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Abstract

Partitioning soil organic carbon (SOC) into two kinetically different fractions that are centennially stable or active is key
information for an improved monitoring of soil health and for a more accurate modelling of the carbon cycle. However, all
existing SOC fractionation methods isolate SOC fractions that are mixtures of centennially stable and active SOC. If the
stable SOC fraction cannot be isolated, it has specific chemical and thermal characteristics that are quickly (ca. 1 h per
sample) measureable using Rock-Eval® thermal analysis. An alternative would thus be to (1) train a machine-learning model
on the Rock-Eval® thermal analysis data of soil samples from long-term experiments where the size of the centennially
stable and active SOC fractions can be estimated, and (2) apply this model on the Rock-Eval® data of unknown soils, to
partition SOC into its centennially stable and active fractions. Here, we significantly extend the validity range of the
machine-learning model published by Cécillon et al. [Biogeosciences, 15, 2835-2849, 2018, https://doi.org/10.5194/bg-15-
2835-2018], and built upon this strategy. The second version of this statistical model, which we propose to name PARTY sqc,
uses six European long-term agricultural sites including a bare fallow treatment and one South American vegetation change

(C4 to C5 plants) site as reference sites. The European version of the model (PARTY socVv2.0gy) predicts the proportion of the
centennially stable SOC fraction with a conservative root-mean-square error of 0.15 (relative root-mean-square error of 0.27)
in a wide range of agricultural topsoils from Northwestern Europe. We plan future expansions of the PARTYoc global
model using additional reference soils developed under diverse pedoclimates and ecosystems, and we already recommend
the application of PARTY socv2.0gy in European agricultural topsoils to provide accurate information on SOC kinetic pools

partitioning that may improve the simulations of simple models of SOC dynamics.
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1 Introduction

Soil organic carbon (SOC) is identified as a key element contributing to soil functions such as primary productivity, water
purification and regulation, carbon sequestration and climate regulation, habitat for biodiversity and recycling of nutrients
(Keesstra et al., 2016; Koch et al., 2013; Schulte et al., 2014; Wiesmeier et al., 2019). While the magnitude and the historical
dimension of the decrease in SOC at the global level are progressively being unveiled (IPBES, 2018; Sanderman et al., 2017;
Stoorvogel et al., 2017), SOC stocks’ preservation and even increase is a major challenge for human societies in the 21°
century (Amundson et al., 2015). With widespread beneficial effects on soil functioning at the local level (Pellerin et al.,
2019), increasing the size of the global SOC reservoir contributes directly to the Sustainable Development Goal related to

life on land (https://www.globalgoals.org/15-life-on-land). It is also one of the few land management-based intervention

options that has a broad and positive impact on food security and climate change mitigation and adaptation, two other
Sustainable Development Goals set by the United Nations (IPCC, 2019; Lal, 2004).

There is experimental evidence showing that in all soils, SOC is made of carbon atoms with highly contrasting residence
times, ranging from hours to millennia (Balesdent et al., 1987; Trumbore et al., 1989). This continuum in SOC persistence is
often simplified by considering SOC as a mixture formed of several fractions, also called kinetic pools by modelers (Hénin
and Dupuis, 1945; Jenkinson, 1990; Nikiforoff, 1936). The most drastic conceptual simplification of SOC persistence
considers only two pools: (1) one made of young SOC with a short turnover rate (typically three decades on average; the
active or labile SOC pool) and (2) one made of older SOC that persists much longer in the soil (more than a century; the
stable, passive or persistent SOC pool). This dualistic representation of SOC persistence was considered as “a necessary
simplification, but certainly not a utopian one” four decades ago (Balesdent and Guillet, 1982) and is still considered as
meaningful (e.g., Lavallee et al., 2020). The active and stable soil organic matter pools contribute differently to the various
soil functions (Hsieh, 1992). The active organic matter pool efficiently fuels soil biological activity (with carbon, nutrients
and energy) and plant growth (with nutrients) through its rapid decay, and it sustains soil structure development (Abiven et
al., 2009; Janzen, 2006). Conversely, the potential contribution of a soil to climate regulation would be most dependent on its

stable organic matter pool size (He et al., 2016; Shi et al., 2020).

A myriad of methods has been developed and tested to partition SOC into active and stable fractions, that would match
kinetic pools for the assessment of SOC dynamics and related soil functions, since the second half of the 20" century
(Balesdent, 1996; Hénin and Turc, 1949; Monnier et al., 1962; Poeplau et al., 2018). Some of these methods based on
chemical or physical (size, density or thermal) fractionation schemes can separate SOC fractions with, on average, different
turnover rates (Balesdent, 1996; Plante et al., 2013; Poeplau et al., 2018; Trumbore et al., 1989). Of these methods, only a
few are reasonably reproducible and easy to implement such as the ones based on rapid thermal analysis and chemical

extractions (Gregorich et al., 2015; Poeplau et al., 2013, 2018; Soucémarianadin et al., 2018a). Other methods, such as size
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Discussions

and density SOC fractionation, need to be inferred from statistical models or infrared spectroscopy to be implemented on
large soil sample sets (Baldock et al., 2013; Cotrufo et al., 2019; Jaconi et al., 2019; Viscarra Rossel et al., 2019; Viscarra
Rossel and Hicks, 2015; Vos et al., 2018; Zimmermann et al., 2007b). However, all SOC fractionation methods fail to
achieve a proper separation of stable from active SOC, and the isolated SOC fractions are thus mixtures of centennially
stable and active SOC (Fig. 1; Balesdent, 1996; Hsieh, 1992; von Litzow et al., 2007; Sanderman and Grandy, 2020). This
limitation is common to all existing SOC fractionation methods and compromises the results of any work using them directly
to quantify soil functions specifically related to SOC fractions or to parameterize SOC partitioning in multi-compartmental
models of SOC dynamics (Luo et al., 2016). Simulations of SOC stocks changes by multi-compartmental models are very
sensitive to the initial proportion of the centennially stable SOC fraction, underlining the importance of its accurate
estimation (Clivot et al., 2019; Falloon and Smith, 2000; Jenkinson et al., 1991; Taghizadeh-Toosi et al., 2020).

....................
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Figure 1: Conceptual representation of soil organic carbon fractionation methods vs. the PARTYsoc approach to
guantify the size of the centennially stable and active soil organic carbon fractions. All existing soil organic carbon
fractionation methods isolate fractions that are mixtures of centennially stable and active soil organic carbon. PART Y soc is a
machine-learning model trained on the Rock-Eval® thermal analysis data of soil samples from long-term experiments where
the size of the centennially stable SOC fraction can be estimated. When applied on the Rock-Eval® data of unknown
topsoils, PARTYoc partitions soil organic carbon into its active and stable fractions (i.e., without isolating soil organic
carbon fractions from each other). Abbreviation: SOC, soil organic carbon. Credits for photos: SOC physical fractionation

methods, Mathilde Bryant; SOC thermal fractionation using Rock-Eval®, Lauric Cécillon.

If the stable SOC fraction cannot be isolated, it has specific chemical and thermal characteristics: stable SOC is depleted in
hydrogen and thermally stable (Barré et al., 2016; Gregorich et al., 2015). These characteristics are quickly (ca. 1 h per

sample) measureable using Rock-Eval® thermal analysis, and they could be of use to identify the quantitative contribution

4
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of stable SOC to total SOC. An alternative to the elusive proper separation of stable and active SOC pools could thus be to
directly predict their sizes by training a machine-learning model based on Rock-Eval® data to estimate the size of the stable
and active SOC fractions, without isolating them from each other (Fig. 1). This statistical model would need a learning set of
soil samples for which SOC partitioning into its active and stable pools can be fairly estimated. Such soil samples are
available in long-term (i.e., at least longer than three decades) bare fallow experiments (LTBF; soils kept free of vegetation
and thus with negligible SOC inputs), or long-term vegetation change (C; plants to C4 plants or vice versa) experiments, as
described by Balesdent et al. (1987, 2018), Barré et al. (2010), Cerri et al. (1985) or Rilhimann (1999). Cécillon et al. (2018)
used this strategy, developing a machine-learning random forests regression model on topsoil samples obtained from the
archives of four European long-term agricultural sites including an LTBF treatment. This statistical model, which we
propose to name PARTYsoc, related thermal analysis parameters of topsoils measured with Rock-Eval® to their estimated
proportion of the centennially stable SOC fraction (Fig. 1). This previous work positioned PARTY soc as the first operational
method quantifying the centennially stable and active SOC fractions in agricultural topsoils from Northwestern Europe.
However, the ability of this machine-learning model to fairly partition the centennially stable and the active SOC fractions of
soil samples from new sites in and outside Northwestern Europe is largely unknown because its learning sample set is (1)
rather limited, with a low number of reference sites and (2) based on centennially stable SOC contents that are exclusively

inferred from plant-free LTBF treatments.

In this study, we aimed to improve the accuracy and the genericity of the PARTY soc statistical model partitioning SOC into
its centennially stable and active fractions developed by Cécillon et al. (2018). (1) We increased the range of soil types, soil
texture classes, climates and types of long-term experiments, through the addition to the learning sample set of topsoils from
three new reference sites (two additional European long-term agricultural sites with an LTBF treatment and one South-
American long-term vegetation change site). (2) We integrated new predictor variables derived from Rock-Eval® thermal
analysis. (3) In this second version of the model, we also changed the following series of technical details. We added a new
criterion based on observed SOC content to estimate of the size of the centennially stable SOC fraction at reference sites, to
reduce the risk of overestimating this site-specific parameter. We calculated the proportion of the centennially stable SOC
fraction differently in reference topsoil samples, using SOC content estimated by Rock-Eval® rather than by dry
combustion. We changed some criteria regarding the selection of reference topsoils in the learning set of the model: we
removed samples from agronomical treatments with compost or manure amendments, and preference was given to samples
with good organic carbon yield of their Rock-Eval® thermal analysis. We better balanced the contribution of each reference
site to PARTYsocv2.0. (4) We also aimed to build a regional version of the statistical model restricted to the references sites
available in Europe (named PARTY socv2.0gy). (5) Finally, we carefully evaluated the performance of the statistical models
on unknown reference sites, and we further investigated the sensitivity of model performance to the reference sites included
in the learning set. For clarity, the main changes between the first version of PARTYsoc (Cécillon et al., 2018) and this

second version of the model are summarized in supplementary Table S1.
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2 Methods
2.1 Reference sites and estimation of the centennially stable SOC fraction content at each site

This second version of PARTYsoc Uses seven long-term study sites as reference sites (i.e., sites where the size of the
centennially stable SOC fraction can be estimated). The main characteristics of these seven reference sites and their
respective soil type and basic topsoil properties are presented in supplementary Table S2, and more thoroughly in the
references cited below. Six reference sites of PARTYsocv2.0 are long-term agricultural experiments located in Northwestern
Europe that include at least one LTBF treatment. (1) The long-term experiment on animal manure and mineral fertilizers
(B3- and B4-fields) and its adjacent LTBF experiment started in 1956 and terminated in 1985, at the Lermarken site of
Askov in Denmark (Christensen et al., 2019; Christensen and Johnston, 1997). (2) The static fertilization experiment (V120)
started in 1902 and the fallow experiment (V505a) started in 1988 at Bad Lauchstadt in Germany (Franko and Merbach,
2017; Kdorschens et al., 1998; Ludwig et al., 2007). (3) The “36 parcelles” experiment, started in 1959 at Grignon in France
(Cardinael et al., 2015; Houot et al., 1989). (4) The “42 parcelles” experiment, started in 1928 at Versailles in France (van
Oort et al., 2018). (5) The Highfield bare fallow experiment, started in 1959 at Rothamsted in England (Johnston et al.,
2009). (6) The Ultuna continuous soil organic matter field experiment, started in 1956 in Sweden (Katterer et al., 2011).
These six reference sites are used in the European version of the statistical model, PARTY socv2.0gy. One additional long-
term vegetation change site completes the reference sites list of the PARTYs0cv2.0 global statistical model. This site is a 56-
year chronosequence of oil palm plantations (with C; plants) established on former pastures (with C, plants), located in

South-America (La Cabafia in Colombia), and sampled as a space-for-time substitution (Quezada et al., 2019).

For each reference site, data on total SOC content in topsoil (0-10 cm to 0-30 cm depending on the site; supplementary
Table S2) were obtained from previously published studies (Barré et al., 2010; Cécillon et al., 2018; Franko and Merbach,
2017; Kdorschens et al., 1998; Quezada et al., 2019). Total SOC content was measured by dry combustion with an elemental
analyzer (SOCga, g C kg™') according to 1SO 10694 (1995), after the removal of soil carbonates using an HCI treatment for
the topsoils of Grignon. For the site of La Cabafia, data on *C content (measured using an isotope-ratio mass spectrometer
coupled to the elemental analyzer, the results being expressed in 6'3C abundance ratio (%o relative to the international
standard)) were obtained from Quezada et al. (2019), and the relative contributions of new (Cs-plant derived) and old (C,-
plant derived) carbon to total SOC in topsoils (0—10 cm) were calculated using the Equation 3 of the paper published by
Balesdent and Mariotti (1996), as done in Quezada et al. (2019).

