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Abstract. Oceanic dissolved inorganic carbon (TC) is the largest pool of carbon that interacts substantially with the atmosphere

on human timescales. Oceanic TC is increasing through uptake of anthropogenic carbon dioxide (CO2), and seawater pH is

decreasing as a consequence. Both the exchange of CO2 between ocean and atmosphere and the pH response are governed by

a set of parameters that interact through chemical equilibria, collectively known as the marine carbonate system. To investigate

these processes, at least two of the marine carbonate system’s parameters are typically measured — most commonly, two from5

TC, total alkalinity (AT), pH, and seawater CO2 fugacity (fCO2
; or its partial pressure, pCO2

, or its dry-air mole fraction, xCO2
)

— from which the remaining parameters can be calculated and the equilibrium state of seawater solved. Several software tools

exist to carry out these calculations, but no fully functional and rigorously validated tool written in Python, a popular scientific

programming language, was previously available. Here, we present PyCO2SYS, a Python package intended to fill this capa-

bility gap. We describe the elements of PyCO2SYS that have been inherited from the existing CO2SYS family of software10

and explain subsequent adjustments and improvements. For example, PyCO2SYS uses automatic differentiation to solve the

marine carbonate system and calculate chemical buffer factors, ensuring that the effect of every modelled solute and reaction

is accurately included in all its results. We validate PyCO2SYS with internal consistency tests and comparisons against other

software, showing that PyCO2SYS produces results that are either virtually identical or different for known reasons, with the

differences negligible for all practical purposes. We discuss insights that guided the development of PyCO2SYS, for example15

that the marine carbonate system cannot be unambiguously solved from certain pairs of parameters. Finally, we consider po-

tential future developments to PyCO2SYS and discuss the outlook for this and other software for solving the marine carbonate

system. The code for PyCO2SYS is distributed via GitHub (https://github.com/mvdh7/PyCO2SYS) under the GNU General

Public License v3, archived on Zenodo (Humphreys et al., 2021), and documented online (https://PyCO2SYS.readthedocs.io).

Copyright statement.20
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1 Introduction

The ocean absorbs about a quarter of the anthropogenic carbon dioxide (CO2) currently emitted each year (Friedlingstein et al.,

2020). This absorption is a double-edged sword. Removing CO2 from the atmosphere reduces the impact of these emissions

on Earth’s climate. However, CO2 uptake causes seawater pH and calcium carbonate mineral saturation states (Ω) to decline

through a process termed ocean acidification, which has adverse effects on some marine species and ecosystems (Doney et al.,25

2009).

Exchange of CO2 between the atmosphere and ocean, and the biogeochemical consequences of this process, are governed by

a series of equilibrium chemical reactions and parameters collectively known as the marine carbonate system (Millero, 2000).

The core parameters are the substance contents of aqueous CO2, the bicarbonate and carbonate ions formed by its hydration

and dissociation (HCO−3 and CO2−
3 ), and the sum of these three components (dissolved inorganic carbon, TC); total alkalinity30

(AT; Dickson, 1981); the fugacity, partial pressure, or dry-air mole fraction of CO2 in seawater (fCO2
, pCO2

, or xCO2
; Weiss,

1974); and pH (Dickson et al., 2015). If any valid pair of these parameters is known, plus auxiliary data including temperature,

pressure, salinity and nutrient contents, then all the other parameters can be calculated (Park, 1969; Zeebe and Wolf-Gladrow,

2001).

Many research questions require solving the marine carbonate system from some measured or modelled pair of its pa-35

rameters. Several software tools have been developed for this purpose, such that most scientific software environments and

programming languages have a widely accepted marine carbonate system solver (Orr et al., 2015). However, there is not yet an

established and fully functional tool for the popular scientific programming language Python, although partial solutions exist

(e.g. Branson, 2018). Here, we present PyCO2SYS, a Python package designed to fill this capability gap and provide a robust

platform for future developments in calculating marine chemical speciation. Being free and open source, and working across40

all major operating systems, a Python package is a highly accessible, desirable and useful tool.

