrients and physical circulation, 530 

which is more typical of ESMs and likely true in the real ocean, as well. 
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Figure 11: Sensitivity analysis plots for phytoplankton biomass for Case 3. Each line is the prediction for the NNE 

(i.e., the average prediction of 25 NNs) specific to each ESM and the color of each line represents the ESM 

(miniBLING – Red; TOPAZ – Blue). The gray region around each line shows one standard deviation in the predictions 

of the individual NNs that make up each NNE (e.g., the gray region around the solid red curves shows the standard 

deviation in the predictions of the 25 NNs that make up that particular NNE). The rows correspond to the percentile 

value at which the other predictor variables were held constant (e.g., box (a) varies the macronutrient across its min-

max range and holds the micronutrient and irradiance at their respective 25th percentile values). Columns show the x-

axis variables as they vary between their min-max range. The y-axis in all subplots is the biomass concentration. Note 

that the biomass scale changes with each subplot. 
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Our results indicate that the phytoplankton in the two ESMs react differently to the same conditions. It should be noted 

that total phytoplankton biomass wasis used for Case 3, rather than splitting the biomass into large and small because 

phytoplankton output by the miniBLING BC is not differentiated into size classes. The sensitivity analysis shows that 535 

the miniBLING simulation produces higher biomass concentrations than the TOPAZ simulation under the same 
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Figure 12: Comparison of the ESMs for total phytoplankton biomass in Case 3 in which circulation is given by 

ESM2Mo, but the the BCs are different. The units for biomass in all subplots are mol kg-1. The subplots show point-

by-point scatter plots comparing the ESMs against one another (c), yearly averaged log10 biomass plots for each ESM 

(a and d), and the log10 relative ratios comparing the yearly averaged contour plots of the ESMs (b). The x-axis and 

y-axis of the scatter plots (c) correspond to the horizonal/vertical ESM labels, respectively (ex. Box (c) shows the 

miniBLING simulation on the x-axis and the TOPAZ simulation on the y-axis). The yearly averaged log10 contour 

plots (a and d) correspond to the matching horizontal/vertical ESM labels (ex. Box (a) shows the yearly averaged 

log10 biomass of miniBLING). The log10 relative ratios (b) were calculated as the ESM listed on the horizontal axis 

divided by the ESM listed on the vertical axis (ex. Box (b) shows TOPAZ divided by miniBLING). 
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conditions (Fig. 11), except at lower concentrations of nutrients where they seem to react similarly (Fig. 11 a, b, c). 

This is not entirely unexpected since the biomass values in the miniBLING simulation wereare generally much higher 

than those in the TOPAZ simulation, as can be seen in the point-by-point comparison (Fig. 12 c). However, not all of 

the biomass values in the miniBLING simulation wereare larger than those in the TOPAZ simulation. The subtropical 540 

Atlantic regions and northern subtropical Pacific hadhave higher yearly averaged biomass values in the TOPAZ 

simulation compared to the miniBLING simulation (Fig. 12 a, b, d). As with Case 2, the additional test of asking the 

miniBLING TOPAZ

miniBLING - (0.29) 0.3985

TOPAZ (0.29) 0.5405 -

miniBLING - (3.72 x 10⁻⁸) 7.79 x 10⁻⁸

TOPAZ (3.72 x 10⁻⁸) 3.91 x 10⁻⁸ -

miniBLING - -109.29%

TOPAZ -5.03% -

Percent 

Decrease in 

Error

NNE being used 

for predicting

Case being predicted

RMSE
NNE being used 

for predicting

R-squared
NNE being used 

for predicting

Table 5: The performance metrics for the NNEs being used to predict the outcome of the other ESM of Case 3. In the 

top half of the table, the R-squared and RMSE are listed. The values in paratheses are the values from comparing the 

respective ESMs against one another (these are the same values listed in the respective scatter plot of Fig. 12). The 

values outside the parentheses are the values from using the trained NNE of the ESM listed in the row to predict the 

outcome of the ESM in the column (ex. The NNE trained on the TOPAZ simulation was used to predict the outcome 

of the miniBLING using the predictor values computed using the miniBLING simulation. These values were 

compared against the actual values of the miniBLING simulation to compute the RMSE of 3.91x10-8). In the bottom 

half of the table is the percent decrease in RMSE from the number listed inside the parentheses to the RMSE outside 

the parentheses (a negative percent means that the error increased). 
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NNEs trained on the output of one ESM to predict the the output from the other ESM reinforcedreinforces the result 

that different apparent relationships wereare found from an increase in error for both ESMs (Table 5).  