Based on these published data, the content of the centennially stable SOC fraction (g C kg™) at each reference site was
estimated by modelling the decline of total SOC present at the onset of the experiment with time (sites with an LTBF
treatment; as SOC inputs are negligible in bare fallow systems) or by modelling the decline of C4-plant derived SOC present

at the time of vegetation change with time (La Cabafa site; as SOC inputs from C, plants are negligible after pasture
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conversion to oil palm plantation). For the seven reference sites, the decline in total SOC or C4-plant derived SOC over time
had a similar shape, as shown in Barré et al. (2010), Cécillon et al. (2018), Franko and Merbach (2017) and Quezada et al.

(2019) and could be modelled using a first-order exponential decay with a constant term following Eq. (1):

y() =ae P +c, (1)
where y(t) (g Ckg ™) is the total (sites with an LTBF treatment) or C,-plant derived (La Cabafia site) SOC content at time t, t
(year) is the time under bare fallow (sites with an LTBF treatment) or since pasture conversion to oil palm plantation (La
Cabafia site), and a, b and c are fitting parameters. Parameter a (g C kg ') corresponds to the content of the active SOC
fraction and b (yr™") is the characteristic decay rate. The parameter ¢ (g C kg ') represents the content of theoretically inert
SOC. Following Barré et al. (2010), Cécillon et al. (2018) and Franko and Merbach (2017), we considered this parameter ¢
as a site-specific metric of the centennially stable SOC fraction content. As already stated in Cécillon et al. (2018), in our
view, the centennially stable SOC fraction is not biogeochemically inert; its mean age and mean residence time in soil are
both assumed to be high (centuries), though not precisely defined here. As a result, its decline with time is negligible at the
timescale of the long-term agricultural experiments or the long-term vegetation change site. We thus considered the
centennially stable SOC fraction content at each experimental site to be constant. In this study, we used the centennially
stable SOC fraction content already estimated by Franko and Merbach (2017) for the site of Bad Lauchstédt (on the LTBF
experiment started in 1988), and by Cécillon et al. (2018) for the sites of Versailles, Grignon, Rothamsted and Ultuna. We
estimated the content of the centennially stable SOC fraction for Askov and La Cabafia sites using the same Bayesian curve-
fitting method described by Cécillon et al. (2018). The Bayesian inference method was performed using Python 2.7 and the
PyMC library (Patil et al., 2010).

For the second version of PARTYsoc, We aimed at reducing the potential bias towards an overestimation of the centennially
stable SOC fraction content at reference sites using the Eq. (1) (supplementary Table S1). This overestimation is possible at
reference sites with an LTBF treatment, as SOC inputs to bare fallow topsoils are low but not null (e.g., Jenkinson and
Coleman, 1994; Petersen et al., 2005). Similarly, C,-plant derived SOC inputs are possible after conversion to C; plants at
the site of La Cabafia. We thus used the lowest observed total (sites with an LTBF treatment) or C,-plant derived (La Cabafia
site) topsoil SOC content value as the best estimate of the centennially stable SOC fraction content in reference sites where

this measured value was lower than the fitted value of the site-specific parameter ¢ of Eq. (1).

2.2 Rock-Eval® thermal analysis of topsoil samples available from reference sites

Surface soil samples (0—10 cm to 0-30 cm depending on the site; see supplementary Table S2) were obtained from the seven
reference sites described in Sect. 2.1. As described in Cécillon et al. (2018), the first version of the PARTY soc statistical
model was based on a set of 118 topsoil samples corresponding to time series obtained from the soil archives of the sites of

Rothamsted (12 samples from the LTBF treatment and eight samples from the adjacent long-term grassland treatment),

7
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Ultuna (23 samples from the LTBF treatment and 11 samples from the associated long-term cropland treatments), Grignon
(12 samples from the LTBF treatment, six samples from the LTBF plus straw amendment treatment and six samples from
the LTBF plus composted straw amendment treatment) and Versailles (20 samples from the LTBF treatment and 20 samples
from the LTBF plus manure amendment treatment). All 118 topsoil samples were previously analyzed using Rock-Eval®
thermal analysis (Cécillon et al., 2018).

For the second version of the statistical model, 78 additional topsoil samples were provided by managers of the three new
reference sites. Thirty-five topsoil samples were obtained from the soil archives of the Askov site (19 samples corresponding
to different dates of the LTBF treatment and 16 samples corresponding to different dates of the associated long-term
cropland treatments). Twenty-seven topsoil samples were obtained from the soil archives of the Bad Lauchstadt site (eight
samples from two dates of the mechanical LTBF treatment, eight samples from two dates of the chemical LTBF treatment
and eleven samples from two dates of several long-term cropland treatments of the static fertilization experiment, eight out
of the latter coming from treatments with manure applications). Sixteen topsoil samples were obtained from the site of La
Cabafia (13 samples from different Cs-plant oil palm fields planted at different dates and three samples from different long-

term C,4-plant pastures).

The 78 additional topsoil samples from Askov, Bad Lauchstédt and La Cabafia were analyzed using the same Rock-Eval® 6
Turbo device (Vinci Technologies, France; see Behar et al., 2001 for a description of the apparatus) and the same setup as
the one used for the sample set of the first version of the PARTY soc statistical model, described by Cécillon et al. (2018).
Briefly, ca. 60 mg of ground (< 250 um) topsoil samples were subjected to sequential pyrolysis and oxidation phases. The
Rock-Eval® pyrolysis phase was carried out in an N, atmosphere (3 min isotherm at 200 °C followed by a temperature ramp
from 200 to 650 °C at a heating rate of 30 °C min™). The Rock-Eval® oxidation phase was carried out in laboratory air
atmosphere (1 min isotherm at 300 °C followed by a temperature ramp from 300 to 850 °C at a heating rate of 20 °C min™
and a final 5 min isotherm at 850 °C). Each Rock-Eval® analysis generated five thermograms corresponding to the volatile
hydrocarbon effluents (HC_PYR thermogram), CO (CO_PYR thermogram) and CO, (CO2_PYR thermogram) measured at
each second during the pyrolysis phase, and to the CO (CO_OX thermogram) and CO, (CO2_0OX thermogram) measured at

each second during the oxidation phase (Behar et al., 2001).

A series of Rock-Eval® parameters were calculated from these five thermograms. For each thermogram, five temperature
parameters (all in °C) were retained: T10, T30, T50, T70 and T90, which respectively represent the temperatures
corresponding to the evolution of 10, 30, 50, 70 and 90% of the total amount of evolved gas. The calculation of Rock-Eval®
temperature parameters was performed using different intervals of integration depending on the thermogram. The integration
omitted the first 200 seconds of the analysis for the three thermograms of the pyrolysis phase. The integration ended at the
time of analysis corresponding to the maximum oven temperatures of 650 °C (HC_PYR thermogram), 560 °C (CO_PYR

8
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and CO2_PYR thermograms), 850 °C (CO_OX thermogram) and 611 °C (CO2_OX thermogram). These intervals of
integration prevented any interference by inorganic carbon from most soil carbonates, and they ensured comparability with
previous studies (Barré et al., 2016; Cécillon et al., 2018; Poeplau et al., 2019; Soucémarianadin et al., 2018b). Automatic
baseline correction (as calculated by the software of the Rock-Eval® apparatus; Vinci Technologies, France) was performed
for all thermograms but the CO_PYR and the CO2_PYR thermograms. This correction can yield some negative values for
the CO_PYR and CO2_PYR thermograms of soil samples with very low SOC content (data not shown). For the HC_PYR
thermogram we also determined three parameters reflecting a proportion of thermally resistant or labile hydrocarbons: a
parameter representing the proportion of hydrocarbons evolved between 200 and 450 °C (thermo-labile hydrocarbons,
TLHC-index, unitless; modified from Saenger et al. (2013, 2015) as described by Cécillon et al. (2018); a parameter
representing the preservation of thermally labile hydrocarbons (I-index, unitless, after Sebag et al., 2016); and a parameter
representing the proportion of hydrocarbons thermally stable at 400 °C (R-index, unitless, after Sebag et al., 2016). We also
considered the hydrogen index (HI, mg HC g C) and oxygen index (Olggs, mg O, g™ C) that respectively describe the
relative elemental hydrogen and oxygen enrichment of soil organic matter (see e.g., Barré et al., 2016). These 30 Rock-
Eval® parameters are not directly related to total SOC content and were all included in the first version of the PARTY soc
model developed by Cécillon et al. (2018).

In this second version of PARTYsoc, We considered ten additional Rock-Eval® parameters as possible predictors, some of
these being directly linked to SOC content (supplementary Table S1). These ten parameters were calculated for all the 196
topsoil samples available from the seven reference sites. They included: the content of SOC as determined by Rock-Eval®
(TOCxres, g C kg™): the content of soil inorganic carbon as determined by Rock-Eval® (MinC, g C kg™); the content of SOC
evolved as HC, CO or CO, during the pyrolysis phase of Rock-Eval® (PC, g C kg™); the content of SOC evolved as HC
during the temperature ramp (200-650 °C) of the pyrolysis phase of Rock-Eval® (S2, g C kg™); the content of SOC that
evolved as HC, CO or CO, during the first 200 seconds of the pyrolysis phase (at ca. 200 °C) of Rock-Eval® (PseudoS1, g C
kg™, after Khedim et al., 2020); the ratio of PseudoS1 to PC (PseudoS1/PC, unitless); the ratio of PseudoS1 to TOCgres
(PseudoS1/TOCRkgs, unitless); the ratio of S2 to PC (S2/PC, unitless, after Poeplau et al., 2019); the ratio of PC to TOCggg
(PC/TOCRgs, unitless); and the ratio of HI to Olggg (HI/Olggs, mg HC mg'1 0,). TOCggs, MiInC, PC, HI and Olggg Were
obtained as default parameters from the software of the Rock-Eval® apparatus (Vinci Technologies, France). All other
Rock-Eval® parameters were calculated from the integration of the five thermograms using R version 4.0.0 (R Core Team,
2020; RStudio Team, 2020) and functions from the R packages hyperSpec (Beleites and Sergo, 2020), pracma (Borchers,
2019) and stringr (Wickham, 2019).

2.3 Determination of the centennially stable SOC fraction proportion in topsoil samples from the reference sites

Following the first version of PARTYsoc (Cécillon et al., 2018), the proportion of the centennially stable SOC fraction in a

topsoil sample of a reference site was calculated as the ratio of the site-specific centennially stable SOC fraction content (see

9
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Sect. 2.1) to the SOC content of this particular sample. We thus assume that the centennially stable SOC fraction content in
topsoils is the same in the various agronomical treatments of a reference site and that it remains constant within the time-
period studied at each site.

While for the first version of PARTY soc, the proportion of the centennially stable SOC fraction in reference topsoils was
calculated with SOC contents determined by elemental analysis (SOCg,), in this second version, we preferred the SOC
content determined by Rock-Eval® (supplementary Table S1). The reason behind this choice was to link the Rock-Eval®
parameters measured on a reference topsoil sample to a calculated proportion of the centennially stable SOC fraction that
better reflected the organic carbon that actually evolved during its Rock-Eval® analysis. This choice was possible for
reference topsoil samples for which Rock-Eval® analyses showed a good organic carbon yield (TOCggg divided by SOCga,
and multiplied by 100). This is generally the case for most soils, with typical organic carbon yields of Rock-Eval® ranging
from 90 to 100% of SOCkg, (Disnar et al., 2003). For the topsoils of the sites of Grignon, Rothamsted, Ultuna and Versailles
used in the first version of PARTY goc, the organic carbon yield of Rock-Eval® was greater than 96% (linear regression
model, R2 = 0.97, n = 118; Cécillon et al., 2018). Similarly, Rock-Eval® analyses of topsoil samples from the site of La
Cabafia showed very good organic carbon yields (95% on average, linear regression model Rz = 0.95, n = 16). For these five
reference sites (corresponding to 134 reference topsoil samples), we thus used the Rock-Eval® parameter TOCggg as a
measure of the SOC content of topsoil samples to calculate their respective proportion of the centennially stable SOC
fraction. Conversely, Rock-Eval® analyses of topsoil samples from the sites of Askov and Bad Lauchstédt showed moderate
organic carbon yields (90% on average for topsoils of Askov, with a noisy linear regression model Rz = 0.68, n = 30; and
92% on average for topsoils of Bad Lauchstadt, yet with a very good linear regression model R2 = 0.96, n = 11). Using the
total carbon measured by Rock-Eval® (i.e., the sum of TOCggs plus MIinC Rock-Eval® parameters) as an estimate of the
SOC content of topsoil samples for these two sites —that are not carbonated— increased the organic carbon yield of Rock-
Eval® analyses (96% on average at Askov, still with a noisy linear regression model Rz = 0.66, n = 30; and 101% on average
at Bad Lauchstadt, with a very good linear regression model R2 = 0.95, n = 11). For the two reference sites of Askov and Bad
Lauchstadt (corresponding to 62 topsoil samples), we thus used the sum of Rock-Eval® parameters TOCggg plus MinC as a

measure of the SOC content of topsoil samples to calculate their proportion of the centennially stable SOC fraction.
The uncertainty in the proportion of the centennially stable SOC fraction was calculated using Equation 6 of the paper

published by Cécillon et al. (2018), propagating the uncertainties in SOC content data (using a standard error of 0.5 g C kg,

following Barré et al., 2010) and in the site-specific contents of the centennially stable SOC fraction (see above and Table 1).
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Table 1: Main statistics of soil organic carbon contents, site-specific contents of the centennially stable SOC fraction,

and resulting proportions of centennially stable SOC fraction in topsoils of the seven reference sites used as the

reference topsoil sample sets of the PARTYsocv2.0 and PARTYsocv2.0gy models. More details on agronomical

305 treatments and sampling year of reference topsoil samples are provided in supplementary Table S3. Abbreviations: SOC, soil

organic carbon; LTBF, long-term bare fallow; min, minimum; max, maximum; sd, standard deviation.

