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Abstract. Precipitation nowcasting play a vital role in preventing meteorological disasters and doppler radar data acts as an 10 

important input for nowcasting models. The traditional extrapolation method is difficult to model highly nonlinear echo 

movements. The key challenge of the nowcasting mission lies in achieving high-precision radar echo extrapolation. In recent 

years, machine learning has made a great progress in the extrapolation of weather radar echoes. However, most of models 

neglect the multi-modal characteristics of radar echo data, resulting in blurred and unrealistic prediction images. This paper 

aims to solve this problem by utilizing the feature of the GAN that can enhance the multi-modal distribution modelling, and 15 

design the radar echo extrapolation model of GAN-argcPredNet v1.0. Model is composed of argcPredNet generator and a 

convolutional neural network discriminator. In the generator, a gate controlling the memory and out are designed in the 

rgcLSTM component, thereby reducing the loss of spatiotemporal information. In the discriminator, the model uses a dual-

channel input method, which enables it to strictly score according to the true echo distribution, and has a more powerful 

discrimination ability. Through experiments on the radar data set of Shenzhen, China, the results show that the radar echo hit 20 

rate (POD) and critical success index (CSI) have an average increase of 21.4% and 19% compared with rgcPredNet under 

different intensity rainfall thresholds, and the false alarm rate (FAR) has decreased by an average of 17.9%. From the 

comparison of the result graph and the evaluation index, we also found a problem. The recursive prediction method will 

produce the phenomenon that the prediction result will gradually deviate from the true value over time. In addition, the 

accuracy of high-intensity echo extrapolation is relatively low. This is a question worthy of further investigation. In the future, 25 

we will continue to conduct research from these two directions. 

1 Introduction 

Precipitation nowcasting refers to the prediction and analysis of rainfall in the target area in a short period of time (0-6 hours) 

(Bihlo et al. 2019, Luo et al. 2020). The important data needed for this work comes from doppler weather radar with high 

temporal and spatial resolution (Wang et al. 2007). Relevant departments can issue early warning information through accurate 30 

nowcasting to avoid loss of economic life (C et al. 2021). However, this task is extremely challenging due to its very low 

tolerance to time and position errors (Sun et al. 2014). 

The existing nowcasting systems mainly include two types, numerical weather prediction (NWP) and based on radar echo 

extrapolation (Chen et al. 2020). The widely used optical flow method has problems such as poor capture of fast echo change 

regions, high complexity of the algorithm and low efficiency (Shang et al. 2017). Since echo extrapolation can be considered 35 

as a time series image prediction problem, these shortcomings of optical flow method are expected to be solved by recurrent 

neural network (RNN) (Giles et al. 1994). 

With the continuous development of deep learning, more and more neural networks have been applied to the field of 

nowcasting. Forecast models such as ConvLSTM and EBGAN-Forecaster show that its extrapolation effect is better than that 

of optical flow method (Shi et al. 2015, Chen et al.2019). However, these models still have the problem of blurred and 40 
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unrealistic prediction images (Tian et al. 2020, Xie et al. 2020, Jing et al. 2019). One of the main reasons is that radar echo 

maps are typical multi-modal data acquired by multiple sensors and different stations, some algorithms ignore this feature of 

radar echo maps, using the mean square error and mean absolute error as the loss function, which is better suited to a unimodal 

distribution. 

The paper proposes a GAN-argcPredNet network model, which aims to solve this problem through GAN’s ability to 45 

strengthen the characteristics of multi-modal data modelling. The generator adopts the same deep coding-decoding method as 

PredNet to establish a prediction model, and uses a new structure of convolutional LSTM as a predictive neuron, which can 

effectively reduce the loss of spatiotemporal information compared with rgcLSTM. The deep convolutional network is used 

as the discriminator to classify, and the dual-channel input mechanism is used to strictly judge the distribution of real radar 

echo images. Finally, based on the weather radar echo data set, the generator and the discriminator are alternately trained to 50 

make the extrapolated radar echo map more real and precise. 

