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Abstract 

Partitioning soil organic carbon (SOC) into two kinetically different fractions that are centennially stable or active on a 30 

century scale is key information for an improved monitoring of soil health and for a more accurate modelsling of the carbon 

cycle. However, all existing SOC fractionation methods isolate SOC fractions that are mixtures of centennially stable and 

active SOC. If the stable SOC fraction cannot be isolated, it has specific chemical and thermal characteristics that are quickly 

(ca. 1 h per sample) measureable using Rock-Eval® thermal analysis. An alternative would thus be to (1) train a machine-

learning model on the Rock-Eval® thermal analysis data of soil samples from long-term experiments where the size of the 35 

centennially stable and active SOC fractions can be estimated, and (2) apply this model on the Rock-Eval® data of unknown 

soils, to partition SOC into its centennially stable and active fractions. Here, we significantly extend the validity range of the 

a previously published machine-learning model published by Cécillon et al. [Biogeosciences, 15, 2835–2849, 2018, 

https://doi.org/10.5194/bg-15-2835-2018], and that is built upon this strategy. The second version of this statistical model, 

which we propose to name PARTYSOC, uses six European long-term agricultural sites including a bare fallow treatment and 40 

one South American vegetation change (C4 to C3 plants) site as reference sites. The European version of the model 

(PARTYSOCv2.0EU) predicts the proportion of the centennially stable SOC fraction with a conservative root-mean-square 

error of 0.15 (relative root-mean-square error of 0.27) at six independent validation sites. More specifically, our results show 

that PARTYSOCv2.0EU reliably partitions SOC kinetic fractions at its Northwestern European validation sites on Cambisols 

and Luvisols, which are the two dominant soil groups in this regionin a wide range of agricultural topsoils from 45 

Northwestern Europe. We plan future expansions developments of the PARTYSOC global model using additional reference 

soils developed under diverse pedoclimates and ecosystems to further expand its domain of application while reducing its 

prediction error., and we already recommend the application of PARTYSOCv2.0EU in European agricultural topsoils to 

provide accurate information on SOC kinetic pools partitioning that may improve the simulations of simple models of SOC 

dynamics. 50 

  

https://doi.org/10.5194/bg-15-2835-2018


3 

 

1 Introduction 

Soil organic carbon (SOC) is identified as a key element contributing to soil functions such as primary productivity, water 

purification and regulation, carbon sequestration and climate regulation, habitat for biodiversity and recycling of nutrients 

(Keesstra et al., 2016; Koch et al., 2013; Schulte et al., 2014; Wiesmeier et al., 2019) . While the magnitude and the historical 55 

dimension of the decrease in SOC at the global level are progressively being unveiled (IPBES, 2018; Sanderman et al., 2017; 

Stoorvogel et al., 2017), SOC stocks’ preservation and even increase is a major challenge for human societies in the 21
st
 

century (Amundson et al., 2015). With widespread beneficial effects on soil functioning at the local level (Pellerin et al., 

2019), increasing the size of the global SOC reservoir contributes directly to the Sustainable Development Goal related to 

life on land (https://www.globalgoals.org/15-life-on-land). It is also one of the few land management-based intervention 60 

options that has a broad and positive impact on food security and climate change mitigation and adaptation, two other 

Sustainable Development Goals set by the United Nations (IPCC, 2019; Lal, 2004). 

 

There is experimental evidence showing that in all soils, SOC is made of carbon atoms with highly contrasting residence 

times, ranging from hours to millennia (Balesdent et al., 1987; Trumbore et al., 1989). This continuum in SOC persistence is 65 

often simplified by considering SOC as a mixture formed of several fractions, also called kinetic pools by modelers (Hénin 

and Dupuis, 1945; Jenkinson, 1990; Nikiforoff, 1936). The most drastic conceptual simplification of SOC persistence 

considers only two pools: (1) one made of young SOC with a short turnover rate (typically three decades on average; the 

active or labile SOC pool) and (2) one made of older SOC that persists much longer in the soil (more than a century; the 

stable, passive or persistent SOC pool). This dualistic representation of SOC persistence was considered as “a necessary 70 

simplification, but certainly not a utopian one” four decades ago (Balesdent and Guillet, 1982) and is still considered as 

meaningful (e.g., Lavallee et al., 2020). The active and stable soil organic matter pools contribute differently to the various 

soil functions (Hsieh, 1992). The active organic matter pool efficiently fuels soil biological activity (with carbon, nutrients 

and energy) and plant growth (with nutrients) through its rapid decay, and it sustains soil structure development (Abiven et 

al., 2009; Janzen, 2006). Conversely, the potential contribution of a soil to climate regulation would be most dependent on its 75 

stable organic matter pool size (He et al., 2016; Shi et al., 2020). 

 

A myriad of methods has been developed and tested to partition SOC into active and stable fractions, that would match 

kinetic pools for the assessment of SOC dynamics and related soil functions, since the second half of the 20
th
 century 

(Balesdent, 1996; Hénin and Turc, 1949; Monnier et al., 1962; Poeplau et al., 2018) . Some of these methods based on 80 

chemical or physical (size, density or thermal) fractionation schemes can separate SOC fractions with, on average, different 

turnover rates (Balesdent, 1996; Plante et al., 2013; Poeplau et al., 2018; Trumbore et al., 1989). Of these methods, only a 

few are reasonably reproducible and easy to implement such as the ones based on rapid thermal analysis and chemical 

extractions (Gregorich et al., 2015; Poeplau et al., 2013, 2018; Soucémarianadin et al., 2018a) . Other methods, such as size 

https://www.globalgoals.org/15-life-on-land
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and density SOC fractionation, need to be inferred from statistical machine-learning models or infrared spectroscopy to be 85 

implemented on large soil sample sets (Baldock et al., 2013; Cotrufo et al., 2019; Jaconi et al., 2019; Viscarra Rossel et al., 

2019; Viscarra Rossel and Hicks, 2015; Vos et al., 2018; Zimmermann et al., 2007b) . However, all SOC fractionation 

methods fail to achieve a proper separation of stable from active SOC, and the isolated SOC fractions are thus mixtures of 

centennially stable and active SOC (Fig. 1; Balesdent, 1996; Hsieh, 1992; von Lützow et al., 2007; Sanderman and Grandy, 

2020). This limitation is common to all existing SOC fractionation methods and compromises the results of any work using 90 

them directly to quantify soil functions specifically related to SOC fractions or to parameterize SOC partitioning in multi-

compartmental models of SOC dynamics (Luo et al., 2016). Simulations of SOC stocks changes by multi-compartmental 

models are very sensitive to the initial proportion of the centennially stable SOC fraction, underlining the importance of its 

accurate estimation (Clivot et al., 2019; Falloon and Smith, 2000; Jenkinson et al., 1991; Taghizadeh-Toosi et al., 2020). 

 95 

 

Figure 1: Conceptual representation of soil organic carbon fractionation methods vs. the PARTYSOC approach to 

quantify the size of the centennially stable and active soil organic carbon fractions. All existing soil organic carbon 

fractionation methods isolate fractions that are mixtures of centennially stable and active soil organic carbon. PARTYSOC is a 

machine-learning model trained on the Rock-Eval® thermal analysis data of soil samples from long-term experiments where 100 

the size of the centennially stable SOC fraction can be estimated. When applied on the Rock-Eval® data of unknown 

topsoils, PARTYSOC partitions soil organic carbon into its active and stable fractions (i.e., without isolating soil organic 

carbon fractions from each other). Abbreviation: SOC, soil organic carbon. 

 

If the stable SOC fraction cannot be isolated, it has specific chemical and thermal characteristics: stable SOC is depleted in 105 

hydrogen and thermally stable (Barré et al., 2016; Gregorich et al., 2015). These characteristics are measurable quickly (ca. 1 

h per sample) and at a reasonable cost (less than 60 USD per sample in private laboratories) measureable using Rock-Eval® 

thermal analysis, and they could be of use to identify the quantitative contribution of stable SOC to total SOC. An alternative 
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to the elusive proper separation of stable and active SOC pools could thus be to directly predict their sizes by training a 

machine-learning model based on Rock-Eval® data to estimate the size of the stable and active SOC fractions, without 110 

isolating them from each other (Fig. 1). This statistical model would need a learning training set of soil samples for which 

SOC partitioning into its active and stable pools can be fairly estimated. Such soil samples are available in long-term (i.e., at 

least longer than three decades) bare fallow experiments (LTBF; soils kept free of vegetation and thus with negligible SOC 

inputs), or long-term vegetation change (C3 plants to C4 plants or vice versa) experiments, as described by Balesdent et al. 

(1987, 2018), Barré et al. (2010), Cerri et al. (1985) or Rühlmann (1999). Cécillon et al. (2018) used this strategy, 115 

developing a machine-learning random forests regression model on topsoil samples obtained from the archives of four 

European long-term agricultural sites including an LTBF treatment. This statistical model, which we propose to name 

PARTYSOC, related thermal analysis parameters of topsoils measured with Rock-Eval® to their estimated proportion of the 

centennially stable SOC fraction (Fig. 1). This previous work positioned PARTYSOC as the first operational method 

quantifying the centennially stable and active SOC fractions in agricultural topsoils from Northwestern Europe. However, 120 

the ability of this machine-learning model to fairly partition the centennially stable and the active SOC fractions of soil 

samples from new sites in and outside Northwestern Europe is largely unknown because its learning sampletraining set is (1) 

rather limited, with a low number of reference sites and (2) based on centennially stable SOC contents that are exclusively 

inferred from plant-free LTBF treatments. 

