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Abstract 

Partitioning soil organic carbon (SOC) into two kinetically different fractions that are stable or active on a century scale is 

key information for an improved monitoring of soil health and for more accurate models of the carbon cycle. However, all 

existing SOC fractionation methods isolate SOC fractions that are mixtures of centennially stable and active SOC. If the 30 

stable SOC fraction cannot be isolated, it has specific chemical and thermal characteristics that are quickly (ca. 1 h per 

sample) measureable using Rock-Eval® thermal analysis. An alternative would thus be to (1) train a machine-learning model 

on the Rock-Eval® thermal analysis data of soil samples from long-term experiments where the size of the centennially 

stable and active SOC fractions can be estimated, and (2) apply this model on the Rock-Eval® data of unknown soils, to 

partition SOC into its centennially stable and active fractions. Here, we significantly extend the validity range of a previously 35 

published machine-learning model [Biogeosciences, 15, 2835–2849, 2018, https://doi.org/10.5194/bg-15-2835-2018] that is 

built upon this strategy. The second version of this model, which we propose to name PARTYSOC, uses six European long-

term agricultural sites including a bare fallow treatment and one South American vegetation change (C4 to C3 plants) site as 

reference sites. The European version of the model (PARTYSOCv2.0EU) predicts the proportion of the centennially stable 

SOC fraction with a root-mean-square error of 0.15 (relative root-mean-square error of 0.27) at six independent validation 40 

sites. More specifically, our results show that PARTYSOCv2.0EU reliably partitions SOC kinetic fractions at its Northwestern 

European validation sites on Cambisols and Luvisols, which are the two dominant soil groups in this region. We plan future 

developments of the PARTYSOC global model using additional reference soils developed under diverse pedoclimates and 

ecosystems to further expand its domain of application while reducing its prediction error. 

  45 
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1 Introduction 

Soil organic carbon (SOC) is identified as a key element contributing to soil functions such as primary productivity, water 

purification and regulation, carbon sequestration and climate regulation, habitat for biodiversity and recycling of nutrients 

(Keesstra et al., 2016; Koch et al., 2013; Schulte et al., 2014; Wiesmeier et al., 2019). While the magnitude and the historical 

dimension of the decrease in SOC at the global level are progressively being unveiled (IPBES, 2018; Sanderman et al., 2017; 50 

Stoorvogel et al., 2017), SOC stocks’ preservation and even increase is a major challenge for human societies in the 21
st
 

century (Amundson et al., 2015). With widespread beneficial effects on soil functioning at the local level (Pellerin et al., 

2019), increasing the size of the global SOC reservoir contributes directly to the Sustainable Development Goal related to 

life on land (https://www.globalgoals.org/15-life-on-land). It is also one of the few land management-based intervention 

options that has a broad and positive impact on food security and climate change mitigation and adaptation, two other 55 

Sustainable Development Goals set by the United Nations (IPCC, 2019; Lal, 2004). 

 

There is experimental evidence showing that in all soils, SOC is made of carbon atoms with highly contrasting residence 

times, ranging from hours to millennia (Balesdent et al., 1987; Trumbore et al., 1989). This continuum in SOC persistence is 

often simplified by considering SOC as a mixture formed of several fractions, also called kinetic pools by modelers (Hénin 60 

and Dupuis, 1945; Jenkinson, 1990; Nikiforoff, 1936). The most drastic conceptual simplification of SOC persistence 

considers only two pools: (1) one made of young SOC with a short turnover rate (typically three decades on average; the 

active SOC pool) and (2) one made of older SOC that persists much longer in the soil (more than a century; the stable, 

passive or persistent SOC pool). This dualistic representation of SOC persistence was considered as “a necessary 

simplification, but certainly not a utopian one” four decades ago (Balesdent and Guillet, 1982) and is still considered as 65 

meaningful (e.g., Lavallee et al., 2020). The active and stable soil organic matter pools contribute differently to the various 

soil functions (Hsieh, 1992). The active organic matter pool efficiently fuels soil biological activity (with carbon, nutrients 

and energy) and plant growth (with nutrients) through its rapid decay, and it sustains soil structure development (Abiven et 

al., 2009; Janzen, 2006). Conversely, the potential contribution of a soil to climate regulation would be most dependent on its 

stable organic matter pool size (He et al., 2016; Shi et al., 2020). 70 

 

A myriad of methods has been developed and tested to partition SOC into active and stable fractions, that would match 

kinetic pools for the assessment of SOC dynamics and related soil functions, since the second half of the 20
th

 century 

(Balesdent, 1996; Hénin and Turc, 1949; Monnier et al., 1962; Poeplau et al., 2018). Some of these methods based on 

chemical or physical (size, density or thermal) fractionation schemes can separate SOC fractions with, on average, different 75 

turnover rates (Balesdent, 1996; Plante et al., 2013; Poeplau et al., 2018; Trumbore et al., 1989). Of these methods, only a 

few are reasonably reproducible and easy to implement such as the ones based on rapid thermal analysis and chemical 

extractions (Gregorich et al., 2015; Poeplau et al., 2013, 2018; Soucémarianadin et al., 2018a). Other methods, such as size 

https://www.globalgoals.org/15-life-on-land
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and density SOC fractionation, need to be inferred from machine-learning models or infrared spectroscopy to be 

implemented on large soil sample sets (Baldock et al., 2013; Cotrufo et al., 2019; Jaconi et al., 2019; Viscarra Rossel et al., 80 

2019; Viscarra Rossel and Hicks, 2015; Vos et al., 2018; Zimmermann et al., 2007b). However, all SOC fractionation 

methods fail to achieve a proper separation of stable from active SOC, and the isolated SOC fractions are thus mixtures of 

centennially stable and active SOC (Fig. 1; Balesdent, 1996; Hsieh, 1992; von Lützow et al., 2007; Sanderman and Grandy, 

2020). This limitation is common to all existing SOC fractionation methods and compromises the results of any work using 

them directly to quantify soil functions specifically related to SOC fractions or to parameterize SOC partitioning in multi-85 

compartmental models of SOC dynamics (Luo et al., 2016). Simulations of SOC stocks changes by multi-compartmental 

models are very sensitive to the initial proportion of the centennially stable SOC fraction, underlining the importance of its 

accurate estimation (Clivot et al., 2019; Falloon and Smith, 2000; Jenkinson et al., 1991; Taghizadeh-Toosi et al., 2020). 

 

 90 

Figure 1: Conceptual representation of soil organic carbon fractionation methods vs. the PARTYSOC approach to 

quantify the size of the centennially stable and active soil organic carbon fractions. All existing soil organic carbon 

fractionation methods isolate fractions that are mixtures of centennially stable and active soil organic carbon. PARTYSOC is a 

machine-learning model trained on the Rock-Eval® thermal analysis data of soil samples from long-term experiments where 

the size of the centennially stable SOC fraction can be estimated. When applied on the Rock-Eval® data of unknown 95 

topsoils, PARTYSOC partitions soil organic carbon into its active and stable fractions (i.e., without isolating soil organic 

carbon fractions from each other). Abbreviation: SOC, soil organic carbon. 

 

If the stable SOC fraction cannot be isolated, it has specific chemical and thermal characteristics: stable SOC is depleted in 

hydrogen and thermally stable (Barré et al., 2016; Gregorich et al., 2015). These characteristics are measurable quickly (ca. 1 100 

h per sample) and at a reasonable cost (less than 60 USD per sample in private laboratories) using Rock-Eval® thermal 

analysis, and they could be of use to identify the quantitative contribution of stable SOC to total SOC. An alternative to the 
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elusive proper separation of stable and active SOC pools could thus be to directly predict their sizes by training a machine-

learning model based on Rock-Eval® data to estimate the size of the stable and active SOC fractions, without isolating them 

from each other (Fig. 1). This model would need a training set of soil samples for which SOC partitioning into its active and 105 

stable pools can be fairly estimated. Such soil samples are available in long-term (i.e., at least longer than three decades) bare 

fallow experiments (LTBF; soils kept free of vegetation and thus with negligible SOC inputs), or long-term vegetation 

change (C3 plants to C4 plants or vice versa) experiments, as described by Balesdent et al. (1987, 2018), Barré et al. (2010), 

Cerri et al. (1985) or Rühlmann (1999). Cécillon et al. (2018) used this strategy, developing a machine-learning random 

forests regression model on topsoil samples obtained from the archives of four European long-term agricultural sites 110 

including an LTBF treatment. This model, which we propose to name PARTYSOC, related thermal analysis parameters of 

topsoils measured with Rock-Eval® to their estimated proportion of the centennially stable SOC fraction (Fig. 1). This 

previous work positioned PARTYSOC as the first operational method quantifying the centennially stable and active SOC 

fractions in agricultural topsoils from Northwestern Europe. However, the ability of this machine-learning model to fairly 

partition the centennially stable and the active SOC fractions of soil samples from new sites in and outside Northwestern 115 

Europe is largely unknown because its training set is (1) rather limited, with a low number of reference sites and (2) based on 

centennially stable SOC contents that are exclusively inferred from plant-free LTBF treatments. 