2 Related work 

2.1 Sequence prediction networks 

The essence of radar echo image extrapolation is the problem of sequence image prediction, which can be solved by 

implementing an end-to-end sequence learning method (Shi et al. 2015, Sutskever et al.2014). ConvLSTM introduces a 55 

convolution operation in the conversion of the internal data state of the LSTM, effectively utilizing the spatial information of 

the radar echo data (Shi et al. 2015). However, because the location-invariant of the convolutional recursive structure is 

inconsistent with the natural change motion, TrajGRU was further proposed (Shi et al. 2017). GRU (Gated Recurrent Unit), 

as a kind of recurrent neural network, it performs to LSTM but is computationally cheaper (Group et al. 2017). Similarly, 

ConvGRU introduces convolution operations inside the GRU to enhance the sparse connectivity of the model unit and is used 60 

to learn video spatiotemporal features (Ballas et.al 2015). The RainNet network learns the movement and evolution of radar 

echo based on the U-NET convolutional network for extrapolation prediction (Ayzel et al. 2020). PredNet is based on a deep 

coding framework and adds error units to each network layer, which can transmit error signals like the human brain structure 

(Lotter et.al 2016). In order to increase the depth of the network and the connections between modules, Skip-PredNet further 

introduces skip connections and uses ConvGRU as the core prediction unit. Experiments show that its effect is better than the 65 

TraijGRU benchmark (Sato et.al 2018). Although these networks can achieve echo prediction, they have the problem of 

blurring and unrealistic extrapolated images. 

2.2 GAN-based radar echo extrapolation 

The Generative Adversarial Network (GAN) consists of two parts: a generator and a discriminator (Goodfellow et al. 2014). 

GAN can be an effective model for generating images. Using an additional GAN loss, model can better achieve multi-modal 70 

data modelling, and each of its outputs is clearer and more realistic (Lotter et.al 2016). Multiple complementary feature learning 

strategies show that generative adversarial training can maintain the sharpness of future frames and solve the problem of lack 

of clarity in prediction (Michael et.al 2015). In this regard, the extrapolators built a generative adversarial network to solve the 

problem of extrapolated image blur, trying to use this adversarial training to extrapolate more detailed radar echo maps (Singh 

et al. 2017). Similarly, adversarial network with ConvGRU as the core was proposed, mainly to solve the problem of 75 

ConvGRU’s inability to achieve multi-modal data modelling (Tian et.al 2020). There are also researchers based on the idea of 

a four-level pyramid convolution structure, and proposed four pairs of models to generate an adversarial network for radar 

echo prediction (Chen et al. 2019). It should be noted that the traditional GAN network has the problem of unstable training, 

which will cause the model unable to learn. Therefore, the design of the nowcasting model should be based on a stable and 

optimized GAN network. 80 
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3 Model 

In this section, we describe the model from the overall to the details. Section 3.1 introduces the overall structure and training 

process of the model. In section 3.2, we describe the structure of the argcPredNet generator and focus on the argcLSTM neuron. 

In section 3.3, the paper introduces the design of the discriminator and the loss function of the model. 

3.1 GAN-argcPredNet model overview 85 

Radar echo extrapolation refers to the prediction of the dissipation and distribution of future echoes based on the existing radar 

echo sequence diagram. If the problem is formulated, then each echo maps can be regarded as a tensor 𝑥 ∈ 𝑅𝑊×𝐻×𝐶, W、 H、

C represent the width, height, and number of channels, respectively, and R represents observing the feature area. If input M 

sequence echo maps, predict the N most likely changes in the future, this problem can be expressed in Eq. (1). This article sets 

the input sequence M and output sequence N to 5 and 7, respectively. 90 

x̂t+1,…, x̂t+N=
argmax

xt+1, . .  , xt+N p(xt+1,…, xt+N|xt−M+1, … , xt)                                        (1) 

Unlike other forecasting models, GAN-argcPredNet uses WGAN-gp (Wasserstein Generative Adversarial Network with 

Gradient penalty) as a predictive framework. The model solves the problem of training instability through gradient penalty 

measures (Gulrajani et al.2017). Our model mainly includes two parts: generator and discriminator. As shown in Fig.1, the 

generator is composed of argcPredNet, which is responsible for learning the potential features of the data and simulating the 95 

data distribution to generate prediction samples. Then, the predicted samples and the real samples are input into the 

discriminator to make a judgment, the real data is judged to be true, and the predicted data is judged to be false. Finally, we 

use the Adam optimiser for training the adversarial loss and then update the parameters of the discriminator, optimize the loss 

function of the generator once every 5 updates, and complete the update of the generator parameters. The algorithm flow is 

shown in Table 1(Gulrajani et.al 2017). 100 

 

Figure 1. The schematic of the GAN-argcPredNet architecture.  

