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Abstract.
:::::::
Remotely

::::::
sensed

:
Earth observations have many missing values. Their

:::
The

:
abundance and often complex patterns

::
of

::::
these

:::::::
missing

::::::
values

:
can be a barrier for combining different observational datasets and may cause biased estimates

::
of

::::::
derived

:::::::
statistics. To overcome this, missing values in geoscientific data are regularly infilled with estimates through univari-

ate gap-filling
:::
gap

:::::
filling

:
techniques such as spatio-temporal interpolation

:::::
spatial

::
or

::::::::
temporal

:::::::::::
interpolation

::
or

:::
by

:::::::::
up-scaling

:::::::::
approaches

::
in

:::::
which

::::::::
complete

:::::
donor

::::::::
variables

::
are

::::
used

::
as
::
a
::::
basis

::
to

::::
infer

:::::::
missing

:::::
values. However, these mostly ignore valuable5

:::::::::
approaches

:::
do

::::::::
typically

:::
not

:::::::
account

:::
for

:
information that may be present in other dependent observed variables

:::::::
observed

:::::::
variables

::::
that

::::
also

::::
have

:::::::
missing

::::::
values. Here we propose CLIMFILL

::::::::
(CLIMate

::::
data

:::::::::
gap-FILL), a multivariate gap-filling

procedure that builds up upon simple interpolation by additionally applying a statistical imputation method which is designed

to account for
:::
gap

:::::
filling

:::::::::
procedure

:::
that

::::::::
combines

::::::
kriging

:::::::::::
interpolation

::::
with

:
a
::::::::
statistical

:::
gap

::::::
filling

::::::
method

::::::::
designed

::
to

:::
take

::::
into

::::::
account

:::
for

:::
the dependence across variables. In contrast to popular up-scaling approaches, CLIMFILL does not need a gap-free10

gridded "donor" variable for gap-filling.
:
a

:::
first

:::::
stage

::
an

:::::
initial

:::::::
gap-fill

::
is

:::::::::
constructed

:::
for

:::::
each

::::::
variable

:::::::::
separately

:::::
using

::::::
spatial

:::::::::::
interpolation.

:::::::::::
Subsequently,

::::
the

:::::
initial

::::::
gap-fill

:::
for

:::::
each

:::::::
variable

:
is
:::::::

updated
:::

to
::::::
recover

:::
the

::::::::::
dependence

::::::
across

::::::::
variables

:::::
using

::
an

:::::::
iterative

:::::::::
procedure.

:::::::::
Estimates

:::
for

::::::
missing

::::::
values

:::
are

::::
thus

::::::::
informed

:::
by

:::::::::
knowledge

::
of

:::::::::::
neighboring

:::::::::::
observations,

::::::::
temporal

::::::::
processes

:::
and

:::::::::
dependent

::::::::::
observations

::
of

:::::
other

:::::::
relevant

::::::::
variables. CLIMFILL is tested using gap-free ERA5

:::::
ERA-5

:
reanalysis

data of ground temperature, surface layer soil moisture, precipitation and terrestrial water storage to represent central interac-15

tions between soil moisture and climate. These observations
::::::::
variables were matched with corresponding remote sensing ob-

servations and masked where the observations have missing values. CLIMFILL
::
In

:::
this

:::::::
"perfect

::::::
dataset

:::::::::
approach"

::::::::::
CLIMFILL

:::
can

::
be

:::::::::
evaluated

::::::
against

:::
the

:::::::
original,

:::::::
usually

:::
not

::::::::
observed

:::
part

:::
of

:::
the

::::
data.

::::
We

::::
show

::::
that

::::::::::
CLIMFILL

:
successfully recovers

the dependence structure among the variables across all land cover types and altitudes, thereby enabling subsequent mech-

anistic interpretations . Soil moisture-temperature feedback, which is underestimated in high latitude regions due to sparse20

satellite coverage, is adequately represented in the multivariate gap-filling. Univariate
::
in

:::
the

::::::::
gap-filled

::::::
dataset.

:::::
Bias

:::
and

:::::
noise

::
in

:::::
gappy

::::::::::::::::
satellite-observable

:::::
data

::
is

:::::::
reduced

::
in

:::::
many

::::::::
settings.

:::::::::
Especially

::::::::
estimates

:::
for

:::::::
surface

:::::
layer

:::
soil

::::::::
moisture,

::::::
albeit

:::::::
exposing

:::
the

::::::
largest

:::::::
fraction

:::
of

:::::::
missing

::::::
values,

:::
are

::::::::
improved

:::
by

::::::
taking

::::
into

::::::
account

::::
the

::::::::::
multivariate

::::::::::
dependence

::::::::
structure

::
of

:::
the

::::
data.

:::::::::
Moreover,

::::::::
univariate

:
performance metrics such as correlation and bias are improved compared to spatiotemporal

interpolationgap-fill for a wide range of missing values and missingness patterns . Especially estimates for surface layer soil25

moisture profit taking into account the multivariate dependence structure of the data
:
.
::::::::::
Furthermore

::::::::
idealised

::::::::::
experiments

:::::
show

::
the

::::::
impact

:::
of

:::
the

:::::::::
complexity

::
of

:::::::
missing

:::::
value

:::::::
patterns

::
to

:::
the

::::::::::
performance

:::
of

:::::::::
CLIMFILL. The framework allows tailoring the
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gap-filling process to different environmental conditions, domains or specific use cases and hence can be used as a flexible

tool for gap-filling
::::
Thus,

:::
the

:::::::::
framework

::::
can

::
be

:
a

:::
tool

:::
for

::::
gap

:::::
filling

:
a
:

large range of remote sensing and in situ observations

commonly used in climate and environmental research.30

Copyright statement. TEXT

1 Introduction

1.1 Missing observations in Earth system science

Observing the Earth surface from the ground or space is an endeavour that has significantly contributed to advance our un-

derstanding of the Earth system and has played a vital role in the fields of data assimilation (Bauer et al., 2015),
:::::
Earth35

::::::
surface

::::::::
modeling

:::::::::::::::::::
(Balsamo et al., 2018),

:
global freshwater hydrology (Lettenmaier et al., 2015), Earth surface modeling

(Balsamo et al., 2018)
:::::
global

::::::
carbon

:::::
cycle

:::::::::
processes

::::::::::::::::::::
(Humphrey et al., 2018) and the study of climate extremes in the land-

atmosphere system (Dorigo et al., 2017).

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Dorigo et al., 2017; Nicolai-Shaw et al., 2017; Teuling et al., 2010)

:
. A plethora of instruments observes variables relevant

for determining the state of the Earth
:::::::
remotely

:
at any given time. However, the

:::
this observational record is highly frag-40

mented: Available observational datasets differ in spatio-temporal resolution, frequency or extent and have different patterns

of missing values. For example, ground observations such as weather stations (e.g. Harris et al. 2020b, Lawrimore et al. 2011

) and FLUXNET towers (Pastorello et al., 2020) give an intricate view of a range of variables at high temporal resolution, but

are unevenly scattered across the globe. Remote sensing observations from space have a extensive spatial coverage, but
:::::
differ

::
in

::::
their

:::::
spatial

::::
and

:::::::
temporal

:::::::::
resolution,

::::
their

::::::::
frequency

::::
and

:::::::
temporal

:::::
extent

:::
or suffer from inhomogeneities , missing values and45

measurement limitations (Lettenmaier et al., 2015; Shen et al., 2015; de Jeu et al., 2008). As a consequence
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Lettenmaier et al., 2015; Shen et al., 2015; Seneviratne et al., 2010; de Jeu et al., 2008)

:
.

::::::::
Moreover, the observational record suffers from complex, large-scale and unavoidable missing values that

:::::
differ

::::::
among

:::::::
products.

::::::
These

:::::::
missing

::::::
values

:::
can

:
hinder further analysis and can obscure physically consistency

::::::
physical

::::::::::::
dependencies50

among variables. However, combining observations from several physical variables into a coherent "view" of the state of the

Earth system is crucial for many applications. These include, but are not limited to , analysis of local and regional land surface

dynamics, tracing of compound extreme events or observational water and energy budget closures. The necessity of creating a

global, physically coherent observational dataset of the Earth’s state is also highlighted through international initiatives such as

the Digital Twin Earth Initiative from ESA (Bauer et al., 2021).
:::::::::
Therefore,

:::
gap

:::::
filling

::
is

:::::::
common

::
in

:::
the

:::::
Earth

::::::
system

:::::::
sciences.

::
It55

:
is
::::
used

::
to

:::
fill

::::
gaps

:::::::::
originating

::::
from

::::::
sensor

:::::
failure

::
or
::::::
sensor

:::::::::
limitations

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Pastorello et al., 2020; Liu et al., 2018; Shen and Zhang, 2009)

:
,
:
to
::::::::::
extrapolate

:::
into

::::::::::::
under-sampled

:::::::
regions

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ghiggi et al., 2019; Gudmundsson and Seneviratne, 2015; Cowtan and Way, 2014; Jung et al., 2011, 2009)

::
or

::
to

::
get

::::::::
estimates

:::
for

::::::
regions

::::::::
obscured

::
to

:::
the

:::::
sensor

::
by

:::::::
clouds,

::::
dense

::::::::::
vegetation,

::::
flight

::::::::
geometry

::
or

:::::
other

::::::::
influences

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Huffmann et al., 2019; Zeng et al., 2015; Brooks et al., 2012; Shen and Zhang, 2009)

2



:
.

60

Combining observations or derived data products is often hindered by their different underlying assumptions, different

spatio-temporal extent and resolution
::
In

:::
the

::::::::::
geoscientific

::::::::
literature,

::::::
among

:::
the

:::::
most

:::::::::
commonly

::::
used

:::::::::
approaches

:::
for

:::::::::
estimating

:::::::::
unobserved

::::::
points

:::
are

:::::
spatial

::::
and

::::::::
temporal

::::::::::
interpolation

::::::::
methods,

::::::::
including

::::::
nearest

:::::::::
neighbour

:::::::::
regression as well as different

patterns of missing values. Several gridded observational products attempt to overcome this fragmentation by combining

::::::
kriging

:::
and

:::::::::
derivatives

::::::
thereof

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Liu et al., 2018; Cowtan and Way, 2014; Haylock et al., 2008; Cressie et al., 2006)

:::
(for

::
an

::::::::
overview65

:::
see

::::::::::::::::::::::::::::::::::
Cressie and Wikle 2015; Allard et al. 2013

:
).
:::::::
Spectral

:::::::
methods

:::
are

::::
used

::
as

::::
well

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Zhang et al., 2018; von Buttlar et al., 2014; Brooks et al., 2012)

:
.
:::::
These

::
are

:::
by

::::::
default

:::::::::
univariate,

::
but

::::
can

::
be

:::::::
extended

::::
into

::::::::::
multivariate

::::::
settings

::::::::::::::::::::::::::::::::::::::::::::::
(Bhattacharjee and Chen, 2020; von Buttlar et al., 2014)

:
.
:::::::::::::::
Shen et al. (2015)

::::
gives

:
a
:::::
good

:::::::
overview

::::
over

:::::::::
univariate

::::::
spatial,

::::::::
temporal,

::::::::::::
spatiotemporal

:::
and

:::::::
spectral

:::::::
methods

:::::
often

::::
used

:::
for

:::
gap

:::::
filling

::::::
remote

:::::::
sensing

:::::::::::
observations.

::
In

:::::
recent

:::::
years,

::::::::
machine

:::::::
learning

:::::
based

:::::::::
approaches

::::
have

:::::::
become

:::::
more

:::::::
common

::
to

:::
fill

::::
gaps

::
in

::::::::
univariate,

::::::
gappy

::::::
satellite

::::
data

::
or

:::::::
up-scale

:::::
sparse

::::::
station

::::::::
networks

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kadow et al., 2020; Gerber et al., 2018; Zeng et al., 2015; Shen and Zhang, 2009)70

:
.

::::::
Several

::::
data

:::::::
products

::::::
gap-fill one or more observations to a spatially or temporally complete dataset (Brocca et al., 2014; Huffmann et al., 2019)

:::
data

::::
sets

:::::
using

::::::::
auxiliary

::::::::
variables

::::::::::::::::::::::::::::::::::::
(Huffmann et al., 2019; Brocca et al., 2014) or estimate variables that are only observed

through sparse station networks through statistical up-scaling (Gudmundsson and Seneviratne, 2015; Martens et al., 2017; Jung et al., 2011, 2009)75

. These gridded observations have different model assumptions, and usually scale somewhere between geostatistical approaches

like interpolation (Mariethoz et al. 2012; Haylock et al. 2008, for an overview see Shen et al. 2015) and a mixture of sophisticated

machine learning and mechanistic models (Gudmundsson and Seneviratne, 2015; Alemohammad et al., 2017; Jung et al., 2009; Ghiggi et al., 2019; Kadow et al., 2020; Tramontana et al., 2016)

.

Within the field of land-climate dynamics, the fragmentation of the observational record is particularly apparent. At the80

land-atmosphere boundary a complex interplay between soil moisture, temperature and precipitation governs much of the water

and energy balance at the surface (Seneviratne et al., 2010). The entirety of atmospheric and terrestrial processes influences

local climate (Seneviratne et al., 2010; Greve et al., 2014), the development of hot and dry extreme events (Miralles et al., 2019; Mueller and Seneviratne, 2012)

, freshwater availability (Gudmundsson et al., 2021) and climate change (Seneviratne et al., 2010). These interactions are inherently

multivariate and act on different timescales, making it necessary to observe the variables at a fine resolution to detect feedbacks85

and mechanisms. Consequently, the study of land-climate dynamics requires observations spanning several components of the

Earth system, including the land water and energy balances as well as the the atmospheric state.

Variables relevant for land climate interactions and corresponding observational datasets, sorted after the scientific domain

they are mostly used in. Note that some observational products are not global, but cover only a larger region (e.g. E-OBS only

covers Europe). For the references for each of the products, see Supplementary Table ??domain variable in situ observation90

orbiting geostationary product name gridding technique atmosphere 2-meter temperature ––SYNOP stations E-OBS, CRU

interpolation FLUXNET stations precipitation GPM –SYNOP stations E-OBS, CRU interpolation FLUXNET stations land

water surface soil moisture ESA-CCI-SM –ISMN – – root zone soil moisture – –ISMN – – terrestrial water storage GRACE

3



– – – –evapotranspiration – – FLUXNET WECANN neural network GLEAM neural network runoff – – GSIM G-RUN

ensemble of machine learning techniques land energy latent heat sensible heat – – FLUXNET stations WECANN neural95

network longwave radiation CERES – FLUXNET stations – – shortwave radiation CERES – FLUXNET stations – – ground

heat flux – – FLUXNET stations – – ground temperature MODIS SEVIRI FLUXNET stations – –

In Table ??, we show an example of the fragmented world of Earth observations that challenge investigations in land-climate

dynamics. The table highlights two issues that are typically encountered when analysing the observational record of the Earth

system: there is either none or
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(O. and Orth, 2021; Zhang et al., 2021; Ghiggi et al., 2019; Jung et al., 2019; Martens et al., 2017; Gudmundsson and Seneviratne, 2015; Jung et al., 2011, 2009)100

:
.
:::::
Those

:::::::::
approaches

::::
rely

::
on

::::::::
gap-free

::::::
"donor"

::::::
dataset

::
to

:::::
infer

:::::
values

::
of

::::::::::
incomplete

::::::::
variables,

:::
i.e.