As its name suggests, PyCO2SYS originates from the existing CO2SYS family of software. The original CO2SYS program

for MS-DOS (Lewis and Wallace, 1998) has been further developed and ‘translated’, with implementations now available for

Microsoft Excel (Pierrot et al., 2006; Orr et al., 2018; Pierrot et al., 2021) and MATLAB/GNU Octave (van Heuven et al., 2011;

Xu et al., 2017; Orr et al., 2018; Sharp and Byrne, 2019; Sharp et al., 2020). PyCO2SYS was created as an as-close-as-possible45

translation of CO2SYS-MATLAB v2.0.5 (Orr et al., 2018), but we have since made several additional developments to it.

Many of these developments involved reshaping the internal code into a more Pythonic style. These changes did not affect the

calculations and so are not discussed further. Other developments added new functionality or made minor differences to the

calculated results; these are documented and justified here.

As the original CO2SYS software is so well-established in the research field, we provide a relatively brief summary of the50

components of PyCO2SYS that are identical to CO2SYS-MATLAB in Sect. 2, before describing the areas where PyCO2SYS

differs in more detail in Sect. 3. Equations that were inherited from CO2SYS-MATLAB or taken from the literature are

generally reported in appendices rather than being reproduced in these sections. We go on to validate PyCO2SYS in Sect. 4

by examining its internal consistency and by comparing its calculations with another CO2SYS implementation. In Sect. 5,
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we discuss some nuances of solving the marine carbonate system that were explored during development and compare its55

computational speed with CO2SYS-MATLAB, before concluding with our perspectives on the outlook for PyCO2SYS and

other related software.

2 Methods inherited from CO2SYS

The components of PyCO2SYS that have been inherited directly from CO2SYS-MATLAB v2.0.5 (Orr et al., 2018), with only

the minimal changes needed to translate to Python plus aesthetic code restructuring, are described in this section.60

2.1 Units and pH scales

The abundances of all solutes and total alkalinity provided as arguments to PyCO2SYS or returned from it as results are in

units of µmol · kg−1, where kg is of the total solution. This means that they are neither concentrations nor molarity values,

which are both per unit volume rather than mass, nor are they molality values, which are per kg of H2O. Although sometimes

referred to as molinity, the correct term is substance content (IUPAC, 1997), which we abbreviate to content.65

Temperature is in °C and salinity is practical salinity, which is dimensionless (Millero et al., 2008).

Pressure is in dbar and represents the hydrostatic pressure exerted by the overlying water column, consistent with typi-

cal oceanographic conductivity-temperature-depth (CTD) measurement reporting. Atmospheric pressure is not included, so

pressure is effectively zero in the laboratory and at the sea surface.

pH can be provided on the Free, Total, Seawater, and/or NBS scale, where [H+] is a substance content as noted above and70

thus in mol·kg-solution−1 (Appendix A; Zeebe and Wolf-Gladrow, 2001; Velo et al., 2010). In the results, pH is returned on

all four of these scales.

2.2 Parameterisations and constants

A notable feature of all CO2SYS software is the variety of different parameterisation options to calculate the various equilib-

rium constants and some components’ total contents from salinity, temperature and pressure. Which parameterisations the user75

selects can appreciably alter the results, so these choices should always be explicitly reported.

Some of these options also influence other, seemingly unrelated, parameters of other chemical systems. This is not widely

appreciated, because this happens internally, hidden within the code. The most influential choice is for the carbonic acid

dissociation constants, K∗1 and K∗2 , for which there are 17 different options in PyCO2SYS (Table 1). We organise these

options into three groups based on their effect on the ‘hidden’ internal parameterisations (Table 2):80

1. Standard case. These are all identical, aside from their varying carbonic acid constants.

2. GEOSECS cases: GEOSECS-Takahashi and GEOSECS-Peng. GEOSECS-Peng treats phosphate differently with respect

to its contribution to alkalinity, and this difference is reported in the results as the ‘Peng correction’; see Lewis and

Wallace (1998) for a more detailed explanation.
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3. Freshwater case. Salinity and other total salt contents (ammonia, borate, calcium, fluoride, phosphate, silicate, sulfate85

and sulfide) are set to zero, irrespective of the user inputs.