Table.1 GAN-argcPredNet training algorithm flow 

Algorithm   Model uses default values of  𝜆 = 10，𝑛𝑐𝑟𝑖𝑡𝑖𝑐 = 5，𝛼 = 0.0001，𝛽1 = 0.5，𝛽2 =

0.9.  

Parameters: The gradient penalty coefficient λ, the number of critic iterations per generator 

iteration 𝑛𝑐𝑟𝑖𝑡𝑖𝑐, the batch size 𝑚, Adam hyperparameters 𝛼, 𝛽1, 𝛽2, initial critic parameters 

𝜔0, initial generator parameters 𝜃0. 

1. for  𝑖 = 1, ⋯ , 𝑒𝑝𝑜𝑐ℎ do 

2.       for 𝑡 = 1, ⋯ , 𝑛𝑐𝑟𝑖𝑡𝑖𝑐  do 
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3.             for  𝑗 = 1, ⋯ , 𝑚  do 

4.                  Sample real data 𝑥~𝑃𝑟, latent variable 𝑧~𝑝𝑧, a random number 𝜖~ ∪ [0,1] 

5.                  �̃� ← 𝐺𝜃(𝑧) 

6.                  �̂� ← 𝜖𝑥 + (1 − 𝜖)�̃� 

7.                  𝐿(𝑗) = 𝐷𝜔(�̃�) − 𝐷𝜔(𝑥) + 𝜆(‖𝛻�̂�𝐷𝜔(�̂�)‖2 − 1)2 

8.            end for 

9.            𝜔 ← 𝐴𝑑𝑎𝑚(𝛻𝜔
1

𝑚
∑ 𝐿(𝑗)𝑚

𝑗=1 , 𝜔, 𝛼, 𝛽1, 𝛽2) 

10.       end for 

11.       Sample a batch of latent variables {𝑧𝑗}
𝑗=1

𝑚
~𝑃𝑧s 

12.       𝜃 ← 𝐴𝑑𝑎𝑚(𝛻𝜃
1

𝑚
∑ −𝑚

𝑗=1 𝐷𝜔(𝐺𝜃(𝑧)), 𝜃, 𝛼, 𝛽1, 𝛽2) 

13. end for 

3.2 argcPredNet generator 

3.2.1 argcLSTM 105 

The internal structure of the argcLSTM neuron used in the model is shown in Fig.2. In order to provide better feature extraction 

capabilities, the structure contains two trainable gating units, one is the forget gate 𝑓(𝑡), the other is the input gate 𝑔(𝑡). The 

latter can calculate the weight of the current state independently, and complete the feature retention of the input information. 

The peephole connection from the unit state to the forget gate is removed. This operation does not have a big impact on the 

result, but simplifies the redundant parameters. The complete definition of the argcLSTM unit is as follows (Eq. (2) – Eq. (6)). 110 

f (t) = σ(Wfx ∗  x(t) + Ufh ∗  h(t−1) + bf)                                                                  (2) 

g(t) = σ(Wgx ∗  x(t) + Ugh ∗  h(t−1) + bg)                                                                                 (3) 

C̃(t) = tanh(Wch ∗ h(t−1) + Wcx ∗ x(t) + bc)                                                                              (4) 

C(t) = f (t) ∘ C(t−1) + g(t) ∘ C̃(t)                                                                                            (5) 

h(t) = g(t) ∘ tanh(C(t))                                                                                                    (6) 115 

Among them, ∗represents convolution operation, ∘represents Hadamard product, σ represents sigmoid nonlinear 

activation function, 𝑓(𝑡)、𝑔(𝑡)represent forget gate and update gate, 𝑥(𝑡)、ℎ(𝑡)、𝐶(𝑡)represent the input, hidden state and 

unit state at time 𝑡, respectively. 

 
Figure 2. argcLSTM internal structure 120 
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3.2.2 argcPredNet 

The argcPredNet generator has the same structure as PredNet, which is composed of a series of repeatedly stacked modules, 

stacking a total of 3 layers. The difference is that argcPredNet uses argcLSTM as the prediction unit. As shown in Fig 3, each 

layer of the module contains four units, namely: 𝐴𝑙 : input convolutional layer, 𝑅𝑙 : recurrent representation layer, �̂�𝑙 : 

prediction convolutional layer, 𝐸𝑙: error representation layer. 125 

 