::::
only

:::
one

::
of

:::
the

::::::::
variables

::
in

:::
the

::::::::::
multivariate

:::::
setting

::
is
:::::::
allowed

::
to

::::
have

:::::::
missing

::::::
values.

::
In

::::::::
summary,

:::::::::::
geoscientific

:::::::::
approaches

:::::
often

:::::
center

::::::
around

:::::::::
exploiting

:::
the

::::::
spatial,

:::::::
temporal

::
or

:::::::
spectral

::::::::::::
neighborhood

::
of

::::
gaps

::
to

::::
infer

:::::::
missing

::::::
values.

:::::::::::
Furthermore,

:::::::
available

::::::::
methods

::
are

::::::
mostly

::::::::
focusing

::
on

:::::::::
estimating

:::::::
missing

:::::
values

:::
in

:::
one

:::::
single

:::::::
variable

::::
and

:::
can

::::::::
typically

:::
not

::
be

:::::::
applied

::
in

::
a

::::::::::
multivariate

::::::
settings

::::::
where

:::::::
missing

:::::
values

:::
are

::::::::
observed

::
in

::
all

:::::::::
considered

:::::::
datasets

:::
and

::
a

:::::::
coherent

:::
and

:::::::
gap-free

::::::::::
multivariate

::::::
dataset

::
is
:::
the

::::
aim.

:::::::
Usually

::
in

::::
these

:::::
case,105

:::::
ad-hoc

::::
gap

:::
fills

:::
are

::::
used

::
in

:::
the

:::::::::::
preprocessing

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Pastorello et al., 2020; Jung et al., 2019; Martens et al., 2017; Tramontana et al., 2016)

:
.
::::
This

::::::
implies

::::
that

:::
gap

::::::
filling

::::::::
estimates

::
of

:::::::
different

::::::::
variables

::::
may

:::
not

:::
be

::::::::
physically

:::::::::
consistent

:::
and

::::
that

::::::::
available

::::::::::
information

:::
may

::::
not

::
be

::::
used

:::::::::
efficiently

::
if

::::
there

:::
are

:::::::::::
observations

::::
from

:
more than one observation system available for each variable . For

example, evaporation is a key variable linking the water and the energy cycle at the surface, but it cannot be observed from space

and is only sparsely measured on ground based observatories (Martens et al., 2017). If there is more than one observation of110

relevant variables , those are usually difficult to combine because of inherently different measurement procedures. An example

for this is temperature. Space-borne observations see the temperature of the Earth surface, while in situ stations typically

measure temperature in the atmosphere at two meters height. Combining those products can lead to errors in the estimate of

surface energy partitioning (Balsamo et al., 2018) or might lead to diverging results when attempting model evaluation. Soil

moisture is affected by both issues: While soil moisture can be observed from space,
::::::
variable

:::::
with

::::::
missing

::::::
values.

:
115

::
To

:::
our

:::::::::
knowledge

::::
only

::
a

:::
few

::::::
notable

:::::::::
exceptions

::
to

:::
the

:::::::
common

:::::::
practice

::
to

:::::
focus

::
on

::::::
single

:::::::
variables

::::
exist

::
in

:::
the

:::::::::::
geoscientific

::::::::
literature,

::::::::
including

:::
the

::::
work

::
of

:::::::::::::::::::
Mariethoz et al. (2012)

:
.
:::
The

::::::::
statistical

::::::::
literature

:::::
offers

:::::::::
inherently

::::::::::
multivariate

:::::::::
approaches

::::
that

:::::
center

::::::
around

:::::::
low-rank

::::::
matrix

:::::::
recovery

::
or

:::::::::
eigenvalue

:::::::
analysis

:::
for

::::::::
estimating

:::::::
missing

::::::
values

:::::::::::::::::::::::::::::::::::::::::::::
(Davenport and Romberg, 2016; Mazumder et al., 2010)

:
.
::::
Here,

:::::::
missing

::::::
values

::
in

::
all

::::::::
variables

:::
are

:::::::
allowed.

:::::
These

::::
have

::
to

:
the microwave signal only penetrates the few first centimeters120

of the soil (Dorigo et al., 2017). Consequently, information on vegetation-available root zone water which is central to many

land-atmosphere coupling effects is only available from sparse in situ observations (Dorigo et al., 2017), whilst surface soil

moisture is measured both from space and in situ. Terrestrial water storage is available globally from the GRACE satellite

(Swenson, 2012), but tracks all water on land , including soil moisture, ground water and lake water. Hence we have several

datasets for soil moisture that are difficult to combine
:::
best

::
of

:::
our

::::::::::
knowledge,

:::::::
however,

:::
not

:::
yet

::::
been

::::::::
translated

::::
into

:::
the

::::::::::
geoscientific125

::::::
context.

:::::::::
However,

:::::::::
combining

:::::::::::
observations

::::
from

::::::
several

::::::::
variables

::::
into

::
a

:::::::
coherent

::::::
"view"

:::
of

:::
the

::::
state

::
of

:::
the

:::::
Earth

:::::::
system

::
is

:::::
crucial

:::
for

:::::
many

:::::::::::
applications.

:::::
These

:::::::
include,

::::
but

:::
are

:::
not

::::::
limited

:::
to,

:::
the

:::::::
analysis

::
of

::::
local

::::
and

:::::::
regional

::::
land

::::::
surface

:::::::::
dynamics

::::::::::::::::::::::::::::::::::
(Humphrey et al., 2018; Vogel et al., 2017)

:
,
::::::
tracing

:::
of

:::::::::
compound

:::::::
extreme

::::::
events

:::::::::::::::::::::::::::::::::
(Ridder et al., 2020; Wehrli et al., 2019)

::
or

4



:::::::::::
observational

:::::
water

:::
and

::::::
energy

::::::
budget

:::::::
closures

::::::::::::::::::::::::::::::::::::::::
(Alemohammad et al., 2017; Martens et al., 2017)

:
.
:::
The

::::::::
necessity

::
of

:::::::
creating

::
a

::::::
global,

:::::::::
physically

::::::::
coherent

:::::::::::
observational

::::::
dataset

:::
of

:::
the

::::::
Earth’s

::::
state

::
is

::::
also

::::::::::
highlighted

::::::
through

:::::::::::
international

::::::::
initiatives

:::::
such130

::
as

:::
the

::::::
Digital

::::
Twin

:::::
Earth

::::::::
Initiative

::::
from

::::
ESA

::::::::::::::::
(Bauer et al., 2021).

Coming from the realm of physical modeling,
::::::::::
Atmospheric

:
reanalysis can be viewed as another class of gap-free reconstruc-

tions of the state of the Earth system,
:
.
::::
They

::::::::
typically

::::::::
assimilate

:
a
:::::
wide

::::
range

::
of

:::::::::::
observations

:::
into

::::::
global

::::::
weather

:::::::
models and are

often the default dataset for a range of applications (Hersbach et al., 2020; Dee et al., 2011; Gelaro et al., 2017). Atmospheric135

reanalysis typically assimilates a wide range of observations into global weather models. However,
::::::::::::::::::::::::::::::::::::::::::::::::
(Hersbach et al., 2020; Gelaro et al., 2017; Dee et al., 2011)

:
.
::::::::
However,

::::
since

:
reanalysis products are by construction model-driven. They are therefore ,

::::
they

:::
are

:
subject to model biases

(Bocquet et al., 2019) and issues with model independence can arise if classical reanalysis products are used for model valida-

tion. Moreover, the observational record of the Earths
:
’ surface is generally underutilised in state-of-the-art reanalysis products .

The
::
and

:::
the

:
large fraction of missing values is cited

:::::::::
commonly

:::::::::
mentioned as one of the mentioned reasons for this shortcoming140

::::::
reasons

:
(Dorigo et al., 2017). For example, in

::
the

:
state-of-the-art atmospheric reanalysis product ERA5 the already difficult

::::::
ERA-5

:::
the

:::::::::
fragmented

:
observational record of soil moisture is used only sparsely (Hersbach et al., 2020), although the added

value for example
:
of

:::::::::::
assimilating remote sensing soil moisture assimilation

:::
has been shown for weather forecast models (Zhan

et al., 2016) and flood forecasting (Brocca et al., 2014; Sahoo et al., 2013). Incomplete observation assimilation can therefore

lower forecast accuracy and for example have consequences on the prediction of extreme events. A gap-filling procedure that145

can combine different observations into a coherent gap-free dataset could be used as a possible pre-processing step in reanalysis

to enable a more thorough usage of available land observations.

Consequently
:::::
Given

:::
the

::::::
current

:::::
status

:::
of

:::::::
research

::
in
::::

this
::::
field, Balsamo et al. (2018) note the need for more multivariate

Earth observation datasets apart from reanalysis. At the same time, Bauer et al. (2021) mention an ongoing trend to reshape150

classical reanalysis such that physical modeling and fragmented observation can be harmonised into a combined product

by the use of machine learning techniques wherever processes are unknown or difficult to parameterise. In the following, we

present an approach to consolidate fragmented Earth observations into a coherent, multivariate, gap-free dataset by tackling the

problem of missing values in the multivariate Earth observation record with the gap-filling framework CLIMFILL.
::::::::::
multivariate

:::::::::::::
remotely-sensed

:::::
Earth

:::::::::::
observations.

:
Distinguishing the approach from reanalysis, we do not aim to assimilate observations155

with a pre-defined physical model, but to leverage the power of modern statistical techniques to produce dependable and

physically consistent estimates of essential Earth system observations. The newly developed methodology is exemplarily tested

for variables relevant in
:::
for the study of land-atmosphere dynamics.
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(a) missing completely at random (MCAR) (b) missing at random (MAR) (c) missing not at random (MNAR)

Figure 1. Examples of the three patterns in which values can be missing: (a) Missing completely at random (MCAR), (b) Missing at random

(MAR) and (c) Missing not at random (MNAR). The MCAR missingness is created by setting randomly drawn grid points to be missing. For

MAR missingness, a patch of the data was removed to mimic satellite swaths. In MNAR missingness, all values below a certain threshold

are missing.

1.2 A brief review of gap-filling methods
::::::::
Statistical

::::::::
concepts

:::
for

:::::::
treating

:::::::
missing

::::::
values

1.2.1 Gap-filling in the methodological literature160

The methodological literature offers a theoretical
:::::::::
overarching framework for the problem of missing values in any kind of data

(Rubin, 1976). Typically, the simplest form of gap management is referred to as list-wise deletion, where only data points are

considered if all variables are observed. However, this approach can lead to very large data loss. Furthermore, statistics derived

from incomplete data can be biased if the data are missing not at random (Rubin, 1976). Consequently, the pattern in which

the data are missing (i.e., the "missingness") is one of the most important factors when estimating the impact of missing values165

(Little and Rubin, 2014). In particular, Rubin (1976) categorizes three ways in which data can be missing: missing completely

at random (MCAR), missing at random (MAR) and missing not at random (MNAR). All these three missingness patterns can

be observed in Earth observation data:
:
In

:::
the

:::::::::
following

::::
these

:::::::::
categories

::
of

:::::::::::
missingness

:::
are

::::::::
described

::
in

:::
the

:::::::
context

::
of

:::::
Earth

:::::::::::
observations.

– If the probability that a data point is missing is not dependent of any process, the missingness is described as miss-170

ing completely at random (MCAR, Figure 1 a). This is rarely the case in Earth observations
::
In

:::
the

::::::
context

:::
of

:::::
Earth

::::::::::
observations

:::
this

::::::
might

::
be

::::::
caused

::
by

:::::::
random

::::::
sensor

:::::
failure

:::
but

::
it
::
is

:::::
rarely

:::
the

::::::::
dominant

::::::
pattern

::
of

::::::::::
missingness.

– Satellite data are often missing because of satellite swaths. For example orbiting satellites, e.g. measuring soil moisture

with a microwave sensor, do not pass certain regions at certain times (Figure 1 b). Here, the fact that we can’t measure

the soil moisture at a certain space-time-point
:::::::::
space-time

::::
point

:
is not dependent on the actual soil moisture at this point.175
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In other words, the soil moisture is not significantly lower or higher
::
in

:::
the

::::::::
locations where the satellite does not pass

through. Therefore, the probability of a data point being missing is not dependent on the value of the missing data point.

Rubin (1976) call this missingness pattern
::::
Such

:::::::
patterns

:::
are

:::::::
referred

::
to

::
as

:
missing at random (MAR).

– The most complex missingness pattern is missing not at random (MNAR). Here, the mechanism that obscures data

points depends on the data that are missing. This mechanism can either be a function of the observed variables, for180

example when values above or below a certain threshold are not observable . Or if missingness is
::::::
(Figure

::
1

::
c).

:::::::::
Moreover,

::::::::::
missingness

:::::
might

::
be

:
controlled by a different, but unobservable

::::::
related variable. In the case of an exemplary

:
a
:
satellite

measuring soil moisture via microwave retrievals, the measurement over dense vegetation represents more the water

content of the canopy rather than the one of the soil. Hence the data at such points are masked during post-processing,

leading to large patches of missing values especially in tropical forests. Here, we cannot safely assume that the soil185

moisture below dense vegetation is not significantly different from the soil moisture that is not missing. Therefore, we

cannot assume independence between the fact that a point is missing and the unobserved value of the missing point. We

observe MNAR missingness (Figure 1 c).

Geoscientific data are in a large part missing not at random (MNAR), making statistical measures of the data biased

(van Buuren, 2018) and gap-filling
:::::::::::::::::::::::::::
(van Buuren, 2018; Rubin, 1976)

:::
and

:::
gap

:::::
filling

:
challenging (see for example Cowtan and Way (2014)190

::::::::::::::::::
Cowtan and Way 2014). Ghahramani and Jordan (1994) show that gap-filling

:::
gap

:::::
filling with the help of statistical tools (called

statistical imputation) of missing data is possible for MCAR and MAR in both a Bayesian and a Maximum Likelihood setting,

but note that MNAR data cannot be tackled with the same methods. However, imputation can still be successful if a high

degree of dependence between MNAR variables increases their mutual information. We argue that this is especially the case

for geoscientific observations, since the variables are often directly linked through a number of processes.195

A wide range of algorithms that make use of cross-variable dependence to estimate missing values exist in statistical litera-

ture. Gaussian Processes
::
In

:::
the

:::::::::
following,

::
we

:::
are

:::::::::::
highlighting

:::
two

::::::::
common

::::::::::
approaches:

:::
On

:::
one

:::::
hand,

::::::::
Gaussian

::::::::
processes are

a natural choice for gap-filling problems , but they
:::
gap

:::::
filling

::::::::
problems

::::::::::::::::::::::::
(Gelfand and Schliep, 2016)

:::
and

:::
are

:::::::::::::
mathematically

:::::::
identical

::
to

:::::::
kriging,

::
if

:::
the

:::::::::
predictors

:::
are

::::::
latitude

::::
and

:::::::::
longitude.