Other internal settings are consistent across all cases (Table 3). These three cases have been present since the original

CO2SYS for MS-DOS (Lewis and Wallace, 1998). That program included only options 1–8 for the carbonic acid dissociation

constants (Table 1), the others being published subsequent to its release. All subsequently added carbonic acid options follow

the Standard case. While it is beyond the scope of this manuscript to judge the relative merits of the different options, in general90

we recommend that one of the Standard cases be used unless there is a specific reason for doing otherwise.

In addition to the carbonic acid equilibria, the user has multiple parameterisation options for each of (i) the ratio between

total borate and salinity, (ii) the bisulfate dissociation constantK∗SO4
, and (iii) the hydrogen fluoride dissociation constantK∗HF

(Tables 2 and 3). However, note that for (i), the user’s choice is not respected in the GEOSECS cases, and neither (ii) nor (iii)

is included at all in the Freshwater case (Table 2). It should also be noted that choices (ii) and (iii) affect pH scale conversions,95

including of equilibrium constants, which can have a small (but practically negligible) effect on the results.

Equilibrium constants in PyCO2SYS are all stoichiometric rather than thermodynamic and thus denoted with K∗. This

means that they represent the equilibrium balance of solute substance contents, not of their chemical activities. They are

evaluated as follows:

1. Calculated on the pH scale reported in the literature, as a function of temperature and salinity, at zero in-water pressure;100

2. Converted to the Seawater pH scale (Appendix A);

3. Corrected to the in situ pressure;

4. Converted to the pH scale indicated by the user’s input (Appendix A).

There are some exceptions to the evaluation steps listed above. First, the pH scale conversions (steps 2 and 4) are not applied

to K∗SO4
, K∗HF, K∗sp(calcite), K∗sp(aragonite), or K∗0 . For K∗SO4

and K∗HF, this is because these constants always remain on the105

Free pH scale. The other constants in this list are for equilibria that do not directly involve H+ and are therefore independent

of the pH scale. Second, no pressure correction (step 3) is applied to the CO2 solubility factor K∗0 (Weiss, 1974). This value,

and calculations of fCO2 , pCO2 and xCO2 , are thus valid only for the surface ocean (Sect. 5.3).

In PyCO2SYS, the user can also specify their own values for any or all of the equilibrium constants or total salt contents.

Any values specified in this way are used as-is throughout PyCO2SYS: no pH scale or pressure corrections are applied, so it is110

left to the user to ensure that the values are provided on the appropriate pH scale and at the relevant temperature and pressure.

2.3 Input and output conditions

A useful feature of all CO2SYS software that nonetheless can cause confusion is calculations at ‘input’ and ‘output’ conditions,

where ‘conditions’ refers to temperature and pressure. There is an unhelpful overlap of nomenclature, with ‘input’ and ‘output’

used firstly in a programming context to refer to arguments that are passed into functions and returned from them as results,115
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Table 1. Parameterisations of the dissociation constants of carbonic acid available in PyCO2SYS and corresponding implicit settings (Ta-

ble 2).

Option no. in PyCO2SYS Carbonic acid constants ‘Other settings’ case

1 Roy et al. (1993) Standard

2 Goyet and Poisson (1989) Standard

3 Dickson and Millero (1987)a Standard

4 Dickson and Millero (1987)b Standard

5 Dickson and Millero (1987)c Standard

6 Mehrbach et al. (1973) GEOSECS-Takahashi

7 Mehrbach et al. (1973) GEOSECS-Peng

8 Millero (1979)d Freshwater

9 Cai and Wang (1998) Standard

10 Lueker et al. (2000) Standard

11 Mojica Prieto and Millero (2002) Standard

12 Millero et al. (2002) Standard

13 Millero et al. (2006) Standard

14 Millero (2010) Standard

15 Waters and Millero (2013)e Standard

16 Sulpis et al. (2020) Standard

17 Schockman and Byrne (2021) Standard

aRefit of Hansson (1973a, b) data. bRefit of Mehrbach et al. (1973) data. cRefit of Hansson (1973a, b) and Mehrbach

et al. (1973) data. dConstants for zero-salinity freshwater. eIncluding the corrections of Waters et al. (2014).