Figure 3. Module expansion diagram of layer 𝒍 at time 𝒕 

The recursive prediction layer uses the argcLSTM loop unit, which is used to generate the prediction of the next frame and 

the input of �̂�𝑙 and 𝐴𝑙+1 . The network uses error calculation, 𝐸𝑙  will output an error representation, and then the error 

representation is passed forward through the convolutional layer to become the input of the next layer 𝐴𝑙+1. The hidden state 130 

of the recurrent unit 𝑅𝑙
𝑡 is updated according to the output of 𝐸𝑙

𝑡−1, 𝑅𝑙
𝑡−1 and the up-sampled 𝑅𝑙+1

𝑡 . For 𝐴𝑙, the input of the 

lowest target, namely 𝐴0, is set to the actual sequence itself, when 𝑙 > 0, the input of 𝐴𝑙 is: lower error signal 𝐸𝑙−1 results 

from convolution calculation, RELU activation and maximum pooling layer. The complete update rules are shown in Eq. (7) 

to Eq. (10). The specific parameter settings of the generator are shown in Table 2. (1, 128, 128, 256) represents the number of 

filters from the first layer to the fourth layer from left to right. 135 

𝐴𝑙
𝑡 = {

𝑥𝑡

𝑀𝐴𝑋𝑃𝑂𝑂𝐿 (𝑅𝐸𝐿𝑈(𝐶𝑂𝑁𝑉(𝐸𝑙−1
𝑡 )))

      
𝑖𝑓 𝑙 = 0

0 < 𝑙 < 𝐿
                                                                  (7) 

�̂�𝑙
𝑡 = 𝑅𝐸𝐿𝑈(𝐶𝑂𝑁𝑉(𝑅𝑙

𝑡))                                                                                                  (8) 

𝐸𝑙
𝑡 = [𝑅𝐸𝐿𝑈(𝐴𝑙

𝑡 − �̂�𝑙
𝑡) ;  𝑅𝐸𝐿𝑈(�̂�𝑙

𝑡 − 𝐴𝑙
𝑡) ]                                                                               (9) 

𝑅𝑙
𝑡 = {

𝑎𝑟𝑔𝑐𝐿𝑆𝑇𝑀(𝐸𝑙
𝑡−1,  𝑅𝑙

𝑡−1)

𝑎𝑟𝑔𝑐𝐿𝑆𝑇𝑀(𝐸𝑙
𝑡−1,  𝑅𝑙

𝑡−1,  𝑈𝑃𝑆𝐴𝑀𝑃𝐿𝐸(𝑅𝑙+1
𝑡 ))

     
𝑖𝑓 𝑙 = 𝐿

0 < 𝑙 < 𝐿
                                                       (10) 

Table 2. Generator parameter settings 140 

Components Name Filter size Filter Numbers 

Module A  Convolution layer 3 x 3 (1, 128, 128, 256) 
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Max pool 3 x 3 / 

Unit �̂�𝑙
𝑡 Convolution layer 3 x 3 (1, 128, 128, 256) 

Module R Up sample 3 x 3 / 

argc_LSTM 3 x 3 (1, 128, 128, 256) 

 

3.3 Discriminator and loss 

3.3.1 Convolutional discriminator 

The purpose of the discriminator is to recognize images, which is similar in nature to the classifier. In the GAN-argcPredNet 

model, a DC-CNN network is designed for discrimination. The process is shown in Fig.4. It is a four-layer convolution model 145 

with a dual-channel input method. 

The DC-CNN network extracts a pair of images from the three pairs of images, and inputs them to the fully connected layer 

through a four-layer convolution transformation, and finally generates a probability output through the Sigmoid function, 

indicating the possibility that the input image is from a real image. When the input is a real image, the discriminator will 

maximize the probability, and the value will approach 1. If the input is a generator synthesized image, the discriminator will 150 

minimize the probability, and the value will approach -1. The specific parameter settings of the discriminator are shown in 

Table 3. 