Reference site

Treatments

SOC content

Centennially stable SOC

Proportion of the

(Country) (number of samples) (g Ckgh fraction content centennially stable
mean (min, max, sd) (g Ckg™h SOC fraction
measurement method mean (sd) (unitless)

estimation method mean (min, max, sd)
] 5.50 (0.50)
Versailles 10.4 (5.6, 17.9, 3.9) 0.60 (0.31, 0.98,
LTBF (n=15) Lowest SOCga measured
(France) TOCRges ] 0.20)
on site
Grassland (n=7) 28.3(12.2,41.5,10.1) 9.72 (0.50)
Rothamsted 0.40 (0.23, 0.80,
Lowest SOCga measured
(England) LTBF (n=8) TOCrgs ) 0.18)
on site

Ultuna Cropland (n=3; +strawn=8)  15.2(10.0, 20.3, 2.8) 6.95 (0.88) 0.47 (0.34, 0.70,

(Sweden) LTBF (n=4) TOCrgs Bayesian curve-fitting 0.09)

Grignon 11.5(8,14.3,1.7) 7.12 (1.00) 0.63 (0.50, 0.89,

LTBF (n =12, +straw n = 3) . .

(France) TOCrgs Bayesian curve-fitting 0.10)

Askov Cropland (n=7) 13.8(11.1, 16.8,1.9) 5.10 (0.88) 0.38 (0.30, 0.46,

(Denmark) LTBF (n=8) TOCgge+MinC Bayesian curve-fitting 0.05)

15.00 (0.50)

Bad Lauchstadt

Cropland (n=1)

18.0 (16.8, 19.4, 0.6)

Lowest SOCgs measured

0.84 (0.7, 0.89,

(Germany) LTBF (n=14) TOCggg+MinC ] 0.03)
on site
4.75 (0.50)
La Cabafa Pasture (n = 3) 17.8 (10.2, 31.8,5.7) 0.29 (0.15, 0.47,
] . ] Lowest SOCga measured
(Colombia) Oil-palm plantation (n = 12) TOCrgs 0.10)

on site

Reference soil sample set of
PARTYsocv2.0 (n = 105)
Reference soil sample set of
PARTYs0cV2.0gy (N =90)

16.4 (5.6, 41.5, 7.3)

16.2 (5.6, 41.5, 7.5)

0.52 (0.15, 0.98,
0.21)

0.55 (0.23, 0.98,
0.20)
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2.4 Selection of the learning set and of meaningful Rock-Eval® predictors variables for the PARTY 5ocv2.0 model

In machine-learning, the selection of the learning set (here, the training and test sets of reference topsoil samples) of the
model influences the performances of the model, just like the selection of the predictor variables (here, the Rock-Eval®
parameters) (e.g., Cécillon et al., 2008; Wehrens, 2020).

For this second version of PARTYsoc, We changed some criteria regarding the inclusion of the available reference topsoil
samples in the learning set of the model (supplementary Table S1). We excluded from the learning set all the topsoil samples
experiencing agronomical treatments that may have changed the site-specific content of the centennially stable SOC fraction.
These agronomical treatments concern the repeated application of some types of exogenous organic matter such as compost
or manure, for which we suspect that they may increase the content of the centennially stable SOC fraction after several
decades. Therefore, to increase the likelihood of verifying our hypothesis of a constant content of the centennially stable
SOC fraction at each reference site in time and space (see Sect. 2.3), we excluded all reference topsoil samples experiencing
repeated applications of composted straw (six samples from Grignon), or manure (20 samples from Versailles and eight
samples from Bad Lauchstadt) from the learning set of the statistical model. Yet, we kept some reference topsoil samples

from Grignon and Ultuna experiencing repeated applications of straw.

We also excluded from the learning set of the model the reference topsoil samples for which the organic carbon yield of
Rock-Eval® is below 86% or above 116%. For the site of Askov with a noisy relationship between SOCg, and the sum
TOCRrgs plus MinC (see Sect. 2.3), we excluded the five samples without a SOCgs measurement preventing the calculation
of the organic carbon yield of their Rock-Eval® analysis. Conversely, for the site of Bad Lauchstadt we kept topsoil samples
without available SOCg, measurements, as the linear relationship between SOCga and the sum TOCggg plus MinC was very
good for this site (see Sect. 2.3). These criteria regarding the organic carbon yield of Rock-Eval® lead to the exclusion of

nine samples from the site of Askov, four additional samples from the site of Versailles and two from the site of Ultuna.

Contrary to the first version of PART Y soc (Cécillon et al., 2018), this second version is based on a balanced contribution of
each reference site to the statistical model (supplementary Table S1). Each reference site contributes to the model with 15
samples, so that the reference sample set of the PARTY socVv2.0 statistical model is composed of 105 topsoil samples (90 for
the European version of the model PARTY socv2.0g). Besides the above-mentioned exclusion criteria (that excluded 49 out
of the 196 topsoil samples available from the seven reference sites), the 15 topsoil samples retained for each reference site
were selected: (1) to have a range of proportion of centennially stable SOC fraction as wide as possible; (2) to have the best
organic carbon yield of Rock-Eval® analysis. On average, the organic carbon yield of the Rock-Eval® analyses for the
retained learning set of reference topsoil samples (calculated as described above) was greater than 98% of SOCga
(SOCpetermINED BY RocK-EvAL® = 0.9924 SOCga - 0.1051, R? = 0.99, n = 91 topsoil samples with available SOCga
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measurements). The list of the 105 reference topsoil samples retained as the learning set of PARTY socVv2.0 is provided in
supplementary Table S3. This list includes, for each reference topsoil sample, information on its reference site, land cover,

agronomical treatment, sampling year and its values for the 40 Rock-Eval® parameters.

The 40 Rock-Eval® parameters calculated (see Sect. 2.2) captured most of the information related to SOC thermal stability,
elemental stoichiometry and content that is contained in the five Rock-Eval® thermograms. However, not all Rock-Eval®
parameters do necessarily carry meaningful information for partitioning SOC into its centennially stable and active fractions
(Cécillon et al., 2018). The PARTYsocv2.0 statistical model and its European version PARTY socv2.0gy incorporate as
predictor variables only the Rock-Eval® parameters showing a strong relationship with the proportion of the centennially
stable SOC fraction (supplementary Table S1). The absolute value of 0.50 for the Spearman’s rho (nonparametric and
nonlinear correlation test) was used as a threshold to select meaningful Rock-Eval® predictor variables (calculated on the
reference topsoil sample set of the PARTYsocv2.0 model, n = 105). Basic statistics of all Rock-Eval® parameters (learning

set of PARTY50cv2.0) are reported in supplementary Table S4.

2.5 Random forests regression models to predict the proportion of the centennially stable SOC fraction from Rock-
Eval® parameters, performance assessment and error propagation in the statistical models

The PARTYocv2.0 statistical model consists of a nonparametric and nonlinear multivariate regression model relating the
proportion of the centennially stable SOC fraction (response vector or dependent variable y) of the reference soil sample set
(n = 105 topsoil samples from the seven reference sites, see Sect. 2.4) to their Rock-Eval® parameters summarized by a
matrix of predictor variables (X) made up of the selected centered and scaled Rock-Eval® parameters. As stated above, we
also built a regional (European) version of the statistical model based on the six European reference sites only
(PARTY 50cV2.0gy, using the 90 reference topsoil samples from Askov, Bad Lauchstadt, Grignon, Rothamsted, Ultuna and
Versailles).

Like the first version of the PARTY soc Statistical model, this second version uses the machine-learning algorithm of random
forests-random inputs (hereafter termed random forests) proposed by Breiman (2001). This algorithm aggregates a collection
of random regression trees (Breiman, 2001; Genuer and Poggi, 2020). The PARTYsocv2.0 and its European version
PARTY socVv2.0gy are based on a forest of 1000 different regression trees made of splits and nodes. The learning algorithm of
random forests combines bootstrap resampling and random variable selection. Each of the 1000 regression trees was grown
on a bootstrapped subset of the reference topsoil sample set (i.e., containing ca. two-thirds of “in-bag” samples). The
algorithm randomly sampled one-third out of the selected Rock-Eval® parameters (see Sect. 2.4) as candidates at each split
of the regression tree, and it used a minimum size of terminal tree nodes of five topsoil samples. The relative importance
(i.e., ranking) of each selected Rock-Eval® parameters in the regression models was computed as the unscaled permutation
accuracy (Strobl et al., 2009).
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The performance of the PARTYsocv2.0 and the PARTYsocv2.0gy random forests regression models was assessed by
statistical metrics comparing the predicted vs. the estimated values of their reference topsoil sample set using three different
strategies. First, the predictive ability of both models was assessed by an “internal” procedure that used their respective
whole reference topsoil sample sets (n = 105 samples for PARTYsocVv2.0, n = 90 samples for PARTY socVv2.0gy). For this
procedure, performance statistics were calculated only on the “out-0f-bag” topsoil samples of the whole reference sets, using
a random seed of 1 to initialize the pseudorandom number generator of the R software. Out-of-bag samples are observations
from the training sets not included in the learning topsoil sample set for a specific regression tree that can be used as a “built-
in” test set for calculating its prediction accuracy (Strobl et al., 2009). Second, the predictive ability of the models was
assessed by a “random splitting” procedure that split randomly their respective reference topsoil sample sets into a test set
(made of n = 30 samples), and a training set (n = 75 samples for PARTY socv2.0, n = 60 samples for PARTY socVv2.0gy). This
procedure was repeated 15 times using random seeds from 1 to 15 in the R software. Third, a fully independent “leave-one-
site-out” procedure was used to assess the predictive ability of the models. This procedure successively excluded topsoil
samples of one reference site from the training set and uses them as a test set (n = 15) for the models. It used the random
seed of 1 in the R software. For the second and third procedures, performance statistics were calculated (1) on the “out-of-

bag” topsoil samples of the training sets and (2) on the topsoil samples of the test sets.

Finally, the sensitivity of model performance to the reference sites included in the learning set of the random forests
regression model was assessed on independent soils from two reference sites, used as examples. For this sensitivity analysis,
topsoil samples from Grignon and Versailles (n = 15 samples) were successively used as fully independent test sets for
several random forests regression models. Combinations of topsoil samples from a decreasing number of the remaining
reference sites were selected as training sets for the models, on the basis of their potential proximity to the topsoil samples of
the test sets, regarding their pedological or climatic conditions. The size of the various training sets composed for the
sensitivity analysis ranged from n = 90 samples (six training reference sites) to n = 30 samples (only two training reference

sites).

Several statistics were used to assess the predictive ability of the regression models. The coefficient of determination: R%og,
calculated on the “out-of-bag” samples of the training sets; and R2, calculated on the samples of the test sets. The root-mean-
square error of prediction: RMSEPqog, calculated on the “out-0f-bag” samples of the training sets; and RMSEP, calculated
on the samples of the test sets. The relative RMSEP: RRMSEP, calculated as the ratio of the RMSEP to the mean value of the
test sets. The ratio of performance to interquartile range (RP1Q) was calculated as the ratio of the interquartile range of the
test sets (Q3 - Q1; which gives the range accounting for 50% of the test sets around its median value) to the RMSEP (Bellon-
Maurel et al., 2010). The bias of the random forests regression models was calculated as the mean of the model predictions

on the test sets minus the actual mean of the test sets. Additionally, site-specific RMSEP and RRMSEP were calculated for
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the “leave-one-site-out” procedure (on the 15 independent test topsoil samples from each site). The uncertainty on the model
predictions for new topsoils was determined using a methodology that was fully described by Cécillon et al. (2018). This
methodology was adapted after the work of Coulston et al. (2016), to explicitly take into account the uncertainty in the
reference values of the proportion of the centennially stable SOC fraction (see Sect. 2.3) that were used to build the models
(Cécillon et al., 2018).

