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Abstract. Remotely sensed Earth observations have many missing values. The abundance and often complex patterns of these

missing values can be a barrier for combining different observational datasets and may cause biased estimates of derived

statistics. To overcome this, missing values in geoscientific data are regularly infilled with estimates through univariate gap

filling techniques such as spatial or temporal interpolation or by up-scaling approaches in which complete donor variables are

used as a basis to infer missing values. However, these approaches do typically not account for information that may be present5

in other observed variables that also have missing values. Here we propose CLIMFILL (CLIMate data gap-FILL), a multivariate

gap filling procedure that combines kriging interpolation with a statistical gap filling method designed to take into account for

the dependence across variables. In a first stage an initial gap-fill is constructed for each variable separately using spatial

interpolation. Subsequently, the initial gap-fill for each variable is updated to recover the dependence across variables using

an iterative procedure. Estimates for missing values are thus informed by knowledge of neighboring observations, temporal10

processes and dependent observations of other relevant variables. CLIMFILL is tested using gap-free ERA-5 reanalysis data

of ground temperature, surface layer soil moisture, precipitation and terrestrial water storage to represent central interactions

between soil moisture and climate. These variables were matched with corresponding remote sensing observations and masked

where the observations have missing values. In this "perfect dataset approach" CLIMFILL can be evaluated against the original,

usually not observed part of the data. We show that CLIMFILL successfully recovers the dependence structure among the15

variables across all land cover types and altitudes, thereby enabling subsequent mechanistic interpretations in the gap-filled

dataset. Bias and noise in gappy satellite-observable data is reduced in many settings. Especially estimates for surface layer

soil moisture, albeit exposing the largest fraction of missing values, are improved by taking into account the multivariate

dependence structure of the data. Moreover, univariate performance metrics such as correlation and bias are improved compared

to spatiotemporal interpolation. Furthermore idealised experiments show the impact of the complexity of missing value patterns20

to the performance of CLIMFILL. Thus, the framework can be a tool for gap filling a large range of remote sensing and in situ

observations commonly used in climate and environmental research.
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1 Introduction

1.1 Missing observations in Earth system science25

Observing the Earth surface from space is an endeavour that has significantly contributed to advance our understanding of the

Earth system and has played a vital role in the fields of data assimilation (Bauer et al., 2015), Earth surface modeling (Balsamo

et al., 2018), global freshwater hydrology (Lettenmaier et al., 2015), global carbon cycle processes (Humphrey et al., 2018)

and the study of climate extremes in the land-atmosphere system (Dorigo et al., 2017; Nicolai-Shaw et al., 2017; Teuling et al.,

2010). A plethora of instruments observes variables relevant for determining the state of the Earth remotely at any given time.30

However, this observational record is highly fragmented: Remote sensing observations have a extensive spatial coverage, but

differ in their spatial and temporal resolution, their frequency and temporal extent or suffer from inhomogeneities and mea-

surement limitations (Lettenmaier et al., 2015; Shen et al., 2015; Seneviratne et al., 2010; de Jeu et al., 2008).

Moreover, the observational record suffers from complex, large-scale and unavoidable missing values that differ among35

products. These missing values can hinder further analysis and can obscure physical dependencies among variables. Therefore,

gap filling is common in the Earth system sciences. It is used to fill gaps originating from sensor failure or sensor limitations

(Pastorello et al., 2020; Liu et al., 2018; Shen and Zhang, 2009), to extrapolate into under-sampled regions (Ghiggi et al., 2019;

Gudmundsson and Seneviratne, 2015; Cowtan and Way, 2014; Jung et al., 2011, 2009) or to get estimates for regions obscured

to the sensor by clouds, dense vegetation, flight geometry or other influences (Huffmann et al., 2019; Zeng et al., 2015; Brooks40

et al., 2012; Shen and Zhang, 2009).

In the geoscientific literature, among the most commonly used approaches for estimating unobserved points are spatial and

temporal interpolation methods, including nearest neighbour regression as well as kriging and derivatives thereof (Liu et al.,

2018; Cowtan and Way, 2014; Haylock et al., 2008; Cressie et al., 2006) (for an overview see Cressie and Wikle 2015; Allard45

et al. 2013; Chilès and Delfiner 1999). Spectral methods are used as well (Zhang et al., 2018; von Buttlar et al., 2014; Brooks

et al., 2012). These are by default univariate, but can be extended into multivariate settings (Bhattacharjee and Chen, 2020;

von Buttlar et al., 2014). Shen et al. (2015) gives a good overview over univariate spatial, temporal, spatiotemporal and spec-

tral methods often used for gap filling remote sensing observations. In recent years, machine learning based approaches have

become more common to fill gaps in univariate, gappy satellite data or up-scale sparse station networks (Kadow et al., 2020;50

Gerber et al., 2018; Zeng et al., 2015; Shen and Zhang, 2009).

Several data products gap-fill one or more observations to a spatially or temporally complete data sets using auxiliary vari-

ables (Huffmann et al., 2019; Brocca et al., 2014) or estimate variables that are only observed through sparse station networks

through statistical up-scaling (O. and Orth, 2021; Zhang et al., 2021; Ghiggi et al., 2019; Jung et al., 2019; Martens et al.,55

2017; Gudmundsson and Seneviratne, 2015; Jung et al., 2011, 2009). Those approaches rely on gap-free "donor" dataset to

infer values of incomplete variables, i.e. only one of the variables in the multivariate setting is allowed to have missing values.
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In summary, geoscientific approaches often center around exploiting the spatial, temporal or spectral neighborhood of gaps to

infer missing values. Furthermore, available methods are mostly focusing on estimating missing values in one single variable

and can typically not be applied in a multivariate settings where missing values are observed in all considered datasets and60

a coherent and gap-free multivariate dataset is the aim. Usually in these case, ad-hoc gap fills are used in the preprocessing

(Pastorello et al., 2020; Jung et al., 2019; Martens et al., 2017; Tramontana et al., 2016). This implies that gap filling estimates

of different variables may not be physically consistent and that available information may not be used efficiently if there are

observations from more than one variable with missing values.