 545 

The challenge of comparing the results of different ESMs wasis evident in Case 3. For example, the performance 

metrics for the model runs in Cases 1 and 2 wereare relatively high in both the training and testing subsets, but the 
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Figure 12: Comparison of the ESMs for total phytoplankton biomass in Case 3 in which circulation is given by 

ESM2Mo, but the BCs are different. The units for biomass in all subplots are mol P kg-1. The subplots show point-by-

point scatter plots comparing the ESMs against one another (c), yearly averaged log10 biomass plots for each ESM (a 

and d), and the log10 relative ratios comparing the yearly averaged contour plots of the ESMs (b). The x-axis and y-

axis of the scatter plots (c) correspond to the horizonal/vertical ESM labels, respectively (e.g., box (c) shows the 

miniBLING simulation on the x-axis and the TOPAZ simulation on the y-axis). The yearly averaged log10 contour 

plots (a and d) correspond to the matching horizontal/vertical ESM labels (e.g., box (a) shows the yearly averaged 

log10 biomass of miniBLING). The log10 relative ratios (b) were calculated as the ESM listed on the horizontal axis 

divided by the ESM listed on the vertical axis (e.g., box (b) shows TOPAZ divided by miniBLING). 
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performance metrics for the TOPAZ simulation in Case 3 wereare much lower (R2 > 0.97 vs ~0.58, respectively; Table 

2). It wasFrom these results alone, it is unclear whether this drop in performance wasis because we wereare unable to 

characterize the TOPAZ simulation with NNEs using predictors common to both runs or whether we simply diddo 550 

not include enough relevant variables. To understand this, we performedperform a brief analysis in which we 

trainedtrain NNEs on specific variables and measuredmeasure their performance with ESM output from CMIP5 

ESM2M, which has TOPAZ as its BC (Table 6). One NNE wasis trained using only variables that directly affected 

the phytoplankton growth rate (biology), one wasis trained using only variables that diddo not directly affect the 

growth rate (physics), and another wasis trained with both sets of variables (all). Our results indicatedindicate that we 555 

wereare able to characterize ESM2M (and, by extension, results produced by using TOPAZ as a BC) with NNEs with 

the inclusion of more relevant variables, such as nitrate, ammonium, and silicate (RMSE ~ 5.90x10 -5 mol N m-3 [Table 

6] vs. the average biomass value of 3.14 x10-4 mol N m-3). Without the inclusion of all the relevant variables as 

predictors, the performance of the NNE trained on output from the TOPAZ simulation sufferedsuffers compared to 

the NNE trained on the miniBLING simulation. 560 

 

An additional challenge with comparing different ESMs is that certain variables may not be present in all ESMs. For 

example, one ESM may have phosphate included as a variable and another ESM may not. This presents a problem 

when using the sensitivity analyses, because each NNE needs to be presented with the same conditions for direct 
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miniBLING - (0.29) 0.3985

TOPAZ (0.29) 0.5405 -
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Table 5: The performance metrics for the NNEs being used to predict the outcome of the other ESM of Case 3. In the 

top half of the table, the R-squared and RMSE are listed. The values in paratheses are the values from comparing the 

respective ESMs against one another (these are the same values listed in the respective scatter plot of Fig. 12). The 

values outside the parentheses are the values from using the trained NNE of the ESM listed in the row to predict the 

outcome of the ESM in the column (e.g., the NNE trained on the TOPAZ simulation was used to predict the outcome 

of the miniBLING using the predictor values computed using the miniBLING simulation. These values were 

compared against the actual values of the miniBLING simulation to compute the RMSE of 3.91x10-8). In the bottom 

half of the table is the percent decrease in RMSE from the number listed inside the parentheses to the RMSE outside 

the parentheses (a negative percent means that the error increased). 
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comparability. One potential method for mitigating this could be to use proxy-variables, such that variables not 565 

common to both ESMs could be modified to represent the missing variables. For example, if one ESM hadhas 

phosphate as a variable, and another ESM diddoes not, it might be possible to modify a variable that would be 

equivalent to phosphate, such as nitrate. Using the Redfield ratio of 16:1 for the N:P ratio, the nitrate variable could 

be divided by 16 and thus be considered a proxy variable for phosphate. This proxy phosphate variable could then be 

used in training the NNE particular to the applicable ESM, so all NNEs would be trained using the same predictors.  570 