 

In this study, we aimed to improve the accuracy and the genericity of the PARTYSOC machine-learning model partitioning 

SOC into its centennially stable and active fractions developed by Cécillon et al. (2018). (1) We increased the range of soil 120 

groups, soil texture classes, climates and types of long-term experiments, through the addition to the training set of topsoils 

from three new reference sites (two additional European long-term agricultural sites with an LTBF treatment and one South-

American long-term vegetation change site). (2) We integrated new predictor variables derived from Rock-Eval® thermal 

analysis. (3) In this second version of the model, we also changed the following series of technical details. We added a new 

criterion based on observed SOC content to estimate of the size of the centennially stable SOC fraction at reference sites, to 125 

reduce the risk of overestimating this site-specific parameter. We calculated the proportion of the centennially stable SOC 

fraction differently in reference topsoil samples, using SOC content estimated by Rock-Eval® rather than by dry 

combustion. We changed some criteria regarding the selection of reference topsoils in the training set of the model: we 

removed samples from agronomical treatments with compost or manure amendments, and preference was given to samples 

with good organic carbon yield of their Rock-Eval® thermal analysis. We better balanced the contribution of each reference 130 

site to PARTYSOCv2.0. (4) We also aimed to build a regional version of the model restricted to the references sites available 

in Europe (named PARTYSOCv2.0EU). (5) Finally, we carefully evaluated the performance of the models on unknown soils, 

and we further investigated the sensitivity of model performance to the training and test sets. For clarity, the main changes 

between the first version of PARTYSOC (Cécillon et al., 2018) and this second version of the model are summarized in 

supplementary Table S1. 135 
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2 Methods 

2.1 Reference sites and estimation of the centennially stable SOC fraction content at each site 

This second version of PARTYSOC uses seven long-term study sites as reference sites (i.e., sites where the size of the 

centennially stable SOC fraction can be estimated). The main characteristics of these seven reference sites and their 

respective soil group and basic topsoil properties are presented in supplementary Table S2, and more thoroughly in the 140 

references cited below. Six reference sites of PARTYSOCv2.0 are long-term agricultural experiments located in Northwestern 

Europe that include at least one LTBF treatment. (1) The long-term experiment on animal manure and mineral fertilizers 

(B3- and B4-fields) and its adjacent LTBF experiment started in 1956 and terminated in 1985, at the Lermarken site of 

Askov in Denmark (Christensen et al., 2019; Christensen and Johnston, 1997). (2) The static fertilization experiment (V120) 

started in 1902 and the fallow experiment (V505a) started in 1988 at Bad Lauchstädt in Germany (Franko and Merbach, 145 

2017; Körschens et al., 1998; Ludwig et al., 2007). (3) The “36 parcelles” experiment, started in 1959 at Grignon in France 

(Cardinael et al., 2015; Houot et al., 1989). (4) The “42 parcelles” experiment, started in 1928 at Versailles in France (van 

Oort et al., 2018). (5) The Highfield bare fallow experiment, started in 1959 at Rothamsted in England (Johnston et al., 

2009). (6) The Ultuna continuous soil organic matter field experiment, started in 1956 in Sweden (Kätterer et al., 2011). 

These six reference sites are used in the European version of the machine-learning model, PARTYSOCv2.0EU. One additional 150 

long-term vegetation change site completes the reference sites list of the PARTYSOCv2.0 global model. This site is a 56-year 

chronosequence of oil palm plantations (with C3 plants) established on former pastures (with C4 plants), located in South-

America (La Cabaña in Colombia), and sampled as a space-for-time substitution (Quezada et al., 2019). 

 

For each reference site, data on total SOC content in topsoil (0–10 cm to 0–30 cm depending on the site; supplementary 155 

Table S2) were obtained from previously published studies (Barré et al., 2010; Cécillon et al., 2018; Franko and Merbach, 

2017; Körschens et al., 1998; Quezada et al., 2019). Total SOC content was measured by dry combustion with an elemental 

analyzer (SOCEA, g C kg
−1

) according to ISO 10694 (1995), after the removal of soil carbonates using an HCl treatment for 

the topsoils of Grignon. For the site of La Cabaña, data on 
13

C content (measured using an isotope-ratio mass spectrometer 

coupled to the elemental analyzer, the results being expressed in δ
13

C abundance ratio (‰ relative to the international 160 

standard)) were obtained from Quezada et al. (2019), and the relative contributions of new (C3-plant derived) and old (C4-

plant derived) carbon to total SOC in topsoils (0–10 cm) were calculated using the Equation 3 of the paper published by 

Balesdent and Mariotti (1996), as done in Quezada et al. (2019). 

 

Based on these published data, the content of the centennially stable SOC fraction (g C kg
-1

) at each reference site was 165 

estimated by modelling the decline of total SOC present at the onset of the experiment with time (sites with an LTBF 

treatment; as SOC inputs are negligible in bare fallow systems) or by modelling the decline of C4-plant derived SOC present 

at the time of vegetation change with time (La Cabaña site; as SOC inputs from C4 plants are negligible after pasture 
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conversion to oil palm plantation). For the seven reference sites, the decline in total SOC or C4-plant derived SOC over time 

had a similar shape, as shown in Barré et al. (2010), Cécillon et al. (2018), Franko and Merbach (2017) and Quezada et al. 170 

(2019) and could be modelled using a first-order exponential decay with a constant term following Eq. (1): 

 

𝛾(𝑡) = 𝑎𝑒−𝑏𝑡 + 𝑐 ,           (1) 

where γ(t) (g C kg
−1

) is the total (sites with an LTBF treatment) or C4-plant derived (La Cabaña site) SOC content at time t, t 

(year) is the time under bare fallow (sites with an LTBF treatment) or since pasture conversion to oil palm plantation (La 175 

Cabaña site), and a, b and c are fitting parameters. Parameter a (g C kg
−1

) corresponds to the content of the active SOC 

fraction and b (yr
−1

) is the characteristic decay rate. The parameter c (g C kg
−1

) represents the content of theoretically inert 

SOC. Following Barré et al. (2010), Cécillon et al. (2018) and Franko and Merbach (2017), we considered this parameter c 

as a site-specific metric of the centennially stable SOC fraction content. As already stated in Cécillon et al. (2018), in our 

view, the centennially stable SOC fraction is not biogeochemically inert; its mean age and mean residence time in soil are 180 

both assumed to be high (centuries), though not precisely defined here. As a result, its decline with time is negligible at the 

timescale of the long-term agricultural experiments or the long-term vegetation change site. We thus considered the 

centennially stable SOC fraction content at each experimental site to be constant. In this study, we used the centennially 

stable SOC fraction content already estimated by Franko and Merbach (2017) for the site of Bad Lauchstädt (on the LTBF 

experiment started in 1988), and by Cécillon et al. (2018) for the sites of Versailles, Grignon, Rothamsted and Ultuna. We 185 

estimated the content of the centennially stable SOC fraction for Askov and La Cabaña sites using the same Bayesian curve-

fitting method described by Cécillon et al. (2018). The Bayesian inference method was performed using Python 2.7 and the 

PyMC library (Patil et al., 2010). 

 

For the second version of PARTYSOC, we aimed at reducing the potential bias towards an overestimation of the centennially 190 

stable SOC fraction content at reference sites using the Eq. (1) (supplementary Table S1). This overestimation is possible at 

reference sites with an LTBF treatment, as SOC inputs to bare fallow topsoils are low but not null (e.g., Jenkinson and 

Coleman, 1994; Petersen et al., 2005). Similarly, C4-plant derived SOC inputs are possible after conversion to C3 plants at 

the site of La Cabaña. We thus used the lowest observed total (sites with an LTBF treatment) or C4-plant derived (La Cabaña 

site) topsoil SOC content value as the best estimate of the centennially stable SOC fraction content in reference sites where 195 

this measured value was lower than the fitted value of the site-specific parameter c of Eq. (1). 

2.2 Rock-Eval® thermal analysis of topsoil samples available from reference sites 

Surface soil samples (0–10 cm to 0–30 cm depending on the site; see supplementary Table S2) were obtained from the seven 

reference sites described in Sect. 2.1. As described in Cécillon et al. (2018), the first version of the PARTYSOC model was 

based on a set of 118 topsoil samples corresponding to time series obtained from the soil archives of the sites of Rothamsted 200 

(12 samples from the LTBF treatment and eight samples from the adjacent long-term grassland treatment), Ultuna (23 
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samples from the LTBF treatment and 11 samples from the associated long-term cropland treatments), Grignon (12 samples 

from the LTBF treatment, six samples from the LTBF plus straw amendment treatment and six samples from the LTBF plus 

composted straw amendment treatment) and Versailles (20 samples from the LTBF treatment and 20 samples from the 

LTBF plus manure amendment treatment). All 118 topsoil samples were previously analysed using Rock-Eval® thermal 205 

analysis (Cécillon et al., 2018). 