 125 

In this study, we aimed to improve the accuracy and the genericity of the PARTYSOC statistical machine-learning model 

partitioning SOC into its centennially stable and active fractions developed by Cécillon et al. (2018). (1) We increased the 

range of soil typesgroups, soil texture classes, climates and types of long-term experiments, through the addition to the 

learning sampletraining set of topsoils from three new reference sites (two additional European long-term agricultural sites 

with an LTBF treatment and one South-American long-term vegetation change site). (2) We integrated new predictor 130 

variables derived from Rock-Eval® thermal analysis. (3) In this second version of the model, we also changed the following 

series of technical details. We added a new criterion based on observed SOC content to estimate of the size of the 

centennially stable SOC fraction at reference sites, to reduce the risk of overestimating this site-specific parameter. We 

calculated the proportion of the centennially stable SOC fraction differently in reference topsoil samples, using SOC content 

estimated by Rock-Eval® rather than by dry combustion. We changed some criteria regarding the selection of reference 135 

topsoils in the learning training set of the model: we removed samples from agronomical treatments with compost or manure 

amendments, and preference was given to samples with good organic carbon yield of their Rock-Eval® thermal analysis. We 

better balanced the contribution of each reference site to PARTYSOCv2.0. (4) We also aimed to build a regional version of 

the statistical model restricted to the references sites available in Europe (named PARTYSOCv2.0EU). (5) Finally, we carefully 

evaluated the performance of the statistical models on unknown reference sitessoils, and we further investigated the 140 

sensitivity of model performance to the reference sites included in the learning training and test sets. For clarity, the main 
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changes between the first version of PARTYSOC (Cécillon et al., 2018) and this second version of the model are summarized 

in supplementary Table S1. 

2 Methods 

2.1 Reference sites and estimation of the centennially stable SOC fraction content at each site 145 

This second version of PARTYSOC uses seven long-term study sites as reference sites (i.e., sites where the size of the 

centennially stable SOC fraction can be estimated). The main characteristics of these seven reference sites and their 

respective soil type group and basic topsoil properties are presented in supplementary Table S2, and more thoroughly in the 

references cited below. Six reference sites of PARTYSOCv2.0 are long-term agricultural experiments located in Northwestern 

Europe that include at least one LTBF treatment. (1) The long-term experiment on animal manure and mineral fertilizers 150 

(B3- and B4-fields) and its adjacent LTBF experiment started in 1956 and terminated in 1985, at the Lermarken site of 

Askov in Denmark (Christensen et al., 2019; Christensen and Johnston, 1997). (2) The static fertilization experiment (V120) 

started in 1902 and the fallow experiment (V505a) started in 1988 at Bad Lauchstädt in Germany (Franko and Merbach, 

2017; Körschens et al., 1998; Ludwig et al., 2007). (3) The “36 parcelles” experiment, started in 1959 at Grignon in France 

(Cardinael et al., 2015; Houot et al., 1989). (4) The “42 parcelles” experiment, started in 1928 at Versailles in France (van 155 

Oort et al., 2018). (5) The Highfield bare fallow experiment, started in 1959 at Rothamsted in England (Johnston et al., 

2009). (6) The Ultuna continuous soil organic matter field experiment, started in 1956 in Sweden (Kätterer et al., 2011). 

These six reference sites are used in the European version of the statistical machine-learning model, PARTYSOCv2.0EU. One 

additional long-term vegetation change site completes the reference sites list of the PARTYSOCv2.0 global statistical model. 

This site is a 56-year chronosequence of oil palm plantations (with C3 plants) established on former pastures (with C4 plants), 160 

located in South-America (La Cabaña in Colombia), and sampled as a space-for-time substitution (Quezada et al., 2019). 

 

For each reference site, data on total SOC content in topsoil (0–10 cm to 0–30 cm depending on the site; supplementary 

Table S2) were obtained from previously published studies (Barré et al., 2010; Cécillon et al., 2018; Franko and Merbach, 

2017; Körschens et al., 1998; Quezada et al., 2019). Total SOC content was measured by dry combustion with an elemental 165 

analyzer (SOCEA, g C kg
−1

) according to ISO 10694 (1995), after the removal of soil carbonates using an HCl treatment for 

the topsoils of Grignon. For the site of La Cabaña, data on 
13

C content (measured using an isotope-ratio mass spectrometer 

coupled to the elemental analyzer, the results being expressed in δ
13

C abundance ratio (‰ relative to the international 

standard)) were obtained from Quezada et al. (2019), and the relative contributions of new (C3-plant derived) and old (C4-

plant derived) carbon to total SOC in topsoils (0–10 cm) were calculated using the Equation 3 of the paper published by 170 

Balesdent and Mariotti (1996), as done in Quezada et al. (2019). 
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Based on these published data, the content of the centennially stable SOC fraction (g C kg
-1

) at each reference site was 

estimated by modelling the decline of total SOC present at the onset of the experiment with time (sites with an LTBF 

treatment; as SOC inputs are negligible in bare fallow systems) or by modelling the decline of C4-plant derived SOC present 175 

at the time of vegetation change with time (La Cabaña site; as SOC inputs from C4 plants are negligible after pasture 

conversion to oil palm plantation). For the seven reference sites, the decline in total SOC or C4-plant derived SOC over time 

had a similar shape, as shown in Barré et al. (2010), Cécillon et al. (2018), Franko and Merbach (2017) and Quezada et al. 

(2019) and could be modelled using a first-order exponential decay with a constant term following Eq. (1): 

 180 

𝛾(𝑡) = 𝑎𝑒−𝑏𝑡 + 𝑐 ,           (1) 

where γ(t) (g C kg
−1

) is the total (sites with an LTBF treatment) or C4-plant derived (La Cabaña site) SOC content at time t, t 

(year) is the time under bare fallow (sites with an LTBF treatment) or since pasture conversion to oil palm plantation (La 

Cabaña site), and a, b and c are fitting parameters. Parameter a (g C kg
−1

) corresponds to the content of the active SOC 

fraction and b (yr
−1

) is the characteristic decay rate. The parameter c (g C kg
−1

) represents the content of theoretically inert 185 

SOC. Following Barré et al. (2010), Cécillon et al. (2018) and Franko and Merbach (2017), we considered this parameter c 

as a site-specific metric of the centennially stable SOC fraction content. As already stated in Cécillon et al. (2018), in our 

view, the centennially stable SOC fraction is not biogeochemically inert; its mean age and mean residence time in soil are 

both assumed to be high (centuries), though not precisely defined here. As a result, its decline with time is negligible at the 

timescale of the long-term agricultural experiments or the long-term vegetation change site. We thus considered the 190 

centennially stable SOC fraction content at each experimental site to be constant. In this study, we used the centennially 

stable SOC fraction content already estimated by Franko and Merbach (2017) for the site of Bad Lauchstädt (on the LTBF 

experiment started in 1988), and by Cécillon et al. (2018) for the sites of Versailles, Grignon, Rothamsted and Ultuna. We 

estimated the content of the centennially stable SOC fraction for Askov and La Cabaña sites using the same Bayesian curve-

fitting method described by Cécillon et al. (2018). The Bayesian inference method was performed using Python 2.7 and the 195 

PyMC library (Patil et al., 2010). 

 

For the second version of PARTYSOC, we aimed at reducing the potential bias towards an overestimation of the centennially 

stable SOC fraction content at reference sites using the Eq. (1) (supplementary Table S1). This overestimation is possible at 

reference sites with an LTBF treatment, as SOC inputs to bare fallow topsoils are low but not null (e.g., Jenkinson and 200 

Coleman, 1994; Petersen et al., 2005). Similarly, C4-plant derived SOC inputs are possible after conversion to C3 plants at 

the site of La Cabaña. We thus used the lowest observed total (sites with an LTBF treatment) or C4-plant derived (La Cabaña 

site) topsoil SOC content value as the best estimate of the centennially stable SOC fraction content in reference sites where 

this measured value was lower than the fitted value of the site-specific parameter c of Eq. (1). 
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2.2 Rock-Eval® thermal analysis of topsoil samples available from reference sites 205 

Surface soil samples (0–10 cm to 0–30 cm depending on the site; see supplementary Table S2) were obtained from the seven 

reference sites described in Sect. 2.1. As described in Cécillon et al. (2018), the first version of the PARTYSOC statistical 

model was based on a set of 118 topsoil samples corresponding to time series obtained from the soil archives of the sites of 

Rothamsted (12 samples from the LTBF treatment and eight samples from the adjacent long-term grassland treatment), 

Ultuna (23 samples from the LTBF treatment and 11 samples from the associated long-term cropland treatments), Grignon 210 

(12 samples from the LTBF treatment, six samples from the LTBF plus straw amendment treatment and six samples from 

the LTBF plus composted straw amendment treatment) and Versailles (20 samples from the LTBF treatment and 20 samples 

from the LTBF plus manure amendment treatment). All 118 topsoil samples were previously analyszed using Rock-Eval® 

thermal analysis (Cécillon et al., 2018). 

 215 

For the second version of the statistical machine-learning model, 78 additional topsoil samples were provided by managers 

of the three new reference sites. Thirty-five topsoil samples were obtained from the soil archives of the Askov site (19 

samples corresponding to different dates of the LTBF treatment and 16 samples corresponding to different dates of the 

associated long-term cropland treatments). Twenty-seven topsoil samples were obtained from the soil archives of the Bad 

Lauchstädt site (eight samples from two dates of the mechanical LTBF treatment, eight samples from two dates of the 220 

chemical LTBF treatment and eleven samples from two dates of several long-term cropland treatments of the static 

fertilization experiment, eight out of the latter coming from treatments with manure applications). Sixteen topsoil samples 

were obtained from the site of La Cabaña (13 samples from different C3-plant oil palm fields planted at different dates and 

three samples from different long-term C4-plant pastures). 

