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Abstract. Atmospheric pollution has many profound effects on human health, ecosystems, and the climate. Of concern are 10 

high concentrations and deposition of reactive nitrogen (Nr) species, especially of reduced N (gaseous NH3, particulate NH4+). 

Atmospheric chemistry and transport models (ACTMs) are crucial to understanding sources and impacts of Nr chemistry and 

its potential mitigation. Here we undertake the first evaluation of the global version of the EMEP MSC-W ACTM driven by 

WRF meteorology (1º×1º resolution), with a focus on surface concentrations and wet deposition of N and S species relevant 

to investigation of atmospheric Nr and secondary inorganic aerosol (SIA). The model-measurement comparison is conducted 15 

both spatially and temporally, covering 10 monitoring networks worldwide. Model simulations for 2010 compared use of both 

HTAP and ECLIPSEE (ECLIPSE annual total with EDGAR monthly profile) emissions inventories; those for 2015 used 

ECLIPSEE only. Simulations of primary pollutants are somewhat sensitive to the choice of inventory in places where regional 

differences in primary emissions between the two inventories are apparent (e.g. China), but much less so for secondary 

components. For example, the difference in modelled global annual mean surface NH3 concentration using the two 2010 20 

inventories is 18% (HTAP: 0.26 µg m-3; ECLIPSEE: 0.31 µg m-3) but only 3.5% for NH4+ (HTAP: 0.316 µg m-3; ECLIPSEE: 

0.305 µg m-3). Comparisons of 2010 and 2015 surface concentrations between model and measurement demonstrate that the 

model captures well the overall spatial and seasonal variations of the major inorganic pollutants NH3, NO2, SO2, HNO3, NH4+, 

NO3-, SO42- , and their wet deposition in East Asia, Southeast Asia, Europe, and North America. The model shows better 

correlations with annual average measurements for networks in Southeast Asia (Mean R for 7 species: 𝑅!""" = 0.73), Europe (𝑅!""" 25 

= 0.67) and North America (𝑅!"""	= 0.63) than in East Asia (𝑅"""" = 0.35) (data for 2015), which suggests potential issues with the 

measurements in the latter network. Temporally, both model and measurements agree on higher NH3 concentrations in spring 

and summer, and lower concentrations in winter. The model slightly underestimates annual total precipitation measurements 

(by 13-45%) but agrees well with the spatial variations in precipitation in all four world regions (0.65-0.94 R range). High 

correlations between measured and modelled NH4+ precipitation concentrations are also observed in all regions except East 30 

Asia. For annual total wet deposition of reduced N, the greatest consistency is in North America (0.75-0.82 R range), followed 

by Southeast Asia (R = 0.68) and Europe (R = 0.61). Model-measurement bias varies between species in different networks; 

for example, bias for NH4+ and NO3- is largest in Europe and North America and smallest in East and Southeast Asia. The 

greater uniformity in spatial correlations than in biases suggests that the major driver of model-measurement discrepancies 

(aside from differing spatial representativeness and uncertainties and biases in measurements) are shortcomings in absolute 35 

emissions rather than in modelling the atmospheric processes. The comprehensive evaluations presented in this study support 

the application of this model framework for global analysis of current and potential future budgets and deposition of Nr and 

SIA. 
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1 Introduction 

In view of increasing growth in global anthropogenic emissions, the physical and chemical behaviour of reactive nitrogen (Nr) 40 

species, especially those that contain reduced N (i.e. gaseous NH3 and particulate NH4+) have been explored in both 

experimental and modelling studies (Liu et al., 2019; Wagner et al., 2020; Ciarelli et al., 2019; Tang et al., 2021). As the 

predominant alkaline gas, NH3 exerts significant control on the formation of ambient particles and the acidity of deposition. It 

readily reacts with H2SO4 and HNO3 (respectively derived from emissions of SO2 and NOx), and the ammonium sulphate 

((NH4)2SO4) and nitrate (NH4NO3) particles formed in these reactions are important in Earth’s radiation budget (Laskin et al., 45 

2015) due to their capacity to act as cloud condensation nuclei and to absorb/scatter solar radiation. Crucially, the (NH4)2SO4 

and NH4NO3 secondary inorganic aerosols (SIA) typically constitute at least a third of the fine particulate matter (PM2.5) 

surface concentration (Li et al., 2017), exposure to which causes substantial premature mortality globally (Burnett et al., 2018). 

For half the world’s population, the PM2.5 air pollution burden is increasing (Shaddick et al., 2020). In addition, NH3 and NH4+ 

enter aquatic and terrestrial ecosystems through wet and dry deposition where they are powerful nutrients for many plants and 50 

microorganisms. As a result, excessive anthropogenic reduced N emissions to the atmosphere can lead to severe eutrophication 

and formation of hypoxic zones, with their consequent threats to ecosystem diversity (Erisman et al., 2005). 

The surface concentrations and deposition fluxes of atmospheric pollutants are influenced by many spatial and temporal 

factors such as emissions, meteorology, long-distance transport and chemical transformations. Ambient measurements play a 

vital role in assessing existing concentrations but can generally only represent the air quality in the local area and cannot 55 

immediately distinguish between the influence of local and remote sources. Speciated gas and particle-phase sampling and 

analysis is challenging and expensive (Tang et al., 2018b). Consequently, measurements are generally sparsely located and 

often not very well temporally resolved, even in regions of the world with well-developed air pollution monitoring networks 

(Tang et al., 2021), which again limits the interpretation of atmospheric chemical and meteorological processes. Moreover, 

different world regions have monitoring networks that are subject to different analytical and data handling protocols, 60 

potentially leading to systematic differences. Non-identical sampling duration and frequencies within these networks also add 

uncertainties and complexities to global comparison studies. 

Compared with measurements, global and regional-scale atmospheric chemistry transport models such as EMEP MSC-W 

(Simpson et al., 2012), CMAQ (Byun and Schere, 2006) and WRF-Chem (Chapman et al., 2009) can provide comprehensive 

simulations of air pollutant concentrations and depositions with greater spatial-temporal resolution and coverage. These models 65 

also facilitate insight into the chemical and meteorological linkages between diverse emission sources and the concentration 

and deposition of pollutants at locations away from initial emissions. Such models are essential when it comes to simulating 

the impacts of possible future policy actions. A number of global models have already been utilized to investigate sulphate, 

nitrate, or ammonia budgets, including GISS II-prime (Adams et al., 1999), GEOS-Chem (Pye et al., 2009), LMDz-INCA 

(Hauglustaine et al., 2014), STOCHEM-CRI (Khan et al., 2020), and multi-model ensemble analysis (Tan et al., 2018). Bian 70 

et al. (2017) presented a budget analysis of global nitrate simulations from 9 models and found wide variation in the 

tropospheric burdens of HNO3, NO3-, NH3 and NH4+ between the models. However, global simulations and evaluation of Nr 

species in atmospheric chemistry transport models remain rare. In particular, there has been little comparison between 

modelled surface concentrations and wet deposition of Nr species, especially NH3 and NH4+, with regional ground-based 

measurement networks worldwide, which is the motivation for this work. 75 

Here, we present for the first time a detailed evaluation of the global simulation performance of the EMEP MSC-W 

chemical transport model coupled with the WRF numerical weather model. Our aim was to compare model output temporally 

and spatially with available ambient measurements from 9 monitoring networks in 4 global regions. A further aim was to 

examine the sensitivities of the model-measurement comparison to two different global emission inventories (HTAP v2 and 
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ECLIPSE). The primary focus of the comparisons was on atmospheric concentrations and wet depositions of the Nr and SIA 80 

species. We also undertook evaluations for two meteorological years: 2010 and 2015.  

2 Methods 

2.1 Model description and set-up 

The EMEP MSC-W atmospheric chemistry transport model has been developed by the European Monitoring and Evaluation 

Programme Meteorological Synthesizing Centre -West. As described by Simpson et al. (2012), and at www.emep.int, EMEP 85 

MSC-W is an open-source Eulerian grid model used for applications ranging from scientific research to policy development 

(Bergström et al., 2014; Mills et al., 2018; Karl et al., 2019; Ciarelli et al., 2019; Jonson et al., 2017; McFiggans et al., 2019). 

The model uses 21 terrain-following vertical layers, with the pressure ranging from around 1000 hPa (surface level) to 100 

hPa (highest level). We use a lowest layer of ~45 m height. Output surface concentrations for major species are adjusted to be 

equivalent to 3 m above the surface as described in Simpson et al. (2012). 90 

In this study, we utilize the most recent EMEP MSC-W model version rv4.34. Simpson et al. (2020) provide an overview 

of the changes made to the model since the version rv4.0 documented in Simpson et al. (2012). These changes include 

improved calculations of aerosol surface area and gas-aerosol uptake (Stadtler et al., 2018), additional land-cover classes and 

improved leaf-area calculations for global BVOC emission calculation (Simpson, 2017), a new radiation scheme (Weiss and 

Norman, 1985) for BVOC and deposition calculations, new chemical mechanisms (Bergström, 2021), as well as changes 95 

related to sea-salt, dust and other emissions handling. 

Most studies using EMEP MSC-W utilize meteorological data from the Integrated Forecast System model (IFS) of the 

European Centre for Medium-Range Weather Forecasts (ECMWF) (Fagerli et al., 2019; Pommier et al., 2020; Simpson et al., 

2012). Evaluations of the MSC-W model run with IFS meteorology can be found in Mills et al. (2018) (who found good 

agreement of modelled versus measured O3 metrics across the GAW network), McFiggans et al. (2019) (who found good to 100 

reasonable agreement of organic aerosol data for European and North American networks), and Bian et al. (2017), who found 

reasonable agreement for inorganic S and N compounds in a multi-model study. 

In contrast, the meteorology used for the EMEP MSC-W model simulations in this study was derived from the Weather 

Research and Forecast model (WRF, www.wrf-model.org) version 3.9.1.1 (Skamarock, 2008) at grid resolution of 1° × 1°. 