 

For the second version of the machine-learning model, 78 additional topsoil samples were provided by managers of the three 

new reference sites. Thirty-five topsoil samples were obtained from the soil archives of the Askov site (19 samples 

corresponding to different dates of the LTBF treatment and 16 samples corresponding to different dates of the associated 210 

long-term cropland treatments). Twenty-seven topsoil samples were obtained from the soil archives of the Bad Lauchstädt 

site (eight samples from two dates of the mechanical LTBF treatment, eight samples from two dates of the chemical LTBF 

treatment and eleven samples from two dates of several long-term cropland treatments of the static fertilization experiment, 

eight out of the latter coming from treatments with manure applications). Sixteen topsoil samples were obtained from the site 

of La Cabaña (13 samples from different C3-plant oil palm fields planted at different dates and three samples from different 215 

long-term C4-plant pastures). 

 

The 78 additional topsoil samples from Askov, Bad Lauchstädt and La Cabaña were analysed using the same Rock-Eval® 6 

Turbo device (Vinci Technologies, France; see Behar et al., 2001 for a description of the apparatus) and the same setup as 

the one used for the sample set of the first version of PARTYSOC, described by Cécillon et al. (2018). Briefly, ca. 60 mg of 220 

ground (< 250 µm) topsoil samples were subjected to sequential pyrolysis and oxidation phases. The Rock-Eval® pyrolysis 

phase was carried out in an N2 atmosphere (3 min isotherm at 200 °C followed by a temperature ramp from 200 to 650 °C at 

a heating rate of 30 °C min
-1

). The Rock-Eval® oxidation phase was carried out in laboratory air atmosphere (1 min isotherm 

at 300 °C followed by a temperature ramp from 300 to 850 °C at a heating rate of 20 °C min
-1

 and a final 5 min isotherm at 

850 °C). Each Rock-Eval® analysis generated five thermograms corresponding to the volatile hydrocarbon effluents 225 

(HC_PYR thermogram), CO (CO_PYR thermogram) and CO2 (CO2_PYR thermogram) measured at each second during the 

pyrolysis phase, and to the CO (CO_OX thermogram) and CO2 (CO2_OX thermogram) measured at each second during the 

oxidation phase (Behar et al., 2001). 

 

A series of Rock-Eval® parameters were calculated from these five thermograms. For each thermogram, five temperature 230 

parameters (all in °C) were retained: T10, T30, T50, T70 and T90, which respectively represent the temperatures 

corresponding to the evolution of 10, 30, 50, 70 and 90% of the total amount of evolved gas. The calculation of Rock-Eval® 

temperature parameters was performed using different intervals of integration depending on the thermogram. The integration 

omitted the first 200 seconds of the analysis for the three thermograms of the pyrolysis phase. The integration ended at the 

time of analysis corresponding to the maximum oven temperatures of 650 °C (HC_PYR thermogram), 560 °C (CO_PYR 235 



9 

 

and CO2_PYR thermograms), 850 °C (CO_OX thermogram) and 611 °C (CO2_OX thermogram). These intervals of 

integration prevented any interference by inorganic carbon from most soil carbonates, and they ensured comparability with 

previous studies (Barré et al., 2016; Cécillon et al., 2018; Poeplau et al., 2019; Soucémarianadin et al., 2018b). Automatic 

baseline correction (as calculated by the software of the Rock-Eval® apparatus; Vinci Technologies, France) was performed 

for all thermograms but the CO_PYR and the CO2_PYR thermograms. This correction can yield some negative values for 240 

the CO_PYR and CO2_PYR thermograms of soil samples with very low SOC content (data not shown). For the HC_PYR 

thermogram we also determined three parameters reflecting a proportion of thermally resistant or labile hydrocarbons: a 

parameter representing the proportion of hydrocarbons evolved between 200 and 450 °C (thermo-labile hydrocarbons, 

TLHC-index, unitless; modified from Saenger et al. (2013, 2015) as described by Cécillon et al. (2018); a parameter 

representing the preservation of thermally labile hydrocarbons (I-index, unitless, after Sebag et al., 2016); and a parameter 245 

representing the proportion of hydrocarbons thermally stable at 400 °C (R-index, unitless, after Sebag et al., 2016). We also 

considered the hydrogen index (HI, mg HC g
-1

 C) and oxygen index (OIRE6, mg O2 g
-1

 C) that respectively describe the 

relative elemental hydrogen and oxygen enrichment of soil organic matter (see e.g., Barré et al., 2016). These 30 Rock-

Eval® parameters are not directly related to total SOC content and were all included in the first version of the PARTYSOC 

model developed by Cécillon et al. (2018). 250 

 

In this second version of PARTYSOC, we considered ten additional Rock-Eval® parameters as possible predictors, some of 

these being directly linked to SOC content (supplementary Table S1). These ten parameters were calculated for all the 196 

topsoil samples available from the seven reference sites. They included: the content of SOC as determined by Rock-Eval® 

(TOCRE6, g C kg
-1

); the content of soil inorganic carbon as determined by Rock-Eval® (MinC, g C kg
-1

); the content of SOC 255 

evolved as HC, CO or CO2 during the pyrolysis phase of Rock-Eval® (PC, g C kg
-1

); the content of SOC evolved as HC 

during the temperature ramp (200–650 °C) of the pyrolysis phase of Rock-Eval® (S2, g C kg
-1

); the content of SOC that 

evolved as HC, CO or CO2 during the first 200 seconds of the pyrolysis phase (at ca. 200 °C) of Rock-Eval® (PseudoS1, g C 

kg
-1

, after Khedim et al., 2020); the ratio of PseudoS1 to PC (PseudoS1/PC, unitless); the ratio of PseudoS1 to TOCRE6 

(PseudoS1/TOCRE6, unitless); the ratio of S2 to PC (S2/PC, unitless, after Poeplau et al., 2019); the ratio of PC to TOCRE6 260 

(PC/TOCRE6, unitless); and the ratio of HI to OIRE6 (HI/OIRE6, mg HC mg
-1

 O2). TOCRE6, MinC, PC, HI and OIRE6 were 

obtained as default parameters from the software of the Rock-Eval® apparatus (Vinci Technologies, France). All other 

Rock-Eval® parameters were calculated from the integration of the five thermograms using R version 4.0.0 (R Core Team, 

2020; RStudio Team, 2020) and functions from the R packages hyperSpec (Beleites and Sergo, 2020), pracma (Borchers, 

2019) and stringr (Wickham, 2019). 265 

2.3 Determination of the centennially stable SOC fraction proportion in topsoil samples from the reference sites 

Following the first version of PARTYSOC (Cécillon et al., 2018), the proportion of the centennially stable SOC fraction in a 

topsoil sample of a reference site was calculated as the ratio of the site-specific centennially stable SOC fraction content (see 
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Sect. 2.1) to the SOC content of this particular sample. We thus assume that the centennially stable SOC fraction content in 

topsoils is the same in the various agronomical treatments of a reference site and that it remains constant within the time-270 

period studied at each site. 

 

While for the first version of PARTYSOC, the proportion of the centennially stable SOC fraction in reference topsoils was 

inferred using SOC contents determined by elemental analysis (SOCEA), in this second version, we preferred the SOC 

content determined by Rock-Eval® (supplementary Table S1). The reason behind this choice was to link the Rock-Eval® 275 

parameters measured on a reference topsoil sample to an inferred proportion of the centennially stable SOC fraction that 

better reflected the organic carbon that actually evolved during its Rock-Eval® analysis. This choice was possible for 

reference topsoil samples for which Rock-Eval® analyses showed a good organic carbon yield (TOCRE6 divided by SOCEA, 

and multiplied by 100). This is generally the case for most soils, with typical organic carbon yields of Rock-Eval® ranging 

from 90 to 100% of SOCEA (Disnar et al., 2003). For the topsoils of the sites of Grignon, Rothamsted, Ultuna and Versailles 280 

used in the first version of PARTYSOC, the organic carbon yield of Rock-Eval® was greater than 96% (linear regression 

model, R² = 0.97, n = 118; Cécillon et al., 2018). Similarly, Rock-Eval® analyses of topsoil samples from the site of La 

Cabaña showed very good organic carbon yields (95% on average, linear regression model R² = 0.95, n = 16). For these five 

reference sites (corresponding to 134 reference topsoil samples), we thus used the Rock-Eval® parameter TOCRE6 as a 

measure of the SOC content of topsoil samples to calculate their respective proportion of the centennially stable SOC 285 

fraction. Conversely, Rock-Eval® analyses of topsoil samples from the sites of Askov and Bad Lauchstädt showed moderate 

organic carbon yields (90% on average for topsoils of Askov, with a noisy linear regression model R² = 0.68, n = 30; and 

92% on average for topsoils of Bad Lauchstädt, yet with a very good linear regression model R² = 0.96, n = 11). Using the 

total carbon measured by Rock-Eval® (i.e., the sum of TOCRE6 plus MinC Rock-Eval® parameters) as an estimate of the 

SOC content of topsoil samples for these two sites —that are not carbonated— increased the organic carbon yield of Rock-290 

Eval® analyses (96% on average at Askov, still with a noisy linear regression model R² = 0.66, n = 30; and 101% on average 

at Bad Lauchstädt, with a very good linear regression model R² = 0.95, n = 11). For the two reference sites of Askov and Bad 

Lauchstädt (corresponding to 62 topsoil samples), we thus used the sum of Rock-Eval® parameters TOCRE6 plus MinC as a 

measure of the SOC content of topsoil samples to calculate their proportion of the centennially stable SOC fraction. 