 225 

The 78 additional topsoil samples from Askov, Bad Lauchstädt and La Cabaña were analyszed using the same Rock-Eval® 6 

Turbo device (Vinci Technologies, France; see Behar et al., 2001 for a description of the apparatus) and the same setup as 

the one used for the sample set of the first version of the PARTYSOC statistical model, described by Cécillon et al. (2018). 

Briefly, ca. 60 mg of ground (< 250 µm) topsoil samples were subjected to sequential pyrolysis and oxidation phases. The 

Rock-Eval® pyrolysis phase was carried out in an N2 atmosphere (3 min isotherm at 200 °C followed by a temperature ramp 230 

from 200 to 650 °C at a heating rate of 30 °C min
-1

). The Rock-Eval® oxidation phase was carried out in laboratory air 

atmosphere (1 min isotherm at 300 °C followed by a temperature ramp from 300 to 850 °C at a heating rate of 20 °C min
-1

 

and a final 5 min isotherm at 850 °C). Each Rock-Eval® analysis generated five thermograms corresponding to the volatile 

hydrocarbon effluents (HC_PYR thermogram), CO (CO_PYR thermogram) and CO2 (CO2_PYR thermogram) measured at 

each second during the pyrolysis phase, and to the CO (CO_OX thermogram) and CO2 (CO2_OX thermogram) measured at 235 

each second during the oxidation phase (Behar et al., 2001). 
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A series of Rock-Eval® parameters were calculated from these five thermograms. For each thermogram, five temperature 

parameters (all in °C) were retained: T10, T30, T50, T70 and T90, which respectively represent the temperatures 

corresponding to the evolution of 10, 30, 50, 70 and 90% of the total amount of evolved gas. The calculation of Rock-Eval® 240 

temperature parameters was performed using different intervals of integration depending on the thermogram. The integration 

omitted the first 200 seconds of the analysis for the three thermograms of the pyrolysis phase. The integration ended at the 

time of analysis corresponding to the maximum oven temperatures of 650 °C (HC_PYR thermogram), 560 °C (CO_PYR 

and CO2_PYR thermograms), 850 °C (CO_OX thermogram) and 611 °C (CO2_OX thermogram). These intervals of 

integration prevented any interference by inorganic carbon from most soil carbonates, and they ensured comparability with 245 

previous studies (Barré et al., 2016; Cécillon et al., 2018; Poeplau et al., 2019; Soucémarianadin et al., 2018b). Automatic 

baseline correction (as calculated by the software of the Rock-Eval® apparatus; Vinci Technologies, France) was performed 

for all thermograms but the CO_PYR and the CO2_PYR thermograms. This correction can yield some negative values for 

the CO_PYR and CO2_PYR thermograms of soil samples with very low SOC content (data not shown). For the HC_PYR 

thermogram we also determined three parameters reflecting a proportion of thermally resistant or labile hydrocarbons: a 250 

parameter representing the proportion of hydrocarbons evolved between 200 and 450 °C (thermo-labile hydrocarbons, 

TLHC-index, unitless; modified from Saenger et al. (2013, 2015) as described by Cécillon et al. (2018); a parameter 

representing the preservation of thermally labile hydrocarbons (I-index, unitless, after Sebag et al., 2016); and a parameter 

representing the proportion of hydrocarbons thermally stable at 400 °C (R-index, unitless, after Sebag et al., 2016). We also 

considered the hydrogen index (HI, mg HC g
-1

 C) and oxygen index (OIRE6, mg O2 g
-1

 C) that respectively describe the 255 

relative elemental hydrogen and oxygen enrichment of soil organic matter (see e.g., Barré et al., 2016). These 30 Rock-

Eval® parameters are not directly related to total SOC content and were all included in the first version of the PARTYSOC 

model developed by Cécillon et al. (2018). 

 

In this second version of PARTYSOC, we considered ten additional Rock-Eval® parameters as possible predictors, some of 260 

these being directly linked to SOC content (supplementary Table S1). These ten parameters were calculated for all the 196 

topsoil samples available from the seven reference sites. They included: the content of SOC as determined by Rock-Eval® 

(TOCRE6, g C kg
-1

); the content of soil inorganic carbon as determined by Rock-Eval® (MinC, g C kg
-1

); the content of SOC 

evolved as HC, CO or CO2 during the pyrolysis phase of Rock-Eval® (PC, g C kg
-1

); the content of SOC evolved as HC 

during the temperature ramp (200–650 °C) of the pyrolysis phase of Rock-Eval® (S2, g C kg
-1

); the content of SOC that 265 

evolved as HC, CO or CO2 during the first 200 seconds of the pyrolysis phase (at ca. 200 °C) of Rock-Eval® (PseudoS1, g C 

kg
-1

, after Khedim et al., 2020); the ratio of PseudoS1 to PC (PseudoS1/PC, unitless); the ratio of PseudoS1 to TOCRE6 

(PseudoS1/TOCRE6, unitless); the ratio of S2 to PC (S2/PC, unitless, after Poeplau et al., 2019); the ratio of PC to TOCRE6 

(PC/TOCRE6, unitless); and the ratio of HI to OIRE6 (HI/OIRE6, mg HC mg
-1

 O2). TOCRE6, MinC, PC, HI and OIRE6 were 

obtained as default parameters from the software of the Rock-Eval® apparatus (Vinci Technologies, France). All other 270 

Rock-Eval® parameters were calculated from the integration of the five thermograms using R version 4.0.0 (R Core Team, 
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2020; RStudio Team, 2020) and functions from the R packages hyperSpec (Beleites and Sergo, 2020), pracma (Borchers, 

2019) and stringr (Wickham, 2019). 

2.3 Determination of the centennially stable SOC fraction proportion in topsoil samples from the reference sites 

Following the first version of PARTYSOC (Cécillon et al., 2018), the proportion of the centennially stable SOC fraction in a 275 

topsoil sample of a reference site was calculated as the ratio of the site-specific centennially stable SOC fraction content (see 

Sect. 2.1) to the SOC content of this particular sample. We thus assume that the centennially stable SOC fraction content in 

topsoils is the same in the various agronomical treatments of a reference site and that it remains constant within the time-

period studied at each site. 

 280 

While for the first version of PARTYSOC, the proportion of the centennially stable SOC fraction in reference topsoils was 

calculated inferred usingwith SOC contents determined by elemental analysis (SOCEA), in this second version, we preferred 

the SOC content determined by Rock-Eval® (supplementary Table S1). The reason behind this choice was to link the Rock-

Eval® parameters measured on a reference topsoil sample to an inferredcalculated proportion of the centennially stable SOC 

fraction that better reflected the organic carbon that actually evolved during its Rock-Eval® analysis. This choice was 285 

possible for reference topsoil samples for which Rock-Eval® analyses showed a good organic carbon yield (TOCRE6 divided 

by SOCEA, and multiplied by 100). This is generally the case for most soils, with typical organic carbon yields of Rock-

Eval® ranging from 90 to 100% of SOCEA (Disnar et al., 2003). For the topsoils of the sites of Grignon, Rothamsted, Ultuna 

and Versailles used in the first version of PARTYSOC, the organic carbon yield of Rock-Eval® was greater than 96% (linear 

regression model, R² = 0.97, n = 118; Cécillon et al., 2018). Similarly, Rock-Eval® analyses of topsoil samples from the site 290 

of La Cabaña showed very good organic carbon yields (95% on average, linear regression model R² = 0.95, n = 16). For 

these five reference sites (corresponding to 134 reference topsoil samples), we thus used the Rock-Eval® parameter TOCRE6 

as a measure of the SOC content of topsoil samples to calculate their respective proportion of the centennially stable SOC 

fraction. Conversely, Rock-Eval® analyses of topsoil samples from the sites of Askov and Bad Lauchstädt showed moderate 

organic carbon yields (90% on average for topsoils of Askov, with a noisy linear regression model R² = 0.68, n = 30; and 295 

92% on average for topsoils of Bad Lauchstädt, yet with a very good linear regression model R² = 0.96, n = 11). Using the 

total carbon measured by Rock-Eval® (i.e., the sum of TOCRE6 plus MinC Rock-Eval® parameters) as an estimate of the 

SOC content of topsoil samples for these two sites —that are not carbonated— increased the organic carbon yield of Rock-

Eval® analyses (96% on average at Askov, still with a noisy linear regression model R² = 0.66, n = 30; and 101% on average 

at Bad Lauchstädt, with a very good linear regression model R² = 0.95, n = 11). For the two reference sites of Askov and Bad 300 

Lauchstädt (corresponding to 62 topsoil samples), we thus used the sum of Rock-Eval® parameters TOCRE6 plus MinC as a 

measure of the SOC content of topsoil samples to calculate their proportion of the centennially stable SOC fraction. 
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The uncertainty in the proportion of the centennially stable SOC fraction was calculated using Equation 6 of the paper 

published by Cécillon et al. (2018), propagating the uncertainties in SOC content data (using a standard error of 0.5 g C kg
-1

, 305 

following Barré et al., 2010) and in the site-specific contents of the centennially stable SOC fraction (see above and Table 1). 

 

Table 1: Main statistics of soil organic carbon contents, site-specific contents of the centennially stable SOC fraction, 

and resulting proportions of centennially stable SOC fraction in topsoils of the seven reference sites used as the 

reference topsoil sampletraining sets offor the PARTYSOCv2.0 and PARTYSOCv2.0EU models. More details on 310 

agronomical treatments and sampling year of reference topsoil samples are provided in supplementary Table S3. 