::::::::
Gaussian

::::::::
processes

:::::::
however

:
have limitations when moving200

to large data (Heaton et al., 2019) . Other approaches center around low-rank matrix recovery or eigenvalue analysis for

estimating missing values (Davenport and Romberg, 2016; Mazumder et al., 2010). Iterative
::
as

:
is
:::
the

::::
case

::
in

:::::
Earth

::::::::::
observation

::::
data.

::
In

::::::
recent

::::::
years,

:::::
some

::::::::::
applications

::
of

:::::::::
Gaussian

::::::::
processes

:::::
have

::::
been

::::::
shown

::
to
:::::

work
:::

in
:::::::
settings

::::
with

:::
too

::::::
much

::::
data

::
to

:::::::
estimate

:::
the

::::::::::
co-variance

::::::
matrix

:::::::
between

:::
all

:::::::::
datapoints

::::::::
precisely.

:::::
They

:::::::
estimate

::::
the

::::::::::
co-variance

:::::
matrix

::::
via

:::::::::::
sophisticated

:::::::
sampling

::::::::::
techniques

::::::::::::::::::::::::::::::::::::::
(Wang and Chaib-draa, 2017; Das et al., 2018),

::::::::::
pre-process

:::
the

:::::
data

:::
via

:::::::::
dimension

::::::::
reduction

::::::::
methods205

::::::::::::::::::
(Banerjee et al., 2008)

::
or

:::::
apply

:::
the

:::::::
Gaussian

:::::::
Process

::
to

::::
local

::::::
subsets

:::
of

::
the

::::
data

::::::::::::::::::::::::::::::::::::::
(Gramacy and Apley, 2015; Datta et al., 2016)

:
.
:::
On

:::
the

::::
other

:::::
hand,

:::::::
iterative

:
procedures like the MICE-Algorithm ("Multiple imputation by chained equation", van Buuren

(2018)) are suited well
::::
well

:::::
suited

:
for multivariate imputation and scale to large data, but cannot account for neighborhood
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relations. Regression-based multivariate gap-filling algorithms like these
:::
gap

:::::
filling

:::::::::
algorithms

:::
like

::::::
MICE

:
have, to the best of

our knowledge, not yet been applied in the geoscientific context.210

1.2.1 Gap-filling in Earth system sciences

Gap-filling is common for Earth observation data. It is used to fill gaps originating from sensor failure or sensor limitations

(Liu et al., 2018; Shen and Zhang, 2009; Pastorello et al., 2020), to extrapolate into undersampled regions (Jung et al., 2011, 2009; Cowtan and Way, 2014; Gudmundsson and Seneviratne, 2015; Ghiggi et al., 2019)

or to get estimates for regions obscured to the sensor by clouds, dense vegetation, flight geometry or other influences (Brooks et al., 2012; Zeng et al., 2015; Shen and Zhang, 2009; Huffmann et al., 2019)

.215

These gap-filling methods can be categorized along the data dimension used for producing estimates. For example, a classical

method for gap-filling time series and spatial data is interpolation, e.g. in the form of Kriging. There is a growing body of

literature of different methods that are originally equipped with dealing with only spatial or temporal relations are expanded

and altered to take into account the information from the other dimension as well (von Buttlar et al., 2014; Gerber et al., 2018)220

. However, these gap-filling methods are univariate and cannot account for information provided by another variables.

Recent literature offers new approaches that translate existing gap-filling methods into the multivariate setting. Temporal

methods for gap-filling of point-scale data are extended to account for other variables (Moffat et al., 2007; Liu et al., 2018)

, but they are ill-equipped to incorporate the neighborhood relations with spatially extensive, gridded data. Spatial analogue

searching algorithms such as the direct sampling approach by Mariethoz et al. (2012) and image inpainting (Kadow et al., 2020)225

explore multivariate spatial interpolation. Upscaling is a common, multivariate regression-based approach in Geosciences to

gap-fill spatially incomplete observations but rely on at least one complete "donor-variable" or an additional, gap-free dataset to

infer values of incomplete variables (Brocca et al., 2014; Kadow et al., 2020; Zhang et al., 2018; Zeng et al., 2015; Brajard et al., 2019; Ghiggi et al., 2019)

.

In summary, there exists a rich body of geoscientific literature on tailored solutions for individual gap-filling needs. However,230

no unified and modular solution exists that can be applied for any gap-filling scenario that might arise when working with

Earth system observations. In
:
In

:
the following, we introduce the multivariate gap-filling

:::::::
propose

:::
the

::::::::::
multivariate

:::
gap

::::::
filling

framework CLIMFILL that aims at overcoming the mentioned issues,
::::::::
combines

:::
the

::::
two

:::::::::
approaches

::::::::::
highlighted

:::::
above

:::
and

::::
thus

::::
takes

:::::::::
advantage

::
of

::::::::
univariate

:::::::::::
interpolation

:::::::::
techniques

:::::::::::::::::
(Cressie et al., 2006)

::
as

::::
well

::
as

::::::::::
approaches

::
for

:::::::::
improving

::::::::::::
cross-variable

::::::::
coherence

::::::::::::::::::::::::::::
(Stekhoven and Bühlmann, 2012) (Sect. 2). Section 3 describes a case study used for evaluating and benchmarking235

the framework. In Sect. 3.1
:
In

:::::::
Section

::
3 we describe the data that has been used to evaluate the skill of the framework . The

choices used for
::
and

:::
the

::::
case

:::::
study

::::
used

:::
for

:::::::::
evaluating

:::
and

:
benchmarking the frameworkin this study are outlined in Sect. ??.

:
. Finally, Sect. 4 discusses the results and provides a conclusion and an outlook on for possible future work.

2 CLIMFILL
:::
v0.9: A Generalised Framework for Infilling Missing Values in Multivariate spatio-temporal

geoscientific data
::::::::::::::
Spatio-Temporal

:::::::::::
Geoscientific

:::::
Data240
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Figure 2. Overview on the structure of the gap-filling
:::
gap

::::
filling

:
framework. The framework is divided into three

:::
four steps. In the first step

(Sect. 2.1), any missing value is gap-filled by an initial estimate from the spatio-temporal context. This step is called interpolation step. Here

the spatio-temporal mean of observed values surrounding the missing value is used for each variable individually. In the second step (Sect.

2.2), embedded features are created to inform about time-dependent processes. In the third step, the data are divided into environmentally

similar clusters (Sect. 2.3, Algorithm 1). In the forth step (Sect. 2.4, Algorithm 1), the inital estimates from step 1 are updated while account-

ing for the dependence structure among all considered variables. This is achieved by first grouping available data point into environmentally

similar clusters and then iteratively updating the initial estimates using a supervised learning algorithm.
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Main CLIMFILL settings per step and method class. Each task can be performed using other method of the corresponding

method class.Step Task CLIMFILL-RF (this study) Examples of alternative methods Step 1: Interpolation Interpolation Mean

of spatio-temporally neighboring, non-mising points Kriging, linear interpolation, nearest-neighbor interpolation kriging or

more complex interpolation methods. Step 2: Feature engineering Feature engineering Moving window averages, constant

maps, space, time Guided by domain knowledge or common statistical learning methods (e.g. greedy feature selection,245

polynomial features) Step 3: Clustering Classification KMeans Self-organising maps, Support Vector Machines, DBSCAN

or domain-guided classifications like Köppen climate classes (Köppen, 1884; Beck et al., 2018). Step 4: Learning Regression

Random Forest Multiple Linear Regression, Neural Nets, Gradient Boosting, Gaussian Models.

We aim for a multivariate gap-filling
:
In

::::
this

::::::
section

:::
we

:::
aim

::
to
:::::::
develop

::
a

::::::::::
multivariate

:::
gap

:::::
filling

:
framework that exploits the

highly structured nature
::::::
spatial,

::::::::
temporal

:::
and

:::::::::::
cross-variable

::::::::::
dependence

::::::::
structure of Earth system observations to produce esti-250

mates for missing values . The framework builds upon previous research (van Buuren, 2018; Stekhoven and Bühlmann, 2012)

and has enough flexibility to be tailored to fill missing values in a wide range of Earth observation datasets. To this end
::::
even

::
if

:::
they

:::
are

::::::
present

::
in
:::
all

::::::::
variables.

::
To

:::::::
achieve

:::
this

::::
goal

:::
we

::::
build

:::::
upon

:::::::::::
geo-statistical

:::::::::::
interpolation

::::::::::::::::::::::
(Cressie and Wikle, 2015)

::
and

::
a

::::::::::
multivariate

::::::::
gap-filling

::::::::
approach

:::
that

:::
has

:::::
been

:::::::::
popularized

::
in

:::::
other

:::::
fields,

::::::
namely

:::
the

:::::::::
MissForest

:::::::::
algorithm

::::::::::::::::::::::::::::::::::::::::::
(van Buuren, 2018; Stekhoven and Bühlmann, 2012)

:
.
::
In

::::::::
particular, we aim at utilizing (1) spatial neighboorhood

::::::::::::
neighborhood information, (2) temporal autocorrelation

:::::::::
correlation255

and (3) physical links between the different variables expressed through their statistical dependence . With this design
:::
and

::::::::
statistical

::::::::::
dependence

:::::
across

:::
all

:::::::::
considered

::::::::
variables.

::::
With

:::::
these

::::::
design

:::::::::::
requirements we aim at recovering both the marginal

distributions and the dependence among variables at any location with missing values. The framework CLIMFILL (CLIMate

data gap-FILL) works mutually
:::::::::
CLIMFILL

:::::::::
framework

::::::
works

:::::::
mutually

:::
for

:::
all

:::::::::
considered

::::::::
variables, i.e. information available

in each of the variables is used for filling the gaps of all the other variables. With this design we implicitly assume that if one260

variable is not observed at a certain space-time point, a subset of the other variables might be observed and can reconstruct the

missing value while conserving the correlation
:::::::::
dependence

:
structure among all variables.

The framework is divided in four steps (Fig. 2): In a first step, initial estimates for all missing values are produced by

spatio-temporal
:::::
spatial

:
interpolation of each variable independently.

:
,
:::
i.e.

::
in

::
a
::::::::
univariate

:::::::
setting.

:
In a second step, the data265

are pre-processed to enable the analysis of
::::::
account

:::
for

:
spatial and temporal dependence, which ultimately allows to uncover

:::::::::
contributes

::
to

::::::::::
approximate

:
physical links among different variables. In the third step, the data are divided into environmentally

similar clusters. In the forth step (learning step) the multivariate gap-filling happens
:::
and

::::
final

::::
step

:::
the

::::::::::
multivariate

:::::::::::
dependencies

::
are

:::::
taken

::::
into

:::::::
account: the initial estimates from the interpolation step are updated by an iterative procedure that aims to both

reconstruct the dependence structure between the variables and to increase the
:::
with

:::
the

::::
aim

::
of

:::::::::
increasing

:::
the accuracy of the270

initial estimates.

In the following, the newly developed iterative framework for gap-filling is described. CLIMFILL allows for a wide range of

different options, creating a different instance of the framework for any missing value problem. A summary of the the necessary

steps for setting up the framework, possible tweaks and extensions is given in Table ??. These include the process for coming

10



180

7-day backward 
running mean

7-day forward 
running mean

30-day backward 
running mean

30-day forward 
running mean

180-day backward 
running mean

30 20 10 0 10 20 30
days from current day

7-day backward 
running mean

7-day forward 
running mean

30-day backward 
running mean

30-day forward 
running mean

180

7-day backward 
running mean

7-day forward 
running mean

30-day backward 
running mean

30-day forward 
running mean

180-day forward 
running mean

Figure 3.
::::
Time

:::
lags

:::
and

:::::::
window

::::
sizes

::
of

:::::::
embedded

:::::::
features

:::
used

::
in

:::
this

:::::
study.

up with initial estimatesin step 1, feature engineering in step 2, as well as the selection of a clustering method in step 3 and the275

regression method used in step 4.

2.1 Step 1: Interpolation for integrating spatio-temporal context

2.1
:::

Step
::
1:

::::::::::::
Interpolation

:::
for

::::::::::
integrating

::::::
spatial

:::::::
context

The interpolation step creates initial estimates based on the spatio-temporal context of
:::
The

:::::::::::
interpolation

::::
step

::::::
creates

::::::
initial

:::::::
estimates

:::::
based

:::
on

:::
the

:::::
spatial

::
or

::::::::::::
spatiotemporal

:::::::
context

::
of

:::
the

:::
gap

:::::
using

:::::::::::
interpolation.

::::::::
Following

:::
the

::::::::
approach

::
of

:::::::::::::::::
Haylock et al. (2008)280

:
,
::
the

::::
data

::
is

:::
first

:::::::
divided

:::
into

:::::::
monthly

::::::::::
climatology

:::::
maps

:::
and

:::::::::
anomalies.

:::
The

::::::::::
climatology

:::::
maps

:::
are

::::::::
gap-filled

:::::
using

:::::::::::::
thin-plate-spline

::::::::::
interpolation

::
to
::::::::

represent
:::
the

::::::
spatial

::::::
trends

::
in

:::
the

::::
data.

::::::::::::
Subsequently,

:::
the

:::::
daily

:::::::::
anomalies

::::
from

:::
the

:::::::
monthly

:::::::::::
climatology

:::
are

::::::::
gap-filled

:::::
using

::::::
kriging.

:::
In

:::::::
contrast

::
to

:::
the

::::::
E-OBS

::::::
dataset

:::::::
created

::
in

::::::::::::::::::
(Haylock et al., 2008)

::::
from

::::::
in-situ

:::::::::::
observations,

:::::::
satellite

:::
data

:::
has

::
a
:::::
much

:::::
larger

::::::
number

::
of

::::::::
observed

::::::
values,

::::::
making

::
a

:::::
direct

::::::::::::
implementation

:::
of

:::
this

::::::::
approach

:::::::::::::
computationally

:::::::::
infeasible.

:::
For

:::
the

::::::::::
interpolation

:::
of

:::
the

:::::::
monthly

::::::::::
climatology

::::
maps

:::
we

::::::::
therefore

::::::
restrict

:::
the

::::::::::::::
thin-plate-spline

::::::::::
interpolation

::
to

:::
the

:::
50

::::::
closest285

::::::::
neighbors

::
of

::::
each

:::::
point.

::::
The

:::::::::::
interpolation

::
of

:::
the

:::::
daily

::::::::
anomalies

:::::::
follows

::::::::::::::
Das et al. (2018),

::::
who

:::::::
suggest

:::::::
reducing

::::::::::
complexity

::
of

::::::::::::::
kriging/Gaussian

:::::::
Process

:::::::::
regression

:::
by

:::::::
repeated

::::::::::::
interpolations

:::
on

:::::::
random

::::::::::
sub-samples

:::
of

::
all

::::::::
available

::::
data

::::::
points

::::
and

::::::::
averaging

:::
the

::::::::
resulting

::::::::
estimates.