 295 

The uncertainty in the proportion of the centennially stable SOC fraction was calculated using Equation 6 of the paper 

published by Cécillon et al. (2018), propagating the uncertainties in SOC content data (using a standard error of 0.5 g C kg
-1

, 

following Barré et al., 2010) and in the site-specific contents of the centennially stable SOC fraction (see above and Table 1). 

 

  300 
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Table 1: Main statistics of soil organic carbon contents, site-specific contents of the centennially stable SOC fraction, 

and resulting proportions of centennially stable SOC fraction in topsoils of the seven reference sites used as the 

training sets for PARTYSOCv2.0 and PARTYSOCv2.0EU. More details on agronomical treatments and sampling year of 

reference topsoil samples are provided in supplementary Table S3. Abbreviations: SOC, soil organic carbon; LTBF, long-

term bare fallow; min, minimum; max, maximum; sd, standard deviation. 305 

Reference site 

(Country) 

 

 

 

Treatments  

(number of samples) 

 

 

 

SOC content of the 

reference soil samples 

(g C kg
-1

) 

mean (min, max, sd) 

measurement method 

Centennially stable SOC 

fraction content 

(g C kg
-1

) 

mean (sd) 

estimation method 

Proportion of the 

centennially stable 

SOC fraction  

(unitless) 

mean (min, max, sd) 

Versailles 

(France) 
LTBF (n = 15) 

10.4 (5.6, 17.9, 3.9) 

TOCRE6 

5.50 (0.50) 

Lowest SOCEA measured 

on site 

0.60 (0.31, 0.98, 

0.20) 

Rothamsted 

(England) 

Grassland (n = 7) 28.3 (12.2, 41.5, 10.1) 9.72 (0.50) 

Lowest SOCEA measured 

on site 

0.40 (0.23, 0.80, 

0.18) LTBF (n = 8) TOCRE6 

Ultuna 

(Sweden) 

Cropland (n = 3; +straw n = 8)  15.2 (10.0, 20.3, 2.8) 6.95 (0.88) 

Bayesian curve-fitting 

0.47 (0.34, 0.70, 

0.09) LTBF (n = 4) TOCRE6 

Grignon 

(France) 
LTBF (n = 12, +straw n = 3) 

11.5 (8, 14.3, 1.7) 

TOCRE6 

7.12 (1.00) 

Bayesian curve-fitting 

0.63 (0.50, 0.89, 

0.10) 

Askov 

(Denmark) 

Cropland (n = 7) 

LTBF (n = 8) 

13.8 (11.1, 16.8, 1.9) 

TOCRE6+MinC 

5.10 (0.88) 

Bayesian curve-fitting 

0.38 (0.30, 0.46, 

0.05) 

Bad Lauchstädt 

(Germany) 

Cropland (n = 1) 

LTBF (n = 14) 

18.0 (16.8, 19.4, 0.6) 

TOCRE6+MinC 

15.00 (0.50) 

Lowest SOCEA measured 

on site 

0.84 (0.77, 0.89, 

0.03) 

La Cabaña 

(Colombia) 

Pasture (n = 3) 

Oil-palm plantation (n = 12) 

17.8 (10.2, 31.8, 5.7) 

TOCRE6 

4.75 (0.50) 

Lowest SOCEA measured 

on site 

0.29 (0.15, 0.47, 

0.10) 

Reference soil sample set of  

PARTYSOCv2.0 (n = 105) 
16.4 (5.6, 41.5, 7.3)  

0.52 (0.15, 0.98, 

0.21) 

Reference soil sample set of  

PARTYSOCv2.0EU (n = 90) 
16.2 (5.6, 41.5, 7.5)  

0.55 (0.23, 0.98, 

0.20) 
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2.4 Selection of the training set and of meaningful Rock-Eval® predictors variables for PARTYSOCv2.0 

In machine-learning, the selection of the model training and test sets influences the performance of the model, just like the 

selection of the predictor variables, here, the Rock-Eval® parameters (e.g., Cécillon et al., 2008; Wehrens, 2020). 

 310 

For this second version of PARTYSOC, we changed some criteria regarding the inclusion of the available reference topsoil 

samples in the training set of the model (supplementary Table S1). We excluded from the training set all the topsoil samples 

experiencing agronomical treatments that may have changed the site-specific content of the centennially stable SOC fraction, 

in contradiction with our hypothesis of a constant content of this fraction at each reference site (see Sect. 2.3). These 

agronomical treatments concern the repeated application of some types of exogenous organic matter such as compost or 315 

manure, for which we suspect that they may increase the content of the centennially stable SOC fraction after several 

decades. Therefore, we excluded all reference topsoil samples from plots that experienced repeated applications of 

composted straw (six samples from Grignon), or manure (20 samples from Versailles and eight samples from Bad 

Lauchstädt) from the training set of the model. Yet, we kept some reference topsoil samples from Grignon and Ultuna 

experiencing repeated applications of straw. 320 

 

We also excluded from the training set of the model the reference topsoil samples for which the organic carbon yield of 

Rock-Eval® is below 86% or above 116%. For the site of Askov with a noisy relationship between SOCEA and the sum 

TOCRE6 plus MinC (see Sect. 2.3), we excluded the five samples without a SOCEA measurement preventing the calculation 

of the organic carbon yield of their Rock-Eval® analysis. Conversely, for the site of Bad Lauchstädt we kept topsoil samples 325 

without available SOCEA measurements, as the linear relationship between SOCEA and the sum TOCRE6 plus MinC was very 

good for this site (see Sect. 2.3). These criteria regarding the organic carbon yield of Rock-Eval® lead to the exclusion of 

nine samples from the site of Askov, four additional samples from the site of Versailles and two from the site of Ultuna. 

 

Contrary to the first version of PARTYSOC, this second version is based on a balanced contribution of each reference site 330 

(supplementary Table S1). Each reference site contributes to the model with 15 samples, so that the reference sample set of 

PARTYSOCv2.0 is composed of 105 topsoil samples (90 for the European version of the model PARTYSOCv2.0EU). Besides 

the above-mentioned exclusion criteria (that excluded 49 out of the 196 topsoil samples available from the seven reference 

sites), the 15 topsoil samples retained for each reference site were selected: (1) to have a range of proportion of centennially 

stable SOC fraction as wide as possible; (2) to have the best organic carbon yield of Rock-Eval® analysis. On average, the 335 

organic carbon yield of the Rock-Eval® analyses for the retained training set of reference topsoil samples (calculated as 

described above) was greater than 98% of SOCEA (SOCDETERMINED_BY_ROCK-EVAL® = 0.9924 SOCEA - 0.1051, R² = 0.99, n = 

91 topsoil samples with available SOCEA measurements). The list of the 105 reference topsoil samples retained as the 

training set of PARTYSOCv2.0 is provided in supplementary Table S3. This list includes, for each reference topsoil sample, 
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information on its reference site, land cover, agronomical treatment, sampling year and its values for the 40 Rock-Eval® 340 

parameters. 

 

The 40 Rock-Eval® parameters calculated (see Sect. 2.2) captured most of the information related to SOC thermal stability, 

elemental stoichiometry and content that is contained in the five Rock-Eval® thermograms. However, not all Rock-Eval® 

parameters do necessarily carry meaningful information for partitioning SOC into its centennially stable and active fractions 345 

(Cécillon et al., 2018). PARTYSOCv2.0 and its European version PARTYSOCv2.0EU incorporate as predictor variables only 

the Rock-Eval® parameters showing a strong relationship with the proportion of the centennially stable SOC fraction 

(supplementary Table S1). The absolute value of 0.50 for the Spearman’s rho (nonparametric and nonlinear correlation test) 

was used as a threshold to select meaningful Rock-Eval® predictor variables (calculated on the reference topsoil sample set 

of the PARTYSOCv2.0 model, n = 105). Basic statistics of all Rock-Eval® parameters (training set of PARTYSOCv2.0) are 350 

reported in supplementary Table S4. 