65

To our knowledge only a few notable exceptions to the common practice to focus on single variables exist in the geoscien-

tific literature, including the work of Mariethoz et al. (2012). The statistical literature offers inherently multivariate approaches

that center around low-rank matrix recovery or eigenvalue analysis for estimating missing values (Davenport and Romberg,

2016; Mazumder et al., 2010). Here, missing values in all variables are allowed. These have to the best of our knowledge,

however, not yet been translated into the geoscientific context. However, combining observations from several variables into70

a coherent "view" of the state of the Earth system is crucial for many applications. These include, but are not limited to,

the analysis of local and regional land surface dynamics (Humphrey et al., 2018; Vogel et al., 2017), tracing of compound

extreme events (Ridder et al., 2020; Wehrli et al., 2019) or observational water and energy budget closures (Alemohammad

et al., 2017; Martens et al., 2017). The necessity of creating a global, physically coherent observational dataset of the Earth’s

state is also highlighted through international initiatives such as the Digital Twin Earth Initiative from ESA (Bauer et al., 2021).75

Atmospheric reanalysis can be viewed as another class of gap-free reconstructions of the state of the Earth system. They

typically assimilate a wide range of observations into global weather models and are often the default dataset for a range of ap-

plications (Hersbach et al., 2020; Gelaro et al., 2017; Dee et al., 2011). However, since reanalysis products are by construction

model-driven, they are subject to model biases (Bocquet et al., 2019) and issues with model independence can arise if reanaly-80

sis products are used for model validation. Moreover, the observational record of the Earths’ surface is generally underutilised

in state-of-the-art reanalysis products and the large fraction of missing values is commonly mentioned as one of the reasons

(Dorigo et al., 2017). For example, in the state-of-the-art atmospheric reanalysis product ERA-5 the fragmented observational

record of soil moisture is used only sparsely (Hersbach et al., 2020), although the added value of assimilating remote sensing

soil moisture has been shown for weather forecast models (Zhan et al., 2016) and flood forecasting (Brocca et al., 2014; Sahoo85

et al., 2013).

Given the current status of research in this field, Balsamo et al. (2018) note the need for more multivariate Earth observation

datasets apart from reanalysis. At the same time, Bauer et al. (2021) mention an ongoing trend to reshape classical reanalysis

such that physical modeling and fragmented observation can be harmonised into a combined product by the use of machine90

learning techniques wherever processes are unknown or difficult to parameterise. In the following, we present an approach to

consolidate fragmented Earth observations into a coherent, multivariate, gap-free dataset by tackling the problem of missing
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(a) missing completely at random (MCAR) (b) missing at random (MAR) (c) missing not at random (MNAR)

Figure 1. Examples of the three patterns in which values can be missing: (a) Missing completely at random (MCAR), (b) Missing at random

(MAR) and (c) Missing not at random (MNAR). The MCAR missingness is created by setting randomly drawn grid points to be missing. For

MAR missingness, a patch of the data was removed to mimic satellite swaths. In MNAR missingness, all values below a certain threshold

are missing.

values in multivariate remotely-sensed Earth observations. Distinguishing the approach from reanalysis, we do not aim to

assimilate observations with a pre-defined physical model, but to leverage the power of modern statistical techniques to produce

dependable and physically consistent estimates of essential Earth system observations. The newly developed methodology is95

tested for variables relevant for the study of land-atmosphere dynamics.

1.2 Statistical concepts for treating missing values

The methodological literature offers a overarching framework for the problem of missing values (Rubin, 1976). Typically, the

simplest form of gap management is referred to as list-wise deletion, where only data points are considered if all variables

are observed. However, this approach can lead to large data loss. Furthermore, statistics derived from incomplete data can be100

biased if the data are missing not at random (Rubin, 1976). Consequently, the pattern in which the data are missing (i.e., the

"missingness") is one of the most important factors when estimating the impact of missing values (Little and Rubin, 2014). In

particular, Rubin (1976) categorizes three ways in which data can be missing: missing completely at random (MCAR), missing

at random (MAR) and missing not at random (MNAR). In the following these categories of missingness are described in the

context of Earth observations.105

– If the probability that a data point is missing is not dependent of any process, the missingness is described as missing

completely at random (MCAR, Figure 1 a). In the context of Earth observations this might be caused by random sensor

failure but it is rarely the dominant pattern of missingness.

4



– Satellite data are often missing because of satellite swaths. For example orbiting satellites, e.g. measuring soil moisture

with a microwave sensor, do not pass certain regions at certain times (Figure 1 b). Here, the fact that we can’t measure110

the soil moisture at a certain space-time point is not dependent on the actual soil moisture at this point. In other words,

the soil moisture is not significantly lower or higher in the locations where the satellite does not pass through. Therefore,

the probability of a data point missing is not dependent on the value of the missing data point. Such patterns are referred

to as missing at random (MAR).

– The most complex missingness pattern is missing not at random (MNAR). Here, the mechanism that obscures data points115

depends on the data that are missing. This mechanism can be a function of the observed variables, for example when

values above or below a certain threshold are not observable (Figure 1 c). Moreover, missingness might be controlled by a

different, but related variable. In the case of a satellite measuring soil moisture via microwave retrievals, the measurement

over dense vegetation represents the water content of the canopy rather than the one of the soil. Hence the data at

such points are masked during post-processing, leading to large patches of missing values especially in tropical forests.120

Here, we cannot safely assume that the soil moisture below dense vegetation is not significantly different from the soil

moisture that is not missing. Therefore, we cannot assume independence between the fact that a point is missing and the

unobserved value of the missing point.