:::
In

:::::::::
particular, the gap. Interpolation methods that are typically used in geosciences, such

as linear, bilinear or nearest neighbor interpolation as well as kriging can be used here (for examples see Table ??).
:::::::
missing

:::::
values

::
in

:::
the

:::::::::
anomalies

:::
are

::::::::
estimated

:::
by

::::::::
randomly

::::::::
selecting

::::
1000

::::::::
observed

::::::
points

:::
per

:::::
month

::::
over

::::::
which

:::
the

:::::::::::
interpolation

::
is290

:::::::::
calculated.

::::
This

:
is
::::::::
repeated

:::
five

:::::
times

:::
and

:::
the

:::::
mean

::
of

:::
all

:::::::::::
interpolations

:::
for

::::
each

:::::::
missing

::::
point

::
is

:::::
taken

::
as

:::
the

::::::
gap-fill

::::::::
estimate.

::::::
Finally,

:::::::
monthly

:::::
maps

:::
and

:::::::::
anomalies

:::
are

:::::::
summed

:::
up

::
to

::::
form

:::
the

:::::
inital

::::::
gap-fill

:::::::
estimate

::::
from

::::
step

::
1.

:

2.2 Step 2: Feature engineering informed by process knowledge

An important step in data driven modelling is taking care that the data consist of informative variables that represent the mech-

anisms at work. This creation of informative variables or "features" guided by expert knowledge is called feature engineering.295

For example, gap-free constant maps of describing properties of the land surface such as topography or land cover can be

included. Furthermore, Earth observations often inform about time dependent processes like seasonal effects, weather persis-

tence or soil moisture memory
:::::
effects

:::
that

:::
act

:::::
from

::::
daily

:::
to

:::::::
monthly

::
or

::::::::::
subseasonal

:::::
time

:::::
scales

::::::::::::::::::::::
(Nicolai-Shaw et al., 2016).

To account for such antecedent and subsequent effects, backwards and forwards looking running means of different window

size and temporal lags are considered
:::::::
included. This is motivated by the Takens Theorem (Takens, 1981) and prior work on300
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large-scale runoff estimation (Gudmundsson and Seneviratne, 2015). Given a variable vi,j,t at longitude i, latitude j and time

step t we define the window size s and time lag l over which a running mean of a variable v is computed:

v ∗i,j,t (l,s) =
1

s

(
vx,y,t−s−l + vx,y,t−(s−1)−l + ...vx,y,t−l

)
(1)

resulting in an embedded feature v∗l,s produced from variable v. The specific values for s and l can be informed by domain305

knowledge or identified through optimisation. For example, to account for the soil moisture memory effect, an embedded

feature v∗ could be added that contains the average value of all soil moisture values at this point in a 3-month backwards

window (s= 90 days) from the current date (l = 0 days), corresponding to previous work indicating the soil moisture memory

effect acts on "monthly to subseasonal time scales" (Nicolai-Shaw et al., 2016). For the application of data science methods, the

data need to be rearranged in a table X build from all variablesv1, ...vn and derived featuresv∗1 , ...,v
∗
m as columns and space-time310

points as rows.
::
We

::::::
create

:::::::::
embedded

:::::::
features

::
of

:::::
7-day

::::::::::::
(s= 7, l = 0),

:::::::
1-month

:::::::::::::
(s= 23, l = 7)

:::
and

::::::::
6-month

::::::::::::::
(s= 150, l = 30)

::::::::
backward

:::
and

:::::::
forward

:::::::
running

::::::
means

::
in

::::
such

::::
way

::::
that

:::
the

::::::::
windows

:::
are

:::
not

::::::::::
overlapping

::::
(see

:::
Eq.

:::
2.2

::::
and

::::
Fig.

:::
3).

::::
This

::::
way

::
six

:::::::::
additional

:::::::
features

:::
are

::::::
created

:::
for

::::
each

:::::::
variable.

:::::::::::
Furthermore,

:::::::
gap-free

:::::::::::::::
time-independent

::::
maps

:::::::::
describing

:::::::::
properties

::
of

:::
the

:::
land

:::::::
surface

::::
such

::
as

::::::::::
topography

::
or

::::
land

:::::
cover

:::
can

::
be

::::::::
included.

:::::
Maps

::
of

:::::::
altitude,

::::::::::
topographic

::::::::::
complexity,

::::
land

:::::
cover

::::
class

::::
and

:::
land

:::::
cover

::::::
height

::::
from

::::::
ERA-5

:::
as

::::
well

::
as

:::::::
latitude,

::::::::
longitude

:::
and

::::
time

:::
are

:::::
added

:::
to

::
the

:::
list

:::
of

::::::
features

::::
and

::::::
copied

::
for

:::::
each

::::
time315

::::
step.

:::
The

::::::
above

::::::::
procedure

::::
thus

::::::
results

:::
in

:
a
:::

set
:::

of
:::
34

:::::::
features:

::::
The

::::
four

:::::::::
variables,

:::
the

:::
six

:::::::::
embedded

:::::::
features

:::
of

::::
each

:::
of

:::
the

:::
four

:::::::::
variables,

:::::::
totalling

:::
in

::
24

:::::::::
embedded

::::::::
features,

:::
the

:::
six

:::::
maps

::::
and

:::::::
latitude,

::::::::
longitude

::::
and

::::
time

:::::::::::
information.

:::
All

:::::
data

:::
are

::::::::::
standardized

::
to
:::::

have
::::
zero

:::::
mean

::::
and

:
a
::::::::

standard
::::::::
deviation

::
of

::::
one.

::::
We

:::::::
perform

::::::
feature

::::::::
selection

:::::::::::
experiments

::::
(only

::::
the

::::
four320

::::::::
variables,

::
all

:::::::::
embedded

:::::::
features,

:::
all

:::::::::
embedded

:::
and

:::::::
constant

::::::::
features)

::
to

::::
find

:::
the

::::
most

:::::::::
descriptive

::::::
subset

::
of

:::::
these

::
34

::::::::
features,

:::::
which

:::
we

::::
then

:::
use

:::
for

:::::::::
computing

:::
the

::::::
results.

2.3 Step 3: Clustering
:::::::::
Grouping the data into environmentally similar clusters

Depending on the climate regime and the seasondifferent physical ,
::::::::

different
:
processes might govern the local dependence325

among variables. Furthermore, geoscientific datasets are very large and the computational costs of supervised learning methods

does often not scale linearly with the number of samples. We therefore split the data into K environmentally similar clusters

X(1), ...,X(K) (Algorithm 1, line 5
:
3) in which the multivariate gap-filling

:::
gap

::::::
filling happens (Algorithm 1, second

:::
first

:
loop,

line 6
:
4+17

::
16). This grouping is done in such way that grid points can be in different clusters depending on the time step

::
at

:::::::
different

::::
time

::::
steps. For example, a grid point in the Mediterranean area can be in a different cluster in winter than in summer,330

accounting for seasonally varying climate phenomena such as changing soil moisture regimes (Seneviratne et al., 2010). All

data are transformed to have zero mean and standard deviation of one.
::::
Here

:
a
::::::::

k-means
::::::::
algorithm

::
is
:::::

used
:::
and

::::
the

::::
data

:::
are

12



:::::::::
partitioned

:::
into

::::
150

:::::::
clusters.

::::
This

:::::
value

::
is

::::::
chosen

::::
such

:::
that

:::
the

:::::::
number

::
of

::::
data

:::::
points

:::
per

::::::
cluster

::
is

:::::::::
sufficiently

:::::
large

::
to

::::::
ensure

:::
that

:::
the

:::::::::
regression

::::::
models

::::
can

::
be

:::::::::
calibrated

:::::::::
efficiently,

:::
but

:::
not

:::
too

:::::
small

:::::
such

:::
that

:::
no

:::::::::
individual

::::::
clusters

:::::::
consist

::
of

:::::::
missing

:::::
values

:::::::
entirely.

:
335

In each of the clusters, the initial estimate of the missing values is further refined using an iterative procedure. For stabilising

the results and to reduce the risk of discontinuities at the cluster edges, the clustering procedure is repeated E times with

different numbers of terminal clusters on copies of the data X(1), ...,X(E). We call theseE different clustering results "epochs".

In the end, the estimates from the E different clusterings are averaged for the final result (Algorithm 1, outer first loop, line

3-5,19-20).340

2.4 Step 4: Optimising the initial estimates by accounting for the dependence between variables

In the fourth step, the initial estimates
:::
from

::::
step

::
1
:
are updated by accounting for the dependence between variables. Within

each of the clusters in epoch e and cluster k, X(e,k),
:::
Xk,

:
the algorithm repeatedly iterates over the variables until convergence

is reached. This procedure builds upon the MissForest algorithm by Stekhoven and Bühlmann (2012). For each variable v, a

supervised learning model
::::::
Random

::::::
Forest

:::::
model

::::::::::::::
(Breiman, 2001) is fitted to the cluster to predict originally missing values in345

all variables based on the remaining features.
::::::
Random

:::::::
Forests

::::
have

::::
have

::::::::
favorable

:::::::::
properties

::
for

::::
gap

:::::
filling

:::::::::::
applications:

::::
they

:::
can

::::::
handle

:::::
mixed

:::::
types

::
of

::::
data,

:::
are

:::::::
scalable

::
to

:::::
large

:::::::
amounts

::
of

::::
data

:::
and

:::::::::::::
non-parametric,

:::
i.e.

::::::::
adaptive

::
to

:::::
linear

:::
and

:::::::::
non-linear

::::::::::
relationships

::::::::::::::::::::::
(Tang and Ishwaran, 2017)

:
.

This core mechanism of CLIMFILL is detailed in the inner, forth
::::
third loop of Algorithm 1 (line 8 to 15

:
6
::
to

:::
14): The current350

variable is selected from the cluster as predictand y(e,k)v ::
ykv . All other columns of X(e,k)

:::
Xk form the predictor table X(e,k)

−v :::
Xk

−v ,

where −v denotes the set of all variables and features except v. Subsequently both y(e,k)v and X(e,k)
−v ::

ykv::::
and

::::
Xk

−v:are divided

into two sets of data points: (1) all data points where y(e,k)v ::
yk
v:

was originally observed are used to fit the supervised learning

method y(e,k)
v,o = f(X

(e,k)
−v,o)

::::::::::::::
ykv,o = f(Xk

−v,o) and (2) all data points where y(e,k)v was missing y(e,k)v,m ::
yk
v :::

was
:::::::

missing
:::::
yk
v,m are

predicted from the fitted function and
::
to overwrite the former estimates: y(e,k),updatedv,m = f(X

(e,k)
−v,m)

:::::::::::::::
ŷkv,m = f(Xk

−v,m). Note355

that the training data most likely include originally missing values in the predictor variables. Here, the estimates from the

interpolation step play the role of giving an initial estimate for the first loop of the iterative procedure
::
in

:::
the

:::
first

::::::::
iteration. Once

the algorithm has iterated over all the variables, each missing value has been updated once (Algorithm 1, third
:::::
second

:
loop,

line 7
:
5+16

::
15). The algorithm is stopped (stopping criterion) once the change in the estimates for the missing values is small

between iterations (convergence) or a maximum number of iterations is reached (early stopping).360

Note that the framework is set up such that each cluster applies the same supervised learning method but learns different

weights. The hyperparameters for the supervised learner can differ for each variable and can be optimised e.g. through cross

validation.
:::::
learns

:::::::
different

:::::
model

::::::::::
parameters. With these choices the model is flexible to tailor its hyper-parameters individually

to each variable and the regression weights
:::::::::
parameters individually to each cluster.

:::
The

:::::::::::::::
hyper-parameters

::
of

:::
the

:::::::::::
interpolation365

:::
and

:::
the

:::::::::
regression

::::
step

:::
are

::::::
largely

:::::::::
determined

:::
by

::::::::::::
computational

:::::
limits

:::
of

:::
the

:::::::
available

::::::::
resources

::::
(for

:::
an

::::::::
overview

:::
see

:::::
Table
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::::
A2).

::::::
Where

:::::::
possible,

:::
we

:::::::::
calibrated

:::
the

::::::::
remaining

:::::::::::::::
hyper-parameters

:::
by

::::::
cutting

:::
out

::::::::::::
spatiotemporal

::::::
cubes

::
of

::::::::
observed

::::
data

::
in

:::
year

:::::
2013

:::
and

::::::::
compare

:::::
values

::::
gap

::::
filled

::::
with

::::::::::
CLIMFILL

::::
with

:::
the

::::::::
originally

::::::::
observed

:::::
ones.

Algorithm 1 Pseudo-code algorithm of the CLIMFILL clustering and learning step (step 3 and 4), where E is the number of

epochs, K is the number of clusters, n
:::
nv is the number of variables and m

::
nf:the number of features. X−v refers to the data

table with all variables
::::::::
(columns) except v. Algorithm and pseudo-code are adapted from Stekhoven and Bühlmann (2012).

1: X is a matrix containing all variables and features as n+m
::::::
nv +nf columns and all data points as rows.

2: Create a mask of missing values M in the same shape as X, where M is true where X is missing and false where X is observed. Note

that missing values are only present in variables, not in features.

3: Copy X to X(e) Randomly select number of clusters for this epoch K(e) Split X(e) into K(e) clusters X(e,k)
:::
Split

::
X

:::
into

:::
K

::::::
clusters

:::
Xk using an unsupervised classification method.

4: for cluster k = 1,2, . . . ,K do

5: while stopping criterion not reached do

6: for variable v = 1,2, . . . ,n do

7: Define current variable as predictand y(e,k)
v :

yk
v:

and all other columns of X(e,k) as predictors X(e,k)
−v ::

Xk
::
as

::::::::
predictors

::::
Xk

−v .

8: Define y(e,k)
v,o :::

yk
v,o as all data points in y(e,k)

v ::
yk
v where M is false, and y(e,k)

v,m ::::
yk
v,m as all data points where M is true.

9: Define X
(e,k)
−v,o :::::

Xk
−v,o as all data points in y(e,k)

v ::
yk
v:

where M is false, and X
(e,k)
−v,m :::

and
::::::
Xk

−v,m as all data points where M is

true.

10: Fit the regression model y(e,k)
v,o = f(X

(e,k)
−v,o) :::::::::::::

yk
v,o = f(Xk

−v,o) where f denotes any supervised learning method.

11: Create an updated estimate with the fitted regression model y(e,k),updated
v,m = f(X

(e,k)
−v,m).

::::::::::::::
ŷk
v,m = f(Xk

−v,m).
:

12: Replace y(e,k)
v,m :::

yk
v,m:

with the new updated y(e,k),updated
v,m in X(e,k)

:::
ŷk
v,m::

in
:::
Xk.

13: Update stopping criterion.

14: end for

15: end while

16: end for

17: Combine all X(e,k) back to X(e)
::
Xk

::::
back

::
to

::
X

:::
and

::::
save. Calculate mean over all epochs X=

1

E

∑
X(e) and savefinal result.

3 Testing and Benchmarking the CLIMFILL-Algorithm

3.1 Data370

::
To

::::::::
illustrate

:::
the

::::::
impact

::
of

::::::::::
fragmented

::::::::::::
observational

:::::::
records,

:::
we

:::::
focus

::::
here

:::
on

:::
the

:::::
study

::
of

:::::::::::
land-climate

:::::::::
dynamics.