and secondly in a measurement context where they refer to the temperatures and pressures under which the known parameter

pairs are provided and at which results are to be calculated. For clarity, we therefore use the terms ‘arguments’ and ‘results’

in the programming context, while ‘input’ and ‘output’ always refer to the measurement context. Thus we provide values at

both input and output conditions as arguments to PyCO2SYS and we receive calculations at both input and output conditions

as results from the program.120

Input and output conditions are used when measurements were conducted at a different temperature and/or pressure from

what the sample would experience in situ, or to evaluate the effect of changing these conditions on the solution chemistry.

All core carbonate system parameters except for AT and TC are temperature- and pressure-sensitive, so the values of other

measured arguments and calculated results may differ between the input and output conditions. For example, measurements

might be conducted in a laboratory at 25 °C on samples that were collected from several kilometres’ depth in the ocean at sub-125

zero temperatures. In this case, we would provide the measurement conditions (i.e. temperature and pressure in the laboratory)

as input arguments, and the environmental conditions (i.e. temperature and pressure in the ocean) as output arguments. The
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Table 2. Parameterisations that vary depending on the case of the selected carbonic acid constants (Table 1). P = pressure.

Setting Standard GEOSECS Freshwater

Salinity User-defined User-defined Zero

Total ammonia User-defined User-defined Zero

Total borate Uppström (1974) Culkin (1965) Zero

ora Lee et al. (2010)

Total calcium Riley and Tongudai (1967) Culkin (1965) Zero

Total fluoride Riley (1965) Riley (1965) Zero

Total silicate User-defined User-defined Zero

Total sulfate Morris and Riley (1966) Morris and Riley (1966) Zero

Total phosphate User-defined User-definedb Zero

Total sulfide User-defined User-defined Zero

K∗
1 and K∗

2 P effects Millero (1995) Takahashi et al. (1982) Millero (1983)

K∗
H2O value Millero (1995) Millero (1979) Millero (1979)

K∗
H2O P effect Millero (1995) Millero (1995) Millero (1983)

K∗
B value Dickson (1990b) Li et al. (1969) —

K∗
B P effect Millero (1979) Edmond and Gieskes (1970) —

K∗
P valuec Yao and Millero (1995) Kester and Pytkowicz (1967) —

K∗
P P effectc Millero (1983) Millero (1983) —

K∗
Si value Yao and Millero (1995) Sillén et al. (1964) —

K∗
Si P effect Millero (1995)d Millero (1995)d —

K∗
sp(calcite) value Millero (1983) Ingle (1975) —

K∗
sp(calcite) P effect Ingle (1975) Takahashi et al. (1982) —

K∗
sp(aragonite) value Millero (1983) Ingle et al. (1973) —

K∗
sp(aragonite) P effect Ingle (1975) Takahashi et al. (1982) —

Fugacity factor Weiss (1974) 1e Weiss (1974)

aDepending on user input. bIn GEOSECS-Takahashi, phosphate is not included in the definition of total alkalinity; in GEOSECS-Peng,

phosphate is included, though the contribution of each species to alkalinity is determined incorrectly, based on charge rather than a

zero-level of protons at pK 4.5. cIncludes all dissociation constants for this system:K∗
P1,K∗

P2 andK∗
P3 (Appendix B). dCopies the

pressure correction for boric acid. eA constant value of 1 is used in this case, i.e. pCO2
= fCO2

.

corresponding output-condition results from PyCO2SYS then represent the true state of the sample in situ in its environment.

The input-condition results are of less environmental interest but may be useful for quality-control purposes.

If calculations are conducted using only in situ values, for example from model output or where the temperature and pressure130

corrections have already been applied, then output-condition arguments need not be supplied. Results are then calculated only

under the input conditions, for computational efficiency.
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Table 3. Parameterisations that (except where noted) are not influenced by the case of the selected carbonic acid constants (Table 1).