Geoscientific data are in a large part missing not at random (MNAR), making statistical measures of the data biased (van

Buuren, 2018; Rubin, 1976) and gap filling challenging (see for example Cowtan and Way 2014). Ghahramani and Jordan125

(1994) show that gap filling with the help of statistical tools (called statistical imputation) of missing data is possible for

MCAR and MAR in both a Bayesian and a Maximum Likelihood setting, but note that MNAR data cannot be tackled with the

same methods. However, imputation can still be successful if a high degree of dependence between MNAR variables increases

their mutual information. We argue that this is especially the case for geoscientific observations, since the variables are often

directly linked through a number of processes.130

A wide range of algorithms that make use of cross-variable dependence to estimate missing values exist in statistical liter-

ature. In the following, we are highlighting two common approaches: On one hand, Gaussian processes are a natural choice

for gap filling problems (Gelfand and Schliep, 2016) and are mathematically identical to kriging, if the predictors are latitude

and longitude. Gaussian processes however have limitations when moving to large data (Heaton et al., 2019) as is the case135

in Earth observation data. In recent years, some applications of Gaussian processes have been shown to work in settings with

too much data to estimate the co-variance matrix between all datapoints precisely. They estimate the co-variance matrix via

sophisticated sampling techniques (Wang and Chaib-draa, 2017; Das et al., 2018), pre-process the data via dimension reduction

methods (Banerjee et al., 2008) or apply the Gaussian Process to local subsets of the data (Gramacy and Apley, 2015; Datta

et al., 2016). On the other hand, iterative procedures like the MICE-Algorithm ("Multiple imputation by chained equation",140

van Buuren (2018)) are well suited for multivariate imputation and scale to large data, but cannot account for neighborhood

relations. Regression-based multivariate gap filling algorithms like MICE have, to the best of our knowledge, not yet been
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applied in the geoscientific context.

In the following, we propose the multivariate gap filling framework CLIMFILL that aims at overcoming the mentioned145

issues, combines the two approaches highlighted above and thus takes advantage of univariate interpolation techniques (Cressie

et al., 2006) as well as approaches for improving cross-variable coherence (Stekhoven and Bühlmann, 2012) (Sect. 2). In

Section 3 we describe the data that has been used to evaluate the skill of the framework and the case study used for evaluating

and benchmarking the framework. Finally, Sect. 4 discusses the results and provides a conclusion and an outlook for possible

future work.150

2 CLIMFILL v0.9: A Framework for Infilling Missing Values in Multivariate Spatio-Temporal Geoscientific Data

In this section we aim to develop a multivariate gap filling framework that exploits the spatial, temporal and cross-variable

dependence structure of Earth system observations to produce estimates for missing values even if they are present in all

variables. To achieve this goal we build upon geo-statistical interpolation (Cressie and Wikle, 2015) and a multivariate gap-

filling approach that has been popularized in other fields, namely the MissForest algorithm (van Buuren, 2018; Stekhoven and155

Bühlmann, 2012). In particular, we aim at utilizing (1) spatial neighborhood information, (2) temporal correlation and (3) and

statistical dependence across all considered variables. With these design requirements we aim at recovering both the marginal

distributions and the dependence among variables at any location with missing values. The CLIMFILL framework works mu-

tually for all considered variables, i.e. information available in each of the variables is used for filling the gaps of all the other

variables. With this design we implicitly assume that if one variable is not observed at a certain space-time point, a subset of160

the other variables might be observed and can reconstruct the missing value while conserving the dependence structure among

all variables.

The framework is divided in four steps (Fig. 2): In a first step, initial estimates for all missing values are produced by spatial

interpolation of each variable independently, i.e. in a univariate setting. In a second step, the data are pre-processed to account165

for spatial and temporal dependence, which contributes to approximate physical links among different variables. In the third

step, the data are divided into environmentally similar clusters. In the forth and final step the multivariate dependencies are

taken into account: the initial estimates from the interpolation step are updated by an iterative procedure that aims to reconstruct

the dependence structure between the variables with the aim of increasing the accuracy of the initial estimates.

2.1 Step 1: Interpolation for integrating spatial context170

The interpolation step creates initial estimates based on the spatial or spatiotemporal context of the gap using interpolation.

Following the approach of Haylock et al. (2008), the data is first divided into monthly climatology maps and anomalies. The

climatology maps are gap-filled using thin-plate-spline interpolation to represent the spatial trends in the data. Subsequently,

the daily anomalies from the monthly climatology are gap-filled using kriging. In contrast to the E-OBS dataset created in
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Figure 2. Overview on the structure of the gap filling framework. The framework is divided into four steps. In the first step (Sect. 2.1), any

missing value is gap-filled by an initial estimate from the spatio-temporal context. This step is called interpolation step. Here the spatio-

temporal mean of observed values surrounding the missing value is used for each variable individually. In the second step (Sect. 2.2),

embedded features are created to inform about time-dependent processes. In the third step, the data are divided into environmentally similar

clusters (Sect. 2.3, Algorithm 1). In the forth step (Sect. 2.4, Algorithm 1), the inital estimates from step 1 are updated while accounting for

the dependence structure among all considered variables. This is achieved by first grouping available data point into environmentally similar

clusters and then iteratively updating the initial estimates using a supervised learning algorithm.
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Figure 3. Time lags and window sizes of embedded features used in this study.

(Haylock et al., 2008) from in-situ observations, satellite data has a much larger number of observed values, making a direct175

implementation of this approach computationally infeasible. For the interpolation of the monthly climatology maps we there-

fore restrict the thin-plate-spline interpolation to the 50 closest neighbors of each point. The interpolation of the daily anomalies

follows Das et al. (2018), who suggest reducing complexity of kriging/Gaussian Process regression by repeated interpolations

on random sub-samples of all available data points and averaging the resulting estimates. In particular, the missing values in

the anomalies are estimated by randomly selecting 1000 observed points per month over which the interpolation is calculated.180

This is repeated five times and the mean of all interpolations for each missing point is taken as the gap-fill estimate. Finally,

monthly maps and anomalies are summed up to form the inital gap-fill estimate from step 1.

2.2 Step 2: Feature engineering informed by process knowledge

An important step in data driven modelling is taking care that the data consist of informative variables that represent the

mechanisms at work. This creation of variables or "features" guided by expert knowledge is called feature engineering. Earth185

observations often inform about time dependent processes like seasonal effects, weather persistence or soil moisture memory

effects that act from daily to monthly or subseasonal time scales (Nicolai-Shaw et al., 2016). To account for such antecedent and

subsequent effects, backwards and forwards looking running means of different window size and temporal lags are included.