2.5 Random forests regression models to predict the proportion of the centennially stable SOC fraction from Rock-

Eval® parameters, performance assessment and error propagation in the models 

The PARTYSOCv2.0 machine-learning model consists of a nonparametric and nonlinear multivariate regression model 

relating the proportion of the centennially stable SOC fraction (response vector or dependent variable y) of the reference soil 355 

sample set (n = 105 topsoil samples from the seven reference sites; see Sect. 2.4) to their Rock-Eval® parameters 

summarized by a matrix of predictor variables (X) made up of the selected centered and scaled Rock-Eval® parameters. As 

stated above, we also built a regional (European) version of the model based on the six European reference sites only 

(PARTYSOCv2.0EU, using the 90 reference topsoil samples from Askov, Bad Lauchstädt, Grignon, Rothamsted, Ultuna and 

Versailles). 360 

 

Like the first version of PARTYSOC, this second version uses the machine-learning algorithm of random forests-random 

inputs (hereafter termed random forests) proposed by Breiman (2001). This algorithm aggregates a collection of random 

regression trees (Breiman, 2001; Genuer and Poggi, 2020). The PARTYSOCv2.0 and its European version PARTYSOCv2.0EU 

are based on a forest of 1000 different regression trees made of splits and nodes. The algorithm of random forests combines 365 

bootstrap resampling and random variable selection. Each of the 1000 regression trees was grown on a bootstrapped subset 

of the reference topsoil sample set (i.e., containing ca. two-thirds of “in-bag” samples). The algorithm randomly sampled 

one-third out of the selected Rock-Eval® parameters (see Sect. 2.4) as candidates at each split of the regression tree, and it 

used a minimum size of terminal tree nodes of five topsoil samples. The relative importance (i.e., ranking) of each selected 

Rock-Eval® parameters in the regression models was computed as the unscaled permutation accuracy (Strobl et al., 2009). 370 
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The performance of PARTYSOCv2.0 and PARTYSOCv2.0EU was assessed by statistical metrics comparing the predicted vs. 

the estimated values of their reference topsoil sample set using three complementary validation procedures. First, the 

predictive ability of both models was assessed by an “internal” procedure that used their respective whole reference topsoil 

sample sets (n = 105 samples for PARTYSOCv2.0, n = 90 samples for PARTYSOCv2.0EU). For this procedure, performance 375 

statistics were calculated only on the “out-of-bag” topsoil samples of the whole reference sets, using a random seed of 1 to 

initialize the pseudorandom number generator of the R software. Out-of-bag samples are observations from the training set 

not used for a specific regression tree that can be used as a “built-in” test set for calculating its prediction accuracy (Strobl et 

al., 2009). Second, the predictive ability of the models was assessed by a “random splitting” procedure that split randomly 

their respective reference topsoil sample sets into a test set (made of n = 30 samples), and a training set (n = 75 samples for 380 

PARTYSOCv2.0, n = 60 samples for PARTYSOCv2.0EU). This procedure was repeated 15 times using random seeds from 1 to 

15 in the R software. Third, a fully independent “leave-one-site-out” procedure was used to assess the predictive ability of 

the models. This procedure successively excluded topsoil samples of one reference site from the training set and uses them 

as a test set (n = 15) for the models. It used the random seed of 1 in the R software. For the second and third procedures, 

performance statistics were calculated (1) on the “out-of-bag” topsoil samples of the training sets and (2) on the topsoil 385 

samples of the test sets. The “leave-one-site-out” validation should be seen as the procedure giving the most accurate 

estimation of the uncertainty of both regression models on unknown topsoil samples.      

 

Finally, we assessed the sensitivity of model performance to the training and the test sets. For both sensitivity analyses, only 

the leave-one-site-out validation procedure was used (based exclusively on independent training and test sets). First, model 390 

sensitivity to the training set was assessed as its sensitivity to the independent reference sites included in the training set. It 

was performed using successively, as examples, two different test sets consisting of independent soils from the reference 

sites of Grignon and Versailles. Several random forests regression models were built using, as training sets, combinations of 

topsoil samples from a decreasing number of the remaining reference sites, on the basis of their potential proximity to the 

topsoil samples of the test sets, regarding their pedological or climatic conditions. The size of the various training sets ranged 395 

from n = 90 samples (six reference sites) to n = 30 samples (only two reference sites). Second, model sensitivity to the test 

set was assessed as its sensitivity to independent test samples (1) from a reference soil group (FAO, 2014) not existing in the 

training set (i.e., excluding Chernozem soil samples from the test set); (2) that are unlikely to be encountered in agricultural 

soils (i.e., excluding from the test set soils sampled at late dates of bare fallow treatments, more than 25 years after the 

experiment onset, which cannot represent soils with regular carbon input). Model sensitivity to the test set was performed 400 

only for PARTYSOCv2.0EU, to further investigate its predictive ability on soil samples from independent Cambisols and 

Luvisols of Northwestern Europe. 

 

Several statistics were used to assess the predictive ability of the regression models. The coefficient of determination: R
2
OOB, 

calculated on the “out-of-bag” samples of the training set; and R², calculated on the samples of the test set. The root-mean-405 
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square error of prediction: RMSEPOOB, calculated on the “out-of-bag” samples of the training set; and RMSEP, calculated on 

the samples of the test set. The relative RMSEP: RRMSEP, calculated as the ratio of the RMSEP to the mean value of the test 

set. The ratio of performance to interquartile range (RPIQ) was calculated as the ratio of the interquartile range of the test set 

(Q3 - Q1; which gives the range accounting for 50% of the test sets around its median value) to the RMSEP (Bellon-Maurel 

et al., 2010). The bias of the random forests regression models was calculated as the mean of the model predictions on the 410 

test set minus the actual mean of the test set. Additionally, site-specific RMSEP and RRMSEP were calculated for the “leave-

one-site-out” procedure (on the 15 independent test samples from each site). The uncertainty on the model predictions for 

new topsoils was determined using a methodology that was fully described by Cécillon et al. (2018). This methodology was 

adapted after the work of Coulston et al. (2016), to explicitly take into account the uncertainty in the reference values of the 

proportion of the centennially stable SOC fraction (see Sect. 2.3) that were used to build the models (Cécillon et al., 2018). 415 

 

PARTYSOCv2.0 and PARTYSOCv2.0EU were programmed as R scripts in the RStudio environment software (RStudio Team, 

2020), and were run using the R version 4.0.0 (R Core Team, 2020). The R scripts use the random forests algorithm of the 

randomForest R package (Liaw and Wiener, 2002) and the boot R package for bootstrapping (Canty and Ripley, 2020; 

Davison and Hinkley, 1997). 420 

3 Results 

3.1 Content of the centennially stable SOC fraction at the reference sites 

The two newly fitted values of the centennially stable SOC fraction content (i.e., parameter c in Eq. (1), see Sect. 2.1) were 

5.10 g C kg
-1

 at the site of Askov (standard deviation = 0.88 g C kg
-1

) and 5.12 g C kg
-1

 at the site of La Cabaña (standard 

deviation = 0.35 g C kg
-1

). The fitted values of parameter c in Eq. (1) for all reference sites and their standard errors are 425 

provided in supplementary Table S2. A total (reference sites with an LTBF treatment) or a C4-plant derived (La Cabaña site) 

SOC content value lower than the fitted value of the site-specific parameter c in Eq. (1) was measured in four out the seven 

reference sites of the PARTYSOCv2.0 model. At Bad Lauchstädt, a SOCEA value of 15.0 g C kg
-1

 was reported by Körschens 

et al. (1998) for topsoils of the well ring experiment (Ansorge, 1966). At Rothamsted, a SOCEA measurement of 9.72 g C kg
-

1
 was reported for topsoils of the Highfield LTBF experiment by Cécillon et al. (2018). At Versailles a SOCEA measurement 430 

of 5.50 g C kg
-1

 was reported after 80 years of bare fallow by Barré et al. (2010). At La Cabaña, a C4-plant derived SOC 

content of 4.75 g C kg
-1

 was calculated using data from Quezada et al. (2019). These values did not differ strongly from the 

values of the centennially stable SOC contents calculated from the Bayesian curve-fitting method (Table 1, Table S2). In 

particular, the hierarchy in the centennially stable SOC content of the seven reference sites was unchanged whatever the 

calculation method. These values were retained as the best estimates of the site-specific content of the centennially stable 435 

SOC fraction in topsoils of the four sites to reduce the risk of overestimating the actual value of the centennially stable SOC 

content, compared to the first published version of the model (see Sect. 2.1; Table 1 and supplementary Table S1). As these 
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site-specific values of the centennially stable SOC fraction content were derived from SOCEA measurements, we attributed a 

standard deviation of 0.50 g C kg
-1

 to each of them, following Barré et al. (2010). The final estimates of the content of the 

centennially stable SOC fraction at the seven reference sites that were used in PARTYSOCv2.0 are provided in Table 1. They 440 

varied by a factor of three across the reference sites, ranging from 4.75 g C kg
-1

 at La Cabaña to 15.00 g C kg
-1

 at Bad 

Lauchstädt. The lowest value of the topsoil content of the centennially stable SOC fraction used in PARTYSOCv2.0EU 

differed only slightly from the one of PARTYSOCv2.0 (5.10 g C kg
-1

 at the site of Askov). 