The WRF model included data assimilation (Newtonian nudging) of the numerical weather prediction model meteorological 105 

reanalysis from the US National Center for Environmental Prediction (NCEP)/National Center for Atmospheric Research 

(NCAR) Global Forecast System (GFS) at 1° resolution, every 6 hours (Saha et al., 2010). This work uses the Yonsei 

University (YSU) planetary boundary layer (PBL) scheme. The bulk microphysical parameterization (BMP) scheme is from 

Lin et at. (2011). The cumulus parameterisation uses the Kain-Fritsch scheme. The longwave and shortwave radiation scheme 

utilises RRTM/Dudhia. The WRF simulations used the Noah Land-Surface Model, and for land-cover setup, WRF uses the 110 

MODIS derived land cover, and the EMEP MSC-W model uses land data from GLC2000 with the Community Land Model 

(CLM). The EMEP MSC-W model calculates roughness length and depositions from its own land cover. A higher resolution 

UK/Europe regional version of the EMEP-WRF modelling system has been well evaluated previously against field 

measurements (Vieno et al., 2010; 2014; 2016). However, an assessment of the global version has not yet been undertaken. 

Moreover, integrating WRF with the EMEP MSC-W model is still an innovative application, as most studies utilize 115 

meteorological data from the IFS model as described above.  
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Two global emission inventories were used in this work. The ECLIPSE (Evaluating the CLimate and Air Quality ImPacts 

of Short-livEd Pollutant) inventory version V6 (https://iiasa.ac.at/web/home/research/researchPrograms/air/ECLIPSEv6.html) 

contains annual gridded emissions of SO2, NO2, NH3, CO, CH4, NMVOC (non-methane volatile organic compounds), primary 

fine particulate matter (PM2.5) and primary coarse particulate matter (PMco) (Klimont et al., 2017) at 0.5° × 0.5° spatial 120 

resolution. Its emission sectors include energy, industry, solvent use, transport, domestic combustion, agriculture, open burning 

of agricultural waste, and waste treatment. We used ECLIPSE emission inventories for 2010 and 2015 to permit comparison 

between model and measurements for two self-consistent years of emissions, meteorology, and measurements. The HTAP 

(Task Force on Hemispheric Transport of Air Pollution) inventory version V2 (https://edgar.jrc.ec.europa.eu/dataset_htap_v2) 

consists of 0.1° × 0.1° gridded monthly emissions of SO2, NO2, NH3, CO, CH4, NMVOC, PM2.5, PM10, black carbon (BC) 125 

and organic carbon (OC) for 2010 (2015 was not available at the time of this work) from 7 sectors (international and domestic 

air, shipping, energy, industry, transport, residential, and agriculture) and was used to investigate the sensitivity of model 

outputs to different global inventories. The HTAP inventory utilises nationally reported emissions together with regional 

scientific inventories (e.g. from US-EPA, the MICS-Asia group, EMEP/TNO, the REAS and the EDGAR group) for those 

regions where national emissions are not available (Janssens-Maenhout et al., 2015; Gusev et al., 2012; West et al., 2010).  130 

Both inventories were aggregated to 1° × 1° resolution internally in the model. All inventory emission sector-layers were 

re-assigned to 11 Selected Nomenclature for sources of Air Pollution (SNAP) sectors: (1) combustion in energy and 

transformation industries, (2) non-industrial combustion plants, (3) combustion in manufacturing industry, (4) production 

processes, (5) extraction and distribution of fossil fuels and geothermal energy, (6) solvent and other product use, (7) road 

transport, (8) other mobile sources and machinery, (9) waste treatment and disposal, (10) agriculture, (11) other sources and 135 

sinks.  

In addition, monthly emission time series by sector and country derived from EDGAR (Emission Database for Global 

Atmospheric Research, v4.3.2 datasets) temporal emission profiles (Crippa et al., 2020) 

(https://edgar.jrc.ec.europa.eu/dataset_temp_profile) were applied to the ECLIPSE annual total emissions for all pollutants. 

Therefore, from here on we refer to the inventory with ECLIPSE annual emissions and EDGAR monthly temporal profiles as 140 

ECLIPSEE. All EDGAR emission subsectors (~33) are further divided into 11 SNAP sectors. The time-splitting factor (TSNAP) 

for a given pollutant for a given country/region was computed as follows. Annual average emission of pollutant from EDGAR 

v4.3.2 subsector j,  𝑃#&: 

𝑃"$ =
∑ 𝑃%$&'
%(&

12  

Monthly time-splitting factor of pollutant from subsector j,𝑇)_$: 145 

𝑇)_$ =
𝑃%$
𝑃"$

 

The weight of 𝑇)_$ in month i: 

𝑊%$ =
𝑃%$

∑ 𝑃%$+
$(&

 

The time-splitting factor for the EMEP MSC-W model SNAP sector in month i:  

𝑇,-./ =
∑ 𝑇)_$ ×𝑊%$
+
$(&

∑ 𝑊%$
+
$(&

 150 
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The EMEP MSC-W model default hour-of-day temporal profiles (which varies with SNAP sector) were applied to all 

countries. The default day-of-week temporal profile was applied to Europe only as neither of the emission inventories supplies 

such temporal information.   

Forest and vegetation fire emissions and international shipping emissions are also included in both inventories. Emissions 

of dimethyl sulphide (DMS), lightning NOx, soil NOx and isoprene are set as reported in Simpson et al. (2017; 2020) as are 155 

the wind-derived emissions of dust and sea salt (Simpson et al., 2012; Tsyro et al., 2011). 

2.2 Measurement Datasets 

Ambient measurement data were compiled from the 10 regional and national monitoring networks in East Asia, Southeast 

Asia, Europe, and North America listed in Table 1. The number of monitoring sites in each network varies with year and with 

species but Fig. 1 shows the monitoring sites for NH4+ in 2015 as an example. The frequency and duration (i.e. averaging) of 160 

sampling, and the sampling and analytical methods used, including the size fraction of PM sampled, vary across the 

measurement networks. Some measurement locations are also deliberately sited to be close to particular industrial or 

agricultural sources, in which case a model grid average concentration may not reflect the measurement. Although much of 

this information is presented in official network reports, much useful metadata is absent from the data portals and addition of 

this information directly to the portals is a recommendation for improvement. In this work, only measurement data with at 165 

least 75% data capture in the year are used to avoid bias. A full data mining of global measurement data was not undertaken 

here, but we believe we have captured the major networks of long-running, multi-species SIA gas and particle composition 

and wet deposition measurements. 

The Chinese national nitrogen deposition monitoring network (NNDMN) was established in 2010 to measure inorganic N 

concentrations and deposition fluxes. The first database, NNDMN 1.0, which compiles monthly air concentration and 170 

deposition data for NH3, NO2, HNO3, NH4+, and NO3- up to 2015 was released in May 2019 (Xu et al., 2019).  

The acid deposition monitoring network in East Asia and Southeast Asia (EANET) involves 13 countries and provides 

annual and monthly concentration and acid deposition data for more than 10 species.  

The UK Acid Gases and Aerosol Monitoring Network (AGANet, 30 sites) provides long-term national and monthly 

speciated measurements of acid gases (HNO3, SO2, HCl) and aerosol components (NO3- , SO42-, Cl-, Na+, Ca2+, Mg2+) (Tang 175 

et al., 2018b). The UK National Ammonia Monitoring Network (NAMN, 95 sites) includes both AGANet and additional sites 

with monthly measurements of NH3 and NH4+ (Tang et al., 2018a). Both NAMN and AGANet provide monthly average 

concentrations.  

The European Monitoring and Evaluation Programme/Chemical Co-ordinating Centre (EMEP/CCC) is a collaborative 

programme for measuring air pollutants across Europe (Tørseth et al., 2012). The measurement frequency varies from hourly 180 

and daily to weekly and biweekly or intermittently such as every 6-days. It also varies between species. This makes it difficult 

to derive consistent annual and monthly averages comparisons between measurement and model.  

The Air Data of the United States Environmental Protection Agency (EPA) provides access to annual outdoor air quality 

data including SO2, NO2, NH4+, NO3-, SO42-, collected from state, local and tribal monitoring agencies across the United States. 

The Ammonia Monitoring Network (AMoN) and National Trends Network (NTN) are two further US networks that provide 185 

long-term records of weekly/biweekly NH3 gas concentrations and annual precipitation chemistries respectively.  

In Canada, the National Air Pollution Surveillance (NAPS) program is the main source of ambient air quality data and 

consists of continuous and time-integrated monitoring of several species. Continuous measurements are implemented for CO, 

NO2, NO, NOx, O3, SO2, PM2.5, and PM10 at hourly resolution. The time-integrated samples collect once per 6 days for a 24-h 
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period, encompass fine (PM2.5) and coarse (PM2.5-10) aerosol components (e.g., inorganic ions, metals), semi-volatile organic 190 

compounds and VOCs. The Canadian Air and Precipitation Monitoring Network (CAPMoN) is designed to study the regional 

patterns and trends of atmospheric pollutants such as acid rain, smog, particulate matter and mercury, in both air and 

precipitation. Regional precipitation and wet deposition data from CAPMoN were collected through wet precipitation 

collectors. 

The calculations of model-measurement comparison statistics (e.g. Pearson's correlation coefficient, mean bias, mean 195 

absolute error, etc.) are shown in the Supplementary Material. 

 
Table 1.  Summary of surface monitoring networks used in the model-measurement comparisons. 

Region Network Source 

East & Southeast 

Asia 

NNDMN (China) https://www.nature.com/articles/s41597-019-0061-2  

EANET https://www.eanet.asia 

Europe 

AGANet (UK) https://uk-air.defra.gov.uk/networks/network-info?view=ukeap  

NAMN (UK) https://uk-air.defra.gov.uk/networks/network-info?view=nh3  

EMEP/CCC http://ebas.nilu.no/Default.aspx 

North America 

NAPS (Canada) https://www.canada.ca/en/services/environment/weather/airquality.html  

CAPMoN (Canada) 
https://www.canada.ca/en/environment-climate-change/services/air-

pollution/monitoring-networks-data/canadian-air-precipitation.html 

EPA-Air Data (US) https://www.epa.gov/outdoor-air-quality-data  

AMoN (US) http://nadp.slh.wisc.edu/data/AMoN/  

NTN (US) http://nadp.slh.wisc.edu/NTN/  

 

 200 

 
Figure 1. Locations of sites in the 6 networks that measured particle-phase NH4

+ in 2015. 
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3  Results  

3.1  Comparison between use of HTAP and ECLIPSEE emission inventories 205 

3.1.1 Emissions 

The global map of 2010 annual NH3 emissions from ECLIPSEE is shown in Fig. 2 (top). Hot spots of NH3 emissions occur 

across the globe in areas characterized by dense populations and intensive agricultural activities, most notably in the Indo-

Gangetic Plain in India and the North China Plain, but also in Indonesia, Europe, United States, Mexico, and Brazil. The area-

weighted average NH3 emissions (over the whole global domain) in 2010 are 105 and 121 mg m-2 for HTAP and ECLIPSEE 210 

respectively. The individual grid annual NH3 emission in 2010 varies from 0.00 to 10692 mg m-2 for the HTAP inventory and 

from 0.00 to 12244 mg m-2 for the ECLIPSEE inventory. (Note that in the following sections all emissions and concentrations 

are expressed as mass of the species unless otherwise stated, e.g. as µgN m-3). 