PARTYsocv2.0 and PARTY socv2.0gy Were programmed as R scripts in the RStudio environment software (RStudio Team,
2020), and were run using the R version 4.0.0 (R Core Team, 2020). The R scripts use the random forests algorithm of the
randomForest R package (Liaw and Wiener, 2002) and the boot R package for bootstrapping (Canty and Ripley, 2020;
Davison and Hinkley, 1997).

3 Results
3.1 Content of the centennially stable SOC fraction at the reference sites

The two newly fitted values of the centennially stable SOC fraction content (i.e., parameter ¢ in Eq. (1), see Sect. 2.1) were
5.10 g C kg™ at the site of Askov (standard deviation = 0.88 g C kg™*) and 5.12 g C kg™ at the site of La Cabafia (standard
deviation = 0.35 g C kg™). The fitted values of parameter ¢ in Eq. (1) for all reference sites and their standard errors are
provided in supplementary Table S2. A total (reference sites with an LTBF treatment) or a C4-plant derived (La Cabafia site)
SOC content value lower than the fitted value of the site-specific parameter c in Eq. (1) was measured in four out the seven
reference sites of the PART Y socv2.0 model. At Bad Lauchstadt, a SOCga value of 15.0 g C kg'l was reported by Korschens
et al. (1998) for topsoils of the well ring experiment (Ansorge, 1966). At Rothamsted, a SOCg measurement of 9.72 g C kg
! was reported for topsoils of the Highfield LTBF experiment by Cécillon et al. (2018). At Versailles a SOCg, measurement
of 5.50 g C kg™ was reported after 80 years of bare fallow by Barré et al. (2010). At La Cabafia, a C,-plant derived SOC
content of 4.75 g C kg™ was calculated using data from Quezada et al. (2019). These values were thus retained as the best
estimates of the site-specific content of the centennially stable SOC fraction in topsoils of the four sites (Table 1). As these
site-specific values of the centennially stable SOC fraction content were derived from SOCg, measurements, we attributed a
standard deviation of 0.50 g C kg™ to each of them, following Barré et al. (2010). The final estimates of the content of the
centennially stable SOC fraction at the seven reference sites that were used in the PARTYgocv2.0 statistical model are
provided in Table 1. They varied by a factor of three across the reference sites, ranging from 4.75 g C kg™ at La Cabafia to
15.00 g C kg™ at Bad Lauchstadt. The lowest value of the topsoil content of the centennially stable SOC fraction used in the
European version PARTY socVv2.0gy of the statistical model differed only slightly from the one of the PARTY socv2.0 model
(5.10 g C kg™ at the site of Askov).
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3.2 Content and biogeochemical stability of SOC in the learning sets, and selection of meaningful Rock-Eval®
parameters as predictor variables for the PARTYsocv2.0 and PARTY socVv2.0gy models

The SOC content in the topsoil samples of the seven reference sites ranged from 5.6 to 41.5 g C kg™ in the learning sets of
the PARTY5ocv2.0 (n = 105) and PARTYsocv2.0gy (n = 90) models (Table 1). As showed in Table 1, this resulted in
proportions of the centennially stable SOC fraction ranging from 0.15 to 0.98 (PARTYsocV2.0 learning set), and from 0.23
t0 0.98 (PARTYsocV2.0gy learning set). All the 25 calculated Rock-Eval® temperature parameters showed positive values of
Spearman’s rho coefficient with the response variable of the PARTY socv2.0 model (n = 105; with Spearman’s rho values up
to 0.81 for T90,c pyr; Table 2). While the inorganic carbon content was not correlated to the proportion of the centennially
stable SOC fraction, TOCrgs was significantly and negatively correlated to the response variable of the PARTY socv2.0
model (Spearman’s rho = -0.55; Table 2). Other Rock-Eval® parameters linked to soil carbon content showed a stronger
relationship than TOCggs With the proportion of the centennially stable SOC fraction. This was the case for S2 and PC that
showed the highest absolute Spearman’s rho coefficients, with a highly significant negative relationship (Spearman’s rho = -
0.85; Table 2). Eighteen out of the 40 calculated Rock-Eval® parameters showed an absolute value of Spearman’s rho above
0.5 with the proportion of the centennially stable SOC fraction in the learning set of the PARTYsocv2.0 model (n = 105;
Table 2), and were thus retained as predictor variables for the models. The 18 Rock-Eval® parameters retained were: the
Rock-Eval® temperature parameters T70uc pvr, T90hc pyr, T30co2 pyrs T90co2 pyr: T70co2 pyr, T90co2 pvr: T70co ox:
T50c02 ox; T70co2 ox: T90co2 ox, and the Rock-Eval® parameters PseudoS1, S2, S2/PC, HI, HI/Olggs, PC, PC/TOCggg, and
TOChres.

Table 2: Spearman's rank correlation coefficient test between the 40 calculated Rock-Eval® parameters and the
proportion of the centennially stable organic carbon fraction in the reference topsoil sample set of the PARTY 50cVv2.0
model (n = 105), and variable importance (ranking) of the 18 selected Rock-Eval® parameters for predicting the
proportion of the centennially stable SOC fraction in the PARTY socv2.0 and PARTYsocv2.0gy random forests
regression models. Symbols for p-values: *** p < 0.001; ** p < 0.01; * p < 0.05; NS p > 0.05 = not significant. See Section
2.2 for a description of the units of the 40 Rock-Eval® parameters. The 18 Rock-Eval® parameters retained as predictor

variables for the second version of PARTY goc are shown in bold. Abbreviation: SOC, soil organic carbon.

Rock-Eval® Spearman’s p with p-  Variable importance to predict  Variable importance to predict
parameter the proportion of  value the proportion of the the proportion of the centennially
the centennially centennially stable SOC stable SOC fraction in the
stable SOC fraction fraction in the PARTYgocv2.0 PARTY socv2.0gy regression
regression model (rank) model (rank)
T104c pyr 0.38 0.0001 NA NA
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T30hc pyr
T50kc pyr
T70hc_pyr
T90uc_pvr
T10co_pvr
T30co_pvr
T50co_pyr
T70co pyr
T90co pvr
T10co2 pyr
T30co2 pyr
T50co2_pyr
T70co2 pyr
T90co2 pyr
T10co_ox
T30co ox
T50¢0 ox
T70co_ox
T90co_ox
T10co2_ox
T30co2_ox
T50c02 ox
T70c02_ox
T90c02_ox
I-index
R-index
TLHC-index
HI

Olges
TOCRges
MinC

PC

S2

0.47
0.46
0.54
0.81
0.40
0.36
0.33
0.31
0.31
0.35
0.56
0.55
0.55
0.58
0.31
0.41
0.49
0.58
0.33
0.10
0.39
0.63
0.70
0.60
-0.40
0.47
-0.49
-0.72
-0.09
-0.55
0.03
-0.85
-0.85

0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.0005
0.0014
0.0013
0.0003
0.0000
0.0000
0.0000
0.0000
0.0013
0.0000
0.0000
0.0000
0.0007
0.3349
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.3504
0.0000
0.7430
0.0000
0.0000

17

NA
NA
17

NA
NA
NA
NA
NA
NA
12

10
11
NA
NA
NA

NA
NA
NA
13

14

NA

NA

NA

NA

NA

NA
NA
15
13
NA
NA
NA
NA
NA
NA
10

11
NA
NA
NA
16

NA
NA
NA
14

12

17

NA
NA
NA

NA

NA
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PseudoS1 -0.50 0.0000 18 18
PseudoS1/PC 0.28 0.0033 NA NA
PseudoS1/TOCres -0.06 0.5702 NA NA
S2/PC -0.70 0.0000 16 4
PC/TOCRes -0.71 0.0000 3 8
HI1/Olrge -0.68 0.0000 15 5

3.3 Performance assessment of the PARTYsocv2.0 and PART Y gocVv2.0gy statistical models

Using both the “internal” and the “random splitting” performance assessment procedures (see Sect. 2.5), the PART Y socv2.0
and PARTYsocVv2.0y models showed good to very good predictive ability of the proportion of the centennially stable SOC
fraction (Fig. 2a; Table 3a). For most of the calculated statistics, the European version of the model PARTY socv2.0gy
showed better performances than the PARTY socv2.0 model (Table 3). Using the “random splitting” procedure, the mean R?
of PARTYsocVv2.0gy was 0.87 (0.81 for PARTYsocv2.0), its RMSEP and RRMSEP were respectively 0.07 and 0.13 (0.09
and 0.17 for PARTYsocv2.0), and its mean RPIQ was 4.6 (3.6 for PARTYsocv2.0). The bias was low for both models (Table
3a).

z %7 (a) Internal validation 77 %7 (b) Leave-one-site-out validation ,7 | Legend

.0 2 ,

£ y .

S Y X O, Model version:
o g_ /2 6. 0 08 /\\/A/%/ 4
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Figure 2: Performance of the PARTYsocv2.0 and the PARTYgocv2.0gy statistical models based on Rock-Eval®
thermal analysis for predicting the centennially stable organic carbon proportion in topsoils. (a) Results of the internal
validation procedure; (b) Results of the leave-one-site-out validation procedure (see Section 2.5 for more details on model

performance assessment). Abbreviation: SOC, soil organic carbon.
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Table 3: Performance of the PARTYocv2.0 and the PARTYsocVv2.0gy random forests regression models based on
480 Rock-Eval® thermal analysis for predicting the proportion of the centennially stable organic carbon fraction in
topsoils. (a) Performance statistics calculated for the internal, random splitting (mean statistics of 15 different models) and
leave-one-site-out validation procedures; (b) Site-specific performance statistics calculated for the leave-one-site-out

validation procedure. The performance statistics and their abbreviations are defined at Section 2.5.

€)] Internal procedure Random splitting procedure Leave-one-site-out procedure
PARTYsocv2.0 PARTYsocv2.0ey PARTYsocv2.0 PARTYsocv2.0ey PARTYsocv2.0 PARTYsocv2.0gy
R%008 0.83 0.87 0.80 0.84 - -
RMSEPoos 0.08 0.07 0.09 0.08 - -
R? - - 0.81 0.87 0.23 0.45
RMSEP - - 0.09 0.07 0.18 0.15
rRRMSEP - - 0.17 0.13 0.36 0.27
RPIQ - - 3.59 4.60 1.75 2.39
Bias - - 0.005 0.006 <0.001 -0.003
(b) Leave-one-site-out procedure
Test set Askov Bad Grignon  Versailles Rothamsted Ultuna La
Lauchstadt Cabaria

Site-

specific 0.05 0.32 0.11 0.17 0.14 0.06 0.28
PARTY socv2.0 R_MSEP

Site-

specific 0.13 0.38 0.18 0.28 0.36 0.13 0.94

rRRMSEP

Site-

specific 0.05 0.23 0.18 0.14 0.14 0.09 -
PARTY socv2.0gy R_MSEP

Site-

specific 0.13 0.28 0.28 0.24 0.35 0.20 -

rRRMSEP
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The predictive ability of both models decreased when assessed using the “leave-one-site-out” procedure (see Sect. 2.5; Fig.
2b). Again, PARTY socVv2.0gy showed better performance statistics than the PARTYgocv2.0 model (Table 3; Fig. 2b), with
an Rz of 0.45, an RMSEP of 0.15, an RRMSEP of 0.27 and an RPIQ of 2.4. The PARTYsocv2.0 model poorly predicted the
proportion of the centennially stable SOC fraction in topsoil samples of two sites (Table 3b; Fig. 2b): La Cabafia
(overestimation; with a site-specific RMSEP of 0.28) and Bad Lauchstadt (underestimation; with a site-specific RMSEP of
0.32). The proportion of the centennially stable SOC fraction in topsoil samples of Bad Lauchstédt remained underestimated
by the PARTY50cv2.0gy model, though with a reduced site-specific RMSEP (0.23; Table 3b; Fig. 2b). All other site-specific
RMSEPs were below 0.18 (0.17 at Versailles for PARTYocv2.0, 0.18 at Grignon for PARTYgocVv2.0gy; Table 3b), with
remarkably low site-specific RMSEPs for the sites of Askov (below 0.05 for both models) and Ultuna (0.06 for
PARTY0cv2.0; 0.09 for PARTY 50cV2.0gy).

The most important Rock-Eval® parameter for predicting the proportion of the centennially stable SOC fraction is S2 for
both PARTY 50cv2.0 and PART YsocV2.0gy Statistical models (Table 2). Conversely, the two models show only two Rock-
Eval® parameters in common out of their five most important ones that are S2, PC, PC/TOCggg, T70c02 ox, T90nc pvr fOr
PARTYsocv2.0 and S2, T50¢o; pyr, PC, S2/PC, HI/Olggg for PART Y socv2.0gy (Table 2).