Abbreviations: SOC, soil organic carbon; LTBF, long-term bare fallow; min, minimum; max, maximum; sd, standard 

deviation. 

Reference site 

(Country) 

 

 

 

Treatments  

(number of samples) 

 

 

 

SOC content of the 

reference soil 

samples 

(g C kg
-1

) 

mean (min, max, sd) 

measurement method 

Centennially stable SOC 

fraction content 

(g C kg
-1

) 

mean (sd) 

estimation method 

Proportion of the 

centennially stable 

SOC fraction  

(unitless) 

mean (min, max, sd) 

Versailles 

(France) 
LTBF (n = 15) 

10.4 (5.6, 17.9, 3.9) 

TOCRE6 

5.50 (0.50) 

Lowest SOCEA measured 

on site 

0.60 (0.31, 0.98, 

0.20) 

Rothamsted 

(England) 

Grassland (n = 7) 28.3 (12.2, 41.5, 10.1) 9.72 (0.50) 

Lowest SOCEA measured 

on site 

0.40 (0.23, 0.80, 

0.18) LTBF (n = 8) TOCRE6 

Ultuna 

(Sweden) 

Cropland (n = 3; +straw n = 8)  15.2 (10.0, 20.3, 2.8) 6.95 (0.88) 

Bayesian curve-fitting 

0.47 (0.34, 0.70, 

0.09) LTBF (n = 4) TOCRE6 

Grignon 

(France) 
LTBF (n = 12, +straw n = 3) 

11.5 (8, 14.3, 1.7) 

TOCRE6 

7.12 (1.00) 

Bayesian curve-fitting 

0.63 (0.50, 0.89, 

0.10) 

Askov 

(Denmark) 

Cropland (n = 7) 

LTBF (n = 8) 

13.8 (11.1, 16.8, 1.9) 

TOCRE6+MinC 

5.10 (0.88) 

Bayesian curve-fitting 

0.38 (0.30, 0.46, 

0.05) 

Bad Lauchstädt 

(Germany) 

Cropland (n = 1) 

LTBF (n = 14) 

18.0 (16.8, 19.4, 0.6) 

TOCRE6+MinC 

15.00 (0.50) 

Lowest SOCEA measured 

on site 

0.84 (0.77, 0.89, 

0.03) 

La Cabaña Pasture (n = 3) 17.8 (10.2, 31.8, 5.7) 4.75 (0.50) 0.29 (0.15, 0.47, 

Mis en forme : Anglais (États Unis)

Mis en forme : Anglais (États Unis)

Mis en forme : Anglais (États Unis)
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(Colombia) Oil-palm plantation (n = 12) TOCRE6 Lowest SOCEA measured 

on site 

0.10) 

Reference soil sample set of  

PARTYSOCv2.0 (n = 105) 
16.4 (5.6, 41.5, 7.3)  

0.52 (0.15, 0.98, 

0.21) 

Reference soil sample set of  

PARTYSOCv2.0EU (n = 90) 
16.2 (5.6, 41.5, 7.5)  

0.55 (0.23, 0.98, 

0.20) 

 

2.4 Selection of the learning training set and of meaningful Rock-Eval® predictors variables for the PARTYSOCv2.0 315 

model  

In machine-learning, the selection of the model learning training set (here, the training and test sets of reference topsoil 

samples) of the model influences the performances of the model, just like the selection of the predictor variables, (here, the 

Rock-Eval® parameters) (e.g., Cécillon et al., 2008; Wehrens, 2020). 

 320 

For this second version of PARTYSOC, we changed some criteria regarding the inclusion of the available reference topsoil 

samples in the learning training set of the model (supplementary Table S1). We excluded from the learning training set all 

the topsoil samples experiencing agronomical treatments that may have changed the site-specific content of the centennially 

stable SOC fraction, in contradiction with our hypothesis of a constant content of this fraction at each reference site (see 

Sect. 2.3). These agronomical treatments concern the repeated application of some types of exogenous organic matter such 325 

as compost or manure, for which we suspect that they may increase the content of the centennially stable SOC fraction after 

several decades. Therefore, to increase the likelihood of verifying our hypothesis of a constant content of the centennially 

stable SOC fraction at each reference site in time and space (see Sect. 2.3), we excluded all reference topsoil samples from 

plots that experienceding repeated applications of composted straw (six samples from Grignon), or manure (20 samples from 

Versailles and eight samples from Bad Lauchstädt) from the learning training set of the statistical model. Yet, we kept some 330 

reference topsoil samples from Grignon and Ultuna experiencing repeated applications of straw. 

 

We also excluded from the learning training set of the model the reference topsoil samples for which the organic carbon 

yield of Rock-Eval® is below 86% or above 116%. For the site of Askov with a noisy relationship between SOCEA and the 

sum TOCRE6 plus MinC (see Sect. 2.3), we excluded the five samples without a SOCEA measurement preventing the 335 

calculation of the organic carbon yield of their Rock-Eval® analysis. Conversely, for the site of Bad Lauchstädt we kept 

topsoil samples without available SOCEA measurements, as the linear relationship between SOCEA and the sum TOCRE6 plus 

MinC was very good for this site (see Sect. 2.3). These criteria regarding the organic carbon yield of Rock-Eval® lead to the 

exclusion of nine samples from the site of Askov, four additional samples from the site of Versailles and two from the site of 

Ultuna. 340 
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Contrary to the first version of PARTYSOC (Cécillon et al., 2018), this second version is based on a balanced contribution of 

each reference site to the statistical model (supplementary Table S1). Each reference site contributes to the model with 15 

samples, so that the reference sample set of the PARTYSOCv2.0 statistical model is composed of 105 topsoil samples (90 for 

the European version of the model PARTYSOCv2.0EU). Besides the above-mentioned exclusion criteria (that excluded 49 out 345 

of the 196 topsoil samples available from the seven reference sites), the 15 topsoil samples retained for each reference site 

were selected: (1) to have a range of proportion of centennially stable SOC fraction as wide as possible; (2) to have the best 

organic carbon yield of Rock-Eval® analysis. On average, the organic carbon yield of the Rock-Eval® analyses for the 

retained learning training set of reference topsoil samples (calculated as described above) was greater than 98% of SOCEA 

(SOCDETERMINED_BY_ROCK-EVAL®  = 0.9924 SOCEA - 0.1051, R² = 0.99, n = 91 topsoil samples with available SOCEA 350 

measurements). The list of the 105 reference topsoil samples retained as the learning training set of PARTYSOCv2.0 is 

provided in supplementary Table S3. This list includes, for each reference topsoil sample, information on its reference site, 

land cover, agronomical treatment, sampling year and its values for the 40 Rock-Eval® parameters. 

 

The 40 Rock-Eval® parameters calculated (see Sect. 2.2) captured most of the information related to SOC thermal stability, 355 

elemental stoichiometry and content that is contained in the five Rock-Eval® thermograms. However, not all Rock-Eval® 

parameters do necessarily carry meaningful information for partitioning SOC into its centennially stable and active fractions 

(Cécillon et al., 2018). The PARTYSOCv2.0 statistical model and its European version PARTYSOCv2.0EU incorporate as 

predictor variables only the Rock-Eval® parameters showing a strong relationship with the proportion of the centennially 

stable SOC fraction (supplementary Table S1). The absolute value of 0.50 for the Spearman’s rho (nonparametric and 360 

nonlinear correlation test) was used as a threshold to select meaningful Rock-Eval® predictor variables (calculated on the 

reference topsoil sample set of the PARTYSOCv2.0 model, n = 105). Basic statistics of all Rock-Eval® parameters (learning 

training set of PARTYSOCv2.0) are reported in supplementary Table S4. 

2.5 Random forests regression models to predict the proportion of the centennially stable SOC fraction from Rock-

Eval® parameters, performance assessment and error propagation in the statistical models 365 

The PARTYSOCv2.0 statistical machine-learning model consists of a nonparametric and nonlinear multivariate regression 

model relating the proportion of the centennially stable SOC fraction (response vector or dependent variable y) of the 

reference soil sample set (n = 105 topsoil samples from the seven reference sites;, see Sect. 2.4) to their Rock-Eval® 

parameters summarized by a matrix of predictor variables (X) made up of the selected centered and scaled Rock-Eval® 

parameters. As stated above, we also built a regional (European) version of the statistical model based on the six European 370 

reference sites only (PARTYSOCv2.0EU, using the 90 reference topsoil samples from Askov, Bad Lauchstädt, Grignon, 

Rothamsted, Ultuna and Versailles). 
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Like the first version of the PARTYSOC statistical model, this second version uses the machine-learning algorithm of random 

forests-random inputs (hereafter termed random forests) proposed by Breiman (2001). This algorithm aggregates a collection 375 

of random regression trees (Breiman, 2001; Genuer and Poggi, 2020). The PARTYSOCv2.0 and its European version 

PARTYSOCv2.0EU are based on a forest of 1000 different regression trees made of splits and nodes. The learning algorithm of 

random forests combines bootstrap resampling and random variable selection. Each of the 1000 regression trees was grown 

on a bootstrapped subset of the reference topsoil sample set (i.e., containing ca. two-thirds of “in-bag” samples). The 

algorithm randomly sampled one-third out of the selected Rock-Eval® parameters (see Sect. 2.4) as candidates at each split 380 

of the regression tree, and it used a minimum size of terminal tree nodes of five topsoil samples. The relative importance 

(i.e., ranking) of each selected Rock-Eval® parameters in the regression models was computed as the unscaled permutation 

accuracy (Strobl et al., 2009). 