Figure 2 (bottom) maps the differences in annual NH3 emissions between the ECLIPSEE and HTAP inventories for 2010. 

Clear differences between the two emission inventories are observed in China, India, and several Southeast Asian countries, 215 

but differences in other world regions are relatively small: more than 70% of the relative differences in ECLIPSEE - HTAP 

emissions, the majority of which are positive, are within ± 10% of the average inventory emission for that grid. The ECLIPSEE 

inventory NH3 emissions are larger than the HTAP inventory emissions in north and southeast parts of China, western coastal 

area of continental Europe, central Africa, Brazil and Argentina. The largest difference of 6496 mg m-2, which is 73% of the 

inventory mean emission of 8956 mg m-2 for that model grid, is in the east of China (Fig. 2 bottom). In contrast, HTAP reports 220 

larger NH3 emissions than ECLIPSEE in areas of Southeast Asia, India, and western United States. The largest negative 

difference of -4281 mg m-2 (equating to 124% of the grid mean 3452 mg m-2) is located on the west coast of the United States. 

Relative NH3 emission differences that are outside of ±100% of the average NH3 emissions from the two inventories for that 

grid only account for 13% of the total number of grid cells, and the majority of instances where relative difference is large are 

for grids that have only low emissions, for which a small absolute difference equates to large relative difference.  225 

Aside from the instances of quite localised discrepancies in the NH3 emissions between the two inventories, the small 

median positive (7.90 mg m-2) and negative (-12.0 mg m-2) differences, together with the global area-weighted average 

difference of only 16.0 mg m-2 (14% relative to the mean emission of the two inventories), indicate that ECLIPSEE and HTAP 

provide very similar annual NH3 emissions in most grids over the whole global domain.  

The seasonal profile of spatially averaged monthly NH3 emissions of the two inventories in 2010 was also investigated for 230 

East Asia, Southeast Asia, Europe and North America separately. The detail is presented in Supplementary Material. Clear 

NH3 emission peaks in spring and summer are observed in both inventories for all four global regions. In general, ECLIPSEE 

shows greater monthly variations than HTAP in East Asia, Southeast Asia, and Europe except for North America, which is 

strongly indicative of different monthly (or day-of-week) temporal factors applied to annual totals in different inventories. 

Similar observations derive from comparisons of emissions of NOx and SOx in the two inventories (Supplementary Material 235 

Fig. S1 and S2). For example, the global area-weighted average difference in annual NOx emissions between the two 

inventories is only 11.0 mg m-2 (2.9%), whilst the maximum positive and negative differences for an individual model grid 

(ECLIPSEE - HTAP) are 15389 mg m-2 (162%) and -26815 mg m-2 (-186%) respectively. These large local differences in 

NOx emissions are presumably due to the inclusion or exclusion of a specific point source in one emission inventory but not 

the other. The shipping emission profiles included in the two inventories are also slightly different. For instance, ECLIPSEE 240 

provides higher NOx emissions in the Yellow Sea, South China Sea and Bay of Bengal than HTAP (Fig. S1). Therefore, the 
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differences between the two inventories may not have a large influence on global simulations but may have larger impact on 

regional modelling at higher spatial resolution. 

 

 245 
Figure 2. Top: Global annual NH3 emissions for 2010 from ECLIPSEE. Bottom: the difference in 2010 annual NH3 emissions (mg 
m-2) between ECLIPSEE and HTAP (ECLIPSEE - HTAP). The inset panel provides the maximum, median and mean values of both 
positive and negative differences across individual emission grids. 

 

3.1.2 Reduced N Concentrations 250 

Figure 3 presents examples of the global model output: maps of the global distributions of annual mean surface concentrations 

and total (wet + dry) depositions of reduced N (i.e. NH3 + NH4+) in 2010 using the ECLIPSEE inventory. Largest reduced N 

concentrations (Fig. 3 top) are located in regions of high NH3 emissions (shown in Fig. 2): notably eastern China, northern 

India and Indonesia, followed by northern Italy, Germany, Midwest United States and southern Brazil. Reduced N 

concentrations reach ~35 µgN m-3 in parts of China. Annual deposition of reduced N (Fig. 3 bottom) shows clear decreasing 255 

gradients from continental regions to surrounding oceans with maxima of 5000-5200 mgN m-2 in eastern and southern Asia 
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and 1800-2000 mgN m-2 in central Europe and Midwest and South United States. These regions are characterised not only by 

high emissions of reduced N but also large emissions of SOx and NOx (Figs. S1 and S2), reflecting areas of greatest 

anthropogenic activities. Our spatial patterns of reduced N species are consistent with other global modelling studies 

(Hauglustaine et al., 2014; Xu and Penner, 2012; Pringle et al., 2010). The model-measurement comparisons we carry out for 260 

this study cover the majority of these hot spot regions. 

 

 
Figure 3. (Top) Annual mean surface concentrations and (bottom) annual total (wet + dry) depositions of reduced N (NH3 + NH4

+) 
for 2010 based on the ECLIPSEE inventory.  265 

 

The influences of the two emission inventories on model simulated surface concentration differs according to consideration 

of primary or secondary component and varies from one region to another. Globally, the difference in modelled area-weighted 

annual mean surface NH3 concentration using the two 2010 inventories is 18% (HTAP: 0.26 µg m-3; ECLIPSEE: 0.31 µg m-

3). The relative difference is the same when considering land-only area-weighted mean surface NH3 concentration (0.83 and 270 

0.99 µg m-3 for HTAP and ECLIPSEE respectively). In contrast, the difference for global area-weighted  
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mean surface NH4+ concentration is only 3.5% for NH4+ (HTAP: 0.316 µg m-3; ECLIPSEE: 0.305 µg m-3), or 5.0% for the 

land-only area-weighted NH4+ concentrations of 0.755 and 0.718 µg m-3, respectively. 

 For a regional perspective, Fig. 4 and Fig. S5 respectively compare the modelled NH3 and NH4+ concentrations using the 

two emission inventories for the grids in which there are also available measurements from the monitoring networks. 275 

Considering all measurement locations globally, the model simulated concentrations using the two inventories are extremely 

well spatially correlated with each other at R = 0.95 for NH3 and 0.98 for NH4+. The average difference in global surface NH3 

concentration between model simulations using ECLIPSEE and HTAP based on measurement locations is 0.34 µg m-3, which 

corresponds to only 15% of the model average concentration of 2.30 µg m-3 using the ECLISPSEE inventory or 17% of the 

model average concentration of 1.96 µg m-3 using the HTAP inventory. 280 

The model concentrations using the two emission inventories are similarly linearly correlated with measurements (Fig. 4). 

As discussed above, systematic differences between modelled and measured concentrations of NH3 in East Asia and Southeast 

Asia can be attributed at least in part to local differences in NH3 emissions among different inventories. The average modelled 

NH3 concentrations in China derived from ECLIPSEE and HTAP (based on measurement locations) are 12.3 and 7.9 µg m-3 

respectively. The systematically greater modelled NH3 concentrations using ECLIPSEE compared to HTAP is consistent with 285 

the ECLIPSEE inventory’s larger NH3 emissions over eastern and southern China (Fig. 2), where the majority of the NNDMN 

measurement sites are located (Fig. 1).  

For measurement locations in Southeast Asia, Fig. 4 shows that modelled NH3 concentrations are generally lower than 

their respective measured concentrations, for simulations using both emissions inventories. However, as for China, model 

simulations of NH3 using the two inventories are spatially well correlated with each other (R = 0.92). The overall average 290 

modelled NH3 concentration (based on grids containing EANET sites) of 1.99 µg m-3 using the HTAP inventory is slightly 

greater than the average concentration of 1.50 µg m-3 using the ECLIPSEE inventory. Using the HTAP inventory also gives a 

slightly larger range in simulated NH3 concentrations (0.00-9.14 µg m-3) for the grids with measurement sites than the range 

(0.01-6.54 µg m-3) when using the ECLIPSEE inventory. This is again consistent with the smaller emissions for ECLIPSEE in 

most south-eastern Asian countries in 2010 (Fig. 2).  295 

In North America and Europe there are similar linearities between the modelled and measured NH3 concentrations when 

using either of the HTAP and ECLIPSEE inventories (Fig. 4). In general, both inventories produce smaller concentrations than 

measurements in Europe, with ECLIPSEE underestimating more, and higher concentrations than measurements in North 

America, with ECLIPSEE overestimating more. In other words, the ECLIPSEE inventory yields smaller NH3 concentrations in 

Europe but higher concentrations in North America compared with the HTAP inventory. The differences in NH3 emissions 300 

between the two inventories are very similar in these two regions: Fig. 2 shows that the differences in emissions are generally 

close to zero and that differences are both positive and negative. Therefore, it is the location of the measurement site that likely 

influences the model evaluation statistics. The modelled NH3 concentrations in North America (based on network locations) 

are in the ranges 0.01-3.30 µg m-3 and 0.04-3.64 µg m-3 for simulations with HTAP and ECLIPSEE inventories respectively, 

while in Europe the equivalent modelled NH3 concentration ranges are 0.00-4.36 µg m-3 and 0.00-3.95 µg m-3. The average 305 

NH3 concentration difference (based on network locations) in North America between the two emission inventories is 0.47 µg 

m-3 (ECLIPSEE - HTAP), whilst this difference in Europe is only 0.03 µg m-3.  

The impact of emission inventory differences on concentrations of secondary pollutants is much smaller than for primary 

pollutants since the former are influenced by multiple emissions and the timescales for their formation act to smooth out spatial 

differentials in primary emissions. This is illustrated by the generally better agreement between model outputs for both the 310 

HTAP and ECLIPSEE emissions inventories and the network measurements of annual NH4+ concentrations in Fig. S5 than for 
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NH3 in Fig. 4. Thus, the correlations between modelled and measured NH4+ at all network locations are 0.88 (range 0.54-0.92 

for the four separate regions) and 0.90 (0.74-0.90) for simulations using the HTAP and ECLIPSEE inventories, respectively, 

whilst the corresponding correlation coefficients for NH3 are 0.66 (0.40-0.69) and 0.68 (0.49-0.77).  