This is motivated by prior work on large-scale runoff estimation (Gudmundsson and Seneviratne, 2015). Given a variable vi,j,t

at longitude i, latitude j and time step t we define the window size s and time lag l over which a running mean of a variable v190

is computed:

v ∗i,j,t (l,s) =
1

s

(
vx,y,t−s−l + vx,y,t−(s−1)−l + ...vx,y,t−l

)
(1)

resulting in an embedded feature v∗l,s produced from variable v. We create embedded features of 7-day (s= 7, l = 0), 1-

month (s= 23, l = 7) and 6-month (s= 150, l = 30) backward and forward running means in such way that the windows are195

not overlapping (see Eq. 2.2 and Fig. 3). This way six additional features are created for each variable. Furthermore, gap-free

time-independent maps describing properties of the land surface such as topography or land cover can be included. Maps of

altitude, topographic complexity, land cover class and land cover height from ERA-5 as well as latitude, longitude and time are

added to the list of features and copied for each time step.

200
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The above procedure thus results in a set of 34 features: The four variables, the six embedded features of each of the four

variables, totalling in 24 embedded features, the six maps and latitude, longitude and time information. All data are standard-

ized to have zero mean and a standard deviation of one. We perform feature selection experiments (only the four variables, all

embedded features, all embedded and constant features) to find the most descriptive subset of these 34 features, which we then

use for computing the results.205

2.3 Step 3: Grouping the data into environmentally similar clusters

Depending on the climate regime and the season, different processes might govern the local dependence among variables.

Furthermore, geoscientific datasets are very large and the computational costs of supervised learning methods does often not

scale linearly with the number of samples. We therefore split the data into K environmentally similar clusters X(1), ...,X(K)210

(Algorithm 1, line 3) in which the multivariate gap filling happens (Algorithm 1, first loop, line 4+16). This grouping is done in

such way that grid points can be in different clusters at different time steps. For example, a grid point in the Mediterranean area

can be in a different cluster in winter than in summer, accounting for seasonally varying climate phenomena such as changing

soil moisture regimes (Seneviratne et al., 2010). Here a k-means algorithm is used and the data are partitioned into 150 clusters.

This value is chosen such that the number of data points per cluster is sufficiently large to ensure that the regression models215

can be calibrated efficiently, but not too small such that no individual clusters consist of missing values entirely.

2.4 Step 4: Optimising the initial estimates by accounting for the dependence between variables

In the fourth step, the initial estimates from step 1 are updated by accounting for the dependence between variables. Within

each of the clusters Xk, the algorithm repeatedly iterates over the variables until convergence is reached. This procedure builds

upon the MissForest algorithm by Stekhoven and Bühlmann (2012). For each variable v, a Random Forest model (Breiman,220

2001) is fitted to the cluster to predict originally missing values in all variables based on the remaining features. Random

Forests have have favorable properties for gap filling applications: they can handle mixed types of data, are scalable to large

amounts of data and non-parametric, i.e. adaptive to linear and non-linear relationships (Tang and Ishwaran, 2017).

This core mechanism of CLIMFILL is detailed in the inner, third loop of Algorithm 1 (line 6 to 14): The current variable is225

selected from the cluster as predictand ykv . All other columns of Xk form the predictor table Xk
−v , where −v denotes the set of

all variables and features except v. Subsequently both ykv and Xk
−v are divided into two sets of data points: (1) all data points

where yk
v was originally observed are used to fit the supervised learning method yk

v,o = f(Xk
−v,o) and (2) all data points where

ykv was missing ykv,m are predicted from the fitted function to overwrite the former estimates: ŷkv,m = f(Xk
−v,m). Note that the

training data most likely include originally missing values in the predictor variables. Here, the estimates from the interpolation230

step play the role of giving an initial estimate in the first iteration. Once the algorithm has iterated over all the variables, each

missing value has been updated once (Algorithm 1, second loop, line 5+15). The algorithm is stopped (stopping criterion) once

the change in the estimates for the missing values is small between iterations (convergence) or a maximum number of iterations
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is reached (early stopping).

235

Note that the framework is set up such that each cluster learns different model parameters. With these choices the model

is flexible to tailor its hyper-parameters individually to each variable and the regression parameters individually to each clus-

ter. The hyper-parameters of the interpolation and the regression step are largely determined by computational limits of the

available resources (for an overview see Table A2). Where possible, we calibrated the remaining hyper-parameters by cutting

out spatiotemporal cubes of observed data in year 2013 and compare values gap filled with CLIMFILL with the originally240

observed ones.

Algorithm 1 Pseudo-code algorithm of the CLIMFILL clustering and learning step (step 3 and 4), where K is the number of

clusters, nv is the number of variables and nf the number of features. X−v refers to the data table with all variables (columns)

except v. Algorithm and pseudo-code are adapted from Stekhoven and Bühlmann (2012).

1: X is a matrix containing all variables and features as nv +nf columns and all data points as rows.

2: Create a mask of missing values M in the same shape as X, where M is true where X is missing and false where X is observed. Note

that missing values are only present in variables, not in features.

3: Split X into K clusters Xk using an unsupervised classification method.

4: for cluster k = 1,2, . . . ,K do

5: while stopping criterion not reached do

6: for variable v = 1,2, . . . ,n do

7: Define current variable as predictand yk
v and all other columns of Xk as predictors Xk

−v .

8: Define yk
v,o as all data points in yk

v where M is false, and yk
v,m as all data points where M is true.

9: Define Xk
−v,o as all data points in yk

v where M is false and Xk
−v,m as all data points where M is true.

10: Fit the regression model yk
v,o = f(Xk

−v,o) where f denotes any supervised learning method.

11: Create an updated estimate with the fitted regression model ŷk
v,m = f(Xk

−v,m).

12: Replace yk
v,m with the new updated ŷk

v,m in Xk.

13: Update stopping criterion.

14: end for

15: end while

16: end for

17: Combine all Xk back to X and save.

3 Testing and Benchmarking the CLIMFILL-Algorithm

3.1 Data

To illustrate the impact of fragmented observational records, we focus here on the study of land-climate dynamics. At the land-

atmosphere boundary a complex interplay between soil moisture, temperature and precipitation governs much of the water and245
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Figure 4. Comparison of (a) the original naturally gap-free ERA-5 reanalysis, (b) the same data but only satellite-observable values are

shown, and (c) the gap-fill created from CLIMFILL after starting with the gappy data in (b) in example snapshot of ERA-5 surface layer soil

moisture anomaly on 1 August 2003. CLIMFILL successfully reconstructs major anomalies in surface layer soil moisture for this day. The

anomalies are calculated by subtracting the monthly mean values.