3.4 Sensitivity of model performance to the reference sites included in the learning set

Restricting the learning set of the machine-learning model to topsoil samples from fewer reference sites with pedoclimatic
conditions closer to the ones of a fully independent test site changed its performances (Fig. 3). Removing the reference sites
with a climate (i.e., La Cabafia) or a soil type (i.e., Bad Lauchstadt) differing strongly from the independent test site (here,
Grignon or Versailles used as examples) reduced the site-specific RMSEP and RRMSEP of the model (supplementary Table
S5). When Grignon or Versailles were used as independent test sites, the statistical model with the best predictive ability
(i.e., the lowest site-specific RMSEP and RRMSEP) used a learning set composed of 45 topsoil samples from three European
reference sites (including the French site with the closest climate, despite its different soil type; supplementary Table S2 and
S5; Fig. 3).
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Figure 3: Sensitivity of model performance to the reference sites included in the learning set, using 15 topsoil samples

from the sites of (a) Grignon or (b) Versailles as independent test sets. Predictions by statistical models showing the

515 lowest RMSEP and RRMSEP are plotted in green (using a learning set composed of three independent reference sites to
predict Grignon or Versailles as test set). See supplementary Table S5 for more details on the learning sets of the different
statistical models and their site-specific performance statistics. Abbreviation: SOC, soil organic carbon.
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4 Discussion

The second version of the PARTYsoc model incorporates a large number of modifications and improvements
(supplementary Table S1), and its predictive ability was more thoroughly assessed compared to the first version of the
statistical model (Cécillon et al., 2018). The critical examination of the performance of PARTYgocv2.0 and
PARTYsocVv2.0ey provides new insights: (1) on the relationships between Rock-Eval® parameters and the century-scale
persistence of SOC; (2) on both current and potential capabilities of the model to partition the centennially stable and active
organic carbon fraction in topsoils. Based on those insights, (3) we plan future expansions of the PARTYsoc global model,
and we recommend the application of PARTY socV2.0gy in European agricultural topsoils to provide accurate information on
SOC kinetic pools partitioning that may improve the simulations of simple models of SOC dynamics.

4.1 Rock-Eval® chemical and thermal information are related to the century-scale persistence of SOC

The methodology used to estimate the centennially stable SOC proportion in reference topsoils has been revised for the
second version of the PARTYsoc model (see Sect. 2.1 and 2.3 and supplementary Table S1), and the learning set now
integrates a wider range of centennially stable SOC contents [4.75-15.00 g C kg™] with a median value of 6.95 g C kg™ (n =
7; Table 1). This range covers most of the published size estimates of this fraction in topsoils, estimated using different
methods (Balesdent et al., 1988; Barré et al., 2010; Buyanovsky and Wagner, 1998b; Cécillon et al., 2018; Franko and
Merbach, 2017; Hsieh, 1992; Huggins et al., 1998; Jenkinson and Coleman, 1994; Kdrschens et al., 1998; Riuhlmann, 1999).
The contribution of each reference site to the learning set and the inclusion criteria for topsoil samples were also modified,
and ten Rock-Eval® parameters not considered in the first version of the model were proposed as potential predictor

variables for this second version of the statistical model (see Sect. 2.2 and 2.4 and supplementary Table S1).

Using this improved design, all Rock-Eval® temperature parameters showed positive values of Spearman’s rho coefficient
with the proportion of the centennially stable SOC fraction in topsoils (Table 2), when a few of them showed
counterintuitive significant negative correlations using the learning set of the first version of PARTYsoc (Cécillon et al.,
2018). This confirms the generic link between SOC thermal stability and its in situ biogeochemical stability: centennially
stable SOC is thermally stable, even though thermostable SOC fractions are a mixture of centennially stable and active SOC
(Fig. 1; Barré et al., 2016; Gregorich et al., 2015; Plante et al., 2013; Sanderman and Grandy, 2020; Schiedung et al., 2017).
Some Rock-Eval® temperature parameters were within the five most important predictor variables for both PARTY socv2.0
(T70co2 ox, T90kc pyr) and PARTY gocV2.0gy (T50c02 pyr) Statistical models (Table 2).

Contrary to the first version of the PARTY soc statistical model, the second version tested several Rock-Eval® parameters
directly linked to soil carbon content as potential predictor variables. TOCggg Was selected as a meaningful predictor variable
for PARTYs0cv2.0 and PARTY 5ocV2.0gy. Its negative correlation with the centennially stable SOC proportion (Table 2) was
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expected, according to the calculation of the latter (see Sect. 2.3). This is in line with results from SOC-dating techniques
and with most multi-compartmental models of SOC dynamics suggesting that the proportion of the most persistent SOC
fraction is a decreasing function of total SOC (Huggins et al., 1998; Ruhlmann, 1999). Indeed, the ex-post optimized initial
value of the proportion of the inert SOC fraction for the simple AMG model of SOC dynamics is higher (0.60 on average)
for SOC-poor temperate topsoils with a long-term arable history than for SOC-rich temperate topsoils with a long-term
grassland history (0.47 on average; Clivot et al., 2019). Contrarily, the empirical function commonly used to initialize the
size of the inert SOC fraction of the multi-compartmental RothC model predicts an increased proportion of inert SOC with
increased total SOC (Falloon et al., 1998). This empirical function needs to be examined upon these results.

Interestingly, S2 (pyrolysable volatile hydrocarbon effluents) and PC (total pyrolysable organic carbon), two other Rock-
Eval® parameters linked to SOC content showed a stronger negative relationship than TOCggs With the proportion of the
centennially stable SOC fraction. Both variables are within the three most important predictor variables for PARTY socVv2.0
and PARTY socVv2.0gy While TOCggg Was ranked sixth or ninth out of the 18 predictor variables (Table 2). Other Rock-Eval®
parameters related to the pyrolysable SOC fraction (PC/TOCggs and HI, both negatively related to the centennially stable
SOC proportion) were also important predictor variables for both models. The results suggest that a simple decreasing
function of total SOC content cannot accurately predict the centennially stable SOC proportion in topsoils, according to the
recent report by Clivot et al. (2019). They also confirm the generic elemental stoichiometry of the centennially stable SOC
fraction: it is consistently depleted in hydrogen (Barré et al., 2016; Gregorich et al., 2015; Poeplau et al., 2019); and they
illustrate the usefulness of the pyrolysis step of Rock-Eval® thermal analysis and its volatile hydrocarbon effluents

quantification to infer the proportion of the centennially stable SOC fraction in unknown topsoils.

4.2 Capability of the second version of PARTYsoc to partition the centennially stable and active SOC fractions

The learning set of the second version of the PARTY soc statistical model was significantly diversified compared with the
first version. Its reference topsoil samples now represent wider pedoclimatic conditions (supplementary Table S2), and it
includes one long-term vegetation change site as reference site (La Cabafia). Reference topsoils from the Colombian site of
La Cabaria fit well into the global learning set of the statistical model: they did not alter its overall performance. The root-
mean-square errors of PARTY socv2.0 (internal or random splitting validation procedures) are comparable to the ones of the
model’s first version, where the content of the centennially stable SOC fraction was inferred exclusively from plant-free soils
(Fig. 2a, Table 3; Cécillon et al., 2018). Similarly, the expansion of the reference learning topsoil sample set to new soil
types (Acrisol at La Cabafia, Chernozem at Bad Lauchstadt; FAO, 2014), soil texture (loamy coarse sand at Askov;
supplementary Table S2), soil pH (in H,O, with values as low as 4 at La Cabafia; supplementary Table S2) and climate
(tropical at La Cabafia; supplementary Table S2) did not alter the performance of the model, when assessed using the internal
or random splitting validation procedures (Fig. 2a, Table 3). Conversely, the leave-one-site-out validation procedure

illustrated that the second version of PARTY soc is currently not capable of accurately partitioning SOC into its centennially
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stable and active fractions in soil samples coming from pedoclimates that differ strongly from the ones included in the
learning set (sites of La Cabafia and Bad Lauchstadt; Fig. 2b, Table 3b). This indicates that like all machine-learning
approaches, the PARTYsoc model gains progressively more genericity (i.e., capability to fairly predict the centennially
stable SOC proportion in unknown soils) as its learning set integrates soils from new pedoclimates. To this respect, the
second version of PARTYsoc significantly extends the model’s validity range to new pedoclimates (tropical Cambisols,
continental Chernozems and temperate loamy coarse sand Luvisols). Contrarily, the relatively high prediction error of both
PARTYsocv2.0 and PARTYsocv2.0gy models at Rothamsted (high RRMSEP), a site with a pedoclimate rather similar to
some of the other European sites included in the learning set of PARTYsoc, may be due to an inaccurate estimate
(overestimation) of the centennially stable SOC content at this site. Indeed, a report from an ancient LTBF trial at
Rothamsted (drain gauge experiment; Jenkinson and Coleman, 1994), on the same soil type than the Highfield bare fallow
experiment, showed a measured total SOC content of 7.9 g C kg™, which is lower than our current estimate of the
centennially stable SOC content (9.72 g C kg™; Table 1). Yet, the conditions of the drain gauge experiment, with a basic soil
pH value of 7.9 due to heavy dressing of chalk on Rothamsted’s arable lands before the 19" century (Avery and Catt, 1995;
Jenkinson and Coleman, 1994), may not be directly comparable to the conditions of the Highfield bare fallow experiment

showing acidic pH values ranging from 5.2 to 6.3 (supplementary Table S2).

The predictive ability of the second version of PARTY soc was more thoroughly assessed compared to the first version of the
statistical model. Specifically, the sensitivity of model performance to the reference sites included in the learning set
demonstrates that local models —with learning sets composed of soils from pedoclimates similar to the ones of the soils
from the prediction set— showed better predictive ability of the centennially stable SOC proportion compared to a global
statistical model (Fig. 3). While the current learning set is composed of too few reference sites to implement local modelling,
this suggests that the European version PARTYsocVv2.0gy should be preferred to the global PARTYocv2.0 model when
predicting the centennially stable SOC proportion in unknown soils from Europe. The mean prediction error of 0.15 obtained
using the leave-one-site-out validation procedure of PARTYsocVv2.0gy (with a RRMSEP of 0.27; Table 3a) is probably a
conservative estimate of the accuracy of this model to partition the centennially stable and active SOC fractions over a wide

pedoclimatic range of agricultural topsoils in Northwestern Europe.

4.3 Future developments and recommended applications of the second version of the PARTY soc model

The second version of the PARTY soc model is based on six long-term agricultural sites including an LTBF treatment located
in Northwestern Europe and one vegetation change (C, to C; plants) site located in Colombia. The very first future
improvement for the machine-learning model is to pursue the expansion of the pedoclimatic diversity of its learning set. A
few additional LTBF sites and several C; to C,4 plants (or C4 to C3) long-term vegetation change sites (including space-for-
time substitution, like the site of La Cabafia) could be used to achieve this goal. A potential complement lies in a few long-

term experimental sites with soil archives and treatments experiencing contrasting SOC stock changes. Radiocarbon
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measurements on recent and archived soil samples from such sites can be used to infer the content of the centennially stable
SOC fraction in topsoils (Hsieh, 1992), but also in subsoils, to allow extending the model to deeper soil horizons. Following
the method developed by Buyanovsky and Wagner (1998b, 1998a) and Huggins et al. (1998), the content of the centennially
stable SOC fraction can also be estimated at a few additional long-term experiments with contrasted SOC inputs. A
promising complement to these strategies lies in numerous long-term sites where time series of SOC inputs, outputs and
stocks are well constrained (i.e., long-term experiments or long-term monitoring sites in various types of ecosystems
including arable land, grassland and forest). It is possible to reliably infer the content of the centennially stable SOC fraction
at these sites using simple models of SOC dynamics like AMG (Clivot et al., 2019). Combining all these strategies could
help expanding significantly the learning set of PARTY soc to soil samples from diverse climates, ecosystems, soil types and
soil depths. When the learning set of PARTYgoc Will integrate a sufficient diversity of soil samples, a second future
improvement of the model lies in the comparison of different machine-learning algorithms as well as the testing of local
modelling approaches, as commonly used in soil spectroscopy studies (Dangal et al., 2019; Gogé et al., 2012; Ramirez-
Lopez et al., 2013b, 2013a).

Meanwhile, the current version of the PARTYsocv2.0 model and especially its European version PARTY socVv2.0gy already
provide accurate predictions of the size of the centennially stable and active SOC fraction in agricultural topsoils of a large
diversity of pedoclimatic conditions (Fig. 2; Table 3). We consider that PARTY socVv2.0gy is mature enough (see Sect. 3.3,
3.4 and 4.2) to be reliably applied on agricultural topsoils in Northwestern Europe, or to be tested on topsoils of other
ecosystems under similar pedoclimates for research purposes. The PARTYsocv2.0ey model is available on public
repositories as an R script and an R data file (see Sect. Data and code availability). PARTY socVv2.0gy generates predictions
of the centennially stable and active SOC proportions and contents (in g C kg™; obtained by multiplying the centennially

stable and active SOC proportions by TOCgge) in unknown soil samples, using their measured Rock-Eval® parameters.