:::
At

:::
the

:::::::::::::
land-atmosphere

:::::::::
boundary

:
a
::::::::

complex
::::::::
interplay

:::::::
between

::::
soil

::::::::
moisture,

::::::::::
temperature

::::
and

:::::::::::
precipitation

:::::::
governs

:::::
much

:::
of

:::
the

::::
water

::::
and

::::::
energy

::::::
balance

::
at

:::
the

::::::
surface

:::::::::::::::::::::
(Seneviratne et al., 2010).

:::::
Thus

:
a
:::::::::::
combination

::
of

::::::::::
atmospheric

:::
and

:::::::::
terrestrial

::::::::
processes

::::::::
influences

::::
local

:::::::
climate

:::::::::::::::::::::::::::::::::::
(Greve et al., 2014; Seneviratne et al., 2010)

:
,
:::
the

::::::::::
development

::
of

:::
hot

::::
and

:::
dry

::::::
extreme

::::::
events

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Wehrli et al., 2019; Miralles et al., 2019; Mueller and Seneviratne, 2012)

::
or

:::::::
changes

:::::::::
freshwater

::::::::::
availability

:::::::::::::::::::::::
(Gudmundsson et al., 2021)

:::
and

::::
the

:::::::::
interaction

::
of

:::
all

:::::
these

::::::
factors

:::::
with

::::::
climate

:::::::
change375
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Figure 4. Comparison of (a) the original naturally gap-free ERA5
::::::
ERA-5 reanalysis, (b) the same data but only satellite-observable values

are shown, and (c) the gap-fill created from CLIMFILL-RF
::::::::
CLIMFILL after starting with the gappy data in (b) in example snapshot of ERA5

:::::
ERA-5

:
surface layer soil moisture anomaly on 1 August 2003. CLIMFILL-RF

::::::::
CLIMFILL successfully reconstructs major anomalies in sur-

face layer soil moisture for this day. The anomalies are calculated by substracting
::::::::
subtracting

:
the 10-year

::::::
monthly

:
mean of 2003-2012

::::
values.

Figure 5. Fraction of missing data in ground temperature from MODIS, ESA-CCI soil moisture, GPM precipitation and GRACE terrestrial

water storage observations in the years 2003-2012.
:::
year

:::::
2003.

:
Upper panels show fraction of missing data per land points on the ERA5

:::::
ERA-5

:
grid, lower panels show fraction of missing values per latitude and day of the year. The data are down-sampled to daily values, except

GRACE which has monthly resolution.

::::::::::::::::::::
(Seneviratne et al., 2010)

:
.
:::::
These

::::::::::
interactions

:::
are

:::::::::
inherently

::::::::::
multivariate

:::
and

:::
act

:::
on

:::::::
different

::::
time

::::::
scales,

:::::::
making

:
it
:::::::::
necessary

::
to

::::::
observe

:::
the

::::::::
variables

::
at
::
a
:::
fine

::::::
spatial

::::
and

:::::::
temporal

::::::::::
resolution.

::::::::::::
Consequently,

:::
the

:::::
study

::
of

::::::::::
land-climate

:::::::::
dynamics

:::::::
requires

::::::::::
observations

::::::::
spanning

::::::
several

::::::::::
components

::
of

:::
the

:::::
Earth

::::::
system,

::::::::
including

:::
the

::::
land

:::::
water

:::
and

::::::
energy

::::::::
balances

::
as

::::
well

::
as

:::
the

:::
the

::::::::::
atmospheric

::::
state.

:

380

Since the original values that need to be gap-filled are unobserved, we fall back on naturally gap-free atmospheric reanalysis

data for benchmarking the framework. We use 10 years (2003-2012) of land-only global reanalysis data from ERA5
::::::
ERA-5 at

0.25 degree resolution
::
for

:::
the

::::
year

:::::
2003 (see Hersbach et al. 2020). ERA5 is chosen

:::
The

:::
low

::::::::
temporal

:::::::
coverage

:::::
(only

:::
one

:::::
year)

:
is
::::::
chosen

:::::::
because

:::
the

:::::::
different

::::::
flavors

::
of

::::::::::
CLIMFILL

:::::
tested

:::::::
resulted

::
in

:
a
::::
high

::::::::::::::
computationally

::::::::
expensive

:::::::::::
computation,

:::::::
making

:
it
::::::::
necessary

:::
to

::::::
restrict

:::
the

::::
data

::
to

::
an

:::::::::
exemplary

::::::
period

:::
for

:::
gap

::::::
filling.

::::
The

:::::
caveat

::
is
::::
that

:::
the

::::::::::
interannual

::::::::
variability

::::::
cannot

:::
be385

:::::::
analysed.

:::
In

:
a
:::::::::
follow-up

:::::
study,

:::::
when

:::::::
settling

::
on

::
a
:::
set

::
of

:::::::
features

:::
for

::::::::::
CLIMFILL,

:::
we

::::
aim

:::
for

:::::
larger

::::::::
temporal

::::::::
coverage.

::::
The
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:::
year

:::::
2003

::
is

::::::
chosen

::::::
among

:::::
other

:::::::
because

::
of

:::
its

:::::::::
interesting

:::::::
features

::::
over

::::::
Europe

:::::::::
associated

::::
with

:::
the

:::::
2003

:::::::
summer

::::::::
heatwave

:::
(see

::::
also

::::::
Section

:::::
3.4).

::::::
ERA-5

::
is

::::::
chosen as a gap-free dataset for the "perfect dataset approach" because of its advanced repre-

sentation of land surface processes (Hersbach et al., 2020) and improved agreement of relevant surface variables with available

observations (Martens et al., 2020; Tarek et al., 2020; Albergel et al., 2018). The missingness patterns of satellite observations390

in the same period are extracted, regridded to ERA5
::::::
ERA-5

:
resolution and applied to the corresponding ERA5

:::::
ERA-5

:
variable.

In other words, only the part of the ERA5
::::::
ERA-5 data that would have been observable by satellite are retained. In this "perfect

dataset approach", the "true" values of the variables at the locations of the missing values are known and can be compared with

the estimates of the gap-filling
:::
gap

::::::
filling framework (see Figure 4). This analysis is constrained to orbiting satellite remote

sensing datasets and excludes in situ observations and gridded observations for the purpose of developing the framework. We395

note however that the framework is naturally extendable to include more satellite observations, and in situ observations that

can be treated as a very sparse gridded product.

The hourly ERA5
::::::
ERA-5 data are aggregated to daily resolution. The aggregation function for each variable is chosen to

be consistent with the satellite products (e.g. daily sums for precipitation and daily average for soil moisture, see Supplemen-400

tary Table A1). Since GRACE is only available in monthly resolution, we up-sample the data by linearly interpolating the

monthly values to daily resolution. Permanently glaciated areas and deserts
:::::::
(defined

::
as

:::::
areas

::::
with

:::
less

:::
50

:::
mm

:::::::
average

::::::
yearly

::::::::::
precipitation

::
in

:::
the

:::::
years

:::::::::
2003-2012)

:
are masked. We extract the missingness pattern from four satellite remote sensing datasets

related to land climate interactions and apply it to the ERA5
::::::
ERA-5

:
dataset: ESA-CCI surface layer soil moisture (Gruber and

Scanlon, 2019; Dorigo et al., 2017; Gruber et al., 2017), MODIS ground temperature (Wan et al., 2015), GPM precipitation405

(Huffmann et al., 2019) and GRACE terrestrial water storage (Swenson, 2012; Landerer and Swenson, 2012; Swenson and

Wahr, 2006)on daily timescale. These variables represent central interactions between soil moisture and climate that drive land

water and energy balance through the soil moisture-temperature and the soil moisture-precipitation feedbacks (Seneviratne

et al., 2010). Selecting both microwave remote sensing measures of surface layer soil moisture and total water storage of the

land surface is a compromise aiming at including as much possible information of root zone soil moisture as there is available410

via remote sensing.

There are ubiquitous missing values in the selected satellite observations (Figure 5). Since the missingness patterns are only

partially overlapping,
:
the selected set of variables is a good candidate for mutual gap-filling

:::
gap

::::::
filling. Ground temperature is

missing where there is cloud cover, with the maximum of missing values in the inner tropics and extratropical strom tracks,415

moving along latitudinal bands throughout the year. Almost half of the values globally (46%) of ground temperature are missing

in the ten considered years. Surface layer soil moisture is only observed in 31
::
21% of all cases. It is missing where there is ice

or snow cover or when vegetation is too dense. This is the most complicated missingness case, because of the high
:
it

:::::::
exhibits

::
the

:::::::
highest

:
fraction of missing values and the

:::
has

:
considerable amount of land mass where high vegetation cover prevents

retrieval at all times. For precipitation,
:::::
around

:
a quarter of the values are missing (24

::
27%), and only in high latitudes during420

winter. In the GPM remote sensing precipitation dataset values in the presence of surface snow or ice are masked because of
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poor sensor quality (Huffmann et al., 2019). In postprocessing, Huffmann et al. (2019) use a sophisticated kalman-smoother

time interpolation to fill the gaps from the retrieval. From available metadata, we retrieved the originally missing maps to be

able to quantify the added value of mutual gap-filling
::
gap

::::::
filling

:
for precipitation. Terrestrial water storage is only missing

if the global measurement is discarded due to instrument failure or during calibration missions (Landerer, 2021), leading to425

individual time slabs missing
::::::
months

::::::
missing

::::::
(June), and only 7

::
11% missing values.

3.2 CLIMFILL-RF: Settings of the CLIMFILL framework used for benchmarking
:::::::::::::
Benchmarking

::::::
against

::::::::::
univariate

:::::::::::
interpolation

The CLIMFILL framework allows for a wide range of individual settings to tailor it to the specific gap-filling use case. In

each of the four steps, a method needs to be chosen to perform the specific task of this step. There is a large pool of methods430

that can be used, for examples see Table ??. In the following, we describe the settings of the framework that are used for this

benchmarking experiment and call this particular instance CLIMFILL-RF, denoting the Random Forest method used at the

core of the algorithm.

For the first step (interpolation) initial estimates are generated through simple interpolation by applying a 3d running mean

for each variable independently. If a data point of a variable, vi,j,t, is missing, the initial estimate is calculated by the mean of435

its non-missing surrounding points in space and time. Here we consider a 5-pixel side length, corresponding to a distance of

1.25 degree in space and 5 days in time. If a point cannot be filled because all the values in the neighbourhood are missing as

well, the points is filled by the local monthly climatology. Any remaining missing points are filled by the local temporal mean,

or, if not available, the global mean of the variable.

In the second step (feature engineering), we create embedded features of 7-day (s= 7, l = 0), 1-month (s= 23, l = 7) and440

6-month backward (s= 150, l = 30) and a 7-day forward (s= 7, l =−7) running means in such way that the windows are not

overlapping (see Eq. 2.2 and Fig. 3). This way 3 additional features are created for each variable. Constant maps of altitude,

topographic complexity, land cover class and land cover height from ERA5 as well as latitude, longitude and time are added to

the list of features and copied for each time step. Furthermore, precipitation is divided into a log-scaled precipitation-amount

variable and a binary precipitation-event variable to treat its inherent non-normality. The above proceedure thus results in a set445

of 34 features: The four variables, where precipitation is divided into two features, the four embedded features of each of the

five variables, totalling in 20 embedded features, the six constant maps and latitude, longitude and time information.

In the third step (clustering step), the data are divided into clusters. Here a k-means algorithm is considered and the data are

partitioned three times with different number of clusters, where the number of clusters is randomly drawn between 50 and 150.

These limits are chosen such that the number of data points per cluster is sufficiently large to ensure that the regression models450

can be calibrated efficiently, but not too small such that no individual clusters consist of missing values entirely.

In the fourth step (learning step), we use a Random Forest regressor as supervised learning function. Random Forests have

have favorable properties for gap-filling applications: they can handle mixed types of data, are scale-able to large amounts of

data and non-parametric, i.e. adaptive to linear and non-linear relationships (Tang and Ishwaran, 2017). The hyper-parameters

of the supervised learning functions are determined via leave-one-out cross-validation on clustered ERA5 data between 2015455
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Figure 6. Time lags
:::::::::
Multivariate

::::::::
JS-distance

:::
for

::::::::::
interpolation and window sizes

:::::::::
CLIMFILL

:::
gap

:::
fill.

::
(a)

:::::::
Boxplots

:
of embedded

::::::::
JS-distance

::::::
between

::::::
original

::::::
ERA-5

:::
data

:::
and

::::::::::
Interpolation

::
as

:::
well

::
as
:::
all

:::
sets

::
of features used

::
as

:::::::
described in this study

:::
Sect.

:::
2.2.

::
(b)

::::
Map

::
of

:::::::::
JS-distance

:
of
::::::::

univariate
::::::::::
interpolation

:::
and

:::
(c)

::::::::
CLIMFILL

:::::::::
considering

:::
the

:::::::::
multivariate

:::::::::
distribution

::
of

::
all

::::::::
variables.

::
(d)

:::::::::
JS-distance

:::
per

::::
land

::::
cover

::::
type

:::
and

::
(e)

::::::
altitude

::
for

::::::::::
interpolation

::::::
gap-fill

:::
and

::::::::
CLIMFILL

:::::::
gap-fill.

:::::
Land

::::
cover

::::
type

:::
and

:::::
altitude

:::
are

:::::::
extracted

::::
from

::::::
ERA-5.

:::::::
Boxplots

::::
show

:::
the

:::::
median

::
as

:::::
white

:::
line,

:::
the

:::
box

::
as
:::
the

:::::::
quartiles

:::
and

::
the

:::::::
whiskers

::
at
:::
1.5

::::
times

::
of

:::
the

::::::
quartile

:::::
length

::::
over

::
all

::::::::
landpoints

::::
with

::
the

:::::::
specified

::::
land

::::
cover

:::
type

::
or
:::::::
altitude,

:::::::::
respectively.

and 2020 downscaled to 2.5 degrees resolution, where one fold is one year. The cross-validation optimises the number of trees,

the minimum number of samples for a leaf node, the maximum number of features to be considered for each split and whether

to use bootstrap samples for tree building.

3.3 Benchmarking against univariate interpolation

Multivariate B-distance for interpolation and CLIMFILL-RF gapfill. Map of B-distance of univariate interpolation (a) and460

CLIMFILL-RF (b) as well as B-distance per land cover type (c) and altitude (d) for interpolation gap-fill and CLIMPUTE-RF

gap-fill in real missingness case. Land cover type and altitude are extracted from ERA5. Boxplots show the median as white

line, the box as the quartiles and the whiskers at 1.5 times of the quartile length over all landpoints with the specified land cover

type or altitude, respectively. Infinite values in the boxplots are replaced with the maximum, not-infinite value.