R-squared RMSE R-squared RMSE

1) Nitrate (mol m
-3

)

2) Ammonium (mol m
-3

)

3) Phosphate (mol m
-3

)

4) Dissolved Iron (mol m
-3

)

5) Silicate (mol m
-3

)

6) Temperature (K)

7) Net Downward Shortwave Flux 

(W m
-2

)

8) Mixed Layer Thickness (m)

9) Surface X-Velocity (m s
-1

)

10) Surface Y-Velocity (m s
-1

)

11) Upward Ocean Mass Transport 

at 45 m Depth (kg s
-1

)

1) Nitrate (mol m
-3

)

2) Ammonium (mol m
-3

)

3) Phosphate (mol m
-3

)

4) Dissolved Iron (mol m
-3

)

5) Silicate (mol m
-3

)

6) Temperature (K)

7) Net Downward Shortwave Flux 

(W m
-2

)

1) Mixed Layer Thickness (m)

2) Surface X-Velocity (m s
-1

)

3) Surface Y-Velocity (m s
-1

)

4) Upward Ocean Mass Transport 

at 45 m Depth (kg s
-1

)

1.91 x 10
-4

Only Variables 

Directly Affecting 

Phytoplankton 

Growth Rate

Phytoplankton Concentration 

(mol N m
-3

)
0.9358 5.87 x 10

-5 0.9352 5.93 x 10
-5

Only Variables NOT 

Directly Affecting 

Phytoplankton 

Growth Rate

Phytoplankton Concentration 

(mol N m
-3

)
0.3268 1.90 x 10

-4 0.3279

Testing Data

Phytoplankton Concentration 

(mol N m
-3

)
All Variables 0.9756 3.61 x 10

-5 0.9754 3.65 x 10
-5

Variable Groupings Target VariablePredictor Variables
Training Data

Table 6: The performance metrics for the training and testing subsets of NNEs trained on different variable 

combinations of CMIP5 ESM2M output and details about the predictor/target variables. 
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5 Summary and Conclusions 

A challenge of using ESMs is understanding why different ESMs yield different results, even when they are run under 

similar conditions. Our objective with this manuscript was to investigate the extent to which NNEs could characterize 

differences across ESMs through differences in circulation vs differences in biological formulations. We approached 

this objective by exploring three cases: 575 

1. In the first case, we compared three configurations of an ESM that had identical intrinsic biological 

relationships but different physical circulations. The purpose of this case was to quantify the extent to which 

differences in physical circulations between model runs of the same ESM could affect the apparent 

relationships found by NNEs. 

2. In the second case, we compared two model runs from the same ESM, except that the intrinsic biological 580 

equations were different, and the physical circulations were similar. The purpose of this case was to quantify 

the extent to which NNEs found differences in the apparent relationships and the size of those differences. 

3. In the third case, we used two different ESMs that had different intrinsic biological relationships but identical 

physical circulations. The greatest difference between them was that in one ESM (ESM2Mo with TOPAZ as 
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Table 6: The performance metrics for the training and testing subsets of NNEs trained on different variable 

combinations of CMIP5 ESM2M output and details about the predictor/target variables. 
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BC), biomass was able to be advected and diffused making it a function of nutrients, lightirradiance, and 585 

circulation. This was in contrast to the other ESM (ESM2MoESM2M with miniBLING embedded as BC) 

where biomass was only a function of nutrients. The purpose of this case was to apply what we had learned in 

the first two cases to a more realistic ESM to quantify differences in the apparent relationships and identify any 

challenges. 

 590 

Our results indicateindicated that when all the relevant variables arewere included as predictors, the NNEs areserved 

as a parsimonious representation of the ESMs and we can be relatively confident in their predictions. This confidence 

then allows us to query these NNEs using sensitivity analyses to find the apparent relationships, which provide 

information on the relationships between the predictor and target variables.  