The second version of PARTYoc enables the reliable partitioning of SOC into its centennially stable and active SOC
fractions (Fig. 2). The validation of the model at the scale of Northwestern Europe presented here (PARTY socVv2.0gy)
constitutes a breakthrough in the metrology of SOC kinetic pools. It represents a great improvement compared to other
approaches that consistently fail to achieve a proper separation of active from stable SOC (Fig. 1; Hsieh, 1992; von Litzow
et al., 2007). Those methods such as the physical or physico-chemical SOC fractionation schemes have been developed to
initialize the size of SOC kinetic pools of models (Skjemstad et al., 2004; Zimmermann et al., 2007a) and some of them are
now implemented on large topsoil sample sets at the national or continental scale in Europe (Cotrufo et al., 2019; Vos et al.,
2018) and Australia (Gray et al., 2019; Viscarra Rossel et al., 2019). A similar implementation in soil monitoring networks
of Rock-Eval® measurements combined with the second version of PARTY goc Will provide a more accurate quantification
of the functionally different SOC fractions that are centennially stable or active (Fig. 1). Large-scale Rock-Eval®

measurements and the combined application of the PARTYsocv2.0ey model are already ongoing in the French soil
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monitoring network for soil quality assessment (RMQS; Jolivet et al., 2018). We recommend undertaking similar works in
other national and international soil monitoring networks. The second version of PARTY soc can also be directly employed
as a SOC pools partitioning method for simple models of SOC dynamics that are built on the same dualistic conceptual
approach of SOC persistence (i.e., active vs. inert SOC pools). The accuracy of these simple models, such as AMG, is highly
sensitive to the proper partitioning of SOC kinetic pools (Clivot et al., 2019), and could thus strongly benefit from the second
version of PARTY soc.

We envision a significant contribution of the PARTY soc machine-learning model based on Rock-Eval® thermal analysis to
the forthcoming large-scale availability of accurate information on the size of the centennially stable or active SOC fractions.
Such accurate information will foster (1) the initiatives of soil health assessment and monitoring and (2) the modelling works

of SOC dynamics and of the climate regulation function of soils.

Data and code availability

The Rock-Eval® data of the 105 reference topsoil samples of PARTY socVv2.0 are provided in supplementary Table S3. The
R script used to extract Rock-Eval® 6 raw data and calculate Rock-Eval® parameters; the Rock-Eval® data and the R script
used to build PARTYsocv2.0 and PARTY socVv2.0ey models and test their performance; and the PARTY gocv2.0gy model
(available as an R script and an R data file) can be accessed on GitHub at https://github.com/lauric-cecillon/PARTYsoc and
on Zenodo at the permanent link https://doi.org/10.5281/zenodo.4446138.

Acknowledgments

The French Agence nationale de la recherche (StoreSoilC project, grant ANR-17-CE32-0005), the French Agence de la
transition écologique (ADEME), and Ville de Paris (SOCUTE project, emergence(s) program) funded this research. We are
indebted to the generations of technicians and scientists that started and managed the long-term experiments and archives of
soil samples used in this work. We thank Rothamsted Research for access to samples and data from the Rothamsted Sample
Archive and the electronic Rothamsted Archive (e-RA). The Rothamsted Long-term Experiments are supported by the UK
Biotechnology and Biological Sciences Research Council under the National Capabilities programme grant
(BBS/E/C/000J0300), and by the Lawes Agricultural Trust. We thank David Montagne and Joél Michelin (AgroParisTech,
France) who provided information on the soil characteristics at Grignon. We thank our colleagues of the Soil Science
research group at Ecole normale supérieure (Paris, France), especially Samuel Abiven, Nuria Catalan, Bertrand Guenet and

Marcus Schiedung who provided advices that improved this manuscript.

26



685

690

695

700

705

https://doi.org/10.5194/gmd-2021-16
Preprint. Discussion started: 16 February 2021
(© Author(s) 2021. CC BY 4.0 License.

Author contributions

L.C. and P.B. designed the study with contributions from C.C. and F.B.. F.B. and F.S. performed the Rock-Eval®
measurements. L.C. wrote the R scripts used to calculate Rock-Eval® parameters and built the second version of the
PARTY soc model with contributions from P.B., L.N.S. and E.K.. B.T.C., U.F., S H, T.K,, .M., F.v.O, C.P., J.C.Q. provided
the topsoil samples and the metadata of the reference sites. L.C. and P.B. wrote the manuscript with contributions from all
authors.

Competing interests

The authors declare that they have no conflict of interest.

References

Abiven, S., Menasseri, S. and Chenu, C.: The effects of organic inputs over time on soil aggregate stability — A literature
analysis, Soil Biology and Biochemistry, 41(1), 1-12, https://doi.org/10.1016/j.s0ilbio.2008.09.015, 2009.

Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E. and Sparks, D. L.: Soil and human security in the 21st
century, Science, 348(6235), 1261071-1261071, https://doi.org/10.1126/science.1261071, 2015.

Ansorge, H.: Die Wirkung des Stallmistes im “Statischen Diingungsversuch” Lauchstidt, 2. Mitteilung: Veranderung des
Humusgehaltes im Boden, Albrecht-Thaer-Archiv, 10(4), 401-412, 1966.

Avery, B. W. and Catt, J. A.: The soil at Rothamsted, Lawes Agricultural Trust, Harpenden.
https://repository.rothamsted.ac.uk/item/87192, 1995.

Baldock, J. A., Hawke, B., Sanderman, J. and Macdonald, L. M.: Predicting contents of carbon and its component fractions
in Australian soils from diffuse reflectance mid-infrared spectra, Soil Res., 51(8), 577, https://doi.org/10.1071/SR13077,
2013.

Balesdent, J.: The significance of organic separates to carbon dynamics and its modelling in some cultivated soils, European
Journal of Soil Science, 47(4), 485-493, https://doi.org/10.1111/j.1365-2389.1996.th01848.x, 1996.

Balesdent, J. and Guillet, B.: Les datations par le 14C des matiéres organiques des sols. Contribution a 1’étude de
I’humification et du renouvellement des substances humiques, Science du sol, 2, 93-112, 1982.

Balesdent, J. and Mariotti, A.: Measurement of soil organic matter turnover using 13C natural abundance, in Mass
spectrometry  of  soils, edited by T. W. Boutton and S. I. Yamasaki, pp. 83-111,
https://www.researchgate.net/publication/257855705, 1996.

Balesdent, J., Mariotti, A. and Guillet, B.: Natural 13C abundance as a tracer for studies of soil organic matter dynamics,
Soil Biology and Biochemistry, 19(1), 25-30, https://doi.org/10.1016/0038-0717(87)90120-9, 1987.

27



710

715

720

725

730

735

740

https://doi.org/10.5194/gmd-2021-16
Preprint. Discussion started: 16 February 2021
(© Author(s) 2021. CC BY 4.0 License.

Balesdent, J., Wagner, G. H. and Mariotti, A.: Soil organic matter turnover in long-term field experiments as revealed by
carbon-13 natural abundance, Soil Science Society of  America  Journal, 52(1), 118-124,
https://doi.org/10.2136/sssaj1988.03615995005200010021x, 1988.

Balesdent, J., Basile-Doelsch, 1., Chadoeuf, J., Cornu, S., Derrien, D., Fekiacova, Z. and Hatté, C.: Atmosphere—soil carbon
transfer as a function of soil depth, Nature, 559(7715), 599-602, https://doi.org/10.1038/s41586-018-0328-3, 2018.

Barré, P., Eglin, T., Christensen, B. T., Ciais, P., Houot, S., Kétterer, T., van Oort, F., Peylin, P., Poulton, P. R,
Romanenkov, V. and Chenu, C.:. Quantifying and isolating stable soil organic carbon using long-term bare fallow
experiments, Biogeosciences, 7(11), 3839-3850, https://doi.org/10.5194/bg-7-3839-2010, 2010.

Barré, P., Plante, A. F., Cécillon, L., Lutfalla, S., Baudin, F., Bernard, S., Christensen, B. T., Eglin, T., Fernandez, J. M.,
Houot, S., Kitterer, T., Le Guillou, C., Macdonald, A., van Oort, F. and Chenu, C.: The energetic and chemical signatures of
persistent soil organic matter, Biogeochemistry, 130(1-2), 1-12, https://doi.org/10.1007/s10533-016-0246-0, 2016.

Behar, F., Beaumont, V. and De B. Penteado, H. L.: Rock-Eval 6 Technology: Performances and Developments, Oil & Gas
Science and Technology - Rev. IFP, 56(2), 111-134, https://doi.org/10.2516/0gst:2001013, 2001.

Beleites, C. and Sergo, V.. hyperSpec: a package to handle hyperspectral data sets in R.
https://github.com/cbeleites/hyperSpec, 2020.

Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J.-M. and McBratney, A.: Critical review of chemometric
indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy, TrAC Trends in
Analytical Chemistry, 29(9), 1073-1081, https://doi.org/10.1016/j.trac.2010.05.006, 2010.

Borchers, H. W.: pracma: practical numerical math functions. https://CRAN.R-project.org/package=pracma, 2019.

Breiman, L.: Random Forests, Machine Learning, 45(1), 5-32, https://doi.org/10.1023/A:1010933404324, 2001.
Buyanovsky, G. A. and Wagner, G. H.: Carbon cycling in cultivated land and its global significance, Global Change
Biology, 4(2), 131-141, https://doi.org/10.1046/j.1365-2486.1998.00130.x, 1998a.

Buyanovsky, G. A. and Wagner, G. H.: Changing role of cultivated land in the global carbon cycle, Biology and Fertility of
Soils, 27(3), 242-245, https://doi.org/10.1007/s003740050427, 1998b.

Canty, A. and Ripley, B.: boot: bootstrap R (S-Plus) functions., 2020.

Cardinael, R., Eglin, T., Guenet, B., Neill, C., Houot, S. and Chenu, C.: Is priming effect a significant process for long-term
SOC dynamics? Analysis of a 52-years old experiment, Biogeochemistry, 123(1-2), 203-219,
https://doi.org/10.1007/s10533-014-0063-2, 2015.

Cécillon, L., Cassagne, N., Czarnes, S., Gros, R. and Brun, J.-J.: Variable selection in near infrared spectra for the biological
characterization of soil and earthworm casts, Soil Biology and Biochemistry, 40(7), 1975-1979,
https://doi.org/10.1016/j.s0ilbio.2008.03.016, 2008.

Cécillon, L., Baudin, F., Chenu, C., Houot, S., Jolivet, R., Kétterer, T., Lutfalla, S., Macdonald, A., van Oort, F., Plante, A.

F., Savignac, F., Soucémarianadin, L. N. and Barré, P.: A model based on Rock-Eval thermal analysis to quantify the size of

28



745

750

755

760

765

770

775

https://doi.org/10.5194/gmd-2021-16
Preprint. Discussion started: 16 February 2021
(© Author(s) 2021. CC BY 4.0 License.

the centennially persistent organic carbon pool in temperate soils, Biogeosciences, 15(9), 2835-2849,
https://doi.org/10.5194/bg-15-2835-2018, 2018.

Cerri, C., Feller, C., Balesdent, J., Victoria, R. and Plenccassagne, A.: Application du tragage isotopique naturel en 13C, a
I’étude de la dynamique de la matiére organique dans les sols, Comptes Rendus de 1I’Académie des sciences, 423-428, 1985.
Christensen, B. T. and Johnston, A. E.: Soil organic matter and soil quality—Lessons learned from long-term experiments at
Askov and Rothamsted, in Developments in Soil Science, vol. 25, pp. 399-430, Elsevier, https://doi.org/10.1016/S0166-
2481(97)80045-1, , 1997.

Christensen, B. T., Thomsen, I. K. and Eriksen, J.: The Askov long-term experiments: 1894-2019: a unique research
platform  turns 125 years, DCA - Nationalt Center for Fgdevarer og Jordbrug, Tjele.
https://dcapub.au.dk/djfpublikation/djfpdf/DCArapport151.pdf, 2019.

Clivot, H., Mouny, J.-C., Duparque, A., Dinh, J.-L., Denoroy, P., Houot, S., Vertes, F., Trochard, R., Bouthier, A., Sagot, S.
and Mary, B.: Modeling soil organic carbon evolution in long-term arable experiments with AMG model, Environmental
Modelling & Software, 118, 99-113, https://doi.org/10.1016/j.envsoft.2019.04.004, 2019.

Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J. and Lugato, E.: Soil carbon storage informed by particulate and
mineral-associated organic matter, Nat. Geosci., 12(12), 989-994, https://doi.org/10.1038/s41561-019-0484-6, 2019.
Coulston, J. W., Blinn, C. E., Thomas, V. A. and Wynne, R. H.: Approximating prediction uncertainty for random forest
regression models, Photogram Engng Rem Sens, 82(3), 189-197, https://doi.org/10.14358/PERS.82.3.189, 2016.

Dangal, S., Sanderman, J., Wills, S. and Ramirez-Lopez, L.: Accurate and precise prediction of soil properties from a large
mid-infrared spectral library, Soil Syst., 3(1), 11, https://doi.org/10.3390/soilsystems3010011, 2019.

Davison, A. C. and Hinkley, D. V.: Bootstrap methods and their application, Cambridge University Press, Cambridge ; New
York, NY, USA., 1997.

Disnar, J. R., Guillet, B., Keravis, D., Di-Giovanni, C. and Sebag, D.: Soil organic matter (SOM) characterization by Rock-
Eval pyrolysis: scope and limitations, Organic Geochemistry, 34(3), 327-343, https://doi.org/10.1016/S0146-
6380(02)00239-5, 2003.

Falloon, P., Smith, P., Coleman, K. and Marshall, S.: Estimating the size of the inert organic matter pool from total soil
organic carbon content for use in the Rothamsted carbon model, Soil Biology and Biochemistry, 30(8-9), 1207-1211,
https://doi.org/10.1016/S0038-0717(97)00256-3, 1998.

Falloon, P. D. and Smith, P.: Modelling refractory soil organic matter, Biology and Fertility of Soils, 30(5-6), 388-398,
https://doi.org/10.1007/s003740050019, 2000.

FAO: World reference base for soil resources 2014: international soil classification system for naming soils and creating
legends for soil maps., FAO, Rome., 2014.

Franko, U. and Merbach, I.: Modelling soil organic matter dynamics on a bare fallow Chernozem soil in Central Germany,
Geoderma, 303, 93-98, https://doi.org/10.1016/j.geoderma.2017.05.013, 2017.

Genuer, R. and Poggi, J.-M.: Random Forests with R, Springer International Publishing, Cham., 2020.

29



780

785

790

795

800

805

https://doi.org/10.5194/gmd-2021-16
Preprint. Discussion started: 16 February 2021
(© Author(s) 2021. CC BY 4.0 License.

Gogé, F., Joffre, R., Jolivet, C., Ross, I. and Ranjard, L.: Optimization criteria in sample selection step of local regression for
quantitative analysis of large soil NIRS database, Chemometrics and Intelligent Laboratory Systems, 110(1), 168-176,
https://doi.org/10.1016/j.chemolab.2011.11.003, 2012.

Gray, J., Karunaratne, S., Bishop, T., Wilson, B. and Veeragathipillai, M.: Driving factors of soil organic carbon fractions
over New South Wales, Australia, Geoderma, 353, 213-226, https://doi.org/10.1016/j.geoderma.2019.06.032, 2019.
Gregorich, E. G., Gillespie, A. W., Beare, M. H., Curtin, D., Sanei, H. and Yanni, S. F.: Evaluating biodegradability of soil
organic matter by its thermal stability and chemical composition, Soil Biology and Biochemistry, 91, 182-191,
https://doi.org/10.1016/j.s0ilbio.2015.08.032, 2015.

He, Y., Trumbore, S. E., Torn, M. S., Harden, J. W., Vaughn, L. J. S., Allison, S. D. and Randerson, J. T.: Radiocarbon
constraints imply reduced carbon uptake by soils during the 21st century, Science, 353(6306), 1419-1424,
https://doi.org/10.1126/science.aad4273, 2016.

Hénin, S. and Dupuis, M.: Bilan de la matiére organique des sols, Annales Agronomiques, 1, 17-29, 1945,

Hénin, S. and Turc, L.: Essai de fractionnement des matiéres organiques du sol, Comptes rendus de 1’ Académie d’agriculture
de France, 35, 41-43, 1949.

Houot, S., Molina, J. A. E., Chaussod, R. and Clapp, C. E.: Simulation by NCSOIL of net mineralization in soils from the
Deherain and 36 parcelles fields at Grignon, Soil Science Society of America Journal, 53(2), 451-455,
https://doi.org/10.2136/sssaj1989.03615995005300020023x, 1989.

Hsieh, Y.-P.: Pool size and mean age of stable soil organic carbon in croplands, Soil Science Society of America Journal,
56(2), 460464, https://doi.org/10.2136/sssaj1992.03615995005600020049x, 1992.

Huggins, D. R., Buyanovsky, G. A., Wagner, G. H., Brown, J. R., Darmody, R. G., Peck, T. R., Lesoing, G. W., Vanotti, M.
B. and Bundy, L. G.: Soil organic C in the tallgrass prairie-derived region of the corn belt: effects of long-term crop
management, Soil and Tillage Research, 47(3-4), 219-234, https://doi.org/10.1016/S0167-1987(98)00108-1, 1998.

IPBES: Summary for policymakers of the assessment report on land degradation and restoration of the Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services, edited by R. J. Scholes, L. Montanarella, E. Brainich, E.
Brainich, N. Barger, B. ten Brink, M. Cantele, B. Erasmus, J. Fisher, T. Gardner, T. G. Holland, F. Kohler, S. Kotiaho, G.
von Maltitz, G. Nangendo, R. Pandit, J. Parrotta, M. D. Potts, S. Prince, M. Sankaran, and L. Willemen, Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services., 2018.

IPCC: Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land
management, food security, and greenhouse gas fluxes in terrestrial ecosystems, Intergovernmental Panel on Climate
Change., 2019.

ISO 10694: Soil quality — Determination of organic and total carbon after dry combustion (elementary analysis).
https://www.iso.org/standard/18782.html, 1995.

30



810

815

820

825

830

835

840

https://doi.org/10.5194/gmd-2021-16
Preprint. Discussion started: 16 February 2021
(© Author(s) 2021. CC BY 4.0 License.

Jaconi, A., Poeplau, C., Ramirez-Lopez, L., Van Wesemael, B. and Don, A.: Log-ratio transformation is the key to
determining soil organic carbon fractions with near-infrared spectroscopy, Eur J Soil Sci, 70(1), 127-139,
https://doi.org/10.1111/ejss.12761, 2019.

Janzen, H. H.: The soil carbon dilemma: shall we hoard it or use it?, Soil Biology and Biochemistry, 38(3), 419-424,
https://doi.org/10.1016/j.s0ilbio.2005.10.008, 2006.

Jenkinson, D. S.: The turnover of organic carbon and nitrogen in soil, Phil. Trans. R. Soc. Lond. B, 329(1255), 361-368,
https://doi.org/10.1098/rsth.1990.0177, 1990.

Jenkinson, D. S. and Coleman, K.: Calculating the annual input of organic matter to soil from measurements of total organic
carbon and radiocarbon, Eur J Soil Science, 45(2), 167174, https://doi.org/10.1111/j.1365-2389.1994.tb00498.x, 1994.
Jenkinson, D. S., Adams, D. E. and Wild, A.: Model estimates of CO2 emissions from soil in response to global warming,
Nature, 351(6324), 304306, https://doi.org/10.1038/351304a0, 1991.

Johnston, A. E., Poulton, P. R. and Coleman, K.: Soil organic matter: its importance in sustainable agriculture and carbon
dioxide fluxes, in Advances in Agronomy, vol. 101, pp. 1-57, Elsevier, https://doi.org/10.1016/S0065-2113(08)00801-8, ,
2009.

Jolivet, C., Almeida-Falcon, J. L., Berché, P., Boulonne, L., Fontaine, M., Gouny, L., Lehmann, S., Maitre, B., Ratié, C.,
Schellenberger, E. and Soler-Dominguez, N.: Manuel du Réseau de mesures de la qualité des sols. RMQS2 : deuxiéme
campagne métropolitaine, 2016 — 2027, Version 3, INRA, US 1106 InfoSol, Orléans, France., 2018.

Katterer, T., Bolinder, M. A., Andrén, O., Kirchmann, H. and Menichetti, L.: Roots contribute more to refractory soil
organic matter than above-ground crop residues, as revealed by a long-term field experiment, Agriculture, Ecosystems &
Environment, 141(1-2), 184-192, https://doi.org/10.1016/j.agee.2011.02.029, 2011.

Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerda, A., Montanarella, L., Quinton, J. N., Pachepsky, Y.,
van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B. and Fresco, L. O.: The significance of soils and
soil science towards realization of the United Nations Sustainable Development Goals, SOIL, 2(2), 111-128,
https://doi.org/10.5194/s0il-2-111-2016, 2016.

Khedim, N., Cécillon, L., Poulenard, J., Barré, P., Baudin, F., Marta, S., Rabatel, A., Dentant, C., Cauvy-Fraunié, S.,
Anthelme, F., Gielly, L., Ambrosini, R., Franzetti, A., Azzoni, R. S., Caccianiga, M. S., Compostella, C., Clague, J.,
Tielidze, L., Messager, E., Choler, P. and Ficetola, G. F.: Topsoil organic matter build-up in glacier forelands around the
world, Glob Change Biol, gch.15496, https://doi.org/10.1111/gcb.15496, 2020.

Koch, A., McBratney, A., Adams, M., Field, D., Hill, R., Crawford, J., Minasny, B., Lal, R., Abbott, L., O’Donnell, A.,
Angers, D., Baldock, J., Barbier, E., Binkley, D., Parton, W., Wall, D. H., Bird, M., Bouma, J., Chenu, C., Flora, C. B.,
Goulding, K., Grunwald, S., Hempel, J., Jastrow, J., Lehmann, J., Lorenz, K., Morgan, C. L., Rice, C. W., Whitehead, D.,
Young, I. and Zimmermann, M.: Soil security: solving the global soil crisis, Glob Policy, 4(4), 434-441,
https://doi.org/10.1111/1758-5899.12096, 2013.

31



845

850

855

860

865

870

875

https://doi.org/10.5194/gmd-2021-16
Preprint. Discussion started: 16 February 2021
(© Author(s) 2021. CC BY 4.0 License.

Korschens, M., Weigel, A. and Schulz, E.: Turnover of soil organic matter (SOM) and long-term balances - tools for
evaluating sustainable productivity  of  soils, Z. Pflanzenernaehr. Bodenk., 161(4), 409-424,
https://doi.org/10.1002/jpIn.1998.3581610409, 1998.

Lal, R.: Soil carbon sequestration impacts on global climate change and food security, Science, 304(5677), 1623-1627,
https://doi.org/10.1126/science.1097396, 2004.

Lavallee, J. M., Soong, J. L. and Cotrufo, M. F.: Conceptualizing soil organic matter into particulate and mineral-associated
forms to address global change in the 21st century, Glob Change Biol, 26(1), 261-273, https://doi.org/10.1111/gcb.14859,
2020.

Liaw, A. and Wiener, M.: Classification and regression by randomForest, R News, 2(3), 18-22, 2002.

Ludwig, B., Schulz, E., Rethemeyer, J., Merbach, I. and Flessa, H.: Predictive modelling of C dynamics in the long-term
fertilization experiment at Bad Lauchstédt with the Rothamsted Carbon Model, European Journal of Soil Science, 58(5),
1155-1163, https://doi.org/10.1111/j.1365-2389.2007.00907.x, 2007.

Luo, Y., Ahlstrém, A., Allison, S. D., Batjes, N. H., Brovkin, V., Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A.,
Finzi, A., Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He, Y., Hopkins, F., Jiang, L., Koven, C., Jackson, R. B.,
Jones, C. D., Lara, M. J., Liang, J., McGuire, A. D., Parton, W., Peng, C., Randerson, J. T., Salazar, A., Sierra, C. A., Smith,
M. J., Tian, H., Todd-Brown, K. E. O., Torn, M., van Groenigen, K. J., Wang, Y. P., West, T. O., Wei, Y., Wieder, W. R,
Xia, J., Xu, X., Xu, X. and Zhou, T.: Toward more realistic projections of soil carbon dynamics by Earth system models,
Global Biogeochem. Cycles, 30(1), 40-56, https://doi.org/10.1002/2015GB005239, 2016.

von Litzow, M., Kdgel-Knabner, 1., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E. and Marschner, B.: SOM
fractionation methods: Relevance to functional pools and to stabilization mechanisms, Soil Biology and Biochemistry, 39(9),
2183-2207, https://doi.org/10.1016/j.s0ilbio.2007.03.007, 2007.

Monnier, G., Turc, C. and Jeanson Luusinang, C.: Une methode de fractionnement densimetrique par centrifugation des
matieres organiques du sol, Annales Agronomiques, 13(1), 55-63, 1962.