3.2 Content and biogeochemical stability of SOC in the training sets, and selection of meaningful Rock-Eval® 

parameters as predictor variables for the PARTYSOCv2.0 and PARTYSOCv2.0EU models 445 

The SOC content in the topsoil samples of the seven reference sites ranged from 5.6 to 41.5 g C kg
-1

 in the training sets of 

the PARTYSOCv2.0 (n = 105) and PARTYSOCv2.0EU (n = 90) models (Table 1). As showed in Table 1, this resulted in 

proportions of the centennially stable SOC fraction ranging from 0.15 to 0.98 (PARTYSOCv2.0 training set), and from 0.23 to 

0.98 (PARTYSOCv2.0EU training set). All the 25 calculated Rock-Eval® temperature parameters showed positive values of 

Spearman’s rho coefficient with the response variable of the PARTYSOCv2.0 model (n = 105; with Spearman’s rho values up 450 

to 0.81 for T90HC_PYR; Table 2). While the inorganic carbon content was not correlated to the proportion of the centennially 

stable SOC fraction, TOCRE6 was significantly and negatively correlated to the response variable of the PARTYSOCv2.0 

model (Spearman’s rho = -0.55; Table 2). Other Rock-Eval® parameters linked to soil carbon content showed a stronger 

relationship than TOCRE6 with the proportion of the centennially stable SOC fraction. This was the case for S2 and PC that 

showed the highest absolute Spearman’s rho coefficients, with a highly significant negative relationship (Spearman’s rho = -455 

0.85; Table 2). Eighteen out of the 40 calculated Rock-Eval® parameters showed an absolute value of Spearman’s rho above 

0.5 with the proportion of the centennially stable SOC fraction in the training set of the PARTYSOCv2.0 model (n = 105; 

Table 2), and were thus retained as predictor variables for the models. The 18 Rock-Eval® parameters retained were: the 

Rock-Eval® temperature parameters T70HC_PYR, T90HC_PYR, T30CO2_PYR, T50CO2_PYR, T70CO2_PYR, T90CO2_PYR, T70CO_OX, 

T50CO2_OX, T70CO2_OX, T90CO2_OX, and the Rock-Eval® parameters PseudoS1, S2, S2/PC, HI, HI/OIRE6, PC, PC/TOCRE6, and 460 

TOCRE6. 
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Table 2: Spearman's rank correlation coefficient test between the 40 calculated Rock-Eval® parameters and the 

proportion of the centennially stable organic carbon fraction in the reference topsoil sample set of the PARTYSOCv2.0 465 

model (n = 105), and variable importance (ranking) of the 18 selected Rock-Eval® parameters for predicting the 

proportion of the centennially stable SOC fraction in the PARTYSOCv2.0 and PARTYSOCv2.0EU random forests 

regression models. See Section 2.2 for a description of the units of the 40 Rock-Eval® parameters. The 18 Rock-Eval® 

parameters retained as predictor variables for the second version of PARTYSOC are shown in bold. Abbreviation: SOC, soil 

organic carbon. 470 

Rock-Eval® 

parameter 

 

 

 

Spearman's ρ with 

the proportion of 

the centennially 

stable SOC fraction 

 

p-

value 

 

 

 

Variable importance to predict 

the proportion of the 

centennially stable SOC 

fraction in the PARTYSOCv2.0 

regression model (rank) 

Variable importance to predict 

the proportion of the centennially 

stable SOC fraction in the 

PARTYSOCv2.0EU regression 

model (rank) 

T10HC_PYR 0.38 0.0001 NA NA 

T30HC_PYR 0.47 0.0000 NA NA 

T50HC_PYR 0.46 0.0000 NA NA 

T70HC_PYR 0.54 0.0000 17 15 

T90HC_PYR 0.81 0.0000 5 13 

T10CO_PYR 0.40 0.0000 NA NA 

T30CO_PYR 0.36 0.0001 NA NA 

T50CO_PYR 0.33 0.0005 NA NA 

T70CO_PYR 0.31 0.0014 NA NA 

T90CO_PYR 0.31 0.0013 NA NA 

T10CO2_PYR 0.35 0.0003 NA NA 

T30CO2_PYR 0.56 0.0000 12 10 

T50CO2_PYR 0.55 0.0000 8 2 

T70CO2_PYR 0.55 0.0000 10 7 

T90CO2_PYR 0.58 0.0000 11 11 

T10CO_OX 0.31 0.0013 NA NA 

T30CO_OX 0.41 0.0000 NA NA 

T50CO_OX 0.49 0.0000 NA NA 

T70CO_OX 0.58 0.0000 9 16 

T90CO_OX 0.33 0.0007 NA NA 

T10CO2_OX 0.10 0.3349 NA NA 
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T30CO2_OX 0.39 0.0000 NA NA 

T50CO2_OX 0.63 0.0000 13 14 

T70CO2_OX 0.70 0.0000 4 12 

T90CO2_OX 0.60 0.0000 14 17 

I-index -0.40 0.0000 NA NA 

R-index 0.47 0.0000 NA NA 

TLHC-index -0.49 0.0000 NA NA 

HI -0.72 0.0000 7 6 

OIRE6 -0.09 0.3504 NA NA 

TOCRE6 -0.55 0.0000 6 9 

MinC 0.03 0.7430 NA NA 

PC -0.85 0.0000 2 3 

S2 -0.85 0.0000 1 1 

PseudoS1 -0.50 0.0000 18 18 

PseudoS1/PC 0.28 0.0033 NA NA 

PseudoS1/TOCRE6 -0.06 0.5702 NA NA 

S2/PC -0.70 0.0000 16 4 

PC/TOCRE6 -0.71 0.0000 3 8 

HI/OIRE6 -0.68 0.0000 15 5 

 

3.3 Performance assessment of the PARTYSOCv2.0 and PARTYSOCv2.0EU machine-learning models 

Using both the “internal” and the “random splitting” performance assessment procedures (see Sect. 2.5), the PARTYSOCv2.0 

and PARTYSOCv2.0EU models showed good to very good predictive ability of the proportion of the centennially stable SOC 

fraction (Fig. 2a; Table 3a). For most of the calculated statistics, the European version of the model PARTYSOCv2.0EU 475 

showed better performance than the PARTYSOCv2.0 model (Table 3). Using the “random splitting” procedure, the mean R² 

of PARTYSOCv2.0EU was 0.87 (0.81 for PARTYSOCv2.0), its RMSEP and RRMSEP were respectively 0.07 and 0.13 (0.09 

and 0.17 for PARTYSOCv2.0), and its mean RPIQ was 4.6 (3.6 for PARTYSOCv2.0). The bias was low for both models (Table 

3a). 

 480 
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Figure 2: Performance of PARTYSOCv2.0 and PARTYSOCv2.0EU machine-learning models based on Rock-Eval® 

thermal analysis for predicting the centennially stable organic carbon proportion in topsoils. (a) Results of the internal 

validation procedure; (b) Results of the leave-one-site-out validation procedure (see Section 2.5 for more details on model 

performance assessment). Abbreviation: SOC, soil organic carbon. 485 

 

The predictive ability of both models decreased when assessed using the “leave-one-site-out” procedure (see Sect. 2.5; Fig. 

2b). Again, PARTYSOCv2.0EU showed better performance statistics than the PARTYSOCv2.0 model (Table 3; Fig. 2b), with 

an R² of 0.45, an RMSEP of 0.15, an RRMSEP of 0.27 and an RPIQ of 2.4. The PARTYSOCv2.0 model poorly predicted the 

proportion of the centennially stable SOC fraction in topsoil samples of two sites (Table 3b; Fig. 2b): La Cabaña 490 

(overestimation; with a site-specific RMSEP of 0.28) and Bad Lauchstädt (underestimation; with a site-specific RMSEP of 

0.32). The proportion of the centennially stable SOC fraction in topsoil samples of Bad Lauchstädt remained underestimated 

by the PARTYSOCv2.0EU model, though with a reduced site-specific RMSEP (0.23; Table 3b; Fig. 2b). All other site-specific 

RMSEPs were below 0.18 (0.17 at Versailles for PARTYSOCv2.0, 0.18 at Grignon for PARTYSOCv2.0EU; Table 3b), with 

remarkably low site-specific RMSEPs for the sites of Askov (below 0.05 for both models) and Ultuna (0.06 for 495 

PARTYSOCv2.0; 0.09 for PARTYSOCv2.0EU). 

 

The most important Rock-Eval® parameter for predicting the proportion of the centennially stable SOC fraction is S2 for 

both PARTYSOCv2.0 and PARTYSOCv2.0EU (Table 2). Conversely, the two models show only two Rock-Eval® parameters in 

common out of their five most important ones that are S2, PC, PC/TOCRE6, T70CO2_OX, T90HC_PYR for PARTYSOCv2.0 and 500 

S2, T50CO2_PYR, PC, S2/PC, HI/OIRE6 for PARTYSOCv2.0EU (Table 2). 
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Table 3: Performance of the PARTYSOCv2.0 and the PARTYSOCv2.0EU random forests regression models based on 

Rock-Eval® thermal analysis for predicting the proportion of the centennially stable organic carbon fraction in 505 

topsoils. (a) Performance statistics calculated for the internal, random splitting (mean statistics of 15 different models) and 

leave-one-site-out validation procedures; (b) Site-specific performance statistics calculated for the leave-one-site-out 

validation procedure. The performance statistics and their abbreviations are defined at Section 2.5. 