 

The performance of the PARTYSOCv2.0 and the PARTYSOCv2.0EU random forests regression models was assessed by 385 

statistical metrics comparing the predicted vs. the estimated values of their reference topsoil sample set using three different 

strategiescomplementary validation procedures. First, the predictive ability of both models was assessed by an “internal” 

procedure that used their respective whole reference topsoil sample sets (n = 105 samples for PARTYSOCv2.0, n = 90 

samples for PARTYSOCv2.0EU). For this procedure, performance statistics were calculated only on the “out-of-bag” topsoil 

samples of the whole reference sets, using a random seed of 1 to initialize the pseudorandom number generator of the R 390 

software. Out-of-bag samples are observations from the training sets not included in the learning topsoil sample setused for a 

specific regression tree that can be used as a “built-in” test set for calculating its prediction accuracy (Strobl et al., 2009). 

Second, the predictive ability of the models was assessed by a “random splitting” procedure that split randomly their 

respective reference topsoil sample sets into a test set (made of n = 30 samples), and a training set (n = 75 samples for 

PARTYSOCv2.0, n = 60 samples for PARTYSOCv2.0EU). This procedure was repeated 15 times using random seeds from 1 to 395 

15 in the R software. Third, a fully independent “leave-one-site-out” procedure was used to assess the predictive ability of 

the models. This procedure successively excluded topsoil samples of one reference site from the training set and uses them 

as a test set (n = 15) for the models. It used the random seed of 1 in the R software. For the second and third procedures, 

performance statistics were calculated (1) on the “out-of-bag” topsoil samples of the training sets and (2) on the topsoil 

samples of the test sets. The “leave-one-site-out” validation should be seen as the procedure giving the most accurate 400 

estimation of the uncertainty of both regression models on unknown topsoil samples.      

 

Finally, we assessed the sensitivity of model performance to the reference sites included in the learning training and the test 

sets. For both sensitivity analyses, only the leave-one-site-out validation procedure was used (based exclusively on 

independent training and test sets). First, model sensitivity of the random forests regression model to the training set was 405 

assessed as its sensitivity to the independent reference sites included in the training set. It was performed using successively, 

as examples, two different test sets consisting of on independent soils from two the reference sites , used as examples. For 
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this sensitivity analysis, topsoil samples from  of Grignon and Versailles (n = 15 samples) were successively used as fully 

independent test sets for several random forests regression models. Several random forests regression models were built 

using, as training sets, C combinations of topsoil samples from a decreasing number of the remaining reference sites were 410 

selected as training sets for the models, on the basis of their potential proximity to the topsoil samples of the test sets, 

regarding their pedological or climatic conditions. The size of the various training sets composed for the sensitivity analysis 

ranged from n = 90 samples (six training reference sites) to n = 30 samples (only two training reference sites). Second, 

model sensitivity to the test set was assessed as its sensitivity to independent test samples (1) from a reference soil group 

(FAO, 2014) not existing in the training set (i.e., excluding Chernozem soil samples from the test set); (2) that are unlikely to 415 

be encountered in agricultural soils (i.e., excluding from the test set soils sampled at late dates of bare fallow treatments, 

more than 25 years after the experiment onset, which cannot represent soils with regular carbon input). Model sensitivity to 

the test set was performed only for PARTYSOCv2.0EU, to further investigate its predictive ability on soil samples from 

independent Cambisols and Luvisols of Northwestern Europe. 

 420 

Several statistics were used to assess the predictive ability of the regression models. The coefficient of determination: R
2

OOB, 

calculated on the “out-of-bag” samples of the training sets; and R², calculated on the samples of the test sets. The root-mean-

square error of prediction: RMSEPOOB, calculated on the “out-of-bag” samples of the training sets; and RMSEP, calculated 

on the samples of the test sets. The relative RMSEP: RRMSEP, calculated as the ratio of the RMSEP to the mean value of the 

test sets. The ratio of performance to interquartile range (RPIQ) was calculated as the ratio of the interquartile range of the 425 

test sets (Q3 - Q1; which gives the range accounting for 50% of the test sets around its median value) to the RMSEP (Bellon-

Maurel et al., 2010). The bias of the random forests regression models was calculated as the mean of the model predictions 

on the test sets minus the actual mean of the test sets. Additionally, site-specific RMSEP and RRMSEP were calculated for 

the “leave-one-site-out” procedure (on the 15 independent test topsoil samples from each site). The uncertainty on the model 

predictions for new topsoils was determined using a methodology that was fully described by Cécillon et al. (2018). This 430 

methodology was adapted after the work of Coulston et al. (2016), to explicitly take into account the uncertainty in the 

reference values of the proportion of the centennially stable SOC fraction (see Sect. 2.3) that were used to build the models 

(Cécillon et al., 2018). 

 

PARTYSOCv2.0 and PARTYSOCv2.0EU were programmed as R scripts in the RStudio environment software (RStudio Team, 435 

2020), and were run using the R version 4.0.0 (R Core Team, 2020). The R scripts use the random forests algorithm of the 

randomForest R package (Liaw and Wiener, 2002) and the boot R package for bootstrapping (Canty and Ripley, 2020; 

Davison and Hinkley, 1997). 

Mis en forme : Police :Italique

Mis en forme : Police :Italique

Mis en forme : Anglais (Royaume-Uni)
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3 Results 

3.1 Content of the centennially stable SOC fraction at the reference sites 440 

The two newly fitted values of the centennially stable SOC fraction content (i.e., parameter c in Eq. (1), see Sect. 2.1) were 

5.10 g C kg
-1

 at the site of Askov (standard deviation = 0.88 g C kg
-1

) and 5.12 g C kg
-1

 at the site of La Cabaña (standard 

deviation = 0.35 g C kg
-1

). The fitted values of parameter c in Eq. (1) for all reference sites and their standard errors are 

provided in supplementary Table S2. A total (reference sites with an LTBF treatment) or a C4-plant derived (La Cabaña site) 

SOC content value lower than the fitted value of the site-specific parameter c in Eq. (1) was measured in four out the seven 445 

reference sites of the PARTYSOCv2.0 model. At Bad Lauchstädt, a SOCEA value of 15.0 g C kg
-1

 was reported by Körschens 

et al. (1998) for topsoils of the well ring experiment (Ansorge, 1966). At Rothamsted, a SOCEA measurement of 9.72 g C kg
-

1
 was reported for topsoils of the Highfield LTBF experiment by Cécillon et al. (2018). At Versailles a SOCEA measurement 

of 5.50 g C kg
-1

 was reported after 80 years of bare fallow by Barré et al. (2010). At La Cabaña, a C4-plant derived SOC 

content of 4.75 g C kg
-1

 was calculated using data from Quezada et al. (2019). These values did not differ strongly from the 450 

values of the centennially stable SOC contents calculated from the Bayesian curve-fitting method (Table 1, Table S2). In 

particular, the hierarchy in the centennially stable SOC content of the seven reference sites was unchanged whatever the 

calculation method. These values were thus retained as the best estimates of the site-specific content of the centennially 

stable SOC fraction in topsoils of the four sites to reduce the risk of overestimating the actual value of the centennially stable 

SOC content, compared to the first published version of the model (see Sect. 2.1; Table 1 and supplementary Table S1). As 455 

these site-specific values of the centennially stable SOC fraction content were derived from SOCEA measurements, we 

attributed a standard deviation of 0.50 g C kg
-1

 to each of them, following Barré et al. (2010). The final estimates of the 

content of the centennially stable SOC fraction at the seven reference sites that were used in the PARTYSOCv2.0 statistical 

model are provided in Table 1. They varied by a factor of three across the reference sites, ranging from 4.75 g C kg
-1

 at La 

Cabaña to 15.00 g C kg
-1

 at Bad Lauchstädt. The lowest value of the topsoil content of the centennially stable SOC fraction 460 

used in the European version PARTYSOCv2.0EU of the statistical model differed only slightly from the one of the 

PARTYSOCv2.0 model (5.10 g C kg
-1

 at the site of Askov). 

3.2 Content and biogeochemical stability of SOC in the learning training sets, and selection of meaningful Rock-

Eval® parameters as predictor variables for the PARTYSOCv2.0 and PARTYSOCv2.0EU models 

The SOC content in the topsoil samples of the seven reference sites ranged from 5.6 to 41.5 g C kg
-1

 in the learning training 465 

sets of the PARTYSOCv2.0 (n = 105) and PARTYSOCv2.0EU (n = 90) models (Table 1). As showed in Table 1, this resulted in 

proportions of the centennially stable SOC fraction ranging from 0.15 to 0.98 (PARTYSOCv2.0 learning training set), and 

from 0.23 to 0.98 (PARTYSOCv2.0EU learning training set). All the 25 calculated Rock-Eval® temperature parameters 

showed positive values of Spearman’s rho coefficient with the response variable of the PARTYSOCv2.0 model (n = 105; with 

Spearman’s rho values up to 0.81 for T90HC_PYR; Table 2). While the inorganic carbon content was not correlated to the 470 
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proportion of the centennially stable SOC fraction, TOCRE6 was significantly and negatively correlated to the response 

variable of the PARTYSOCv2.0 model (Spearman’s rho = -0.55; Table 2). Other Rock-Eval® parameters linked to soil carbon 

content showed a stronger relationship than TOCRE6 with the proportion of the centennially stable SOC fraction. This was the 

case for S2 and PC that showed the highest absolute Spearman’s rho coefficients, with a highly significant negative 

relationship (Spearman’s rho = -0.85; Table 2). Eighteen out of the 40 calculated Rock-Eval® parameters showed an 475 

absolute value of Spearman’s rho above 0.5 with the proportion of the centennially stable SOC fraction in the learning 

training set of the PARTYSOCv2.0 model (n = 105; Table 2), and were thus retained as predictor variables for the models. 