 
Figure 4. DC-CNN structure 

Table 3. Discriminator parameter settings 155 

Name Filter size Stride Filter numbers Output size 

Convolution_1 3 x 3 2 x 2 32 48 x 48 

Convolution_2 3 x 3 2 x 2 64 24 x 24 

Convolution_3 3 x 3 2 x 2 128 12 x 12 

Convolution_4 3 x 3 2 x 2 256 6 x 6 

 

3.3.2 Loss function 

The generative adversarial network relies on the distribution of simulated data to generate images. It can retain more echo 

details, thereby realizing the modelling of multi-modal data. A gradient penalty term is added to GAN-argcPredNet, the loss 

function of the discriminator is shown in Eq. (11). 160 

𝐿𝐷 = 𝐷(�̃�) − 𝐷(𝑥) + 𝜆(‖𝛻𝑥𝐷(�̂�)‖2 − 1)2                                                   (11) 

The generator has the following loss function (Eq. (12)). 
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𝐿𝐺 = 𝐸𝑥~𝑃𝑔
[𝐷(�̃�)] − 𝐸𝑥~𝑃𝑟

[𝐷(𝑥)]                                                        (12) 

The model has the following maximum-minimum loss function (Eq. (13)). 

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑃𝑔
[𝐷(�̃�)] − 𝐸𝑥~𝑃𝑟

[𝐷(𝑥)] + 𝜆𝐸𝑥~𝑃�̂�
(‖𝛻𝑥𝐷(�̂�)‖2 − 1)2                           (13) 165 

Where �̃�  represents the distribution of generated samples. 𝑃𝑔  represents the set of generated sample distributions. 𝑥 

represents the distribution of real samples. 𝑃𝑟  represents the set of real sample distributions. The third term is the penalty item 

of the gradient penalty mechanism. In the penalty term,�̂� represents the actual data and generation a new sample formed by 

random sampling between data. 𝑃𝑥 represents a set of randomly sampled samples. 𝜆 is a hyperparameter, which represents 

the coefficient of the penalty term, and the value in the model is set to 10. 170 

4 Experiments 

In order to verify the effectiveness of the model, the paper uses the radar echo data from January to July 2020 in Shenzhen, 

China, to conduct experiments on the four models of ConvGRU, rgcPredNet, argcPredNet and GAN-argcPredNet. All 

experiments are implemented in Python, based on the Keras deep learning library, with Tensorflow as the backend for model 

training and testing.  175 

4.1 Dataset description 

This experiment uses the radar echo data of Shenzhen China. The data set is all rain images after quality control. The reflectivity 

range is 0-80dBZ, the amplitude limit is between 0 and 255, and it is collected every 6 minutes, with a total of 1 layer. The 

height of sea level is 3km. A total of 600,000 echo images were collected, of which 550,000 were used as the training set and 

50,000 were used as the test set for testing. Each set of data contained 12 consecutive images. The horizontal resolution of the 180 

radar echo maps is 0.01 degrees (about 1km), the number of grids is 501*501 (that is, an area of about 500km×500km), and 

the image resolution is 96*96 pixels. 

4.2 Evaluation metrics 

In order to evaluate the accuracy of the model on precipitation nowcasting, the experiment uses three evaluation indicators to 

evaluate the prediction precision of the model, critical success index (Eq. (14)), namely false alarm rate (Eq. (15)) and hit rate 185 

(Eq. (16)). 

𝐶𝑆𝐼 =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
                                                                   (14) 

𝐹𝐴𝑅 =
𝐹𝑁

𝑇𝑃+𝐹𝑁
                                                                     (15) 

𝑃𝑂𝐷 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                     (16) 

In the formula, TP indicates that both the predicted value and the true value reach the specified threshold, FN means that 190 

the true value reaches the specified threshold but the predicted value has not reached, FP indicates that the true value has not 

reached the specified threshold but the predicted value has reached the specified threshold. 

4.3 Results 

The experiment comprehensively evaluates the prediction accuracy of precipitation with different thresholds. The radar 

reflectivity and rainfall intensity refer to the Z-R relationship (Shi et al. 2017). The calculation formula is as Eq. (17). 195 

Z = 10 log a + 10b log R                                                                              (17) 
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In this paper, 𝑎 is set to 58.53, and 𝑏 is set to 1.56, Z represents the intensity of radar reflectivity, 𝑅 represents the intensity 

of rainfall, and the corresponding relationship between rainfall and rainfall level refers to Table 4 (Shi et al .2017). 

Table 4. Rain level 

Rain Rate(mm ℎ−1) Rainfall Level 

0 ≤   𝑅 < 0.5 No / Hardly noticeable 

   0.5 ≤  𝑅 < 2 Light 

2 ≤   𝑅 < 5 Light to moderate 

5 ≤   𝑅 < 10 Moderate 

  10 ≤   𝑅 < 30 Moderate to heavy 

  30 ≤   𝑅 Rainstorm warning 

Figure 5, Figure 6 and Figure 7 compare the CSI, POD, and FAR index scores of each model at different rainfall thresholds 200 

in detail. 