Figure 5. Fraction of missing data in ground temperature from MODIS, ESA-CCI soil moisture, GPM precipitation and GRACE terrestrial

water storage observations in the year 2003. Upper panels show fraction of missing data per land points on the ERA-5 grid, lower panels

show fraction of missing values per latitude and day of the year. The data are down-sampled to daily values, except GRACE which has

monthly resolution.

energy balance at the surface (Seneviratne et al., 2010). Thus a combination of atmospheric and terrestrial processes influences

local climate (Greve et al., 2014; Seneviratne et al., 2010), the development of hot and dry extreme events (Wehrli et al., 2019;

Miralles et al., 2019; Mueller and Seneviratne, 2012) or changes freshwater availability (Gudmundsson et al., 2021) and the

interaction of all these factors with climate change (Seneviratne et al., 2010). These interactions are inherently multivariate and

act on different time scales, making it necessary to observe the variables at a fine spatial and temporal resolution. Consequently,250

the study of land-climate dynamics requires observations spanning several components of the Earth system, including the land

water and energy balances as well as the the atmospheric state.

Since the original values that need to be gap-filled are unobserved, we fall back on naturally gap-free atmospheric reanalysis

data for benchmarking the framework. We use land-only global reanalysis data from ERA-5 at 0.25 degree resolution for the255

year 2003 (see Hersbach et al. 2020). The low temporal coverage (only one year) is chosen because the different flavors of
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CLIMFILL tested resulted in a high computationally expensive computation, making it necessary to restrict the data to an

exemplary period for gap filling. The caveat is that the interannual variability cannot be analysed. In a follow-up study, when

settling on a set of features for CLIMFILL, we aim for larger temporal coverage. The year 2003 is chosen among other because

of its interesting features over Europe associated with the 2003 summer heatwave (see also Section 3.4). ERA-5 is chosen as a260

gap-free dataset for the "perfect dataset approach" because of its advanced representation of land surface processes (Hersbach

et al., 2020) and improved agreement of relevant surface variables with available observations (Martens et al., 2020; Tarek

et al., 2020; Albergel et al., 2018). The missingness patterns of satellite observations in the same period are extracted, regrid-

ded to ERA-5 resolution and applied to the corresponding ERA-5 variable. In other words, only the part of the ERA-5 data that

would have been observable by satellite are retained. In this "perfect dataset approach", the "true" values of the variables at the265

locations of the missing values are known and can be compared with the estimates of the gap filling framework (see Figure 4).

The hourly ERA-5 data are aggregated to daily resolution. The aggregation function for each variable is chosen to be consis-

tent with the satellite products (e.g. daily sums for precipitation and daily average for soil moisture, see Supplementary Table

A1). Since GRACE is only available in monthly resolution, we up-sample the data by linearly interpolating the monthly values270

to daily resolution. Permanently glaciated areas and deserts (defined as areas with less 50 mm average yearly precipitation

in the years 2003-2012) are masked. We extract the missingness pattern from four satellite remote sensing datasets related to

land climate interactions and apply it to the ERA-5 dataset: ESA-CCI surface layer soil moisture (Gruber and Scanlon, 2019;

Dorigo et al., 2017; Gruber et al., 2017), MODIS ground temperature (Wan et al., 2015), GPM precipitation (Huffmann et al.,

2019) and GRACE terrestrial water storage (Swenson, 2012; Landerer and Swenson, 2012; Swenson and Wahr, 2006). These275

variables represent central interactions between soil moisture and climate that drive land water and energy balance through the

soil moisture-temperature and the soil moisture-precipitation feedbacks (Seneviratne et al., 2010). Selecting both microwave

remote sensing measures of surface layer soil moisture and total water storage of the land surface is a compromise aiming at

including as much possible information of root zone soil moisture as there is available via remote sensing.

280

There are ubiquitous missing values in the selected satellite observations (Figure 5). Since the missingness patterns are only

partially overlapping, the selected set of variables is a good candidate for mutual gap filling. Ground temperature is missing

where there is cloud cover, with the maximum of missing values in the inner tropics and extratropical strom tracks, moving

along latitudinal bands throughout the year. Almost half of the values globally (46%) of ground temperature are missing in

the considered years. Surface layer soil moisture is only observed in 21% of all cases. It is missing where there is ice or snow285

cover or when vegetation is too dense. This is the most complicated missingness case, because it exhibits the highest fraction

of missing values and has considerable amount of land mass where high vegetation cover prevents retrieval at all times. For

precipitation, around a quarter of the values are missing (27%), and only in high latitudes during winter. In the GPM remote

sensing precipitation dataset values in the presence of surface snow or ice are masked because of poor sensor quality (Huffmann

et al., 2019). In postprocessing, Huffmann et al. (2019) use a sophisticated kalman-smoother time interpolation to fill the gaps290

from the retrieval. From available metadata, we retrieved the originally missing maps to be able to quantify the added value of
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(a) feature importance

Figure 6. Multivariate JS-distance for interpolation and CLIMFILL gap fill. (a) Boxplots of JS-distance between original ERA-5 data and

Interpolation as well as all sets of features as described in Sect. 2.2. (b) Map of JS-distance of univariate interpolation and (c) CLIMFILL

considering the multivariate distribution of all variables. (d) JS-distance per land cover type and (e) altitude for interpolation gap-fill and

CLIMFILL gap-fill. Land cover type and altitude are extracted from ERA-5. Boxplots show the median as white line, the box as the quartiles

and the whiskers at 1.5 times of the quartile length over all landpoints with the specified land cover type or altitude, respectively.