The differences in NH4+ concentrations in simulations using the two emission inventories (Fig. S5) are also smaller than 315 

for NH3 (Fig. 4), as shown by concentrations that are closer to 1:1 in all regions. For example, whilst modelled NH3 

concentrations in China derived using the ECLIPSEE inventory are on average 56% higher than those derived using the HTAP 

inventory, the NH4+ concentrations are very similar. The annual average NH4+ concentrations (based on network locations) in 

China are 7.30 and 7.15 µg m-3 for HTAP and ECLIPSEE respectively, which is a difference of only 2%. More detail is 

presented in Supplementary Material. 320 

 

 
Figure 4. Comparisons of annual average surface concentrations of NH3 for 8 monitoring networks in 2010 – NNDMN from China 
as East Asia, EANET as Southeast Asia, NAMN and AGANet (UK) and EMEP/CCC plotted together here as Europe, and the EPA 
and AMoN (USA) and NAPS (Canada) plotted together here as North America – and for all networks combined (‘global’). The 325 
upper row of plots is modelled versus measured using the HTAP emission inventory. The middle row is modelled versus measured 
using the ECLIPSEE emission inventory. The lower row is the modelled data for the two inventories plotted against each other for 
the same set of model grids that contain measurement sites. In each plot, N is the total number of scatter points, R is the Pearson 
correlation coefficient, the black dashed line is the 1:1 line and the coloured solid line is the trend line corresponding to the equation 
presented. 330 

 

In summary, whilst there are some spatial differences in annual emissions between the HTAP and ECLIPSEE inventories, 

e.g. for NH3 emissions in China and India, emission differences on a global scale are small. The difference in global average 
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NH3 emissions (for 2010) is 16.0 mg m-2 (ECLIPSEE-HTAP) which is 14% of the average of the HTAP and ECLIPSEE global 

mean NH3 emissions of 105 and 121 mg m-2, respectively. The spatial heterogeneity in the positive and negative differences 335 

in emissions worldwide indicates no global difference between them. The regional differences in emissions between the two 

inventories impact differently on modelled surface concentrations of primary and secondary species. Both inventories yield 

model results that show similar linear correlations with ambient NH3 and NH4+ concentration measurements and similar 

underestimations/overestimations in different monitoring networks. The seasonality in NH3 emissions of HTAP and 

ECLIPSEE are similar, although the latter projects greater monthly fluctuations in East Asia, Southeast Asia, and Europe, but 340 

not North America, which indicates discrepancies in temporal (monthly or day-of-week) factors applied to annual totals in 

different inventories. 

3.1.3 Evaluation of model response to changes between 2010 and 2015 ECLIPSEE emissions 

An evaluation was also undertaken of how the modelled concentrations and depositions respond to the change in emissions in 

simulations using the 2010 and 2015 ECLIPSEE emissions data, and of how these responses compared with the changes 345 

observed in the measurements between the two years. This analysis is presented and discussed in the Supplementary Material. 

Figures S6-S9 respectively present global maps of the differences between 2010 and 2015 of the NH3, NOx and SOx precursor 

emissions, the modelled NH3, NO2 and SO2 concentrations, the modelled NH4+, NO3- and SO42- aerosol concentrations, and 

the modelled total depositions of reduced N, oxidised N and oxidised S. Table S1 quantifies the trends between 2010 and 2015 

in the modelled and measured species concentrations for each regional network for those sites where measurement data are 350 

available in both 2010 and 2015. The need in this comparison for measurement sites operating in both 2010 and 2015 severely 

reduces the number of paired comparison data for some measurement networks. 

In summary, changes in emissions of NH3 between 2010 and 2015 ECLIPSEE inventories are generally small (Figure S6). 

The global area-weighted average NH3 emission increases by 4.5% from 2010 to 2015. By contrast, NOx and SOx emissions 

show slightly larger variations (Figure S6). The global area-weighted average emissions of NOx and SOx decrease from 2010 355 

to 2015 by 5.7% and 14% respectively. The trends in modelled NH3, NO2, and SO2 annual concentration changes between 

2010 and 2015 (Figure S7 and Table S1) are entirely consistent with the trends in the emissions supplied to the model, and in 

the corresponding measurements, given both the realistic uncertainties in emissions and measurements (and the small number 

of measurement data), and the differential influences of meteorology on concentrations between the two years. Most parts of 

the world show increased NH3 concentrations but decreased NO2 and SO2 concentrations from 2010 to 2015. The impacts of 360 

emission changes on modelled concentrations of secondary pollutants (Figure S8 and Table S1), and modelled total deposition 

of reduced N, oxidised N, and oxidised S (Figure S9) are varying. The comparison of modelled and measured concentration 

changes based on measurement locations (Table S1) indicates that trends in modelled and measured concentrations for SO2 

and SO42- in most networks from 2010 to 2015 show clear decreases, while for NH3, NH4+, NO2, HNO3, and NO3- the modelled 

and measured concentrations reveal a mixture of upward, downward and no trends but are again generally consistent with each 365 

other.  

Overall, these comparisons of changes in model-simulated concentration and deposition changes between the two years in 

relation to the changes in measurements (and the emissions) provide useful additional confirmation that the model is behaving 

in line with expectations, within realistic levels of measurement uncertainty.  

 370 
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3.2  Comparisons of modelled surface concentrations of Nr and SIA species with measurements 

Evaluations of modelled versus measured concentrations were undertaken for both 2010 and 2015. The comparisons for the 

two years show similar characteristics. To avoid repetition, the following section presents and discusses the comparisons for 

2015, using the ECLIPSEE inventory, as more measurement data were available for 2015. Throughout this section (and only 

in this section 3.2) the following notation is used when referring to correlation coefficients. The correlation coefficient applying 375 

to all the networks shown in a figure is denoted by RT (T for total), whilst that for each network individually is denoted by its 

own subscript: RN is for NNDMN network; RE is for EANET network; REM is for EMEP/CCC network; RUK is for UK network; 

RUS is for US network; RNA is for NAPS network.   

3.2.1  East and Southeast Asia 

Figure 5 shows the spatial distribution of modelled and measured 2015 annual average NH3 concentrations for regions covered 380 

by the NNDMN (China) and EANET (East Asia) networks. Scatter plots of the paired model versus measurement annual 

concentrations for NH3, NH4+ and other gaseous and particle-phase inorganic components are shown in Fig. 6, illustrating the 

extent of model-measurement spatial correlations. A summary of model evaluation statistics is presented in Table 2.  

 

 385 
Figure 5. Modelled and measured 2015 annual mean NH3 concentrations in East and Southeast Asia. Measurements are from the 
China NNDMN and East Asia EANET networks. Monitoring sites are indicated by circles whose colour represents the measured 
concentration and whose diameter (see inset legend) represents the absolute difference between model and measurement.  

 
 390 
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Table 2. Summary statistics of model comparison with measurements for 2015 in East and Southeast Asia (NNDMN and EANET 
networks). N is the number of paired data of model and observation. RN and RE are Pearson’s coefficients for NNDMN and EANET 
respectively. Fac2 is the fraction of data points within a factor of 2. Mean_O and Mean_M are annual average concentrations (µg 395 
m-3) of observation and model respectively. NMB is normalized mean bias, NME is normalized mean error.  

NNDMN N RN Fac2 fraction Mean_O Mean_M NMB NME 

NH3 24 0.68 0.75 10.1 13.0 0.29 0.57 

NO2 24 0.59 0.83 23.5 28.6 0.22 0.39 

HNO3 24 -0.18 0.21 4.90 1.93 -0.61 0.64 

NH4+ 23 0.42 0.78 8.10 8.12 0.00 0.46 

NO3- 24 0.26 0.71 10.0 13.8 0.38 0.62 

EANET N RE Fac2 fraction Mean_O Mean_M NMB NME 

NH3 27 0.56 0.52 1.63 1.92 0.18 0.69 

NO2 7 0.84 0.71 15.6 25.9 0.67 0.68 

HNO3 28 0.81 0.39 0.63 1.33 1.13 1.19 

SO2 36 0.71 0.44 2.96 3.31 0.12 0.81 

NH4+ 29 0.73 0.62 0.75 1.19 0.59 0.73 

NO3- 29 0.73 0.38 1.10 0.89 -0.19 0.67 

SO42- 29 0.74 0.83 3.03 2.71 -0.11 0.31 

 

 
Figure 6.  Scatter plots of 2015 annual mean modelled and measured NH3, NO2, HNO3, SO2, NH4

+, NO3
-, and SO4

2- concentrations 
at East and Southeast monitoring network locations. In each plot, the solid line is the least-squares regression line and the dashed 400 
black line is the 1:1 line. RN is for NNDMN network. RE is for EANET network. RT is the overall correlation coefficient between 
model and all measurements shown. 
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The model simulates well the overall spatial trend of annual NH3 concentrations in this region, spanning a range from 

around 0 to >30 µg m-3. Model and measurements consistently show highest NH3 concentrations in central eastern China 

(typically >15 µg m-3). The observed NH3 hotspots in North China Plain, Northeast China Plain, and Sichuan Basin are 405 

consistent with them being regions of intensive agricultural activities that apply large amounts of fertilizers (Xu et al., 2015). 

Most areas in other East and South-East Asia countries such as Japan, Thailand, Vietnam and Malaysia have lower NH3 

concentrations (typically <5 µg m-3) for both model and measurements. Relative differences	between model and measurement 

are generally small for the majority of sampling sites, and where they are large it is a consequence of expressing a difference 

relative to a small measured concentration. For example, the largest relative difference of 420%, which is in Vietnam, applies 410 

to a very small measured NH3 concentration of 0.83 µg m-3.  

The modelled annual NH3 concentrations at the NNMDN locations in China are slightly higher than the measurements 

(NMB = 0.29, Table 2), with 62% of the sites having positive model minus measurement differences. The sampling site with 

the largest positive difference is Zhumadian, where modelled NH3 exceeds the measurement by 16.9 µg m-3 (98% relative to 

measurement). The largest negative difference (-13.0 µg m-3, -82% relative to measurement) is for the Wuwei site. The large 415 

concentration differences reflect the much larger NH3 concentrations in China. The average difference (mean bias) of annual 

NH3 concentrations across all locations in the EANET network is 0.29 µg m-3, which is a factor of ten smaller than the mean 

bias of 2.90 µg m-3 for the NNDMN network. 