 
Figure 5.CSI Index score 

 
Figure 6. POD Index score 205 
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Figure 7. FAR Index score 

This result is calculated based on 50,000 test pictures (approximately more than 4,000 test sets), which is representative. It 

can be seen that when the rainfall rate increases from 0.5 mm ℎ−1 to 30 mm ℎ−1, GAN-argcPredNet always performs best, 

and its advantage is very significant, argcPredNet is the second, and the ConvGRU model is the worst. Another point worth 210 

noting is that as the rainfall intensity increases, the performance of all models shows a downward trend. In the comparison of 

CSI indicators, GAN-argcPredNet leads the rest of the models when the rainfall rate is lower than when the rainfall rate is 

lower than 30 mm ℎ−1. When the rainfall level is rainstorm warning, its leading advantage is the weakest. And argcPredNet 

only leads rgcPredNet by a slight advantage, and its performance with rgcPredNet is not as good as ConvGRU in the range of 

2-5 mm ℎ−1 . For POD indicators, GAN-argcPredNet performs best, and its leading advantage is more prominent. The 215 

performance of argcPredNet is not so outstanding, almost the same as argcPredNet, but the index of the two is always better 

than ConvGRU. For the FAR score, the performance of GAN-argcPredNet is still the best, while argcPredNet and rgcPredNet 

are worse than ConvGRU in the range of 2-5 mm ℎ−1, and the score in the interval of rain rate 0.5-10 mm ℎ−1is slightly lower 

than that of GAN-argcPredNet. 

To compare the three methods more intuitively, Figure 8 show the image prediction results of the three models on the same 220 

piece of test data. 
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Figure 8. Four prediction examples for the precipitation nowcasting problem. From top to bottom: ground truth frames, prediction 

by GAN-argcPredNet, prediction by argcPredNet, prediction by rgcPredNet, prediction by ConvGRU 

Compared with the other three models, GAN-argcPredNet generates better image clarity and shows more detailed features 225 

on a small scale. The contrast between the areas marked by the red ellipse in Fig. 8 is more obvious. GAN-argcPredNet has 

made the best prediction on the shape and intensity of the echo. The area selected by the rectangle mainly shows the echo 

changes in the northern region within 30 minutes. Both models correctly predict the movement of the echo to a certain extent, 

and the prediction process shown by GAN-argcPredNet is the most complete. In some mixed intensity and edge areas, our 

model clearly predicts the echo intensity information, which can be seen the effect of confrontation training is obvious. 230 

In order to compare the prediction results more specifically, the experiment uses Mean Square Error (MSE) and Mean 

Structural Similarity (MSSIM) to evaluate the quality of the generated images (Wang et al. 2004). The MSE and MSSIM index 

scores of the images generated by each model are shown in Table 5. ConvGRU has the lowest two indexes. Although the MSE 

index of rgcPredNet is slightly lower than that of the argcPredNet and GAN-argcPredNet models, the MSSIM index of the 

argcPredNet and GAN-argcPredNet models is 0.066 and 0.109 higher than that of the rgcPredNet network model, respectively. 235 

Table 5. MSE and MSSIM index scores of each model 

Name MSE ×  102 ↓ MSSIM ↑ 

ConvGRU 0.950 0.705 

rgcPredNet 0.496 0.724 

argcPredNet 0.476 0.790 

GAN-argcPredNet 0.451 0.833 

5 Conclusion 

The study demonstrated a radar echo extrapolation model. The main innovations are summarized as follows. First, the 

argcPredNet generator is established based on the time and space characteristics of radar data. argcPredNet can predict future 

echo changes based on historical echo observations. Second, our model uses adversarial training methods to try to solve the 240 

problem of blurry predictions. 

From the evaluation indicators and qualitative analysis results, GAN-argcPredNet has achieved excellent results. Our model 

can reduce the prediction loss in a small-scale space, so that the prediction results have more detailed features. However, the 

recursive extrapolation method causes the error to accumulate as time goes by, and the prediction result deviates more and 
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more from the true value. In addition, when the amount of high-intensity echo data is small, the prediction of high-risk and 245 

strong convective weather through machine learning is also a problem that we are very concerned about, because it is more 

realistic. So, we will carry out research on these two issues in the future. 
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GAN-argcPredNet and argcPredNet weights are available at https://doi.org/10.5281/zenodo.4765575. The radar data used in 
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