The objective of the CLIMFILL framework is to not only reconstruct variables separately, but also to recover multivariate465

dependencies. In the
:::
this first part of the results, we illustrate the improvement of the multivariate gap-filling framework

CLIMFILL-RF
:::
gap

:::::
filling

:::::::::
framework

::::::::::
CLIMFILL compared to the univariate , spatiotemporal interpolation that takes place in

the first step of the framework.
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Figure 7. Bivariate and univariate histograms of surface layer soil moisture and ground temperature in (from left to right
:
a) original ERA5

:::::
ERA-5

:
data,

:::
(b) the subset of the original ERA5

:::::
ERA-5

:
data that would have been observable by satellite,

::
(c)

:
gap-filled throught univariate

interpolation and
::
(d)

:
with CLIMFILL-RF gap-filling

::::::::
CLIMFILL

:::
gap

:::::
filling. For bivariate distributions of other variable pairs see Supple-

mentary Figure A1

Figure 7 shows the bivariate distribution of surface layer soil moisture and ground temperature globally for the whole time

period (all other possible combinations of bivariate distributions are shown in Supplementary figure A1). Only looking at the470

part of the data that is observable from space (Figure 7 b) misses larger chunks of the original bivariate distribution. Results

after interpolation show a collapsed distribution, where large areas have identical soil moisture values. This is indicating the

areas where spatio-temporal interpolation failed because no close measured value could be found and the mean was inserted

instead (see Sect. 2.1). CLIMFILL-RF recovers the shape of the original distribution and is able to overwrite unrealistic surface

layer soil moisture values. Thus it generally provides an improved estimate of the bivariate distribution of surface layer soil475

moisture and ground temperature such that it is closest to the original ERA5 data in spite of knowing only satellite-observable

points.

While Fig. 7 and Supplementary Fig. A1 enable a visual inspection of selected variable pairs, they do not
:::
We

::::::::::
additionally

:::::::
examine

:::::
which

::::::
subset

::
of

::::::
features

::
is
:::::
most

:::::::::
descriptive

:::
for

::
the

::::::::
problem

:
at
:::::
hand

:::
and

:::::
settle

::
on

::::
one

::
of

:::
the

:::::::::::
propositions.

::
To

:
allow for

a quantitative assessment of the similarity of the multivariate distributions of observed and simulated variables. To overcome480

this issue ,
:
we apply a scalar measure of multivariate similarity.

::
In

:::
this

:::::
study,

:::
we

:::
use

:::
the

:::::::::::::
Jenson-Shannon

:::::::
distance

::::::::::::
(JS-distance).

This measure compares the multivariate distance between two datasets or
::::::::::
multivariate distributions, where a value of zero

:::
one

means that the two samples are from the same distribution, and a positive value indicates
:::
one

::::::::
indicates

:::
that

:::
the

:::::::::::
distributions

::
are

::::
not

::::::::::
overlapping.

:::
We

:::::
apply

:::
the

::::::::::
JS-distance

:::
on

:::
the

::::::::::::::
four-dimensional

:::::::::
histograms

:::::::::
computed

::
of the relative distance between

two distributions . In this study, we use the Bhattacharyya distance (Bhattacharyya, 1943) (B-distance). The B-distance is a485

general measure to quantify the distance of two multivariate distributions, taking into account both the similarity in mean and

covariance of both distributions. For samples of two multivariate normal distribution with means µ1, µ2 and covariances Σ1,

Σ2, the Bhattacharyya distance is defined as

B− distance=
1

8
(µ1−µ2)T Σ−1(µ1−µ2) +

1

2
ln

(
detΣ√

detΣ1 detΣ2

)
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where Σ is the mean of Σ1 and Σ2. The first term is a measure of similarity of the mean between two samples, and the second490

term is a measure of similarity of their covariances. Although the data considered may not be normally distributed we rely here

on the normal approximation of the B-distance to facilitate a quantitative comparison of the considered gap filling methods at

a reasonable computational cost.
:::
four

::::::::
variables

::::
using

:::
50

::::
bins

:::
for

::::
each

:::::::
variable.

:

:::::
Figure

::
6
:::::
shows

:::
the

::::::::::
JS-distance

::::::::
between

:::
the

::::::
original

:::::::
ERA-5

::::
data

:::
and

:::
the

:::::::::::
Interpolation

:::
as

::::
well

::
as

:::
the

:::::::
different

:::::::
flavours

:::
of495

::::::
feature

::::::::::
engineering. Overall, the B-distance

:::::::::
JS-distance

:
is lower for CLIMFILL-RF

:::::::::
CLIMFILL

:
than for interpolation globally

(Fig. 6 ).
:::
(a))

:::
for

:::
all

::::::
flavors

::
of

:::::::
feature

::::
sets.

::::::
Adding

::::
the

:::::::
constant

:::::
maps

::
to

:::
the

:::::::
feature

:::
set

::::
leads

:::
to

:
a
:::::::::
negligible

:::::::::::
performance

:::::::::::
improvement.

::::::::
However,

::::::::
including

:::
all

:::::::
variables

::::::
shows

::::::
overall

:::
the

:::
best

:::::::
results.

::
In

:::
the

:::
rest

::
of

:::
the

:::::
paper,

:::
we

::::
will

:::::::
therefore

:::::
refer

::
to

:::
this

:::::
flavor

::
of

::::::
feature

:::
sets

:::::
when

:::::::
referring

::
to

::::::::::
CLIMFILL.

:
The largest improvement is in temperate and boreal

:::::::
between

::::::::::
CLIMFILL

:::
and

:::
the

:::::::::::
interpolation

:
is
::
in
:::::::
tropical

:::
and

::::::::::
subtropical regions, where a high fraction of missing values inhibits the performance of500

interpolation. In parts of the inner tropics the B-distance of the interpolation gap-fill is not defined (in Fig. 6 indicated with dark

grey color). Here the gap-fill estimate from interpolation is the same in every time step, because the high vegetation cover causes

the satellite to never observe surface layer soil moisture in this area. Leads to an all-zero covariance and therefore theoretically

infinite, practically undefined B-distance. These points have been removed in Fig. 6 (c) and (d) to improve readability. Taking

a closer look at the results by dividing the global map into types of vegetation and altitudes shows that the B-distance improves505

from interpolation to CLIMFILL-RF
:::::::::
CLIMFILL for all altitudes and almost all land cover types. This indicates an improvement

of multivariate features in CLIMFILL-RF
:::::::::
CLIMFILL

:
gap-fill globally for a wide range of environmental conditions. Overall

CLIMFILL-RF
:::::::::
CLIMFILL

:
has a higher skill in reconstructing the multivariate dependence structure of the original ERA5

::::::
ERA-5 data compared to univariate interpolation.

3.3 Data-constrained upper perfomance limits510

::
To

::::::::
illustrate

::
the

::::::::
complex

::::::
impacts

::
of

:::::::
missing

::::::
values

:::
and

::::::::
univariate

::
as

::::
well

::
as

::::::::::
multivariate

::::
gap

:::::
filling,

::::::
Figure

::
7

::::::::
exemplary

::::::
shows

::
the

::::::::
bivariate

::::::::::
distribution

::
of

::::::
surface

:::::
layer

::::
soil

:::::::
moisture

::::
and

::::::
ground

::::::::::
temperature

:::::::
globally

:::
for

:::
the

::::::
whole

::::
time

::::::
period

:::
(all

:::::
other

:::::::
possible

:::::::::::
combinations

:::
are

:::::
shown

:::
in

::::::::::::
Supplementary

:::::
figure

:::::
A1).

:::
The

::::
part

::
of

:::
the

::::
data

:::
that

::
is

:::::::::
observable

:::::
from

:::::
space

::::::
(Figure

::
7

::
b)

::::
show

:
a
::::::::
collapsed

::::::::::
distribution

:::
and

::::::
clearly

::::
fails

::
to

::::::
recover

:::
the

:::::::
original

:::::::
bivariate

::::::::::
distribution.

:::::::
Results

::::
after

::::::::
univariate

:::::::::::
interpolation

::::::
recover

::::
parts

::
of

:::
the

:::::::::::
distributions.

::::::::::
CLIMFILL

::::::::::
furthermore

:::::::
improves

::::
this

:::
and

:::::::
recovers

:::
the

:::::
shape

::
of

:::
the

::::::
original

::::::::::
distribution.

:::::
Thus515

:
it
::::::::
generally

::::::::
provides

::
an

::::::::
improved

:::::::
estimate

:::
of

:::
the

:::::::
bivariate

::::::::::
distribution

::
of

::::::
surface

:::::
layer

:::
soil

::::::::
moisture

:::
and

:::::::
ground

::::::::::
temperature

::::
such

:::
that

::
it

::
is

::::::
closest

::
to

:::
the

::::::
original

::::::
ERA-5

::::
data

::
in

:::::
spite

::
of

:::::::
knowing

::::
only

::::::::::::::::
satellite-observable

::::::
points.

:

3.3
::::::::::::::

Data-constrained
::::::
upper

:::::::::::
performance

::::::
limits

Missing values in Earth observation data are often present in a large proportion and a complex missing-not-at-random
::::::
MNAR520

pattern. These characteristic properties of gappy Earth observation data can inhibit gap-filling
:::
gap

::::::
filling. We therefore are

interested in carving out
::::::::
exploring

:
the envelope of data properties in which gap-filling

:::
gap

:::::
filling

:
can be successful and see
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Figure 8. Comparison of (a) artificial (a) random and (b) swaths-only missingness
:::
and

::
(c)

:::::::::
missingness

:
in

::
the

:::
real

::::
data

:
in
:
example snapshot

of ERA5
:::::
ERA-5

:
ground temperature on 1st of August 2003 with.

::::
2003. Random missingness was created by randomly sampling without

replacement from the pool of all gridpoints on land at all timesteps in the desired fraction of missing values. In swaths-only missingness we

create
:::
long

::::::
ellipses

::::::
centered

::::::
around

::
the

::::::
equator

::
to

::::::
simulate

::::::::::
characteristic

:::::::
satellite

::::
swath

:::::::::
missingness

:::::::
patterns. Note that the two missingness

patterns are not exactly the same for each day and variable to allow for mutual learning.
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Figure 9. Median performance of gap-filling
:::
gap

::::
filling

:
with CLIMFILL-RF

::::::::
CLIMFILL

:
on different missingness patterns and fractions of

missingness expressed in B-distance
::::::::
JS-distance

:
(for more detail see text) per variable. Gap-filling

:::
Gap

:::::
filling for random missingness and

artifical swaths is executed for a range of fraction of missing values and denoted as a line, while real missingness is only one case depicted

as point. The metrics are calculated over each timestep for all not satellite-observable values of gridpoints on land and the median of all

landpoints is plotted.

the deterioration of performance with increasing data sparsity and increasingly complex missing value patterns. Using the four

considered ERA5 variables we test the framework in idealised , simpler missingness
::
In

:::::::
contrast

::
to

::
the

::::
last

::::::
section,

:::
the

::::
goal

::
is

::
to

::::
show

:::
the

:::::
upper

:::::
limit

::
of

::::
what

::
is

:::::::
possible

::
in

::::
gap

:::::
filling

::::
with

:::
the

:::::::
complex

::::::::::
missingness

:::::::
patterns

::::::
exhibit

:::
by

:::::::
satellite

:::::::::::
observations.525

::
To

::::
this

:::
end

:::
we

::::
rely

::
on

:::
the

::::
four

:::::::::
considered

::::::::
variables

::
to

::::
test

:::
the

::::::
impact

::
of

:::::::::
increasing

:::::::
fractions

::
of

:::::::
missing

::::
data

:::::
using

::::::::
idealised

patterns. In these additional experiments
:::::::
particular, we delete

::
(1)

:
data according to a (1) MCAR random missingness pattern

and (2)
::
by imitating satellite swaths, effectively creating MAR missingness patterns (Fig. 8). Both patterns are applied for

fractions of missing values between 5% to 80
::
95% for each of the variables. We performed these experiment on a downscaled

2.5 degrees resolution ERA5 data because of computational constraints.530

Multivariate B-distance
::::::::::
Multivariate

::::::::::
JS-distance (Figure 9) and univariate statistical performance measures (Figure 10) for

all performed experiments comparing
::
are

:::::
used

::
to

:::::::
compare

:
original and gap-filled values

::
for

:::
all

::::::::
performed

:::::::::::
experiments. With
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Figure 10. Median performance of gap-filling
::
gap

:::::
filling with CLIMFILL-RF

::::::::
CLIMFILL on different missingness patterns and fractions of

missingness expressed in three
::
two

:
metrics: pearson

::::::
Pearson correlation , root mean square error

:::
and

::::
Root

::::
Mean

::::::
Square

::::
Error

:
(RMSE) and

B-distance (for more detail see text) per variable. Gap-filling
:::
Gap

:::::
filling for random missingness and artifical swaths is executed for a range

of fraction of missing values and denoted as a line, while real missingness is only one case depicted as point. The metrics are calculated over

each timestep for all not satellite-observable values of gridpoints on land and the median of all landpoints is plotted.

increasing fraction of missing values, the two artificial missingness cases increase in error, increase the B-distance
:
in
:::::

their

:::::::::
JS-distance

:
and decrease in correlation. Once more than 80% of the values are missing, the gap-filling

:::
gap

:::::
filling

:
breaks down535

because not enough observed values are available for the iterative procedure to converge to a meaningful result. Random and ar-

tificial swath missingness show similar deterioration with increasing fraction of missing values, but values missing completely

at random tend to be easier to estimate at all fractions of missing values. Gap-filling
:::
Gap

::::::
filling random missingness is the

easiest case, since it is likely that neighboring or environmentally similar points are observed. MAR missingness exposes large

patches of missing values, therefore making spatiotemporal interpolation less effective and therefore decreasing the gap-filling540

:::::
hence

:::::::::
decreasing

:::
the

:::
gap

:::::
filling

:
performance as compared to MCAR. Since the MNAR missingness case is the most complex

missingness pattern, these additional experiments serve as upper limits of the performance in the real case.

When moving from the artificial patterns of missingness to the real case (dots and circles in Fig. 10), the deterioration

in performance is different for each of the variables.
::::::::
However,

::
in

::::
most

:::::
cases

::::
the

::::::
metrics

:::
for

:::
the

::::
real

::::::::::
missingness

:::::
case

:::
are545

::::
close

::
to
::::

the
::::::::
artificial

::::::::::
missigness

:::::::
patterns,

::::::::::
suggesting

::::::::::
CLIMFILL

:::::::
operates

::
at
::::

the
:::::
upper

::::
limit

:::
of

:::::
what

::
is

:::::::
possible

::::
with

::::
the

:::::::
complex

::::::::::
missingness

::::::
pattern

:::
of

::::
real

:::::::::::
observations.

:
For ground temperature, a spatially and temporally smooth variable, the

interpolation is already quite a good first guess, which is only slightly improved in CLIMFILL-RF
:::::::::
CLIMFILL. In this case

study, we found the biggest improvement compared to interpolation for surface layer soil moisture despite its large fraction of

missing values. This
::::
high

::::::::::
performance

:
could be due to the fact that surface layer soil moisture exposes missingness in areas550

where other variables are observed, for example in the tropical forests, such that learning in this area is easier. Additionally,
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variable selection is centered around soil moisture, and soil moisture is a key variable of land hydrological processes. The

most difficult case is precipitation. Despite the additional pre-processing step to account for its non-normality, the
:::
The

:
low

precision precipitation estimates were only slightly improved with CLIMFILL-RF
:::::::::
CLIMFILL

:
and it is difficult to improve the

result of the initial interpolation. Precipitation is influenced by a lot of
::::::
several processes that are not captured within the four555

selected variables. For example, frontal rain patterns are mostly not explained by land surface properties but are governed by

large scale circulation. This is a challenging case and could still furthermore be improved, for example by adding wind patterns

to capture more synoptic features. Terrestrial water storage contains only a small fraction of missing values (7
::
11%), but its

gap-filling could be hampered by its monthly resolution that does not co-vary enough with the other variables. Introducing

an additional bias correction step could help alleviate these problems.
::::
which

::
is
::::::
almost

:::::::
entirely

:::
the

::::::
month

::
of

::::
June

::::
that

:
is
:::::
fully560

:::::::
missing.