 595 

. With the first case, the similar performance metrics in the within- and cross-model comparison, along with the 

overlapping apparent relationships demonstrated that theand second cases, NNEs were able to attribute differences 

between the model runs to physics. Likewise, in the second case, where the biological relationships differed, the NNEs 

were capable of attributing differences between the model runs to  and biological factors and were able to identify the 

elements of that formulation that were different.  600 

 

With the, respectively. The third case, we were able to show demonstrated that it is possibleNNEs could be used to 

compare the apparent relationships between two different ESMs and thatfind their key differences can be found. 

However, this case also highlighted, along with highlighting some of the challenges when comparing output from 

multiple ESMs. In order to adequately capture the variability and achieve high performance metrics, all relevant 605 

variables for predicting an outcome must be included as predictors for each NNE. However, this presents a problem 

when one ESM may have a variable and another ESM does not. One possible solution is to use proxy variables, such 

that one variable can be modified to be representative of another. in applying this to more realistic models. 

 

The results of our study suggest that oceanographers and climate scientists could use the methods we have 610 

demonstrated to compare apparent relationships between ESMs, in addition to using spatiotemporal distributions and 

time series. This is not to say that spatiotemporal information is not important; rather, the relationships and 

spatiotemporal information can be used to inform one another. For example, in a side-by-side comparison of contour 

plots between biomass and nitrate concentrations, one might expect to see high biomass in high nitrate regions. 

However, if low biomass is observed in a high nitrate region, this would suggest that another factor (such as phosphate) 615 

is limiting phytoplankton growth. By visualizing the apparent relationships, one would be able to observe that 

phosphate has a strong limitation factor on the phytoplankton. This could then be verified with the spatial contour plot 

of phosphate against the original biomass and nitrate contour plots.  

 

In addition to comparing relationships between ESMs, the methods presented here willcan allow for the comparison 620 

of relationships found in observational datasets to the relationships in ESMs. This will allow, allowing for better tuning 
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of the models and more accurate representations of the natural world and what changes we might expect under climate 

change. For example, if the apparent relationships from observations were to indicate increased biomass with increased 

CO2 concentrations but current ESMs were predicting lower biomass, modelers would be able to update the ESMs 

with more accurate representations or finer tuning of the parameters. We will report on these potential applications in 625 

future work. Our results here show the “best case” for comparing models with observations. The prevailing assumption 

is that environmental conditions set biomass and that ecological details do not matter; if two places have the same 

nutrients, irradiance, and mixing, they will have the same phytoplankton biomass. Our methods demonstrate that we 

can evaluate the extent to which such dynamics usually hold. In a follow-up paper, our preliminary results show that 

these methods can explain a large portion of the variance (60-80%) in two satellite-derived observational datasets, 630 

along with greater than 90% across a suite of CMIP6 ESMs.   
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Appendix A 

This appendix provides additional information about the datasets used in each of the three cases, along with 

information about how each dataset was randomly sampled.  

 635 

The sizes of the datasets were as follows: 77,328 datapoints for each model run in Case 1, 77,328 datapoints for each 

model run in Case 2, and 577,332 datapoints for each model run in Case 3. Each dataset was split into training and 

testing subsets with 60% of the full dataset going to the training subset and 40% going to the tes ting subset. The 

training subset for each model run contained 46,397 datapoints in Case 1, 46,397 datapoints in Case 2, and 364,399 

datapoints in Case 3. The testing subsets for each model run contained 30,932 datapoints in Case 1, 30,932 datapoints 640 

in Case 2, and 230,934 datapoints in Case 3. 

 

The composition of the training and testing subsets were determined by random sampling, such that they randomly 

sampled the full dataset in both space and time. Specifically, the random number generator function for MATLAB, 

2019b was set to “twister” and the seed was set as “123” for reproducibility. Each datapoint was either part of the 645 

training subset or the testing subset; no observations were part of both. 
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Code and Data Availability 

Availability 650 

The Matlab scripts (MATLAB, 2019) for processing the outputs of the ESM model runs, training the NNEs, and 

constructing the tables and figures, along with the ESM outputs used for each case are available in the following 

Zenodo repository (: https://doi.org/10.5281/zenodo.4774438,  (Holder et al.., 2021).  

Data Availability 

The output of the ESM model runs (which serve as the input for training the NNEs) for each case are available in the 655 

following Zenodo repository: https://doi.org/10.5281/zenodo.4774438 (Holder et al., 2021). 
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