Figure 6 and Table 2 also present the statistical relationships between modelled and measured annual average 

concentrations in China for NO2, NH4+, HNO3 and NO3-. Both NH3 and NO2 display strong linear relationships, while the 420 

secondary species NH4+ and NO3- show poorer correlations. The poorest agreement is for HNO3 (Table 2). However, modelled 

HNO3 concentrations agree much better with measurements in EANET and other networks (shown later), which suggests 

differences in measurement data among networks. Artefact-free measurement of HNO3 is a known challenge (Tang et al., 

2018b; Cheng et al., 2012; Sickles et al., 1999). The biases between model and NNDMN measurement are quite small for 

most species except for HNO3. The overall annual average NH3 concentrations are 13.0 and 10.1 µg m-3 for model and 425 

measurement respectively. The annual modelled network average NO2 concentration of 28.6 µg m-3 is only 22% greater than 

the measured network average NO2 of 23.5 µg m-3. The modelled and measured network average annual mean NH4+ 

concentrations are equal at 8.1 µg m-3. The proportions of modelled and measured data that are within a factor of 2 are 75% 

for NH3, 83% for NO2, 78% for NH4+, and 71% for NO3-; the Fac2 for HNO3 is, however, only 21%. 

For comparisons at EANET sites, NO2 has the highest correlation (RE = 0.84) amongst the gaseous species, followed by 430 

HNO3 (RE = 0.81), despite relatively higher biases between model and measurement (NMBHNO3 = 1.13, NMBNO2 = 0.67). The 

linear correlations are similar for NH3 and SO2, and both also exhibit small biases. The network-averaged modelled and 

measured annual average NH3 concentrations are 1.92 µg m-3 and 1.63 µg m-3 respectively (NMB = 0.18). The equivalent data 

for SO2 are 3.31 and 2.96 µg m-3 (NMB = 0.12). For the aerosol components, the model simulates higher NH4+ concentrations 

(by 59%), but slightly lower NO3- and SO42- concentrations (by 19% and 11%, respectively). Linear correlations of aerosol 435 

components between model and EANET measurements are high (RE = 0.73-0.74). In summary, the model shows good 

performance in capturing spatial variations of key inorganic pollutants at EANET locations. The comparison statistics also 

show an overall better model-measurement linear correlation for EANET than for NNDMN for all species. 
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3.2.2  Europe  440 

The annual-mean NH3 concentration map for Europe (Fig. 7) shows the highest NH3 concentrations (>8 µg m-3) are in the 

Netherlands, Germany and Italy. Concentrations in northern Europe, such as Scandinavia, are smaller (<2 µg m-3), which is 

consistent with less anthropogenic activities and colder temperatures in this region. The model simulations of large NH3 

concentrations in the Po Plain in northern Italy arise from the large NH3 emissions associated with intensive farming of pigs, 

cattle and poultry (Carozzi et al., 2013; Skjøth et al., 2011). In the UK, NH3 concentrations generally display a decreasing 445 

trend from south to north for both model and measurement although Northern Ireland is a relatively high NH3 region as well. 

Most sites with NH3 concentrations around or below 1 µg m-3 are in northwest Scotland, where modelled NH3 concentrations 

are equally low.  

Across all monitoring sites in Europe, 79% show positive differences for model minus measurement of annual NH3. The 

monitoring locations with the largest differences (3.11-3.98 µg m-3, Fig. 7) are located in Germany and Switzerland, while 450 

most sites with differences close to zero are situated in Norway, Sweden, Finland and Scotland. The site with the largest 

relative difference, Rannoch in the highlands of Scotland, has an extremely low measured concentration of 0.07 µg m-3 relative 

to the modelled concentration, also low), of 1.13 µg m-3. A number of sites which have negative model minus measurement 

differences are in southern England and eastern Northern Ireland. The largest model underestimation of NH3 (-3.18 µg m-3) 

is at the Brompton site in England which also has the highest observed NH3 concentrations for the UK. However, it is important 455 

to note that the UK NAMN is a high spatial density NH3 monitoring network, with many sites deliberately located near local 

emission sources of NH3 (Tang et al., 2018a), which the global model grid-average cannot capture. 

 

 
Figure 7. Modelled and measured 2015 annual mean NH3 concentrations in Europe. Measurements are from the UK NAMN and 460 
Europe EMEP/CCC networks. Monitoring sites are indicated by circles whose colour represents the measured concentration and 
whose diameter (see inset legend) represents the absolute difference between model and measurement.  



17 
 

 

The linear relationships between model and measurement for 2015 annual average NH3, NO2, SO2, NH4+, NO3-, and SO42- 

concentrations in Europe are shown in Fig. 8 and a summary of the statistical comparisons is shown in Table 3. A few UK 465 

NAMN sites are part of the European EMEP/CCC network. Where a model grid contains multiple measurement sites, the 

average of the measured values is used.  

 

 
Figure 8.  Scatter plots of 2015 annual mean modelled and measured NH3, NO2, HNO3, SO2, NH4

+, NO3
-, and SO4

2- concentrations 470 
at European monitoring network locations. In each plot, the solid line is the least-squares regression line and the black dashed line 
is the 1:1 line. REM is for EMEP/CCC network. RUK is for UK networks. RT is the overall correlation coefficient between model and 
all measurements shown. 

 
Table 3. Summary statistics of model comparison with European measurements for 2015 (UK and EMEP/CCC networks). N is the 475 
number of paired data of model and observation. RT is Pearson’s coefficient for total measurements in EMEP/CCC and UK 
networks. Fac2 is the fraction of data points within a factor of 2. Mean_O and Mean_M are annual average concentrations (µg m-3) 
of observation and model respectively. NMB is normalized mean bias, NME is normalized mean error.  

Species N RT Fac2 fraction Mean_O Mean_M NMB NME 

NH3 77 0.51 0.48 1.26 1.76 0.40 0.79 

NO2 82 0.71 0.62 4.90 7.27 0.48 0.65 

HNO3 48 0.60 0.65 0.38 0.31 -0.18 0.50 

SO2 90 0.68 0.57 0.65 0.90 0.39 0.70 

NH4+ 72 0.71 0.39 0.56 1.11 0.98 1.01 

NO3- 69 0.80 0.42 1.09 2.18 0.99 1.05 

SO42- 75 0.69 0.65 1.02 1.34 0.32 0.51 
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There is a clear linear correlation between model and measurement for both primary and secondary species (Fig. 8). 480 

Correlation is highest for NO3- (RT = 0.80), followed by NO2 and NH4+ (RT = 0.71) and weakest for NH3 (RT = 0.51). However, 

the NH3 data appear to be distributed into two groups, one characterized by positive model bias mainly associated with 

EMEP/CCC network locations, and one characterised by negative model bias mainly associated with the UK network. The 

former may be a result of overestimation of NH3 in the emission inventory, the latter may be caused by UK measurement 

locations adjacent to agricultural NH3 sources (Tang et al., 2018a). The model-measurement comparisons of other gaseous 485 

species (NO2, SO2 and HNO3) all show better correlations (RT = 0.60-0.71) and smaller differences (NME 0.50-0.70) in 

comparison with NH3.  

The modelled concentrations of secondary components, NH4+, NO3-, and SO42-, all match well with the spatial variations 

of measurements, with RT varying from 0.69 to 0.80 (Fig. 8). All three components show higher modelled than measured 

concentrations, to varying degree. The network-averaged NH4+ concentrations are 1.11 and 0.56 µg m-3 for model and 490 

measurement respectively. For NO3-, the modelled average concentration is 2.18 µg m-3 which is around twice the measurement 

mean. In comparison with NH4+ and NO3-, SO42- shows a smaller NMB (0.32), and a larger Fac2 fraction (64%). 

In conclusion, across Europe the model exhibits a good performance in simulating annual average concentrations and 

spatial variations of major inorganic air pollutants, but with an overestimation of secondary NH4+, NO3-, and SO42-. The overall 

agreement between model outputs and ambient measurements in Europe networks is as good as that in EANET network. 495 

3.2.3 United States and Canada 

Modelled and measured 2015 annual average NH3 concentrations and differences in North America are shown in Fig. 9. The 

Canadian NAPS network includes limited sampling sites for NH3 and all of them are situated close to the border with the USA. 

Areas with the highest NH3 concentration are located in the Midwestern United States according to the model, but there are 

only a few measurement locations in these regions. Annual average NH3 measurements in North America vary from 0.39 µg 500 

m-3 to 3.74 µg m-3, while the model concentrations at those locations range from 0.13 µg m-3 to 4.62 µg m-3. The model 

generally simulates slightly higher NH3 concentrations than measurements: 67% of the model-measurement differences are 

positive and the mean model bias is 0.48 µg m-3. The modelled and measured concentrations of NH3 in North America are 

comparable to those in Europe and much smaller than those in East Asia.  

 505 
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Figure 9. Modelled and measured 2015 annual mean NH3 concentrations in North America. Measurements are from the US AMoN 
Network and Canada NAPS Program. Monitoring sites are indicated by circles whose colour represents the measured concentration 
and whose diameter (see inset legend) represents the absolute difference between model and measurement.  

 510 

Figure 10 shows the linear relationships between model and measurement for 2015 annual average NH3, NO2, SO2, NH4+, 

NO3-, SO42- in North America. Table 4 provides the summary of statistical comparison metrics. The number of monitoring 

locations is greater than for the networks in East Asia, Southeast Asia, and Europe. The correlations between modelled and 

measured annual average NH3, NO2, HNO3 concentrations in North America (RT = 0.59 – 0.72) are similar to those in Europe 

and Southeast Asia, but the correlation for SO2 is poor (RT = 0.27). The reason for the poorer correlation between modelled 515 

and measured SO2 is unknown but may have a few causes: the emission inventory for SO2 in North America may be too low, 

or some sampling sites may be set close to SO2 point sources whilst grid-averaged model values are much lower. For the other 

three gaseous species the biases between model and measurement are in reasonable ranges. The network-averaged modelled 

NH3 concentrations is 1.76 µg m-3 which is close to the measured average concentration of 1.28 µg m-3. For HNO3, 78% of 

model data are within a factor of 2 of the measurements and the overall average concentrations are 0.51 µg m-3 and 0.39 µg 520 

m-3 respectively (Table 4). Compared to NH3 and HNO3, the modelled annual NO2 concentrations are generally smaller than 

measurements, leading to a negative NMB of -0.39. 