(a) Internal procedure Random splitting procedure Leave-one-site-out procedure 

 PARTYSOCv2.

0 

PARTYSOCv2.0

EU 

PARTYSOCv2.

0 

PARTYSOCv2.0

EU 

PARTYSOCv2.

0 

PARTYSOCv2.0

EU 

R
2

OOB 0.83 0.87 0.80 0.84 - - 

RMSEPOO

B 

0.08 0.07 0.09 0.08 - - 

R
2
 - - 0.81 0.87 0.23 0.45 

RMSEP - - 0.09 0.07 0.18 0.15 

RRMSEP - - 0.17 0.13 0.36 0.27 

RPIQ - - 3.59 4.60 1.75 2.39 

Bias - - 0.005 0.006 < 0.001 -0.003 

 

(b)  Leave-one-site-out procedure 

Test set  Askov Bad  

Lauchstädt 

Grignon Versailles Rothamsted Ultuna La  

Cabaña 

PARTYSOCv2.0 

Site-

specific 

RMSEP 

0.05 0.32 0.11 0.17 0.14 0.06 0.28 

Site-

specific 

RRMSEP 

0.13 0.38 0.18 0.28 0.36 0.13 0.94 

PARTYSOCv2.0EU 

Site-

specific 

RMSEP 

0.05 0.23 0.18 0.14 0.14 0.09 - 

Site-

specific 

RRMSEP 

0.13 0.28 0.28 0.24 0.35 0.20 - 
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3.4 Sensitivity of model performance to the training and the test sets 510 

The sensitivity analysis to the training set showed that restricting the model training set to samples from fewer reference sites 

with pedoclimatic conditions closer to the ones of a fully independent test site changed its performance (Fig. 3). Removing 

from the training set a reference site with a climate (i.e., La Cabaña) or a soil group (i.e., Bad Lauchstädt) differing strongly 

from the independent test sites (here, Grignon or Versailles used as examples) reduced the site-specific RMSEP and 

RRMSEP of the model (supplementary Table S5). When Grignon or Versailles were used as independent test sites, the model 515 

with the best predictive ability (i.e., the lowest site-specific RMSEP and RRMSEP) used a training set composed of 45 

topsoil samples from three European reference sites (including the French site with the closest climate, despite its different 

soil group; supplementary Table S2 and S5; Fig. 3). 

 

 520 

Figure 3: Sensitivity of model performance to the reference sites included in the training set, using 15 topsoil samples 

from the sites of (a) Grignon or (b) Versailles as independent test sets. Predictions by models showing the lowest 

RMSEP and RRMSEP are plotted in green (using a training set composed of three independent reference sites to predict 

Grignon or Versailles as test set). See supplementary Table S5 for more details on the training sets of the different models 

and their site-specific performance statistics. Abbreviation: SOC, soil organic carbon.  525 

 

The sensitivity analysis to the test set showed that when excluding Chernozem samples from the test set (i.e., validating the 

model exclusively on independent samples from Cambisols or Luvisols), the performance statistics of PARTYSOCv2.0EU 

were improved (leave-one-site-out validation procedure: R² of 0.56; RMSEP of 0.13; n = 75). The further removal of 

independent test soils that are unlikely to be encountered in agricultural Cambisols and Luvisols (soils sampled at late dates 530 

of bare fallow treatments, more than 25 years after the experiment onset) also improved the performance statistics of 

PARTYSOCv2.0EU (supplementary Fig. S1; leave-one-site-out validation procedure: R² of 0.71; RMSEP of 0.11; n = 58). 
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4 Discussion 

The second version of the PARTYSOC machine-learning model incorporates a large number of modifications and 

improvements (supplementary Table S1), and its predictive ability was more thoroughly assessed compared to the first 535 

version of the model (Cécillon et al., 2018). The critical examination of the performance of PARTYSOCv2.0 and 

PARTYSOCv2.0EU provides new insights: (1) on the relationships between Rock-Eval® parameters and the century-scale 

persistence of SOC; (2) on both current and potential capabilities of the model to partition the centennially stable and active 

organic carbon fraction in topsoils. Based on those insights, (3) we plan future developments of the PARTYSOC model to 

further expand its domain of application while reducing its prediction error. 540 

4.1 Rock-Eval® chemical and thermal information are related to the century-scale persistence of SOC 

The methodology used to estimate the centennially stable SOC proportion in reference topsoils has been revised for the 

second version of the PARTYSOC model (see Sect. 2.1 and 2.3 and supplementary Table S1), and the training set now 

integrates a wider range of centennially stable SOC contents [4.75–15.00 g C kg
-1

] with a median value of 6.95 g C kg
-1

 (n = 

7; Table 1). This range covers most of the published size estimates of this fraction in topsoils, estimated using different 545 

methods (Balesdent et al., 1988; Barré et al., 2010; Buyanovsky and Wagner, 1998b; Cécillon et al., 2018; Franko and 

Merbach, 2017; Hsieh, 1992; Huggins et al., 1998; Jenkinson and Coleman, 1994; Körschens et al., 1998; Rühlmann, 1999). 

The contribution of each reference site to the training set and the inclusion criteria for topsoil samples were also modified, 

and ten Rock-Eval® parameters not considered in the first version of the model were proposed as potential predictor 

variables for this second version of the model (see Sect. 2.2 and 2.4 and supplementary Table S1). 550 

 

Using this improved design, all Rock-Eval® temperature parameters showed positive values of Spearman’s rho coefficient 

with the proportion of the centennially stable SOC fraction in topsoils (Table 2), when a few of them showed 

counterintuitive significant negative correlations using the training set of the first version of PARTYSOC (Cécillon et al., 

2018). This confirms the generic link between SOC thermal stability and its in situ biogeochemical stability: centennially 555 

stable SOC is thermally stable, even though thermostable SOC fractions are a mixture of centennially stable and active SOC 

(Fig. 1; Barré et al., 2016; Gregorich et al., 2015; Plante et al., 2013; Sanderman and Grandy, 2020; Schiedung et al., 2017). 

Some Rock-Eval® temperature parameters were within the five most important predictor variables for both PARTYSOCv2.0 

(T70CO2_OX, T90HC_PYR) and PARTYSOCv2.0EU (T50CO2_PYR; Table 2). 

 560 

Contrary to the first version of PARTYSOC, the second version tested several Rock-Eval® parameters directly linked to soil 

carbon content as potential predictor variables. TOCRE6 was selected as a meaningful predictor variable for PARTYSOCv2.0 

and PARTYSOCv2.0EU. Its negative correlation with the centennially stable SOC proportion (Table 2) was expected, 

according to the calculation of the latter (see Sect. 2.3). This is in line with results from SOC-dating techniques and with 
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most multi-compartmental models of SOC dynamics suggesting that the proportion of the most persistent SOC fraction is a 565 

decreasing function of total SOC (Huggins et al., 1998; Rühlmann, 1999). Indeed, the ex-post optimised initial value of the 

proportion of the inert SOC fraction for the simple AMG model of SOC dynamics is higher (0.60 on average) for SOC-

depleted temperate topsoils with a long-term arable history than for SOC-rich temperate topsoils with a long-term grassland 

history (0.47 on average; Clivot et al., 2019). Contrarily, the empirical function commonly used to initialize the size of the 

inert SOC fraction of the multi-compartmental RothC model predicts an increased proportion of inert SOC with increased 570 

total SOC (Falloon et al., 1998). This empirical function needs to be examined upon these results. 

 

Interestingly, S2 (pyrolysable volatile hydrocarbon effluents) and PC (total pyrolysable organic carbon), two other Rock-

Eval® parameters linked to SOC content showed a stronger negative relationship than TOCRE6 with the proportion of the 

centennially stable SOC fraction. Both variables are within the three most important predictor variables for PARTYSOCv2.0 575 

and PARTYSOCv2.0EU while TOCRE6 was ranked sixth or ninth out of the 18 predictor variables (Table 2). Other Rock-Eval® 

parameters related to the pyrolysable SOC fraction (PC/TOCRE6 and HI, both negatively related to the centennially stable 

SOC proportion) were also important predictor variables for both models. The results suggest that a simple decreasing 

function of total SOC content cannot accurately predict the centennially stable SOC proportion in topsoils, according to the 

recent report by Clivot et al. (2019). They also confirm the generic elemental stoichiometry of the centennially stable SOC 580 

fraction: it is consistently depleted in hydrogen (Barré et al., 2016; Gregorich et al., 2015; Poeplau et al., 2019); and they 

illustrate the usefulness of the pyrolysis step of Rock-Eval® thermal analysis and its volatile hydrocarbon effluents 

quantification to infer the proportion of the centennially stable SOC fraction in unknown topsoils. 