The 18 Rock-Eval® parameters retained were: the Rock-Eval® temperature parameters T70HC_PYR, T90HC_PYR, T30CO2_PYR, 

T50CO2_PYR, T70CO2_PYR, T90CO2_PYR, T70CO_OX, T50CO2_OX, T70CO2_OX, T90CO2_OX, and the Rock-Eval® parameters PseudoS1, 

S2, S2/PC, HI, HI/OIRE6, PC, PC/TOCRE6, and TOCRE6. 480 

 

Table 2: Spearman's rank correlation coefficient test between the 40 calculated Rock-Eval® parameters and the 

proportion of the centennially stable organic carbon fraction in the reference topsoil sample set of the PARTYSOCv2.0 

model (n = 105), and variable importance (ranking) of the 18 selected Rock-Eval® parameters for predicting the 

proportion of the centennially stable SOC fraction in the PARTYSOCv2.0 and PARTYSOCv2.0EU random forests 485 

regression models. Symbols for p-values: *** p < 0.001; ** p < 0.01; * p < 0.05; NS p > 0.05 = not significant. See Section 

2.2 for a description of the units of the 40 Rock-Eval® parameters. The 18 Rock-Eval® parameters retained as predictor 

variables for the second version of PARTYSOC are shown in bold. Abbreviation: SOC, soil organic carbon. 

Rock-Eval® 

parameter 

 

 

 

Spearman's ρ with 

the proportion of 

the centennially 

stable SOC fraction 

 

p-

value 

 

 

 

Variable importance to predict 

the proportion of the 

centennially stable SOC 

fraction in the PARTYSOCv2.0 

regression model (rank) 

Variable importance to predict 

the proportion of the centennially 

stable SOC fraction in the 

PARTYSOCv2.0EU regression 

model (rank) 

T10HC_PYR 0.38 0.0001 NA NA 

T30HC_PYR 0.47 0.0000 NA NA 

T50HC_PYR 0.46 0.0000 NA NA 

T70HC_PYR 0.54 0.0000 17 15 

T90HC_PYR 0.81 0.0000 5 13 

T10CO_PYR 0.40 0.0000 NA NA 

T30CO_PYR 0.36 0.0001 NA NA 

T50CO_PYR 0.33 0.0005 NA NA 

T70CO_PYR 0.31 0.0014 NA NA 
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T90CO_PYR 0.31 0.0013 NA NA 

T10CO2_PYR 0.35 0.0003 NA NA 

T30CO2_PYR 0.56 0.0000 12 10 

T50CO2_PYR 0.55 0.0000 8 2 

T70CO2_PYR 0.55 0.0000 10 7 

T90CO2_PYR 0.58 0.0000 11 11 

T10CO_OX 0.31 0.0013 NA NA 

T30CO_OX 0.41 0.0000 NA NA 

T50CO_OX 0.49 0.0000 NA NA 

T70CO_OX 0.58 0.0000 9 16 

T90CO_OX 0.33 0.0007 NA NA 

T10CO2_OX 0.10 0.3349 NA NA 

T30CO2_OX 0.39 0.0000 NA NA 

T50CO2_OX 0.63 0.0000 13 14 

T70CO2_OX 0.70 0.0000 4 12 

T90CO2_OX 0.60 0.0000 14 17 

I-index -0.40 0.0000 NA NA 

R-index 0.47 0.0000 NA NA 

TLHC-index -0.49 0.0000 NA NA 

HI -0.72 0.0000 7 6 

OIRE6 -0.09 0.3504 NA NA 

TOCRE6 -0.55 0.0000 6 9 

MinC 0.03 0.7430 NA NA 

PC -0.85 0.0000 2 3 

S2 -0.85 0.0000 1 1 

PseudoS1 -0.50 0.0000 18 18 

PseudoS1/PC 0.28 0.0033 NA NA 

PseudoS1/TOCRE6 -0.06 0.5702 NA NA 

S2/PC -0.70 0.0000 16 4 

PC/TOCRE6 -0.71 0.0000 3 8 

HI/OIRE6 -0.68 0.0000 15 5 
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3.3 Performance assessment of the PARTYSOCv2.0 and PARTYSOCv2.0EU statistical machine-learning models 490 

Using both the “internal” and the “random splitting” performance assessment procedures (see Sect. 2.5), the PARTYSOCv2.0 

and PARTYSOCv2.0EU models showed good to very good predictive ability of the proportion of the centennially stable SOC 

fraction (Fig. 2a; Table 3a). For most of the calculated statistics, the European version of the model PARTYSOCv2.0EU 

showed better performances than the PARTYSOCv2.0 model (Table 3). Using the “random splitting” procedure, the mean R² 

of PARTYSOCv2.0EU was 0.87 (0.81 for PARTYSOCv2.0), its RMSEP and RRMSEP were respectively 0.07 and 0.13 (0.09 495 

and 0.17 for PARTYSOCv2.0), and its mean RPIQ was 4.6 (3.6 for PARTYSOCv2.0). The bias was low for both models (Table 

3a). 

 

 

Figure 2: Performance of the PARTYSOCv2.0 and the PARTYSOCv2.0EU statistical machine-learning models based on 500 

Rock-Eval® thermal analysis for predicting the centennially stable organic carbon proportion in topsoils. (a) Results 

of the internal validation procedure; (b) Results of the leave-one-site-out validation procedure (see Section 2.5 for more 

details on model performance assessment). Abbreviation: SOC, soil organic carbon. 

Table 3: Performance of the PARTYSOCv2.0 and the PARTYSOCv2.0EU random forests regression models based on 

Rock-Eval® thermal analysis for predicting the proportion of the centennially stable organic carbon fraction in 505 

topsoils. (a) Performance statistics calculated for the internal, random splitting (mean statistics of 15 different models) and 

leave-one-site-out validation procedures; (b) Site-specific performance statistics calculated for the leave-one-site-out 

validation procedure. The performance statistics and their abbreviations are defined at Section 2.5. 

(a) Internal procedure Random splitting procedure Leave-one-site-out procedure 

 PARTYSOCv2. PARTYSOCv2.0 PARTYSOCv2. PARTYSOCv2.0 PARTYSOCv2. PARTYSOCv2.0
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0 EU 0 EU 0 EU 

R
2
OOB 0.83 0.87 0.80 0.84 - - 

RMSEPOO

B 

0.08 0.07 0.09 0.08 - - 

R
2
 - - 0.81 0.87 0.23 0.45 

RMSEP - - 0.09 0.07 0.18 0.15 

RRMSEP - - 0.17 0.13 0.36 0.27 

RPIQ - - 3.59 4.60 1.75 2.39 

Bias - - 0.005 0.006 < 0.001 -0.003 

 

(b)  Leave-one-site-out procedure 

Test set  Askov Bad  

Lauchstädt 

Grignon Versailles Rothamsted Ultuna La  

Cabaña 

PARTYSOCv2.0 

Site-

specific 

RMSEP 

0.05 0.32 0.11 0.17 0.14 0.06 0.28 

Site-

specific 

RRMSEP 

0.13 0.38 0.18 0.28 0.36 0.13 0.94 

PARTYSOCv2.0EU 

Site-

specific 

RMSEP 

0.05 0.23 0.18 0.14 0.14 0.09 - 

Site-

specific 

RRMSEP 

0.13 0.28 0.28 0.24 0.35 0.20 - 

 510 

The predictive ability of both models decreased when assessed using the “leave-one-site-out” procedure (see Sect. 2.5; Fig. 

2b). Again, PARTYSOCv2.0EU showed better performance statistics than the PARTYSOCv2.0 model (Table 3; Fig. 2b), with 

an R² of 0.45, an RMSEP of 0.15, an RRMSEP of 0.27 and an RPIQ of 2.4. The PARTYSOCv2.0 model poorly predicted the 

proportion of the centennially stable SOC fraction in topsoil samples of two sites (Table 3b; Fig. 2b): La Cabaña 

(overestimation; with a site-specific RMSEP of 0.28) and Bad Lauchstädt (underestimation; with a site-specific RMSEP of 515 

0.32). The proportion of the centennially stable SOC fraction in topsoil samples of Bad Lauchstädt remained underestimated 

by the PARTYSOCv2.0EU model, though with a reduced site-specific RMSEP (0.23; Table 3b; Fig. 2b). All other site-specific 

RMSEPs were below 0.18 (0.17 at Versailles for PARTYSOCv2.0, 0.18 at Grignon for PARTYSOCv2.0EU; Table 3b), with 
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remarkably low site-specific RMSEPs for the sites of Askov (below 0.05 for both models) and Ultuna (0.06 for 

PARTYSOCv2.0; 0.09 for PARTYSOCv2.0EU). 520 

 

The most important Rock-Eval® parameter for predicting the proportion of the centennially stable SOC fraction is S2 for 

both PARTYSOCv2.0 and PARTYSOCv2.0EU statistical models (Table 2). Conversely, the two models show only two Rock-

Eval® parameters in common out of their five most important ones that are S2, PC, PC/TOCRE6, T70CO2_OX, T90HC_PYR for 

PARTYSOCv2.0 and S2, T50CO2_PYR, PC, S2/PC, HI/OIRE6 for PARTYSOCv2.0EU (Table 2). 525 

3.4 Sensitivity of model performance to the reference sites included in the learningtraining and the test sets 

The sensitivity analysis to the training set showed that Rrestricting the  learning  model training set of the machine-learning 

model to topsoil samples from fewer reference sites with pedoclimatic conditions closer to the ones of a fully independent 

test site changed its performances (Fig. 3). Removing from the training set the a reference sites with a climate (i.e., La 

Cabaña) or a soil type group (i.e., Bad Lauchstädt) differing strongly from the independent test sites (here, Grignon or 530 

Versailles used as examples) reduced the site-specific RMSEP and RRMSEP of the model (supplementary Table S5). When 

Grignon or Versailles were used as independent test sites, the statistical model with the best predictive ability (i.e., the lowest 

site-specific RMSEP and RRMSEP) used a learning training set composed of 45 topsoil samples from three European 

reference sites (including the French site with the closest climate, despite its different soil typegroup; supplementary Table 

S2 and S5; Fig. 3). 535 

 

 

Figure 3: Sensitivity of model performance to the reference sites included in the learning training set, using 15 topsoil 

samples from the sites of (a) Grignon or (b) Versailles as independent test sets. Predictions by statistical models showing 

the lowest RMSEP and RRMSEP are plotted in green (using a learning training set composed of three independent reference 540 
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sites to predict Grignon or Versailles as test set). See supplementary Table S5 for more details on the learning training sets of 

the different statistical models and their site-specific performance statistics. Abbreviation: SOC, soil organic carbon.  