Clear linear relationships are observed between modelled and measured annual average concentrations for all three aerosol 

pollutants (Fig. 10, Table 4), among which SO42- has the highest correlation coefficient (0.86), the largest Fac2 (87%) and the 

smallest NMB and NME. This reflects excellent capability by the model to capture the spatial variation of SIA constituents. 525 

In terms of absolute concentrations, modelled concentrations are on average higher than measured to varying degrees for NH4+, 

NO3-, and SO42-, as is the case in Europe. This may be due to gas-to-particle conversion process being too fast in the model or 

sinks of these secondary species being too small. The network-averaged NH4+ concentrations are 1.06 µg m-3 and 0.50 µg m-3 

for model and measurement respectively. For NO3- the equivalent concentrations are 1.19 µg m-3 and 0.58 µg m-3. Both NH4+ 

and NO3- show relatively small Fac2 fractions due to model overestimation. By contrast, the smallest differences are for SO42- 530 

concentrations. The average model SO42- concentration is 1.27 µg m-3 which only exceeds the average measurement 

concentration by 31%.  
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Figure 10. Scatter plots of 2015 annual mean modelled and measured NH3, NO2, HNO3, SO2, NH4

+, NO3
-, and SO4

2- concentrations 535 
at North American monitoring network locations. In each plot, the solid line is the least-squares regression line and the black dashed 
line is the 1:1 line. RUS is for US EPA network. RNA is for NAPS network.  RT is the overall correlation coefficient between model and 
all measurements shown. 

 
Table 4. Summary statistics of model comparison with measurements for 2015 in North America (USEPA and NAPS networks). N 540 
is the number of paired data of model and observation. RT is Pearson’s coefficient for total measurements in US EPA and NAPS 
networks. Fac2 is the fraction of data points within a factor of 2. Mean_O and Mean_M are annual average concentrations (µg m-3) 
of observation and model respectively. NMB is normalized mean bias, NME is normalized mean error.  

Species N RT Fac2 fraction Mean_O Mean_M NMB NME 

NH3 45 0.72 0.64 1.28 1.76 0.37 0.57 

NO2 259 0.59 0.55 12.27 7.43 -0.39 0.49 

HNO3 9 0.62 0.78 0.39 0.53 0.36 0.52 

SO2 264 0.27 0.31 2.43 0.96 -0.61 0.75 

NH4+ 106 0.60 0.32 0.50 1.06 1.12 1.25 

NO3- 212 0.76 0.36 0.58 1.19 1.05 1.32 

SO42- 216 0.86 0.87 0.97 1.27 0.31 0.36 

 

3.2.4 Comparison of temporal variation of modelled concentrations with measurements 545 

The NNDMN, EANET, NAMN and EMEP/CCC monitoring networks also provide higher-temporal-resolution data, which 

allows a comparative assessment of monthly variations in model simulations (Fig. 11). As well as model-imposed temporal 

variations in emissions, the NH3 concentrations are also driven by meteorological variations, in particular warmer temperatures 

favour partitioning of reduced N to gaseous NH3. Missing measurement data for certain months and sites means the number 

of comparisons varies from one month to another. 550 
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Figure 11. Monthly variations in modelled and measured NH3 concentrations for locations in four monitoring networks in 2015. The 
box extends from the lower to upper quartile values of the data, with an orange line at the median and a green point at the mean. 
The whiskers represent 5% and 95% persentiles.  555 
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In general, measurements of monthly average NH3 concentrations in the China NNDMN show a trend of high in summer 

(mean: 14.6 µg m-3, Table 5) and low in winter (mean: 6.54 µg m-3). The seasonal pattern in the model simulations is slightly 

different, with dual peaks of NH3 concentrations in March and August, but seasonal averages for spring and summer in model 

are similar to summer measurements at 14.6 µg m-3 and 14.8 µg m-3 respectively. Similar to measurements, the modelled NH3 

concentration is also lowest in winter (9.09 µg m-3). For the EANET, both modelled and measured NH3 median concentrations 560 

show a less clear varying trend than other networks, which might be due to the distributions of monitoring sites. A large 

number of sites in Southeast Asia are located in the tropics where the climate is characterised by a small temperature range 

and substantial rainfall, which leads to a very small range of fluctuations of NH3 concentrations. The monthly averages indicate 

that measurements peak in April and October and are minimum in March and August, while the model has higher 

concentrations in March, April, August and October, and lower concentrations in January and February. However, the 565 

fluctuation in the all-site monthly averages is small, ranging from 1.21 µg m-3 to 3.21 µg m-3, and from 1.77 µg m-3 to 2.30 µg 

m-3, for model and measurement respectively. The variation in monthly medians is even smaller. 

 

Table 5. Seasonal averages of monthly NH3 concentrations (µg m-3) for model (Mod) and measurements (Obs) in four monitoring 
networks. Spring: Mar, Apr, May; Summer: Jun, Jul, Aug; Autumn: Sep, Oct, Nov; Winter: Dec, Jan Feb. 570 

Networks Spring Summer Autumn Winter 

µg m-3 Obs Mod Obs Mod Obs Mod Obs Mod 

China 10.9 14.6 14.6 14.8 8.72 12.9 6.54 9.09 

East Asia 1.99 2.91 1.95 2.64 2.17 2.40 2.02 1.27 

UK 1.94 1.71 1.43 2.49 1.36 1.90 1.10 0.61 

EMEP/CCC 0.83 1.90 0.82 2.53 0.54 1.77 0.44 0.84 

 

For the UK NAMN, both mean and median concentrations (Fig. 11) show that model and measurement exhibit higher NH3 

concentrations in spring and summer, and lower concentrations in winter. One small difference is in the timing of the NH3 

concentration maximum. The highest measured NH3 concentrations are in spring, whereas modelled concentrations have a 

maximum in summer. The differences between all-site monthly mean and median concentrations, and between the maximum 575 

and minimum values, in measurement are much larger than in the model, indicating a broad sub-grid variability that cannot be 

captured by the global model as the spatial averaging process smooths out these highly localised concentration gradients. For 

the European EMEP/CCC network, the model is in excellent agreement with measurement in respect of temporal pattern 

despite its higher absolute concentrations. Both model and measurement show a continuous period of higher NH3 

concentrations from spring to summer and lower NH3 concentrations in autumn and winter. 580 

Similar model-measurement monthly comparisons for NH4+ in 2015 are presented in Supplementary Materials (Fig. S10). 

Consistent monthly patterns are observed for both model and measurement in EANET, AGANet (UK) and EMEP/CCC 

networks: larger NH4+ concentrations are found in February, March, and October, while the lowest concentration appears in 

July. For NNDMN locations, the model and measurement show a similar late summer peak but display inverse trend in winter 

and spring. 585 

In summary, the simulated concentrations of NH3 and NH4+ and their month-to-month variability are generally in line with 

measurement data in most global regions despite the model resolution of 1° × 1°. The model comparisons with European 

measurements exhibit greater agreements than with East Asia and Southeast Asia measurements. The divergence in NNDMN 

and EANET likely comes from shortcomings in the temporal profiles of emission inventories and is affected by the distribution 
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of limited measurement sites. A comparison of model outputs from STOCHEM-CRI and WRF-Chem-CRI with satellite 590 

observations (Khan et al., 2020) also highlights a poor temporal agreement for NH3 seasonality. Further model experiments 

are required to investigate the impacts of different monthly emission and local meteorology on temporal variations of reduced 

N species. 

3.3 Comparisons of modelled precipitation and wet deposition with measurements 

The evaluations of model performance for precipitation and wet deposition are based on the 4 monitoring networks (China, 595 

East Asia, Europe and United States) that report both precipitation and precipitation concentration measurements for 2015. 

The total annual wet deposition (WDEP) is calculated as, 

𝑊𝐷𝐸𝑃 =	 �̅� ×2𝑃% 

where �̅� (also referred to here as Prec Conc) is the precipitation-weighted annual average concentration 

𝐶̅ 	= 	
∑(𝐶% × 𝑃%)

∑𝑃%
 600 

and	𝐶% is the concentration, and 𝑃% is the depth, of each individual precipitation event i in the year. Prec Amount, ∑𝑃%, is the 

total precipitation depth for the year. When 𝐶% (and �̅�) are expressed in units of mg L-1, and 𝑃% in mm, then WDEP has units 

of mg m-2.  

Figure 12 shows for each location in each of the five networks the comparisons between modelled and measured annual 

precipitation, precipitation-weighted annual average concentration of reduced N (in the form of NH4+) and annual total wet 605 

deposition of reduced N in 2015. Table 6 summarises the statistical metrics associated with each comparison. The comparisons 

of modelled and measured total rainfall show that the model is capable of simulating spatial variations of precipitation over 

different global regions. The correlation coefficient R between modelled and measured annual precipitation ranges from 0.65 

to 0.94 with an average of 0.77. The high Fac2 proportions indicate that the model can simulate the precipitation amount in 

EANET (82%), EMEP/CCC (91%), US NTN (82%), and Canada CAPMoN (100%) locations, but not so well for NNDMN 610 

(43%). In terms of model-measurement biases, the model underestimates annual precipitation amounts by 13%-45%. Given 

the 1° spatial resolution of the model and the localised nature of precipitation events, such a model underestimation range is 

expected.  

The model performance in precipitation concentrations of reduced N varies between NNDMN and other networks. Whilst 

comparisons for EANET, EMEP/CCC, US NTN, and Canada CAPMoN show close to 1:1 linear relationships with R values 615 

all >0.71, comparison at NNDMN locations shows a relatively poor correlation (R = 0.45). This may reflect instrumental and 

experimental differences between monitoring networks. Considering the limited number of monitoring sites in NNDMN, more 

measurement data are required to draw a more representative model-measurement comparison in China.  