4.2 Capability of the second version of PARTYSOC to partition the centennially stable and active SOC fractions 

The training set of the second version of PARTYSOC was significantly diversified compared with the first version. It now 585 

represent wider pedoclimatic conditions (supplementary Table S2), and it includes one long-term vegetation change site as 

reference site (La Cabaña). Reference topsoils from the Colombian site of La Cabaña fitted well into the training set of the 

global model: they did not alter its overall performance, as the root-mean-square errors of PARTYSOCv2.0 (internal or 

random splitting validation procedures) are comparable to the ones of the model’s first version, where the content of the 

centennially stable SOC fraction was inferred exclusively from plant-free soils (Fig. 2a, Table 3; Cécillon et al., 2018). 590 

Similarly, the expansion of the training set to new pedoclimates (supplementary Table S2) did not alter the performance of 

the model, when assessed using the internal or random splitting validation procedures (Fig. 2a, Table 3).  

 

The predictive ability of the second version of PARTYSOC was more thoroughly assessed compared to the first version of the 

model. Specifically, the sensitivity of model performance to the reference sites included in the training set demonstrates that 595 

local models—with training sets composed of soils from pedoclimates similar to the ones of the soils from the prediction 

set—showed better predictive ability of the centennially stable SOC proportion compared to a global model (Fig. 3). While 
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the current training set is composed of too few reference sites to implement local modelling, this suggests that the European 

version PARTYSOCv2.0EU should be preferred to the global version PARTYSOCv2.0 when predicting the centennially stable 

SOC proportion in unknown soils from Europe. 600 

 

On the other hand, the leave-one-site-out validation procedure, the most robust validation procedure (see Sect. 2.5), 

demonstrates that the second version of PARTYSOC is currently not capable of accurately partitioning SOC into its 

centennially stable and active fractions in soil samples coming from pedoclimates that differ strongly from the ones included 

in the training set (Fig. 2b, Table 3b). This indicates that like all machine-learning approaches, the PARTYSOC model gains 605 

progressively more genericity (i.e., capability to fairly predict the centennially stable SOC proportion in unknown soils) as 

its training set integrates soils from new pedoclimates. To this respect, we consider that applying the second version of 

PARTYSOC to unknown soils from pedoclimates outside its training set cannot be recommended. The sensitivity analysis to 

the test set, however, shows that PARTYSOCv2.0EU reliably partitions SOC kinetic fractions at its validation sites on 

Cambisols and Luvisols (with a mean prediction error on the centennially stable SOC proportion of 0.11; see Sect. 3.4 and 610 

supplementary Fig. S1). Cambisols and Luvisols are the two dominant reference soil groups in Europe, covering more than 

41% of European land areas (European Commission, 2008). Though the model test set does not include all the within-group 

pedological variability of Cambisols and Luvisols (FAO, 2014), this suggests that PARTYSOCv2.0EU can accurately partition 

SOC into its centennially stable and active fractions on a significant portion of Northwestern European agricultural soils. The 

relatively high prediction error, however, of both PARTYSOCv2.0 and PARTYSOCv2.0EU models at Rothamsted (high 615 

RRMSEP; Table 3), a site developed on a Chromic Luvisol, may be due to an inaccurate estimate (overestimation) of the 

centennially stable SOC content at this site. Indeed, a report from an ancient LTBF trial at Rothamsted (drain gauge 

experiment; Jenkinson and Coleman, 1994), on the same soil unit as the Highfield bare fallow experiment, showed a 

measured total SOC content of 7.9 g C kg
-1

, which is lower than our current estimate of the centennially stable SOC content 

(9.72 g C kg
-1

; Table 1). Yet, the conditions of the drain gauge experiment, with a basic soil pH value of 7.9 due to heavy 620 

dressing of chalk on Rothamsted’s arable lands before the 19
th

 century (Avery and Catt, 1995; Jenkinson and Coleman, 

1994), may not be directly comparable to the conditions of the Highfield bare fallow experiment showing acidic pH values 

ranging from 5.2 to 6.3 (supplementary Table S2). 

4.3 Future developments of the PARTYSOC model 

The very first future improvements to the PARTYSOC machine-learning model are to increase the size and further expand the 625 

pedoclimatic diversity of its training set. A few additional LTBF sites and several C3 to C4 plants (or C4 to C3) long-term 

vegetation change sites (including space-for-time substitution, like the site of La Cabaña) could be used to achieve this goal. 

A potential complement lies in a few long-term experimental sites with soil archives and treatments experiencing contrasting 

SOC stock changes. Radiocarbon measurements on recent and archived soil samples from such sites can be used to infer the 

content of the centennially stable SOC fraction in topsoils (Hsieh, 1992), but also in subsoils, to allow extending the model 630 
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to deeper soil horizons. Following the method developed by Buyanovsky and Wagner (1998b, 1998a) and Huggins et al. 

(1998), the content of the centennially stable SOC fraction can also be estimated at a few additional long-term experiments 

with contrasted SOC inputs. A promising complement to these strategies lies in numerous long-term sites where time series 

of SOC inputs, outputs and stocks are well constrained (i.e., long-term experiments or long-term monitoring sites in various 

types of ecosystems including arable land, grassland and forest). It is possible to reliably infer the content of the centennially 635 

stable SOC fraction at these sites using simple models of SOC dynamics like AMG (Clivot et al., 2019). Combining all these 

strategies could help expanding significantly the training set of PARTYSOC to soil samples from diverse climates, 

ecosystems, soil types and soil depths. When the training set of PARTYSOC will integrate a sufficient diversity of soil 

samples, a second future improvement of the model lies in the comparison of different machine-learning algorithms as well 

as the test of local modelling approaches, as commonly used in soil spectroscopy studies (Dangal et al., 2019; Gogé et al., 640 

2012; Ramirez-Lopez et al., 2013b, a). 

 

The independent validation of PARTYSOCv2.0EU at five sites on the two dominant reference soil groups in Northwestern 

Europe presented here (Fig. 2 and supplementary Fig. S1) constitutes a significant progress in the metrology of SOC kinetic 

pools. It represents an improvement compared to other approaches that consistently fail to achieve a proper separation of 645 

active from stable SOC (Fig. 1; Hsieh, 1992; von Lützow et al., 2007). Those methods such as the physical or physico-

chemical SOC fractionation schemes have been developed to initialize the size of SOC kinetic pools of models (Skjemstad et 

al., 2004; Zimmermann et al., 2007a) and some of them are now implemented on large topsoil sample sets at the national or 

continental scale in Europe (Cotrufo et al., 2019; Vos et al., 2018) and Australia (Gray et al., 2019; Viscarra Rossel et al., 

2019). A similar implementation in soil monitoring networks of Rock-Eval® measurements combined with the second 650 

version of PARTYSOC can provide a more accurate quantification of the functionally different SOC fractions that are 

centennially stable or active (Fig. 1), at least for a portion of Northwestern European agricultural land areas on Cambisols 

and Luvisols. Large-scale Rock-Eval® measurements and the combined application of PARTYSOCv2.0EU are already 

ongoing in the French soil monitoring network for soil quality assessment (RMQS; Jolivet et al., 2018). We recommend 

undertaking similar works in other national and international soil monitoring networks. The second version of PARTYSOC 655 

could also be directly employed as a SOC pools partitioning method for simple models of SOC dynamics that are built on 

the same dualistic conceptual approach of SOC persistence (i.e., active vs. stable SOC pools). The accuracy of these simple 

models, such as AMG, is highly sensitive to the proper partitioning of SOC kinetic pools (Clivot et al., 2019), and could thus 

strongly benefit from the second version of PARTYSOC.  

 660 

We envision a significant contribution of the PARTYSOC machine-learning model based on Rock-Eval® thermal analysis to 

the forthcoming large-scale availability of accurate information on the size of the centennially stable or active SOC fractions. 

Such accurate information will foster (1) the initiatives of soil health assessment and monitoring and (2) the modelling works 

of SOC dynamics and of the climate regulation function of soils. 
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Data and code availability 665 

The Rock-Eval® data of the 105 reference topsoil samples of PARTYSOCv2.0 are provided in supplementary Table S3, as a 

csv file. The R script used to extract Rock-Eval® 6 raw data and calculate Rock-Eval® parameters; the Rock-Eval® data 

and the R script used to build PARTYSOCv2.0 and PARTYSOCv2.0EU models and test their performance; and the 

PARTYSOCv2.0EU model  (available as an R script and an R data file, please note that predictions of the centennially stable 

and active SOC contents (in g C kg
-1

) are obtained by multiplying their respective proportions by the TOCRE6 Rock-Eval® 670 

parameter) can be accessed on GitHub at https://github.com/lauric-cecillon/PARTYsoc and on Zenodo at the permanent link 

https://doi.org/10.5281/zenodo.4446138. 
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