Figure 7. Bivariate and univariate histograms of surface layer soil moisture and ground temperature in (a) original ERA-5 data, (b) the

subset of the original ERA-5 data that would have been observable by satellite, (c) gap-filled throught univariate interpolation and (d) with

CLIMFILL gap filling. For bivariate distributions of other variable pairs see Supplementary Figure A1

mutual gap filling for precipitation. Terrestrial water storage is missing if the global measurement is discarded due to instrument

failure or during calibration missions (Landerer, 2021), leading to individual months missing (June), and only 11% missing

values.
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3.2 Benchmarking against univariate interpolation295

The objective of the CLIMFILL framework is to not only reconstruct variables separately, but to recover multivariate depen-

dencies. In this first part of the results, we illustrate the improvement of the multivariate gap filling framework CLIMFILL

compared to the univariate interpolation that takes place in the first step of the framework. We additionally examine which

subset of features is most descriptive for the problem at hand and settle on one of the propositions. To allow for a quantitative

assessment of the similarity of the multivariate distributions of observed and simulated variables, we apply a scalar measure of300

multivariate similarity. In this study, we use the Jenson-Shannon distance (JS-distance). This measure compares the distance

between two multivariate distributions, where a value of one means that the two samples are from the same distribution, and

one indicates that the distributions are not overlapping. We apply the JS-distance on the four-dimensional histograms computed

of the four variables using 50 bins for each variable.

305

Figure 6 shows the JS-distance between the original ERA-5 data and the Interpolation as well as the different flavours of

feature engineering. Overall, the JS-distance is lower for CLIMFILL than for interpolation globally (Fig. 6 (a)) for all flavors

of feature sets. Adding the constant maps to the feature set leads to a negligible performance improvement. However, including

all variables shows overall the best results. In the rest of the paper, we will therefore refer to this flavor of feature sets when

referring to CLIMFILL. The largest improvement between CLIMFILL and the interpolation is in tropical and subtropical310

regions, where a high fraction of missing values inhibits the performance of interpolation. Taking a closer look at the results

by dividing the global map into types of vegetation and altitudes shows that the B-distance improves from interpolation to

CLIMFILL for all altitudes and all land cover types. This indicates an improvement of multivariate features in CLIMFILL

gap-fill globally for a wide range of environmental conditions. Overall CLIMFILL has a higher skill in reconstructing the

multivariate dependence structure of the original ERA-5 data compared to univariate interpolation.315

To illustrate the complex impacts of missing values and univariate as well as multivariate gap filling, Figure 7 exemplary

shows the bivariate distribution of surface layer soil moisture and ground temperature globally for the whole time period (all

other possible combinations are shown in Supplementary figure A1). The part of the data that is observable from space (Fig-

ure 7 b) show a collapsed distribution and clearly fails to recover the original bivariate distribution. Results after univariate

interpolation recover parts of the distributions. CLIMFILL furthermore improves this and recovers the shape of the original320

distribution. Thus it generally provides an improved estimate of the bivariate distribution of surface layer soil moisture and

ground temperature such that it is closest to the original ERA-5 data in spite of knowing only satellite-observable points.

3.3 Data-constrained upper performance limits

Missing values in Earth observation data are often present in a large proportion and a complex MNAR pattern. These char-325

acteristic properties of Earth observation data can inhibit gap filling. We therefore are interested in exploring the envelope of

data properties in which gap filling can be successful and see the deterioration of performance with increasing data sparsity
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Figure 8. Comparison of artificial (a) random and (b) swaths-only missingness and (c) missingness in the real data in example snapshot of

ERA-5 ground temperature on 1st of August 2003. Random missingness was created by randomly sampling without replacement from the

pool of all gridpoints on land at all timesteps in the desired fraction of missing values. In swaths-only missingness we create long ellipses

centered around the equator to simulate characteristic satellite swath missingness patterns. Note that the two missingness patterns are not

exactly the same for each day and variable to allow for mutual learning.
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Figure 9. Median performance of gap filling with CLIMFILL on different missingness patterns and fractions of missingness expressed in

JS-distance (for more detail see text) per variable. Gap filling for random missingness and artifical swaths is executed for a range of fraction

of missing values and denoted as a line, while real missingness is only one case depicted as point. The metrics are calculated over each

timestep for all not satellite-observable values of gridpoints on land and the median of all landpoints is plotted.

and increasingly complex missing value patterns. In contrast to the last section, the goal is to show the upper limit of what is

possible in gap filling with the complex missingness patterns exhibit by satellite observations. To this end we rely on the four

considered variables to test the impact of increasing fractions of missing data using idealised patterns. In particular, we delete330

(1) data according to a MCAR random missingness pattern and (2) by imitating satellite swaths, effectively creating MAR miss-

ingness patterns (Fig. 8). Both patterns are applied for fractions of missing values between 5% to 95% for each of the variables.

Multivariate JS-distance (Figure 9) and univariate statistical performance measures (Figure 10) are used to compare original

and gap-filled values for all performed experiments. With increasing fraction of missing values, the two artificial missingness335

cases increase in error, increase in their JS-distance and decrease in correlation. Once more than 80% of the values are missing,

the gap filling breaks down because not enough observed values are available for the iterative procedure to converge to a mean-

ingful result. Random and artificial swath missingness show similar deterioration with increasing fraction of missing values,
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Figure 10. Median performance of gap filling with CLIMFILL on different missingness patterns and fractions of missingness expressed in

two metrics: Pearson correlation and Root Mean Square Error (RMSE) per variable. Gap filling for random missingness and artifical swaths

is executed for a range of fraction of missing values and denoted as a line, while real missingness is only one case depicted as point. The

metrics are calculated over each timestep for all not satellite-observable values of gridpoints on land and the median of all landpoints is

plotted.

but values missing completely at random tend to be easier to estimate at all fractions of missing values. Gap filling random

missingness is the easiest case, since it is likely that neighboring or environmentally similar points are observed. MAR miss-340

ingness exposes large patches of missing values, making spatiotemporal interpolation less effective and hence decreasing the

gap filling performance as compared to MCAR. Since the MNAR missingness case is the most complex missingness pattern,

these additional experiments serve as upper limits of the performance in the real case.