 

The sensitivity analysis to the test set showed that when excluding Chernozem samples from the test set (i.e., validating the 

model exclusively on independent samples from Cambisols or Luvisols), the performance statistics of PARTYSOCv2.0EU 545 

were improved (leave-one-site-out validation procedure: R² of 0.56; RMSEP of 0.13; n = 75). The further removal of 

independent test soils that are unlikely to be encountered in agricultural Cambisols and Luvisols (soils sampled at late dates 

of bare fallow treatments, more than 25 years after the experiment onset) also improved the performance statistics of 

PARTYSOCv2.0EU (supplementary Fig. S1; leave-one-site-out validation procedure: R² of 0.71; RMSEP of 0.11; n = 58). 

4 Discussion 550 

The second version of the PARTYSOC machine-learning model incorporates a large number of modifications and 

improvements (supplementary Table S1), and its predictive ability was more thoroughly assessed compared to the first 

version of the statistical model (Cécillon et al., 2018). The critical examination of the performance of PARTYSOCv2.0 and 

PARTYSOCv2.0EU provides new insights: (1) on the relationships between Rock-Eval® parameters and the century-scale 

persistence of SOC; (2) on both current and potential capabilities of the model to partition the centennially stable and active 555 

organic carbon fraction in topsoils. Based on those insights, (3) we plan future expansions developments of the PARTYSOC 

global model to further expand its domain of application while reducing its prediction error., and we recommend the 

application of PARTYSOCv2.0EU in European agricultural topsoils to provide accurate information on SOC kinetic pools 

partitioning that may improve the simulations of simple models of SOC dynamics. 

4.1 Rock-Eval® chemical and thermal information are related to the century-scale persistence of SOC 560 

The methodology used to estimate the centennially stable SOC proportion in reference topsoils has been revised for the 

second version of the PARTYSOC model (see Sect. 2.1 and 2.3 and supplementary Table S1), and the traininglearning set 

now integrates a wider range of centennially stable SOC contents [4.75–15.00 g C kg
-1

] with a median value of 6.95 g C kg
-1

 

(n = 7; Table 1). This range covers most of the published size estimates of this fraction in topsoils, estimated using different 

methods (Balesdent et al., 1988; Barré et al., 2010; Buyanovsky and Wagner, 1998b; Cécillon et al., 2018; Franko and 565 

Merbach, 2017; Hsieh, 1992; Huggins et al., 1998; Jenkinson and Coleman, 1994; Körschens et al., 1998; Rühlmann,  1999). 

The contribution of each reference site to the learning training set and the inclusion criteria for topsoil samples were also 

modified, and ten Rock-Eval® parameters not considered in the first version of the model were proposed as potential 

predictor variables for this second version of the statistical model (see Sect. 2.2 and 2.4 and supplementary Table S1). 

 570 
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Using this improved design, all Rock-Eval® temperature parameters showed positive values of Spearman’s rho coefficient 

with the proportion of the centennially stable SOC fraction in topsoils (Table 2), when a few of them showed 

counterintuitive significant negative correlations using the learning training set of the first version of PARTYSOC (Cécillon et 

al., 2018). This confirms the generic link between SOC thermal stability and its in situ biogeochemical stability: centennially 

stable SOC is thermally stable, even though thermostable SOC fractions are a mixture of centennially stable and active SOC 575 

(Fig. 1; Barré et al., 2016; Gregorich et al., 2015; Plante et al., 2013; Sanderman and Grandy, 2020; Schiedung et al., 2017) . 

Some Rock-Eval® temperature parameters were within the five most important predictor variables for both PARTYSOCv2.0 

(T70CO2_OX, T90HC_PYR) and PARTYSOCv2.0EU (T50CO2_PYR; ) statistical models (Table 2). 

 

Contrary to the first version of the PARTYSOC statistical model, the second version tested several Rock-Eval® parameters 580 

directly linked to soil carbon content as potential predictor variables. TOCRE6 was selected as a meaningful predictor variable 

for PARTYSOCv2.0 and PARTYSOCv2.0EU. Its negative correlation with the centennially stable SOC proportion (Table 2) was 

expected, according to the calculation of the latter (see Sect. 2.3). This is in line with results from SOC-dating techniques 

and with most multi-compartmental models of SOC dynamics suggesting that the proportion of the most persistent SOC 

fraction is a decreasing function of total SOC (Huggins et al., 1998; Rühlmann, 1999). Indeed, the ex-post optimized 585 

optimised initial value of the proportion of the inert SOC fraction for the simple AMG model of SOC dynamics is higher 

(0.60 on average) for SOC-poor depleted temperate topsoils with a long-term arable history than for SOC-rich temperate 

topsoils with a long-term grassland history (0.47 on average; Clivot et al., 2019). Contrarily, the empirical function 

commonly used to initialize the size of the inert SOC fraction of the multi-compartmental RothC model predicts an increased 

proportion of inert SOC with increased total SOC (Falloon et al., 1998). This empirical function needs to be examined upon 590 

these results. 

 

Interestingly, S2 (pyrolysable volatile hydrocarbon effluents) and PC (total pyrolysable organic carbon), two other Rock-

Eval® parameters linked to SOC content showed a stronger negative relationship than TOCRE6 with the proportion of the 

centennially stable SOC fraction. Both variables are within the three most important predictor variables for PARTYSOCv2.0 595 

and PARTYSOCv2.0EU while TOCRE6 was ranked sixth or ninth out of the 18 predictor variables (Table 2). Other Rock-Eval® 

parameters related to the pyrolysable SOC fraction (PC/TOCRE6 and HI, both negatively related to the centennially stable 

SOC proportion) were also important predictor variables for both models. The results suggest that a simple decreasing 

function of total SOC content cannot accurately predict the centennially stable SOC proportion in topsoils, according to the 

recent report by Clivot et al. (2019). They also confirm the generic elemental stoichiometry of the centennially stable SOC 600 

fraction: it is consistently depleted in hydrogen (Barré et al., 2016; Gregorich et al., 2015; Poeplau et al., 2019); and they 

illustrate the usefulness of the pyrolysis step of Rock-Eval® thermal analysis and its volatile hydrocarbon effluents 

quantification to infer the proportion of the centennially stable SOC fraction in unknown topsoils. 
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4.2 Capability of the second version of PARTYSOC to partition the centennially stable and active SOC fractions 

The learning training set of the second version of the PARTYSOC statistical model was significantly diversified compared 605 

with the first version. Its reference topsoil samples now represent wider pedoclimatic conditions (supplementary Table S2), 

and it includes one long-term vegetation change site as reference site (La Cabaña). Reference topsoils from the Colombian 

site of La Cabaña fitted well into the global learning training set of the statistical global model: they did not alter its overall 

performance, as. T the root-mean-square errors of PARTYSOCv2.0 (internal or random splitting validation procedures) are 

comparable to the ones of the model’s first version, where the content of the centennially stable SOC fraction was inferred 610 

exclusively from plant-free soils (Fig. 2a, Table 3; Cécillon et al., 2018). Similarly, the expansion of the reference learning 

training topsoil sample set to new soil types (Acrisol at La Cabaña, Chernozem at Bad Lauchstädt; FAO, 2014), soil texture 

(loamy coarse sand at Askov; supplementary Table S2), soil pH (in H2O, with values as low as 4 at La Cabaña; 

supplementary Table S2) and pedoclimates (tropical at La Cabaña; supplementary Table S2) did not alter the performance of 

the model, when assessed using the internal or random splitting validation procedures (Fig. 2a, Table 3).  615 

 

The predictive ability of the second version of PARTYSOC was more thoroughly assessed compared to the first version of the 

statistical model. Specifically, the sensitivity of model performance to the reference sites included in the learningtraining set 

demonstrates that local models —with learningtraining sets composed of soils from pedoclimates similar to the ones of the 

soils from the prediction set— showed better predictive ability of the centennially stable SOC proportion compared to a 620 

global statistical model (Fig. 3). While the current traininglearning set is composed of too few reference sites to implement 

local modelling, this suggests that the European version PARTYSOCv2.0EU should be preferred to the global version 

PARTYSOCv2.0 model when predicting the centennially stable SOC proportion in unknown soils from Europe. 