:::::
Since

:::
the

:::::::::::
interpolation

::
is

::::
only

::::::
applied

::::::::
spatially,

::
it

::::
fails

:::
for

:::
full

:::::::
months

::
of

:::::::
missing

::::
data

:::
and

::::::::
therefore

:::
the

:::::::::
difference

:::::::
between

::::::::::
interpolation

::::
and

:::::::::
CLIMFILL

::
is
::::::::::
particularly

:::::
high.

3.4 Recovery of regional and local land-climate dynamics

For any gap-filling
:::
gap

:::::
filling

:
framework to be useful for both scientific and practical applications it needs to be able to recover

essential properties of the phenomena of interest. The coupling of energy and water between land and atmosphere at the land565

surface is a central, multivariate property of land climate interactions that is currently underestimated in satellite data (Hirschi,

2014). By comparing CLIMFILL-RF
:::::::::
CLIMFILL

:
gap-fill with the subset of data that are observable by space, i.e. the gappy

ERA5
:::::
ERA-5

:
data (Fig. 4) we explore the role of missing values in this problem. In particular we show that leaving gaps in

satellite data unfilled leads to biases
:::
and

:::::
noise in estimates of regional and local climate feedbacks and how the CLIMFILL

framework contributes
::
can

:::::::::
contribute to overcoming this issue.570

Figure 11 showcases the mean seasonal cycle
::::::
RMSE

:::::::
between

:::::::
original

::::::
ERA-5

::::
data

::::
and

::::::::::
CLIMFILL

::::::::
estimates

::
as

::::
well

:::
as

:::::
spatial

::::::::
averages

:
of the variables for selected IPCC reference regions (AR6 regions, see Iturbide et al. 2020). Surface layer

soil moisture, ground temperature and precipitation suffer from gaps in the winter months in mid to high latitude regions like

Western & Central Europe and South-West North America. In tropical regions like Central Africa and South-East Asia, espe-575

cially soil moisture estimates suffer from little data availability. The missing values result in a noisy signal and biased values in

regional estimates from the satellite-observable data. CLIMFILL-RF
:::::::::
CLIMFILL

:
alleviates the noise and reduces the bias for

surface layer soil moisture and ground temperature for these regions with low satellite coverage better than the interpolation

estimates. The largest relative difference is in the surface layer soil moisture estimates. For surface layer soil moisture and

ground temperature especially the amplitude of the signal is reconstructed, but also the bias is reduced in all
:::::
many regions (see580

Supplementary Fig. A2). Precipitation
:::
The

::::
skill

::
of

::::::::::
CLIMFILL

:::
for

:::::::::::
precipitation and terrestrial water storage estimates show

little change.
:
is
:::::::::::::::
region-dependent.

:::::::::
Terrestrial

:::::
water

::::::
storage

::
is

:
a
::::::::::
challenging

::::
case

:::::::
because

::
of

::
its

:::::::
monthly

:::::::::
resolution

:::
and

:::
the

::::
fact

:::
that

:::
the

::::::::
univariate

:::::::::::
interpolation

::
is

::::::
failing

:::
for

::
an

::::::::::
all-missing

:::::
month

:::::
leads

::
to

::::
bad

:::::
initial

::::::::
estimates

:::
and

::
a

::::::::
decreased

:::::::::::
performance

::
of

::::::::::
CLIMFILL.

:::::::::::
Precipitation

:::
has

:::::::
missing

:::::
values

::::
only

::
in

::::
high

::::::::
latitudes,

::::::
where

::
all

:::::
other

:::::::
variables

::::
also

:::::
show

::::::::::
missingness,

::::
and

::
is

:
a
::::::::::
challenging

::::
case

:::
due

::
to

::
its

::::::::::
non-normal

:::::::::::
distribution.

::
In

::::::::
summary,

:::
for

::::
most

::::::::
variables

::
in

::::
most

:::::::
regions

:::::::::
CLIMFILL

:::::::
reduces

::::
bias585
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Figure 11. Mean seasonal cycle
:::::
RMSE

::::::
between

:::::::::
CLIMFILL

:::
and

:::
the

::::::
original

:::::
ERA-5

:::
data

:
over selected IPCC reference regions (AR6 regions,

Iturbide et al. 2020)
:::
(top

::::
panel

:::::
maps)

::::
and

::::::
regional

:::::::
averages

:::
over

:::::::
selected

::::::
regions in original ERA5

:::::
ERA-5

:
data, satellite-observed ERA5

:::::
ERA-5

:
data and gap-filled CLIMFILL-RF

::::::::
CLIMFILL

:
data

:::::
(bottom

::::::
panels). The selected regions are in areas with the largest fractions

of missing values globally and
:

or
:
show exemplary advantages and problems of the framework, see text. For all other AR6 regions see

Supplementary Fig. A2

:::
and

:::::
noise

::
of

::::::::
estimates

::::::::
compared

::
to

::::
only

::::::::::::::::
satellite-observable

:::::
data,

::::
with

::::
some

:::::::::
difficulties

::::::
arising

:::::
from

:::
the

::::::::::
missingness

:::::::
patterns

::
of

::::::::::
precipitation

::::
and

::::::::
terrestrial

:::::
water

:::::::
storage.

Soil moisture-temperature coupling plays an important role for the development of heat extremes (Seneviratne et al., 2010; Vogel et al., 2017; Wehrli et al., 2019)

. This feedback can be described by the correlation between the soil moisture anomaly smanom and the number of hot days590

(NHD). The correlation can expose "hot spots" of soil moisture-temperature coupling where hot extremes can be exacerbated
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Figure 12. Correlation between number
::::
Top:

::::::::::
Development of hot days (NHD)

:::::
ground

:::::::::
temperature

:
and

:::::
surface

::::
layer

:
soil moisture anomaly

smanom in
:::
over

::::::
central

::::::
Europe

::::
from

::::::
January

::
to
::::::

August
:::::
2003,

:::::::
depicting

:
the selected time period

::::::
European

::::::::
heatwave

::::
2003

:
for

:::::
ERA-5

original ERA5 data, satellite-observable ERA5 data
:::::::::
ERA-5-data and CLIMFILL-RF

::::::::
CLIMFILL

:
gap-fill. The selected regions are in areas

with the largest fractions
::::
Maps

::::
show

::::::::
anomalies

:
of missing values globally

:::::
ground

:::::::::
temperature

::
for

:::
the

::::
three

:::::
cases

::
in

:::
JJA

::::
2003

:
and show

exemplary advantages
:::::::
anomalies

:
of

:::::
surface

:::::
layer

:::
soil

:::::::
moisture

::
in
:

the framework, see text
:::
three

:::::::::
preceeding

::::::
months

::::::
(MAM

:::::
2003)

::::
over

:::::
Europe.Methodology from Mueller and Seneviratne (2012) and Hirschi (2014).

(Mueller and Seneviratne, 2012; Hirschi, 2014) and is central for representing compound extreme events at the land surface,

such as droughts and heat waves. We compute this correlation for original ERA5 data,
:::::::::::::::::::::::::::::::::::::::::::::::::::
(Wehrli et al., 2019; Vogel et al., 2017; Seneviratne et al., 2010)

:
.
::
As

::
a
::::
last

::::::::
measure,

:::
we

::::
look

::
at

::
a
::::::::
particular

::::::
event,

::::::
namely

::::
the

::::::::
European

:::::
2003

::::
heat

:::::
wave.

::::::
Figure

:::
12

::::::
shows

:::
the

:::::::::
regionally

:::::::
averaged

:::::::::::
development

::
of

::::::
ground

::::::::::
temperature

::::
and

::::::
surface

::::
layer

::::
soil

:::::::
moisture

:::
for

:::
the

::::
first

:
8
::::::
months

:::
of

::::
2003

::
as

::::
well

::
as

::::::::
anomaly595

::::
maps

:::
of

::::::
ground

::::::::::
temperature

:::
for

:::
JJA

:::::
2003

:::
and

:::::::
surface

::::
layer

::::
soil

::::::::
moisture

:::
for

:::::
MAM

:::::
2003

:::
for

:::
the

::::
three

::::::
cases.

::::
With

:
satellite-

observable ERA5-data and
:::
data

:::::
only,

:::
the

::::::
ground

:::::::::::
temperature

::
is

::::::::::::
overestimated,

:::::::
because

::::
only

::::::::
clear-sky

::::::
values

:::
are

::::::::
reported

:::
and

::::::::::::
systematically

:::::
lower

:::::::
ground

::::::::::
temperature

::::::
values

::::::
below

::::::
clouds

:::
are

:::::::
missing.

::::::::::
CLIMFILL

:::::::::
alleviates

:::
this

::::
bias

::::
and

::::::
brings

:::::::
absolute

:::::::::::
temperatures

:::
and

:::::::::
anomalies

:::::
close

::
to
::::

the
:::::::
original

::::::
ERA-5

:::::
data.

::
A

:::::
strong

::::
dry

:::
soil

::::::::
moisture

::::::::
anomaly

::
in

::::::
spring

::::
was

:::::::::::
characteristic

::
for

:::
the

:::::
2003

::::
heat

:::::
event,

:::::
which

::
is

::::::::::::
overestimated

:::
and

:::::
noisy

::
in the CLIMFILL-RF gap-fill. Hirschi (2014) note that600
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the coupling strength between remotely sensed soil moisture and NHD is qualitatively similar, but underestimated in satellite

observations compared to a precipitation-based soil moisture estimate from interpolated weather station data (CRU dataset,

Harris et al. (2020b)). A similar effect can be found in ERA5 data when only satellite-observable datapoints are taken into

account. Comparing Fig. 12 shows that removing data from ERA5 that would not have been observable via space leads to

a deterioration of soil moisture-temperature coupling strength, especially in the showcased regions that have sparse surface605

layer soil moisture observations such as tropical forests and high latitudes. In these areas, CLIMFILL-RF .
::::::::::
CLIMFILL

:
is able

to alleviate the underestimated coupling (Fig. 12) and successfully reconstructs the correlation between NHD and smanom in

these regions. This is highlighting that missing values in Earth observation can bias process analysis and multivariate gap-filling

can help alleviating these biases and recover important dynamics and dependencies between variables which would have been

dampened or lost in gappy satellite-data alone
::
fill

:::::
gaps,

::::::
recover

:::
the

::::::
spatial

::::::::::
distribution

::
of

:::
the

:::::
event

::::
and

::::::
reduce

:::
the

::::
bias.

::::
The610

::::
2003

::::
heat

::::
wave

::
is
::::::::::
showcasing

::::
how

::::::::::
CLIMFILL

:::
can

:::::::
alleviate

::::::
biases

:::
and

:::::
noise

::
in

:::::
gappy

::::
data.

4 Discussion and conclusions

Gaps in
:::::::::::::
remotely-sensed Earth observations are

:::::::::
ubiquitous,

:
unavoidable and lead to a fragmented record of observational data.

CLIMFILL is
:::::::
Ignoring

::::
these

:::::
gaps

::::
leads

::
to
:::::
noisy

::::
and

:::::
biased

:::::::::
estimates

::
of

::::::::
summary

::::::::
statistics.

::::::
Spatial,

:::::::::
univariate

:::::::::::
interpolation

::::
with

::::::::::::
state-of-the-art

:::::::
methods

::::::
cannot

:::::
fully

::::::
recover

:::
the

::::::::::
multivariate

::::::::::
dependence

::::::::
structure

:::::::
between

:::
the

::::::::
variables.

:::
To

:::::
bridge

::::
this615

:::
gap,

:
a framework for gap-filling

:::
gap

:::::
filling

:
multivariate gridded Earth observationsthat

:
,
::::::::::
CLIMFILL,

::
is

::::::::
proposed.

::::::::::
CLIMFILL

estimates missing values by taking into account the spatial , temporal and the multivariate context of a missing value
:::
not

::::
only

:::::::::
considering

::::::
spatial

::::
and

::::::::
temporal

:::
but

::::
also

:::
the

::::::::::
multivariate

::::::::::
dependence

::::::
across

::::::::
variables. In doing that CLIMFILL mines the

highly structured nature of geoscientific datasets and bridges the gap between
::::::::
combines interpolation-centered approaches

common to geosciences and multivariate gap-filling
::
gap

::::::
filling methods from statistical literature. In contrast to popular up-620

scaling approaches, CLIMFILL does not need a gap-free gridded "donor" variable for learning
:::::::::
estimating

::::::
missing

::::::
values.

:::::
Thus

::
the

:::::::::
algorithm and can digest any gap structure in the provided data, including spatial gaps, temporal gaps and non-overlapping

observationsfrom different datasets. Furthermore, by clustering the global data into environmentally similar points, we tailor

the multivariate gap-filling to the needs of datasets spanning global, highly diverse ecosystems and changing land-atmosphere

interactions. This approach also decreases computing time such that high resolution gap-filling is possible (not shown).625

The highly flexible nature of CLIMFILL does not imply a physical model, but allows important physical dependencies to

be imprinted in the dataset before gap-filling through feature engineering. This way, CLIMFILL can be tailored to many

geoscientific use cases. In summary, CLIMFILL can successfully fill
:::::::
complex

:::::::
patterns

:::
of

:::::::::
missigness

::
in
:::::::::::

multivariate
:::::
Earth

:::::::::::
observations.

:::::::::
CLIMFILL

::::
fills gaps in fragmented Earth Observation datasets, while maintaining

:::::::::::
Observations

:::::
while

:::::::::
recovering

the physical dependence structure among the considered variables. To this end, the CLIMFILL framework contributes to de-630

creasing the inherent fragmentation of earth
::::
Earth

:
observations and enables usage of multiple gappy satellite observations

simultaneously.
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We have tested and bench-marked CLIMFILL
:::
This

:::::
study

:::::::::
illustrates

:::
the

::::
need

:::
for

::::
gap

:::::
filling

::::::::::
approaches

:::
and

:::
the

:::::
merit

:::
of

:::::::::
CLIMFILL

::::
with

::
a
:::
set

::
of

::::::::
variables

:::::::
relevant

:::
for

:::
the

:::::
study

::
of

:::::::::::
land-climate

::::::::
dynamics.

::::::::::
CLIMFILL

::
is
::::::::::::
benchmarked in an exem-635

plary setting of land hydrology reanalysis data
::::::::
reanalysis

::::
data

:::::
with

::::
focus

:::
on

::::::::
variables

:::::::
relevant

:::
for

:::
the

:::::
study

::
of

:::::::::::
land-climate

::::::::
dynamics. To this endthis

:
,
:::::::::
reanalysis data have been deleted to match missing values in satellite observations in a "perfect

dataset approach". This case study shows that seeing only satellite-observable data without filling the gaps creates biased,

noisy regional estimates and destroys the dependence structure in multivariate settings. CLIMFILL is able to recover this

dependence structure in land-atmosphere coupling and hence enables process investigation in gappy, multivariate observations.640

Quantified with the multivariate B-distance
::::::::
eventually

:::::::::
preventing

:
a
::::::
robust

:::::
study

::
of

::::::::::
land-climate

:::::::::::
interactions.