When moving from the artificial patterns of missingness to the real case (dots and circles in Fig. 10), the deterioration in345

performance is different for each of the variables. However, in most cases the metrics for the real missingness case are close

to the artificial missigness patterns, suggesting CLIMFILL operates at the upper limit of what is possible with the complex

missingness pattern of real observations. For ground temperature, a spatially and temporally smooth variable, the interpolation

is already quite a good first guess, which is only slightly improved in CLIMFILL. In this case study, we found the biggest

improvement compared to interpolation for surface layer soil moisture despite its large fraction of missing values. This high350

performance could be due to the fact that surface layer soil moisture exposes missingness in areas where other variables

are observed, for example in the tropical forests, such that learning in this area is easier. Additionally, variable selection is

centered around soil moisture, and soil moisture is a key variable of land hydrological processes. The most difficult case

is precipitation. The low precision precipitation estimates were only slightly improved with CLIMFILL and it is difficult to

improve the result of the initial interpolation. Precipitation is influenced by several processes that are not captured within the355

four selected variables. For example, frontal rain patterns are mostly not explained by land surface properties but are governed
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Figure 11. RMSE between CLIMFILL and the original ERA-5 data over IPCC reference regions (AR6 regions, Iturbide et al. 2020) (top

panel maps) and regional averages over selected regions in original ERA-5 data, satellite-observed ERA-5 data and gap-filled CLIMFILL

data (bottom panels). The selected regions are in areas with the largest fractions of missing values globally or show exemplary advantages

and problems of the framework, see text. For all other AR6 regions see Supplementary Fig. A2

by large scale circulation. This is a challenging case and could still furthermore be improved, for example by adding wind

patterns to capture more synoptic features. Terrestrial water storage contains only a small fraction of missing values (11%),

which is almost entirely the month of June that is fully missing. Since the interpolation is only applied spatially, it fails for full

months of missing data and therefore the difference between interpolation and CLIMFILL is particularly high.360
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Figure 12. Top: Development of ground temperature and surface layer soil moisture over central Europe from January to August 2003, de-

picting the European heatwave 2003 for ERA-5 original data, satellite-observable ERA-5-data and CLIMFILL gap-fill. Maps show anomalies

of ground temperature for the three cases in JJA 2003 and anomalies of surface layer soil moisture in the three preceeding months (MAM

2003) over Europe.

3.4 Recovery of regional and local land-climate dynamics

For any gap filling framework to be useful for both scientific and practical applications it needs to be able to recover essential

properties of the phenomena of interest. The coupling of energy and water between land and atmosphere at the land surface

is a central, multivariate property of land climate interactions that is currently underestimated in satellite data (Hirschi, 2014).

By comparing CLIMFILL gap-fill with the subset of data that are observable by space, i.e. the gappy ERA-5 data (Fig. 4) we365

explore the role of missing values in this problem. In particular we show that leaving gaps in satellite data unfilled leads to

biases and noise in estimates of regional and local climate feedbacks and how the CLIMFILL framework can contribute to

overcoming this issue.
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Figure 11 showcases the RMSE between original ERA-5 data and CLIMFILL estimates as well as spatial averages of the370

variables for selected IPCC reference regions (AR6 regions, see Iturbide et al. 2020). Surface layer soil moisture, ground tem-

perature and precipitation suffer from gaps in the winter months in mid to high latitude regions like Western & Central Europe

and South-West North America. In tropical regions like Central Africa and South-East Asia, especially soil moisture estimates

suffer from little data availability. The missing values result in a noisy signal and biased values in regional estimates from the

satellite-observable data. CLIMFILL alleviates the noise and reduces the bias for surface layer soil moisture and ground tem-375

perature for these regions with low satellite coverage better than the interpolation estimates. The largest relative difference is in

the surface layer soil moisture estimates. For surface layer soil moisture and ground temperature especially the amplitude of the

signal is reconstructed, but also the bias is reduced in many regions (see Supplementary Fig. A2). The skill of CLIMFILL for

precipitation and terrestrial water storage estimates is region-dependent. Terrestrial water storage is a challenging case because

of its monthly resolution and the fact that the univariate interpolation is failing for an all-missing month leads to bad initial380

estimates and a decreased performance of CLIMFILL. Precipitation has missing values only in high latitudes, where all other

variables also show missingness, and is a challenging case due to its non-normal distribution. In summary, for most variables in

most regions CLIMFILL reduces bias and noise of estimates compared to only satellite-observable data, with some difficulties

arising from the missingness patterns of precipitation and terrestrial water storage.

385

Soil moisture-temperature coupling plays an important role for the development of heat extremes (Wehrli et al., 2019; Vogel

et al., 2017; Seneviratne et al., 2010). As a last measure, we look at a particular event, namely the European 2003 heat wave.

Figure 12 shows the regionally averaged development of ground temperature and surface layer soil moisture for the first 8

months of 2003 as well as anomaly maps of ground temperature for JJA 2003 and surface layer soil moisture for MAM 2003

for the three cases. With satellite-observable data only, the ground temperature is overestimated, because only clear-sky values390

are reported and systematically lower ground temperature values below clouds are missing. CLIMFILL alleviates this bias and

brings absolute temperatures and anomalies close to the original ERA-5 data. A strong dry soil moisture anomaly in spring was

characteristic for the 2003 heat event, which is overestimated and noisy in the satellite-observable data. CLIMFILL is able to

fill gaps, recover the spatial distribution of the event and reduce the bias. The 2003 heat wave is showcasing how CLIMFILL

can alleviate biases and noise in gappy data.395

4 Discussion and conclusions

Gaps in remotely-sensed Earth observations are ubiquitous, unavoidable and lead to a fragmented record of observational data.

Ignoring these gaps leads to noisy and biased estimates of summary statistics. Spatial, univariate interpolation with state-of-the-

art methods cannot fully recover the multivariate dependence structure between the variables. To bridge this gap, a framework

for gap filling multivariate gridded Earth observations, CLIMFILL, is proposed. CLIMFILL estimates missing values by not400

only considering spatial and temporal but also the multivariate dependence across variables. In doing that CLIMFILL mines

the highly structured nature of geoscientific datasets and combines interpolation-centered approaches common to geosciences
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and multivariate gap filling methods from statistical literature. In contrast to popular up-scaling approaches, CLIMFILL does

not need a gap-free gridded "donor" variable for estimating missing values. Thus the algorithm and can digest complex patterns

of missigness in multivariate Earth observations. CLIMFILL fills gaps in fragmented Earth Observations while recovering the405

physical dependence structure among the considered variables. To this end, the CLIMFILL framework contributes to decreas-

ing the inherent fragmentation of Earth observations and enables usage of multiple gappy satellite observations simultaneously.