 

On the other hand, Conversely, the leave-one-site-out validation procedure, the most robust validation procedure (see Sect. 625 

2.5), illustrated demonstrates that the second version of PARTYSOC is currently not capable of accurately partitioning SOC 

into its centennially stable and active fractions in soil samples coming from pedoclimates that differ strongly from the ones 

included in the learning training set (sites of La Cabaña and Bad Lauchstädt; Fig. 2b, Table 3b). This indicates that like all 

machine-learning approaches, the PARTYSOC model gains progressively more genericity (i.e., capability to fairly predict the 

centennially stable SOC proportion in unknown soils) as its learning training set integrates soils from new pedoclimates. To 630 

this respect, we consider that applying the second version of PARTYSOC significantly extends the model’s validity range to 

new pedoclimates (tropical Cambisols, continental Chernozems and temperate loamy coarse sand Luvisols)to unknown soils 

from pedoclimates outside its training set cannot be recommended. The sensitivity analysis to the test set, however, shows 

that PARTYSOCv2.0EU reliably partitions SOC kinetic fractions at its validation sites on Cambisols and Luvisols  (with a 

mean prediction error on the centennially stable SOC proportion of 0.11; see Sect. 3.4 and supplementary Fig. S1). 635 

Cambisols and Luvisols are the two dominant reference soil groups in Europe, covering more than 41% of European land 
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areas (European Commission, 2008). Though the model test set does not include all the within-group pedological variability 

of Cambisols and Luvisols (FAO, 2014), this suggests that PARTYSOCv2.0EU can accurately partition SOC into its 

centennially stable and active fractions on a significant portion of Northwestern European agricultural soils. Contrarily, tThe 

relatively high prediction error, however, of both PARTYSOCv2.0 and PARTYSOCv2.0EU models at Rothamsted (high 640 

RRMSEP; Table 3), a site developed on a Chromic Luvisol, with a pedoclimate rather similar to some of the other European 

sites included in the learning set of PARTYSOC, may be due to an inaccurate estimate (overestimation) of the centennially 

stable SOC content at this site. Indeed, a report from an ancient LTBF trial at Rothamsted (drain gauge experiment; 

Jenkinson and Coleman, 1994), on the same soil type unit than as the Highfield bare fallow experiment, showed a measured 

total SOC content of 7.9 g C kg
-1

, which is lower than our current estimate of the centennially stable SOC content (9.72 g C 645 

kg
-1

; Table 1). Yet, the conditions of the drain gauge experiment, with a basic soil pH value of 7.9 due to heavy dressing of 

chalk on Rothamsted’s arable lands before the 19
th

 century (Avery and Catt, 1995; Jenkinson and Coleman, 1994), may not 

be directly comparable to the conditions of the Highfield bare fallow experiment showing acidic pH values r anging from 5.2 

to 6.3 (supplementary Table S2). 

The predictive ability of the second version of PARTYSOC was more thoroughly assessed compared to the first version of the 650 

statistical model. Specifically, the sensitivity of model performance to the reference sites included in the learning set 

demonstrates that local models —with learning sets composed of soils from pedoclimates similar to the ones of the soils 

from the prediction set— showed better predictive ability of the centennially stable SOC proportion compared to a global 

statistical model (Fig. 3). While the current learning set is composed of too few reference sites to implement local modelling, 

this suggests that the European version PARTYSOCv2.0EU should be preferred to the global PARTYSOCv2.0 model when 655 

predicting the centennially stable SOC proportion in unknown soils from Europe. The mean prediction error of 0.15 obtained 

using the leave-one-site-out validation procedure of PARTYSOCv2.0EU (with a RRMSEP of 0.27; Table 3a) is probably a 

conservative estimate of the accuracy of this model to partition the centennially stable and active SOC fractions over a wide 

pedoclimatic range of agricultural topsoils in Northwestern Europe. 

4.3 Future developments and recommended applications of the second version of the PARTYSOC model 660 

The second version of the PARTYSOC model is based on six long-term agricultural sites including an LTBF treatment located 

in Northwestern Europe and one vegetation change (C4 to C3 plants) site located in Colombia. The very first future 

improvements for to the PARTYSOC machine-learning model isare to increase the size and pursue the expansion offurther 

expand the pedoclimatic diversity of its learning training set. A few additional LTBF sites and several C3 to C4 plants (or C4 

to C3) long-term vegetation change sites (including space-for-time substitution, like the site of La Cabaña) could be used to 665 

achieve this goal. A potential complement lies in a few long-term experimental sites with soil archives and treatments 

experiencing contrasting SOC stock changes. Radiocarbon measurements on recent and archived soil samples from such 

sites can be used to infer the content of the centennially stable SOC fraction in topsoils (Hsieh, 1992), but also in subsoils, to 

allow extending the model to deeper soil horizons. Following the method developed by Buyanovsky and Wagner (1998b, 

Mis en forme : Indice
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1998a) and Huggins et al. (1998), the content of the centennially stable SOC fraction can also be estimated at a few 670 

additional long-term experiments with contrasted SOC inputs. A promising complement to these strategies lies in numerous 

long-term sites where time series of SOC inputs, outputs and stocks are well constrained (i.e., long-term experiments or 

long-term monitoring sites in various types of ecosystems including arable land, grassland and forest). It is possible to 

reliably infer the content of the centennially stable SOC fraction at these sites using simple models of SOC dynamics like 

AMG (Clivot et al., 2019). Combining all these strategies could help expanding significantly the learning training set of 675 

PARTYSOC to soil samples from diverse climates, ecosystems, soil types and soil depths. When the learning training set of 

PARTYSOC will integrate a sufficient diversity of soil samples, a second future improvement of the model lies in the 

comparison of different machine-learning algorithms as well as the testing of local modelling approaches, as commonly used 

in soil spectroscopy studies (Dangal et al., 2019; Gogé et al., 2012; Ramirez-Lopez et al., 2013b, a). 

Meanwhile, the current version of the PARTYSOCv2.0 model and especially its European version PARTYSOCv2.0EU already 680 

provide accurate predictions of the size of the centennially stable and active SOC fraction in agricultural topsoils of a large 

diversity of pedoclimatic conditions (Fig. 2; Table 3). We consider that PARTYSOCv2.0EU is mature enough (see Sect. 3.3, 

3.4 and 4.2) to be reliably applied on agricultural topsoils in Northwestern Europe, or to be tested on topsoils of other 

ecosystems under similar pedoclimates for research purposes. The PARTYSOCv2.0EU model is available on public 

repositories as an R script and an R data file (see Sect. Data and code availability). PARTYSOCv2.0EU generates predictions 685 

of the centennially stable and active SOC proportions and contents (in g C kg
-1

; obtained by multiplying the centennially 

stable and active SOC proportions by TOCRE6) in unknown soil samples, using their measured Rock-Eval® parameters. 

 

The second version of PARTYSOC enables the reliable partitioning of SOC into its centennially stable and active SOC 

fractions (Fig. 2). The independent validation of PARTYSOCv2.0EUthe model at five sites the scale of on the two dominant 690 

reference soil groups in Northwestern Europe presented here (PARTYSOCv2.0EUFig. 2 and supplementary Fig. S1) 

constitutes a breakthrough significant progress in the metrology of SOC kinetic pools. It represents an great improvement 

compared to other approaches that consistently fail to achieve a proper separation of active from stable SOC (Fig. 1; Hsieh, 

1992; von Lützow et al., 2007). Those methods such as the physical or physico-chemical SOC fractionation schemes have 

been developed to initialize the size of SOC kinetic pools of models (Skjemstad et al., 2004; Zimmermann et al., 2007a) and 695 

some of them are now implemented on large topsoil sample sets at the national or continental scale in Europe (Cotrufo et al., 

2019; Vos et al., 2018) and Australia (Gray et al., 2019; Viscarra Rossel et al., 2019). A similar implementation in soil 

monitoring networks of Rock-Eval® measurements combined with the second version of PARTYSOC will can provide a 

more accurate quantification of the functionally different SOC fractions that are centennially stable  or active (Fig. 1), at least 

for a portion of Northwestern European agricultural land areas on Cambisols and Luvisols. Large-scale Rock-Eval® 700 

measurements and the combined application of the PARTYSOCv2.0EU model are already ongoing in the French soil 

monitoring network for soil quality assessment (RMQS; Jolivet et al., 2018). We recommend undertaking similar works in 

other national and international soil monitoring networks. The second version of PARTYSOC can could also be directly 
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employed as a SOC pools partitioning method for simple models of SOC dynamics that are built on the same dualistic 

conceptual approach of SOC persistence (i.e., active vs. inert stable SOC pools). The accuracy of these simple models, such 705 

as AMG, is highly sensitive to the proper partitioning of SOC kinetic pools (Clivot et al., 2019), and could thus strongly 

benefit from the second version of PARTYSOC.  

 

We envision a significant contribution of the PARTYSOC machine-learning model based on Rock-Eval® thermal analysis to 

the forthcoming large-scale availability of accurate information on the size of the centennially stable or active SOC fractions. 710 

Such accurate information will foster (1) the initiatives of soil health assessment and monitoring and (2) the modelling works 

of SOC dynamics and of the climate regulation function of soils. 

Data and code availability 

The Rock-Eval® data of the 105 reference topsoil samples of PARTYSOCv2.0 are provided in supplementary Table S3, as a 

csv file. The R script used to extract Rock-Eval® 6 raw data and calculate Rock-Eval® parameters; the Rock-Eval® data 715 

and the R script used to build PARTYSOCv2.0 and PARTYSOCv2.0EU models and test their performance; and the 

PARTYSOCv2.0EU model  (available as an R script and an R data file, please note that predictions of the centennially stable 

and active SOC contents (in g C kg
-1

) are obtained by multiplying their respective proportions by the TOCRE6 Rock-Eval® 

parameter) can be accessed on GitHub at https://github.com/lauric-cecillon/PARTYsoc and on Zenodo at the permanent link 

https://doi.org/10.5281/zenodo.4446138. 720 
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