The measured annual wet deposition of reduced N is affected by the quality of the measurement of both collected rainfall 

and precipitation-weighted average NH4+ concentration. Based on measurement locations, NNDMN shows the largest annual 620 

reduced N wet deposition for both model (777 mgN m-2) and measurement (986 mgN m-2), followed by EANET (model 380 

mgN m-2, measurement 499 mgN m-2), EMEP/CCC (model 146 mgN m-2, measurement 226 mgN m-2), Canada CAPMoN 

(model 144 mgN m-2, measurement 288 mgN m-2), and US NTN (model 135 mgN m-2, measurement 192 mgN m-2). The 

model simulates lower total reduced N wet depositions by 21% - 50% across the five networks. This general model 

underestimation is largely driven by the underestimation of total precipitation, and to less extent the precipitation 625 

concentration. Across the five networks, linear correlation between modelled and measured wet deposition of reduced N is 

best for the Canada CAPMoN network with R = 0.82. 
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The comparison for global wet deposition of total oxidized N (in the form of NO3-) exhibits similar results and is presented 

in the Supplementary Material (Fig. S11 and Table S2). The modelled precipitation-weighted concentrations of NO3- has 

relatively good agreements with measurements in EANET, EMEP/CCC, US NTN and Canada CAPMoN networks with R 630 

ranging from 0.69 to 0.82, while the comparisons in NNDMN show a poorer linear correlation between model and 

measurement (R = 0.39). In terms of biases, the model tends to simulate higher NO3- concentrations in precipitations in EANET 

(NMB = 0.52) and US NTN (NMB = 1.04) networks but underestimate in NNDMN (NMB = -0.37). In general, the greatest 

model-measurement agreement for oxidized N wet deposition is found in Canada CAPMoN and US NTN, followed by 

EMEP/CCC and EANET, and to the least extent NNDMN, which again suggests systematic differences between monitoring 635 

networks rather than issues with the modelling of atmospheric chemistry and meteorology. 

On the whole, the modelled reduced and oxidized N show similar linear relationships with measurements in precipitation 

and wet deposition in all regions, which further supports the utilization of the WRF and EMEP MSC-W modelling system to 

investigate Nr processes globally. 

 640 

Table 6. Summary statistics of model comparison with measurements for annual precipitation (Prec Amount, mm), precipitation-
weighted mean concentration of NH4

+ (Prec Conc, mgN L-1), and wet deposition of reduced N (WDEP, mgN m-2) in 2015. N is the 
number of measuring sites. R is Pearson’s coefficient. Fac2 is the fraction of data points that are within a factor of 2. Mean_O and 
Mean_M of Prec Conc are annual averages of observation and model respectively. Mean_O and Mean_M of Prec Amount and 
WDEP are annual totals. NMB is normalized mean bias, NME is normalized mean error.  645 

Networks Variables N R Fac2 fraction Mean_O Mean_M NMB NME 

China 

Prec Amount 21 0.73 0.43 913 502 -0.45 0.49 

Prec Conc 21 0.45 0.71 2.00 2.18 0.09 0.45 

WDEP 21 0.59 0.62 986 777 -0.21 0.42 

East Asia 

Prec Amount 50 0.65 0.82 1585 1270 -0.20 0.39 

Prec Conc 44 0.71 0.66 0.44 0.42 -0.04 0.62 

WDEP 40 0.68 0.62 499 380 -0.24 0.50 

Europe 

Prec Amount 101 0.78 0.91 863 749 -0.13 0.31 

Prec Conc 89 0.77 0.85 0.32 0.26 -0.19 0.28 

WDEP 89 0.61 0.75 226 146 -0.35 0.41 

United 

States 

Prec Amount 206 0.73 0.82 1030 690 -0.33 0.39 

Prec Conc 207 0.76 0.90 0.22 0.22 0.03 0.30 

WDEP 206 0.75 0.81 192 135 -0.30 0.36 

Canada 

Prec Amount 28 0.94 1.00 941 632 -0.33 0.33 

Prec Conc 28 0.85 0.86 0.32 0.25 -0.22 0.29 

WDEP 28 0.82 0.57 288 144 -0.50 0.50 
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Figure 12. Scatter plots of model-measurement comparisons of 2015 annual wet deposition variables for reduced N (in the form of 
NH4

+) for five measurement networks: NNDMN, EANET, EMEP/CCC, US NTN and Canada CAPMoN. Left panels are annual 650 
precipitation. Middle panels are precipitation-weighted annual average NH4

+ concentration in precipitation. Right panels are annual 
total wet deposition of NH4

+. In each plot, the coloured line is the least squares regression, and the black dashed line is the 1:1 line. 
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4 Discussion  

The work presented here is motivated by the use of the EMEP MSC-W-WRF model for global-scale analyses of atmospheric 

nitrogen and SIA chemistry, fluxes and budget, particularly species that contain reduced N (i.e. gaseous NH3 and particulate 655 

NH4+). The model evaluation, conducted both spatially and temporarily, is based on the available data in 2010 and 2015 from 

9 monitoring networks that span the range of ambient measurements in East Asia, Southeast Asia, Europe, and North America.  

Table 7 summarises the global comparison between model and surface measurements in 2015. The correlation coefficients 

(R) between modelled and measured concentrations of most species (i.e. NH3, NO2, NH4+, NO3- and SO42-) are all greater than 

0.78 except for HNO3 and SO2. The correlation coefficient for wet deposition of reduced N and oxidised N is 0.78 and 0.63, 660 

respectively. For reduced N species, the evaluation shows that the model overestimates NH3 and NH4+ worldwide with a NMB 

of 31% and 37% respectively. For oxidized N species, the NMB values for NO2 and NO3- are 23% and 61% and, in contrast, 

HNO3 is underestimated by 34%. Slightly higher concentrations are also simulated by the model worldwide for both SO2 and 

SO42- with a NMB of 10% and 21% respectively. For wet deposition, the model outputs smaller values on average for reduced 

N (NMB = -30%) compared with measurements, whereas the NMB for oxidised N is only -3%. Given the intrinsic 665 

discrepancies between local site measurement and a global-scale chemistry model grid, these comparisons are good and are 

comparable with model evaluation statistics determined for models of similar resolution (Hauglustaine et al., 2014; Bellouin 

et al., 2011; Pringle et al., 2010; Xu and Penner, 2012). 

 
Table 7. Summary statistics of global model evaluation of atmospheric concentrations (µg m-3), annual precipitation (Prec Amount, 670 
mm), precipitation-weighted mean concentration of NH4

+ and NO3
- (Prec Conc, mgN L-1), and wet deposition (mgN m-2) of reduced 

N (RDN) and oxidized N (OXN), in 2015. N is the number of measuring sites. R is Pearson’s correlation coefficient. Fac2 is the 
fraction of data points that are within a factor of 2. Mean_O and Mean_M of Prec Conc are annual averages of observation and 
model respectively. Mean_O and Mean_M of Prec Amount and WDEP are annual totals. NMB is normalized mean bias, NME is 
normalized mean error.  675 

Globe Variables N R Fac2 fraction Mean_O Mean_M NMB NME 

Atmospheric 

concentration 

NH3 173 0.85 0.57 2.55 3.35 0.31 0.63 

NO2 372 0.78 0.62 7.43 9.11 0.23 0.56 

HNO3 109 0.54 0.50 1.44 0.95 -0.34 0.68 

SO2 390 0.61 0.45 1.05 1.16 0.10 0.82 

NH4+ 230 0.83 0.43 1.31 1.80 0.37 0.69 

NO3- 334 0.83 0.40 1.41 2.28 0.61 0.88 

SO42- 320 0.83 0.81 1.17 1.42 0.21 0.38 

Wet 

deposition 

(RDN) 

Prec amount 403 0.74 0.83 1044 763 -0.27 0.37 

Prec conc 386 0.80 0.85 0.37 0.36 -0.03 0.38 

WDEP 381 0.78 0.75 278 194 -0.30 0.42 

Wet 

deposition 

(OXN) 

Prec conc 392 0.79 0.61 0.30 0.35 0.15 0.56 

WDEP 389 0.63 0.83 218 212 -0.03 0.45 
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Both model and measurement have uncertainty that constrains the extent to which statistical analyses between modelled 

and measured data can be utilized to assess a model’s performance. A reliable evaluation of a model requires a high quality of 

measurement as well. For instance, sampling and chemical analysis procedures such as the instrument calibration, the choice 

of sampling filters/tubes, the storage, extraction, and chemical speciation of air samples all have different uncertainties 680 

propagated to the final measured variable. In particular, this study and the above-mentioned global modelling studies all show 

difficulties in representing surface NO3- and NH4+ concentrations, which are currently overestimated by around a factor of 2 

in Europe and North America. Such positive biases between modelled and measured NO3- and NH4+ are speculated to be 

partially associated with negative sampling artifacts in measurements as evaporation of NH4NO3 from sampling filters has 

been reported to cause losses of up to 50% in summer conditions (Hauglustaine et al., 2014; Vecchi et al., 2009; Yu et al., 685 

2005). Further work is required to better characterize and quantify the uncertainty of individual NO3- and NH4+ measurements. 

In general, the relative measurement uncertainty increases markedly as concentration decreases (Thunis et al., 2013; Pernigotti 

et al., 2013). The EMEP/CCC data report for 2015 estimates a combined sampling and chemical analysis uncertainty range of 

15-25% (Hjellbrekke, 2017), while the detailed uncertainty information in other monitoring networks is not publicly available.  

Similarly, different input, configurations and computing processors also have influences on the model output, and the 690 

quantification of such influence is rather complicated (Kong et al., 2020). The choice of emission input is a good example 

(Aleksankina et al., 2019). The compilation of an emission inventory is partially based on reported measurement data and 

partially on expert estimation, which consequently leads to a certain uncertainty in emission magnitudes and temporal profiles 

(EMEP/EEA, 2019; Hilde Fagerli, 2017; Klimont et al., 2017; Wiedinmyer et al., 2011; Zheng et al., 2012). The completeness 

and consistency of submitted emission data differs significantly across countries as well. As discussed in Section 3.1, the two 695 

global emission inventories used in this work, HTAP and ECLIPSEE, have shown large localised discrepancies in NH3, NO2 

and SO2 emissions in certain world regions, which is presumably ascribable to the inclusion or exclusion of a particular local 

point source in the compilation process. The influence of these discrepancies on model-simulated surface concentration differs 

in terms of primary or secondary component and varies from one region to another, although such greatly localised influences 

are diminished during the spatial averaging processes. It is therefore important to acknowledge that the performance of any 700 

model is subject to the quality of model input data which includes not only emissions but also meteorology and other aspects 

of model parameters. Moreover, no one can guarantee error-free models; in the same way that observations are likely to be not 

error free. Often in the atmospheric modelling community these potential model errors are not discussed or acknowledged. 