This study illustrates the need for gap filling approaches and the merit of CLIMFILL with a set of variables relevant for the

study of land-climate dynamics. CLIMFILL is benchmarked in an exemplary setting of reanalysis data with focus on variables410

relevant for the study of land-climate dynamics. To this end, reanalysis data have been deleted to match missing values in satel-

lite observations in a "perfect dataset approach". This case study shows that seeing only satellite-observable data without filling

the gaps creates biased, noisy regional estimates eventually preventing a robust study of land-climate interactions. However,

relying on the multivariate JS-distance we show that CLIMFILL recovers the dependence structure in the considered variables.

Furthermore, univariate metrics show that CLIMFILL estimates have lower bias and noise compared to not gap-filled data415

for many variables and regions. Surface layer soil moisture estimates benefit most from the multivariate gap filling, although

this variables has the largest fraction of missing values. In summary, CLIMFILL is able to recover the dependence structure

among several variables, contrasting results obtained when missing values are not gap-filled or treated without considering

multivariate aspects.

420

Although the selected observations in the case study are small in number (only four variables considered), high in their

respective fraction of missing values (up to more than two thirds of the values missing) and complex in their pattern of missing

values (always missing not at random), the multivariate gap filling with CLIMFILL successfully improves estimates compared

to univariate spatial interpolation. This is likely explained by the high correlation among the variables, which can to some

degree counteract the complex missingness. This highlights that information from other physically relevant available variables425

can be beneficial for gap filling, indicating that the power of the framework might increase if even more dependent are in-

cluded. Idealised experiments with simpler missingness patterns and different fractions of missing values within these four

variables show that CLIMFILL improves upon univariate interpolation in all cases for all considered metrics, and the perfor-

mance is close to easier cases with less complex missingness patterns. Note however that the case-study was limited to 2003

which implies that the quality of long-term reconstructions could not be evaluated. In addition it is important to stress that430

the "perfect dataset" approach employed here for benchmarking might not be fully representative for real observations. There-

fore we stress that the fidelity of the suggested algorithm has to be evaluated for real satellite observations and new applications.

In short, we have presented CLIMFILL, a multivariate gap filling framework that exploits spatial, temporal and multivariate

information to create estimates for missing values in Earth observations. The fidelity of the framework has been successfully435

demonstrated in a case study for a single year centered around remote sensing observations relevant for the study of land-

climate dynamics, which highlighted the the merits of the approach compared to univariate interpolation. A natural next step
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could be to apply this gap filling mechanism on a larger number of relevant observed variables and create a consistent, gap-free

reconstruction of land hydrology. Follow-up studies will also extend this framework to gap fill data over longer time frames

and tackling interannual climate variability features.440

Missing values in Earth observations are ubiquitous. Our efforts should center around reducing these gaps in observations

by e.g. enhancing sensors, developing new measurement techniques or closing gaps in observational networks. Looking at the

problem from the other end, another approach could be to optimise the current observation network for information complete-

ness, for example utilising methods from information theory (Bauer et al., 2021) and tackle gaps first that are largest or most445

severe for data analysis, both in natural and physical space. However, missing values will still remain unavoidable in many

observations. Where they are present, it is imperative to develop dependable estimates that also consider links among variables.

To this end, the CLIMFILL framework, is developed to not only produce dependable estimates of individual variables but also

to recover multivariate dependencies, eventually facilitating the creation of gap-free observational data products for environ-

mental monitoring that also enable the study of Earth system processes, facilitate observation-only process analysis or can help450

to assimilate relevant but gappy observations into physical models.

Code and data availability. The current version of CLIMFILL is available from the project website: https://github.com/climachine/climfill

under the Apache 2.0 License. The exact version of the model used to produce the results used in this paper is archived on Zenodo

(http://doi.org/10.5281/zenodo.4773664), as are scripts to run the model and produce the plots for all the simulations presented in this paper.

CLIMFILL was written in python (Python Software Foundation, https://www.python.org/) with core packages including xarray (Hoyer et al.,455

2020), numpy (Harris et al., 2020), matplotlib (Hunter, 2007), scikit-learn (Pedregosa et al., 2011), regionmask (Hauser, 2021) and scipy

(Virtanen et al., 2020). The used ERA-5 data are publicly available at: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5

(last accessed: 16th February 2021).
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Figure A1. Improvement of multivariate distribution with CLIMFILL gap filling: 2D-histogram of all combinations of variables for not

satellite-observable values in original ERA-5 data, interpolation and CLIMFILL.
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Figure A2. Mean seasonal cycle over all IPCC reference regions on land (AR6 regions, as described in Iturbide et al. 2020) in original

ERA-5 data, satellite-observed ERA-5 data and data gap-filled with CLIMFILL.
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Figure A3. Supplementary Figure A2 continued
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Figure A4. Supplementary Figure A2 continued
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Table A1. Mapping of ERA-5 variables with satellite observations.

satellite observation ERA-5 variable daily aggregation unit

ESA-CCI surface layer soil moisture volumetric soil water layer 1 swvl1 daily mean m3m−3

MODIS ground temperature ground temperature skt daily mean K

GPM precipitation total precipitation tp daily sum mm day−1

GRACE terrestrial water storage volumentric soil water layer 1 to 4,

snow depth sd and lake cover cl

multiplied with lake depth dl

anomalies of daily sums compared

to GRACE baseline (2004-2009)

cm (water equivalent thickness)
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Table A2. Hyper-parameters of each step, their respective values and how they were determined.

step hyper-parameter value reason

Step 1: Interpolation number of neighbors in thin-plate-spline interpolation 50 as large as computationally feasible

smoothing parameter in thin-plate-spline interpola-

tion

variable-dependent depends on the size of the gaps. large gaps

needs larger smoothing parameter to avoid

overfitting when extrapolating into empty space

degree parameter in thin-plate-spline interpolation 2 calibrated on observed cubes in year 2013

Gaussian Process kernel variable-dependent calibrated on observed cubes in year 2013

number of repeats of Gaussian Process 5 as large as computationally feasible

number of random points chosen in Gaussian Process 1000 as large as computationally feasible

Step 4: Learning number of trees 300 as large as computationally feasible

minimum number of samples in leaf node 2 calibrated on observed cubes in year 2013

fraction of features used for each split 0.5 as large as computationally feasible

fraction of datapoints used for each split 0.5 as large as computationally feasible
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