Nikiforoff, C. C.: Some General Aspects of the Chernozem Formation, Soil Science Society of America Journal, 1(C), 333—
342, https://doi.org/10.2136/ss5aj1937.03615995000100000060x, 1936.

van Oort, F., Paradelo, R., Proix, N., Delarue, G., Baize, D. and Monna, F.: Centennial fertilization-induced soil processes
control trace metal dynamics. Lessons from a long-term bare fallow experiment, Soil Syst., 2(2), 23,
https://doi.org/10.3390/s0ilsystems2020023, 2018.

Patil, A., Huard, D. and Fonnesbeck, C.: PyMC: Bayesian stochastic modelling in Python, J. Stat. Soft., 35(4),
https://doi.org/10.18637/jss.v035.i04, 2010.

Pellerin, S., Bamiére, L., Launay, C., Martin, R., Schiavo, M., Angers, D., Augusto, L., Balesdent, J., Basile-Doelsch, 1.,
Bellassen, V., Cardinael, R., Cécillon, L., Ceschia, E., Chenu, C., Constantin, J., Darroussin, J., Delacote, P., Delame, N.,
Gastal, F., Gilbert, D., Graux, A.-l., Guenet, B., Houot, S., Klumpp, K., Letort, E., Litrico, I., Martin, M., Menasseri-Aubry,
S., Meziere, D., Morvan, T., Mosnier, C., Roger-Estrade, J., Saint-André, L., Sierra, J., Therond, O., Viaud, V., Grateau, R.,

32



880

885

890

895

900

905

https://doi.org/10.5194/gmd-2021-16
Preprint. Discussion started: 16 February 2021
(© Author(s) 2021. CC BY 4.0 License.

Le Perchec, S., Savini, I. and Rechauchere, O.: Stocker du carbone dans les sols francais, quel potentiel au regard de
I’objectif 4 pour 1000 et a quel cout ?, Agence de I’Environnement et de la Maitrise de I’Energie (ADEME) et le Ministére
de I’Agriculture et de I’Alimentation (MAA), INRA. https://hal.archives-ouvertes.fr/hal-02284521, last access: 23 May
2020, 2019.

Petersen, B. M., Berntsen, J., Hansen, S. and Jensen, L. S.: CN-SIM—a model for the turnover of soil organic matter. .
Long-term carbon and radiocarbon development, Soil Biology and Biochemistry, 37(2), 359-374,
https://doi.org/10.1016/j.s0ilbio.2004.08.006, 2005.

Plante, A. F., Beaupré, S. R., Roberts, M. L. and Baisden, T.: Distribution of radiocarbon ages in soil organic matter by
thermal fractionation, Radiocarbon, 55(2), 1077-1083, https://doi.org/10.1017/S0033822200058215, 2013.

Poeplau, C., Don, A., Dondini, M., Leifeld, J., Nemo, R., Schumacher, J., Senapati, N. and Wiesmeier, M.: Reproducibility
of a soil organic carbon fractionation method to derive RothC carbon pools: Soil carbon fractionation ring trial, Eur J Soil
Sci, 64(6), 735-746, https://doi.org/10.1111/ejss.12088, 2013.

Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., Cotrufo, M. F., Derrien, D., Gioacchini, P., Grand, S.,
Gregorich, E., Griepentrog, M., Gunina, A., Haddix, M., Kuzyakov, Y., Kihnel, A., Macdonald, L. M., Soong, J., Trigalet,
S., Vermeire, M.-L., Rovira, P., van Wesemael, B., Wiesmeier, M., Yeasmin, S., Yevdokimov, I. and Nieder, R.: Isolating
organic carbon fractions with varying turnover rates in temperate agricultural soils — A comprehensive method comparison,
Soil Biology and Biochemistry, 125, 1026, https://doi.org/10.1016/j.s0ilbi0.2018.06.025, 2018.

Poeplau, C., Barré, P., Cécillon, L., Baudin, F. and Sigurdsson, B. D.: Changes in the Rock-Eval signature of soil organic
carbon upon extreme soil warming and chemical oxidation - A comparison, Geoderma, 337, 181-190,
https://doi.org/10.1016/j.gecderma.2018.09.025, 2019.

Quezada, J. C., Etter, A., Ghazoul, J., Buttler, A. and Guillaume, T.: Carbon neutral expansion of oil palm plantations in the
Neotropics, Sci. Adv., 5(11), eaaw4418, https://doi.org/10.1126/sciadv.aaw4418, 2019.

R Core Team: R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna,
Austria. https://www.R-project.org/, 2020.

Ramirez-Lopez, L., Behrens, T., Schmidt, K., Rossel, R. A. V., Dematté, J. A. M. and Scholten, T.: Distance and similarity-
search metrics for use with soil vis—NIR spectra, Geoderma, 199, 43-53, https://doi.org/10.1016/j.geoderma.2012.08.035,
2013a.

Ramirez-Lopez, L., Behrens, T., Schmidt, K., Stevens, A., Dematté, J. A. M. and Scholten, T.: The spectrum-based learner:
A new local approach for modeling soil vis—NIR spectra of complex datasets, Geoderma, 195-196, 268-279,
https://doi.org/10.1016/j.geocderma.2012.12.014, 2013b.

RStudio Team: RStudio: integrated development for R, RStudio, Inc., Boston, MA. http://www.rstudio.com/, 2020.
Ruhlmann, J.: A new approach to estimating the pool of stable organic matter in soil using data from long-term field
experiments, Plant and Soil, 213(1/2), 149-160, https://doi.org/10.1023/A:1004552016182, 1999.

33



910

915

920

925

930

935

940

https://doi.org/10.5194/gmd-2021-16
Preprint. Discussion started: 16 February 2021
(© Author(s) 2021. CC BY 4.0 License.

Saenger, A., Cécillon, L., Sebag, D. and Brun, J.-J.: Soil organic carbon quantity, chemistry and thermal stability in a
mountainous  landscape: A Rock-Eval  pyrolysis  survey, Organic  Geochemistry, 54, 101-114,
https://doi.org/10.1016/j.orggeochem.2012.10.008, 2013.

Saenger, A., Cécillon, L., Poulenard, J., Bureau, F., De Daniéli, S., Gonzalez, J.-M. and Brun, J.-J.: Surveying the carbon
pools of mountain soils: A comparison of physical fractionation and Rock-Eval pyrolysis, Geoderma, 241-242, 279-288,
https://doi.org/10.1016/j.geoderma.2014.12.001, 2015.

Sanderman, J. and Grandy, A. S.: Ramped thermal analysis for isolating biologically meaningful soil organic matter
fractions with distinct residence times, SOIL, 6(1), 131-144, https://doi.org/10.5194/s0il-6-131-2020, 2020.

Sanderman, J., Hengl, T. and Fiske, G. J.: Soil carbon debt of 12,000 years of human land use, Proc Natl Acad Sci USA,
114(36), 9575-9580, https://doi.org/10.1073/pnas.1706103114, 2017.

Schiedung, M., Don, A., Wordell-Dietrich, P., Alcantara, V., Kuner, P. and Guggenberger, G.: Thermal oxidation does not
fractionate soil organic carbon with differing biological stabilities, J. Plant Nutr. Soil Sci., 180(1), 18-26,
https://doi.org/10.1002/jpIn.201600172, 2017.

Schulte, R. P. O., Creamer, R. E., Donnellan, T., Farrelly, N., Fealy, R., O’Donoghue, C. and O’hUallachain, D.: Functional
land management: A framework for managing soil-based ecosystem services for the sustainable intensification of
agriculture, Environmental Science & Policy, 38, 45-58, https://doi.org/10.1016/j.envsci.2013.10.002, 2014.

Sebag, D., Verrecchia, E. P., Cécillon, L., Adatte, T., Albrecht, R., Aubert, M., Bureau, F., Cailleau, G., Copard, Y.,
Decaens, T., Disnar, J.-R., Hetényi, M., Nyilas, T. and Trombino, L.: Dynamics of soil organic matter based on new Rock-
Eval indices, Geoderma, 284, 185-203, https://doi.org/10.1016/j.geoderma.2016.08.025, 2016.

Shi, Z., Allison, S. D., He, Y., Levine, P. A., Hoyt, A. M., Beem-Miller, J., Zhu, Q., Wieder, W. R., Trumbore, S. and
Randerson, J. T.: The age distribution of global soil carbon inferred from radiocarbon measurements, Nat. Geosci.,
https://doi.org/10.1038/s41561-020-0596-z, 2020.

Skjemstad, J. O., Spouncer, L. R., Cowie, B. and Swift, R. S.: Calibration of the Rothamsted organic carbon turnover model
(RothC ver. 26.3), using measurable soil organic carbon pools, Soil Res., 42(1), 79, https://doi.org/10.1071/SR03013, 2004.
Soucémarianadin, L., Cécillon, L., Chenu, C., Baudin, F., Nicolas, M., Girardin, C. and Barré, P.: Is Rock-Eval 6 thermal
analysis a good indicator of soil organic carbon lability? — A method-comparison study in forest soils, Soil Biology and
Biochemistry, 117, 108-116, https://doi.org/10.1016/j.s0ilbi0.2017.10.025, 2018a.

Soucémarianadin, L. N., Cécillon, L., Guenet, B., Chenu, C., Baudin, F., Nicolas, M., Girardin, C. and Barré, P.:
Environmental factors controlling soil organic carbon stability in French forest soils, Plant Soil, 426(1-2), 267-286,
https://doi.org/10.1007/s11104-018-3613-%, 2018b.

Stoorvogel, J. J., Bakkenes, M., Brink, B. J. E. and Temme, A. J. A. M.: To what extent did we change our soils? A global
comparison of natural and current conditions, Land Degrad. Develop., 28(7), 1982-1991, https://doi.org/10.1002/Idr.2721,
2017.

34



945

950

955

960

965

970

https://doi.org/10.5194/gmd-2021-16
Preprint. Discussion started: 16 February 2021
(© Author(s) 2021. CC BY 4.0 License.

Strobl, C., Malley, J. and Tutz, G.: An introduction to recursive partitioning: Rationale, application, and characteristics of
classification and regression trees, bagging, and random forests., Psychological Methods, 14(4), 323-348,
https://doi.org/10.1037/a0016973, 20009.

Taghizadeh-Toosi, A., Cong, W.-F., Eriksen, J., Mayer, J., Olesen, J. E., Keel, S. G., Glendining, M., Kétterer, T. and
Christensen, B. T.: Visiting dark sides of model simulation of carbon stocks in European temperate agricultural soils:
allometric function and model initialization, Plant Soil, 450(1-2), 255-272, https://doi.org/10.1007/s11104-020-04500-9,
2020.

Trumbore, S. E., Vogel, J. S. and Southon, J. R.: AMS 14C measurements of fractionated soil organic matter: an approach to
deciphering the soil carbon cycle, Radiocarbon, 31(03), 644-654, https://doi.org/10.1017/S0033822200012248, 1989.
Viscarra Rossel, R. A. and Hicks, W. S.: Soil organic carbon and its fractions estimated by visible-near infrared transfer
functions: Vis-NIR estimates of organic carbon and its fractions, Eur J Soil Sci, 66(3), 438-450,
https://doi.org/10.1111/ejss.12237, 2015.

Viscarra Rossel, R. A., Lee, J., Behrens, T., Luo, Z., Baldock, J. and Richards, A.: Continental-scale soil carbon composition
and  vulnerability —modulated by regional environmental controls, Nat. Geosci., 12(7), 547-552,
https://doi.org/10.1038/s41561-019-0373-z, 2019.

Vos, C., Jaconi, A., Jacobs, A. and Don, A.: Hot regions of labile and stable soil organic carbon in Germany — Spatial
variability and driving factors, SOIL, 4(2), 153-167, https://doi.org/10.5194/s0il-4-153-2018, 2018.

Wehrens, R.: Chemometrics with R: Multivariate Data Analysis in the Natural and Life Sciences, Springer Berlin
Heidelberg, Berlin, Heidelberg., 2020.

Wickham, H.: stringr: simple, consistent wrappers for common string operations. https://CRAN.R-
project.org/package=stringr, 2019.

Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Litzow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., LieR,
M., Garcia-Franco, N., Wollschlager, U., Vogel, H.-J. and Kdgel-Knabner, 1.: Soil organic carbon storage as a key function
of soils - A review of drivers and indicators at various scales, Geoderma, 333, 149-162,
https://doi.org/10.1016/j.geoderma.2018.07.026, 2019.

Zimmermann, M., Leifeld, J., Schmidt, M. W. 1., Smith, P. and Fuhrer, J.: Measured soil organic matter fractions can be
related to pools in the RothC model, Eur J Soil Science, 58(3), 658-667, https://doi.org/10.1111/j.1365-2389.2006.00855.X,
2007a.

Zimmermann, M., Leifeld, J. and Fuhrer, J.: Quantifying soil organic carbon fractions by infrared-spectroscopy, Soil
Biology and Biochemistry, 39(1), 224-231, https://doi.org/10.1016/j.s0ilbio.2006.07.010, 2007b.

35