::::::::
However,

::::::
relying

::
on

:::
the

::::::::::
multivariate

::::::::::
JS-distance

:
we show that this recovery improves

:::::::::
CLIMFILL

::::::::
recovers the dependence structure globally

across almost all land covers and altitudes compared to interpolation. The largest improvements are in temperate and boreal

regions, although these are areas with large patches of low numbers of observed points
::
in

:::
the

:::::::::
considered

::::::::
variables.

:::::::::::
Furthermore,

::::::::
univariate

::::::
metrics

:::::
show

:::
that

::::::::::
CLIMFILL

::::::::
estimates

::::
have

:::::
lower

:::
bias

::::
and

::::
noise

:::::::::
compared

::
to

:::
not

::::::::
gap-filled

::::
data

::
for

:::::
many

::::::::
variables645

:::
and

:::::::
regions.

::::::
Surface

:::::
layer

:::
soil

::::::::
moisture

:::::::
estimates

::::::
benefit

:::::
most

::::
from

:::
the

::::::::::
multivariate

:::
gap

::::::
filling,

::::::::
although

:::
this

::::::::
variables

:::
has

:::
the

:::::
largest

:::::::
fraction

::
of

:::::::
missing

:::::
values. In summary, CLIMFILL is able to recover the dependence structure among several variables,

contrasting results obtained when missing values are not gap-filled or treated without considering multivariate aspects. Thereby

CLIMFILL enables a physically consistent interpolation of the resulting gap free dataset.

650

Interestingly, the case study showed that the benefit of CLIMFILL compared to interpolation is not equally large across

variables. The selected group of variables and their individual missing value patterns are central for the success of multivariate

gap-filling. Learning from the other variables is highly beneficial in gap-filling surface layer soil moisture estimates, although

it has the largest fraction of missing values. Since the framework is targeted at recovering the the physical dependence structure

across variables, the improvement in univariate measures like correlation and bias tend to be improved at a smaller scale than655

the multivariate dependence structure. The case study also highlights that information from other available variables can indeed

be beneficial for gap-filling if process knowledge is used when selecting a sub-set of variables and suggests the potential power

of the framework if even more dependent and important variables are included in the multivariate gap-filling process.

Although the selected observations are
:::::::
Although

:::
the

:::::::
selected

:::::::::::
observations

::
in

:::
the

::::
case

:::::
study

:::
are small in number (only four

variables considered), high in their respective fraction of missing values
:::
(up

::
to
:::::

more
::::
than

::::
two

:::::
thirds

::
of

:::
the

::::::
values

::::::::
missing)660

and complex in their pattern of missing values (always missing not at random), the multivariate gap-filling
:::
gap

:::::
filling

:
with

CLIMFILL successfully improves estimates compared to univariate
:::::
spatial interpolation. This is likely related to

::::::::
explained

:::
by

the high correlation among the variables, which can to some degree counteract the complex missingness.
::::
This

::::::::
highlights

::::
that

:::::::::
information

:::::
from

::::
other

:::::::::
physically

:::::::
relevant

::::::::
available

:::::::
variables

::::
can

::
be

::::::::
beneficial

:::
for

:::
gap

::::::
filling,

:::::::::
indicating

:::
that

:::
the

::::::
power

::
of

:::
the

:::::::::
framework

:::::
might

:::::::
increase

::
if

::::
even

:::::
more

::::::::
dependent

:::
are

::::::::
included.

:
Idealised experiments with simpler missingness patterns and665

different fractions of missing values within these four variables show that CLIMFILL improves upon univariate interpolation

in all cases for all considered metrics, but that multivariate gap-filling is easier with smaller fractions of missing values and

:::
and

:::
the

::::::::::
performance

::
is
:::::
close

::
to

:::::
easier

:::::
cases

::::
with less complex missingness patterns. The high correlation and low error scores
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for low fractions of missing values indicate that the four included variables represent important processes and are explanatory

for each other, i. e. their mutual dependence is expressive enough to conduct meaningful gap-filling
::::
Note

::::::::
however

::::
that

:::
the670

::::::::
case-study

::::
was

::::::
limited

::
to

:::::
2003

:::::
which

:::::::
implies

:::
that

:::
the

::::::
quality

::
of

:::::::::
long-term

::::::::::::
reconstructions

:::::
could

:::
not

:::
be

::::::::
evaluated.

:::
In

:::::::
addition

:
it
::
is

::::::::
important

::
to
:::::
stress

::::
that

:::
the

:::::::
"perfect

:::::::
dataset"

::::::::
approach

::::::::
employed

::::
here

:::
for

::::::::::::
benchmarking

:::::
might

:::
not

:::
be

::::
fully

::::::::::::
representative

::
for

::::
real

:::::::::::
observations.

:::::::::
Therefore

:::
we

:::::
stress

::::
that

:::
the

:::::::
fidelity

::
of

:::
the

:::::::::
suggested

::::::::
algorithm

::::
has

::
to

:::
be

::::::::
evaluated

:::
for

::::
real

:::::::
satellite

::::::::::
observations

:::
and

::::
new

::::::::::
applications.

675

In conclusion
::::
short, we have presented a multivariate gap-filling framework that uses

:::::::::
CLIMFILL,

::
a
::::::::::
multivariate

:::
gap

::::::
filling

:::::::::
framework

:::
that

:::::::
exploits

:
spatial, temporal and multivariate information to create estimates for missing values . This

::
in

:::::
Earth

:::::::::::
observations.

:::
The

::::::
fidelity

:::
of

:::
the framework has been successfully applied

:::::::::::
demonstrated in a case study centered around land

hydrology
::
for

::
a
:::::
single

:::::
year

:::::::
centered

::::::
around

:
remote sensing observations . The modularity and flexibility of the proposed

gap-filling framework make it applicable to all kinds of Earth observation data once suitable settings are chosen by applying680

knowledge of the important physical processes represented in the data. CLIMFILL can be used for multivariate, observation-only

process analysis or help including relevant but gappy observations into data assimilation or reanalysis. in situ data could

possibly be included as well if treated as a very sparsely gridded data where the area of representation for the point measurement

is accessed (see e. g. Nicolai-Shaw et al. 2015).
::::::
relevant

:::
for

:::
the

:::::
study

:::
of

::::::::::
land-climate

:::::::::
dynamics,

::::::
which

:::::::::
highlighted

::::
the

:::
the

:::::
merits

::
of

:::
the

::::::::
approach

:::::::::
compared

::
to

::::::::
univariate

::::::::::::
interpolation. A natural next step could be to apply this gap-filling

:::
gap

::::::
filling685

mechanism on a larger number of relevant observed variables and create a consistent, gap-free reconstruction of land hydrol-

ogy.
::::::::
Follow-up

::::::
studies

::::
will

:::
also

::::::
extend

:::
this

::::::::::
framework

::
to

:::
gap

:::
fill

:::
data

::::
over

::::::
longer

::::
time

::::::
frames

:::
and

:::::::
tackling

:::::::::
interannual

:::::::
climate

::::::::
variability

::::::::
features.

Missing values in Earth observations will remain unavoidable. However, the intrinsic motivation should be to reduce
:::
are690

:::::::::
ubiquitous.

::::
Our

:::::
efforts

::::::
should

:::::
center

::::::
around

::::::::
reducing

::::
these

:
gaps in observations . Enhancing

::
by

::::
e.g.

::::::::
enhancing

:
sensors, devel-

oping new measurement techniques or closing gaps in observational networksare three possible directions of innovation that

could help reduce missing information. This endeavour however must start with an assessment of the information completeness

of existing observations.
::::::::
Looking

::
at

:::
the

::::::::
problem

:::::
from

:::
the

:::::
other

::::
end,

:::::::
another

::::::::
approach

:::::
could

:::
be

::
to

::::::::
optimise

:::
the

:::::::
current

:::::::::
observation

::::::::
network

:::
for

::::::::::
information

:::::::::::
completeness, for example by applying

:::::::
utilising methods from information theory . It695

should aim at closing the largest gaps first , for example in terms of available variables, sampled ecosystems or in
::::::::::::::::
(Bauer et al., 2021)

:::
and

::::::
tackle

::::
gaps

::::
first

::::
that

:::
are

::::::
largest

:::
or

:::::
most

:::::
severe

::::
for

::::
data

::::::::
analysis,

::::
both

::
in
:::::::

natural
::::
and physical space. Reducing the

complexity of missing information in Earth observationscan be a large step towards better observational estimates of crucial

::::::::
However,

::::::
missing

::::::
values

:::
will

::::
still

::::::
remain

::::::::::
unavoidable

::
in

:::::
many

:::::::::::
observations.

:::::
Where

::::
they

:::
are

:::::::
present,

:
it
::
is
:::::::::
imperative

::
to

:::::::
develop

:::::::::
dependable

::::::::
estimates

:::
that

::::
also

:::::::
consider

:::::
links

:::::
among

:::::::::
variables.

::
To

:::
this

::::
end,

:::
the

::::::::::
CLIMFILL

:::::::::
framework,

::
is
:::::::::
developed

::
to

:::
not

::::
only700

::::::
produce

::::::::::
dependable

::::::::
estimates

::
of

:::::::::
individual

::::::::
variables

:::
but

:::
also

::
to
:::::::
recover

::::::::::
multivariate

::::::::::::
dependencies,

:::::::::
eventually

:::::::::
facilitating

:::
the

::::::
creation

:::
of

:::::::
gap-free

:::::::::::
observational

::::
data

:::::::
products

:::
for

::::::::::::
environmental

::::::::::
monitoring

:::
that

::::
also

::::::
enable

:::
the

:::::
study

::
of Earth system pro-
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cesses,
::::::::

facilitate
::::::::::::::
observation-only

:::::::
process

:::::::
analysis

:::
or

:::
can

:::::
help

::
to

:::::::::
assimilate

:::::::
relevant

:::
but

::::::
gappy

::::::::::
observations

::::
into

::::::::
physical

::::::
models.

Code and data availability. The current version of CLIMFILL is available from the project website: https://github.com/climachine/climfill705

under the Apache 2.0 License. The exact version of the model used to produce the results used in this paper is archived on Zenodo

(http://doi.org/10.5281/zenodo.4773664), as are scripts to run the model and produce the plots for all the simulations presented in this paper.

CLIMFILL was written in python (Python Software Foundation, https://www.python.org/) with core packages including xarray (Hoyer et al.,

2020), numpy (Harris et al., 2020a), matplotlib (Hunter, 2007), scikit-learn (Pedregosa et al., 2011), regionmask (Hauser, 2021) and scipy

(Virtanen et al., 2020). The used ERA-5 data are publicly available at: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5710

(last accessed: 16th February 2021).
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Figure A1. Improvement of multivariate distribution with CLIMFILL gap-filling
::
gap

:::::
filling: 2D-histogram of all combinations of variables

for not satellite-observable values in original ERA5
:::::
ERA-5 data, interpolation and CLIMFILL-RF

::::::::
CLIMFILL.
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Figure A2. Mean seasonal cycle over all IPCC reference regions on land (AR6 regions, as described in Iturbide et al. 2020) in original ERA5

:::::
ERA-5

:
data, satellite-observed ERA5

:::::
ERA-5 data and data gap-filled with CLIMFILL-RF

::::::::
CLIMFILL.
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Figure A3. Supplementary Figure A2 continued
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Figure A4. Supplementary Figure A2 continued
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Table A1. Mapping of ERA5
:::::
ERA-5 variables with satellite observations.

satellite observation
ERA5

:::::
ERA-5 variable

daily aggregation unit

ESA-CCI surface layer soil moisture volumetric soil water layer 1 swvl1 daily mean m3m−3

MODIS ground temperature ground temperature skt daily mean K

GPM precipitation total precipitation tp daily sum mm day−1

GRACE terrestrial water storage volumentric soil water layer 1 to 4,

snow depth sd and lake cover cl

multiplied with lake depth dl

anomalies of daily sums compared

to GRACE baseline (2004-2009)

cm (water equivalent thickness)
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Table A2. NOTE THAT TABLE A2 IN THE ORIGINAL MANUSCRIPT HAS BEEN REMOVED ENTIRELY.
:::::::::::::
Hyper-parameters

::
of

::::
each

:::
step,

::::
their

::::::::
respective

:::::
values

:::
and

:::
how

::::
they

::::
were

:::::::::
determined.

:::
step

:::::::::::
hyper-parameter

:::
value

::::
reason

:::
Step

:
1:
:::::::::

Interpolation
:::::
number

::
of

::::::
neighbors

::
in

:::::::::::
thin-plate-spline

::::::::
interpolation

::
50

:
as
::::
large

::
as

::::::::::
computationally

::::::
feasible

:::::::
smoothing

:::::::::
parameter

:::::
in

:::::::::::::
thin-plate-spline

::::::::
interpolation

::::::::::::
variable-dependent

:::::
depends

:::
on

::
the

::::
size

::
of

::
the

:::::
gaps.

::::
large

:::
gaps

::::
needs

::::
larger

::::::::
smoothing

:::::::
parameter

:::
to

::::
avoid

:::::::
overfitting

:::
when

:::::::::
extrapolating

:::
into

::::
empty

::::
space

::::
degree

:::::::
parameter

::
in

:::::::::::
thin-plate-spline

::::::::
interpolation

:
2

::::::
calibrated

::
on

::::::
observed

:::::
cubes

:
in
:::
year

::::
2013

::::::
Gaussian

:::::
Process

:::::
kernel

::::::::::::
variable-dependent

::::::
calibrated

::
on

::::::
observed

:::::
cubes

:
in
:::
year

::::
2013

:::::
number

::
of

:::::
repeats

:
of
:::::::
Gaussian

:::::
Process

:
5

:
as
::::
large

::
as

::::::::::
computationally

::::::
feasible

:::::
number

::
of

:::::
random

::::
points

:::::
chosen

::
in

::::::
Gaussian

:::::
Process

:::
1000

:
as
::::
large

::
as

::::::::::
computationally

::::::
feasible

:::
Step

:
4:
:::::::

Learning
:::::
number

::
of

:::
trees

::
300

:
as
::::
large

::
as

::::::::::
computationally

::::::
feasible

::::::
minimum

::::::
number

:
of
::::::
samples

:
in
:::

leaf
::::
node

:
2

::::::
calibrated

::
on

::::::
observed

:::::
cubes

:
in
:::
year

::::
2013

:::::
fraction

::
of

:::::
features

::::
used

::
for

:::
each

:::
split

::
0.5

:
as
::::
large

::
as

::::::::::
computationally

::::::
feasible

:::::
fraction

::
of

:::::::
datapoints

:::
used

::
for

::::
each

:::
split

::
0.5

:
as
::::
large

::
as

::::::::::
computationally

::::::
feasible
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