Aside from intrinsic uncertainties in model and/or measurement values, the model and measurement may also not agree 

concerning the averaging time periods and the diameters of the sampled particles. A certain number of measurements may be 705 

missing from a time series due to unpredictable instrument failure and/or because the measurement averaging period does not 

exactly match the model averaging time period. It is clear that the sampling time and size distributions of measurements vary 

from one monitoring network to another, and from species to species. For example, in Canada, NH4+ concentrations within 

PM2.5 are measured, while the particle size cut-off for the DELTA system used in the UK and China is around 4.5 µm (Tang 

et al., 2018a; Tang et al., 2018b; Xu et al., 2019). The modelled NH4+, SO42-, and fine NO3- are all in PM2.5. Another example 710 

is that in the US and Canada gaseous species like NO2 and SO2 are monitored continually throughout the year and thus the 

corresponding annual average concentrations are calculated in the same way as the model, whilst the aerosol components such 

as NO3- and NH4+ are measured once per 6 days (or once per week). In addition, different networks, and even different sites 

in the same network, may measure at different frequencies and at different times, which presents inherent practical difficulties 

in comparing model simulations with ambient measurements. Further moves towards global standardised approaches for 715 

measurements across different networks is encouraged.  
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Even if both model and measurement were perfect representations, there still would not be complete agreement because a 

measurement is for a single point in space whereas, even for models with high spatial resolution, model output is a volume 

average. For a global model simulation with grid resolution of 1° × 1°, the monitoring site simply samples the air in one part 

of that grid volume and at a specific height above the ground, which may often not reflect the average concentration for the 720 

grid. Indeed, there are particular monitoring sites where measurements are exceedingly affected by local sources. The UK 

NAMN is a good example, in which quite a few sites are purposely set near agricultural sources and therefore yield higher 

NH3 concentrations than model grid-average predictions. The US EPA also has many monitors set up next to roads with heavy 

traffic and hence observed much higher SO2 levels. The representativeness of an urban (or rural) site for the air in the 

corresponding model grid will therefore depend on the relative size of that specific urban (or rural) area within that model grid. 725 

The intention here is to provide an overview of how the EMEP-WRF model-measurement agreements vary among different 

monitoring networks and among different chemical species for evaluation of a chemistry transport model in a global context. 

In general, the model shows better linear correlations with surface concentration measurements in East Asia (𝑅" = 0.73 over 7 

species), Europe (𝑅" = 0.67 over 7 species) and North America (𝑅" = 0.63 over 7 species) than in China (𝑅" = 0.35 over 5 

species). More specifically, comparisons in China show the model performs better in computing concentrations of primary 730 

pollutants (i.e. NH3 and NO2) than secondary species (i.e. NH4+ and NO3-), while the model evaluation statistics in East Asia, 

Europe and North America show almost equally good results over all species. This implies potential discrepancies in the 

measurements or emissions in China rather than general issues with meteorological and atmospheric chemistry modelling. The 

values of statistical metrics in this work are as good as other global model evaluation studies. A global model aerosol simulation 

study (Hauglustaine et al., 2014) reported that the R of global model results (LMDz-INCA global chemistry–aerosol–climate 735 

model, 1.9° latitude ´ 3.75° longitude resolution) versus measurements in 2006 for surface concentrations of SO42-, NH4+ and 

NO3- ranged 0.43-0.58 in Europe and 0.54-0.77 in North America, which is similar to our results presented here. The AeroCom 

phase III global nitrate experiment, which includes 9 models, reported slightly lower R ranges than here for annual NO3- in 

2008: 0.081-0.735 in North America, 0.393-0.585 in Europe, and 0.226-0.429 in Southeast Asia (Bian et al., 2017); and the 

agreements between model and observation for gas tracers in that study were even lower than here.  740 

This work has utilized the EMEP MSC-W v4.34 coupled with WRF v3.9.1.1 model. As discussed above, model-

measurement comparison statistics will vary in different global models to different extent. However, the broad discussions 

associated with fundamental differences between localised measurement and grid-volume averaged model output, inconsistent 

temporal coverage, relatively higher uncertainties of emissions, and intrinsic limitations of measurement, are generalizable, as 

ACTMs and other climate models are constructed similarly. Allowance for these inherent model-measurement discrepancies 745 

and uncertainties yield significantly less stringent requirements on acceptable model evaluation statistics than might initially 

be expected. Urban dispersion models (Denby et al., 2020; Hood et al., 2018) with higher resolutions have stronger capabilities 

of representing point sources and concentration gradients but are constrained even more by the accuracy of localised emission 

inventories and boundary conditions in the meantime, and therefore are only configured at an individual urban area. Global-

scale model simulation as presented here, in spite of acknowledged limitations on coarser spatial resolution, has the advantage 750 

of generating self-consistent chemistry fields and competence for investigating contemporary and potential future global 

reactive nitrogen and SIA atmospheric chemistry and their regional variations. 

5 Conclusions 

This model versus measurement study is motivated by the first application of a global version of the EMEP MSC-W model 

with WRF meteorology (1° ×  1° horizontal resolution) to study global reactive N and S chemistry and deposition. A 755 
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comprehensive spatial and temporal comparison of model output against 10 monitoring networks from 4 world regions (East 

Asia, Southeast Asia, Europe, and North America) has been undertaken, with a focus on the atmospheric concentrations and 

wet deposition of major inorganic pollutants, and on reduced nitrogen components in particular. Simulations were performed 

with EMEP MSC-W model version 4.34 with WRF 3.9.1.1 meteorology, using both ECLIPSEE (2010 and 2015) and HTAP 

(2010 only) emission inventories. (ECLIPSEE refers to ECLIPSE annual emissions with EDGAR monthly profiles.)  760 

In general, simulations of annual surface concentrations of a primary pollutant such as NH3 are somewhat sensitive to the 

choice of HTAP or ECLIPSEE emission inventories in places where regional differences in primary emissions between the 

two emission inventories are apparent, e.g. China. By comparison, the impact of difference between the emissions inventories 

on concentrations of secondary species such as NH4+ is much smaller. The difference in 2010 global area-weighted annual 

average NH3 concentration is 0.05 µg m-3 (HTAP: 0.26 µg m-3; ECLIPSEE: 0.31 µg m-3) which is 18% of the absolute 765 

concentration, whilst the NH4+ concentration difference is only 0.02 µg m-3 or only 3.5% of the global average concentrations 

(HTAP: 0.316 µg m-3; ECLIPSEE: 0.305 µg m-3). In terms of temporal profiles, the monthly average emissions vary similarly 

throughout the year in the four world regions after the monthly profiles derived from EDGAR are applied to the ECLIPSE 

annual total emissions.  

Comparisons of 2010 and 2015 annual average concentrations between model and measurement demonstrate that the model 770 

captures well the overall spatial and temporal variations of major inorganic pollutants despite spanning large concentration 

ranges in different world regions. The discussion of model evaluation statistics mainly focuses on 2015 as the results for 2010 

are similar.  

In general, capturing correlation is more important than bias given the intrinsic discrepancies and uncertainties between 

the modelled and measured variables. In this work the model shows better linear correlations with measurement networks in 775 

Southeast Asia (Mean R for 7 species: 𝑅!""" = 0.73), Europe (𝑅!""" = 0.67) and North America (𝑅!""" = 0.63) than in China (𝑅""""  = 

0.35 over 5 species), which implies potential discrepancies with some measurements and emissions rather than issues with 

modelling meteorological and atmospheric chemistry processes. Model-measurement bias varies from one species to another 

in different networks. NH4+ and NO3- are the species overestimated the most by the model in Europe and North America but 

not so much in East Asia and Southeast Asia networks, reflecting that the model production of the two species might be too 780 

fast and/or the chemical and physical losses might be too slow in the two regions. The model performs the best in simulating 

SO42- concentrations in North America regarding overall statistics among various species in all networks.  

Both model and measurement exhibit higher NH3 concentrations in spring and summer, and lower concentrations in winter. 

The greatest agreement of temporal profile for model and measurement is found in Europe. The fluctuation of monthly average 

NH3 concentrations in Southeast Asia throughout the year 2015 is fairly small for both model and measurement and the 785 

temporal trend is therefore less clear. Small differences appear regarding the specific peak concentration months in China and 

UK. Measurements in China show highest monthly concentration in July, while the model simulates two peaks in August and 

March. Highest NH3 concentrations in the UK network are in spring, whereas the modelled concentrations peak in summer. 

Such disagreements again reflect the likelihood that the major driver of model discrepancies is the inaccuracy of temporal 

profiles of emissions rather than the simulation of atmospheric chemistries and physics.  790 

The evaluation of wet deposition shows that the model is capable of simulating spatial variation of annual precipitation 

correctly in all four world regions (0.65-0.94 R range) despite a 13-45% underestimation. Given that the spatial and temporal 

averaging smooths out highly localised effects of precipitation event, such model-measurement discrepancy is reasonable. In 

respect of the weighted precipitation concentrations, high linear correlations between measured and modelled NH4+ and NO3- 

concentrations are observed in Southeast Asia, Europe, and North America but not China, which may again suggest systematic 795 
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difference among measurement rather than model. In general, the model shows the greatest consistency of annual total wet 

deposition with measurements in North America (R: 0.75-0.82 and 0.81-0.81 for reduced and oxidised N respectively; 

similarly, hereinafter), followed by Southeast Asia (R: 0.68 and 0.51), Europe (R: 0.61 and 0.64) and China (R: 0.59 and 0.13). 

Despite discussed limitations in model-measurement comparisons, the detailed evaluations presented here support the 

utilization of this global implementation of the EMEP MSC-W-WRF coupled model for analyses of surface concentrations 800 

and wet depositions of major reactive N and S species in different world regions. Modelling of atmospheric chemistry and 

transport on the global scale has the advantage of providing consistent data with comprehensive spatial and temporal coverage, 

of filling in the research gap in global model evaluation, and of facilitating investigation of global reactive N and SIA 

deposition budgets and chemistry/policy-oriented model experiments for potential future scenarios. 

Code and data availability 805 

As described and referenced in Section 2 of this paper, this study used two open-source global models: the European 

Monitoring and Evaluation Programme Meteorological Synthesizing Centre -West atmospheric chemistry transport model 

(EMEP MSC-W, version 4.34, source code available at https://doi.org/10.5281/zenodo.3647990) and the Weather Research 

and Forecast meteorological model (WRF, version 3.9.1.1, www.wrf-model.org, http://dx.doi.org/10.5065/D68S4MVH). The 

two global emission inventories applied are described in Sect. 2.1. All measurement datasets used in this work are publicly 810 

available and their individual websites are listed in Sect. 2.2. The model and measurement output presented in figures and 

tables in this paper and the corresponding Python scripts are available at https://doi.org/10.5281/zenodo.5037080. 
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