Setting References

K∗
SO4

a Khoo et al. (1977), Dickson (1990a), or Waters and Millero (2013)b; P correction follows Millero (1995)

K∗
HF

a Dickson and Riley (1979) or Perez and Fraga (1987)c; P correction follows Millero (1995)

K∗
NH3

Clegg and Whitfield (1995); P correction follows Millero (1995)

K∗
H2S Yao and Millero (1995); P correction follows Millero (1995)

H+ activity coefficient Takahashi et al. (1982), except for GEOSECS-Peng, which uses Peng et al. (1987)

Humidity correction Weiss and Price (1980)

CO2 solubility (K∗
0 ) Weiss (1974)

aAs selected by the user. bIncluding the corrections of Waters et al. (2014). cThis option was written into the code for CO2SYS-MATLAB v2.0.5 and other versions, but

commented out and therefore not directly usable. It is available in CO2SYS-MATLAB v3.2.0.

2.4 Solving the marine carbonate system

We refer to the parameters from which PyCO2SYS can solve the marine carbonate system as the ‘core’ marine carbonate

system parameters. These are AT, TC, pH (on any scale), pCO2 , fCO2 , xCO2 , [CO2(aq)], [HCO−3 ] and [CO2−
3 ]. Any pair of135

these can be provided, except for two of pCO2
, fCO2

, xCO2
and [CO2(aq)], which would not be valid because these are all

directly proportional to each other at a given temperature, salinity, and atmospheric pressure.

To calculate its results (Fig. 1), PyCO2SYS first determines the unknown core parameters from whichever pair is provided by

the user, under the input conditions (Appendix C). The parameter pairs that require an iterative solver to find pH (i.e. AT plus

TC or one of its components) are solved using a scheme that has been updated from previous versions of CO2SYS (Sect. 3.1).140

The AT and TC provided or determined under the input conditions are then used to solve the core marine carbonate system

again under the output conditions, if these have been provided. This is possible because both AT and TC are unaffected by

temperature and pressure changes.

Other properties of interest are subsequently calculated from whichever core parameters are most convenient under both

input and (if provided) output conditions. These properties include all the individual components of alkalinity (Appendix B),145

calcite and aragonite saturation states (Appendix D), and various chemical buffer factors (Sect. 3.3.4).
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Figure 1. Overview of the process by which PyCO2SYS and other CO2SYS implementations solve the marine carbonate system (MCS)

and calculate other results. Arguments provided by the user are shown as open symbols on a yellow background, while calculations and

results use filled symbols. Components under input conditions are shown in light blue, those under output conditions are in red towards the

right, and components that are independent of input/output conditions are in dark blue. Any pair of the parameters in the ‘MCS arguments’

box at the top left can be provided, noting that only one of [CO2(aq)], pCO2 , fCO2 or xCO2 may be included in a pair. Coupled with user-

provided nutrients, total salts calculated from salinity (‘Totals’), and stoichiometric dissociation constants calculated from salinity and input

temperature and pressure (‘K∗ values’), all core MCS parameters are determined (‘Input MCS results’) from the known pair (Appendix C).

Other results (e.g. carbonate mineral saturation states, buffer factors) are then calculated from the results under input conditions (‘Others’).

If the user provides output-condition temperature and/or pressure values, then the dissociation constants are recalculated under these new

conditions, the core MCS is solved again (‘Output MCS results’) from these updated constants (‘K∗ values out’), the original ‘Totals’,

and the now-known AT and TC, which are independent of temperature and pressure. Finally, other results are calculated again from the

output-condition results (‘Others out’).
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3 New developments in PyCO2SYS

3.1 Solving the alkalinity-pH equation

3.1.1 Automatic differentiation

Solving the alkalinity-pH equation is a critical component of marine carbonate system modelling. Like other implementations150

of CO2SYS, PyCO2SYS uses the Newton-Raphson method. The general equation is

pHn+1 = pHn−
∆AT(pHn,v)

∆A′T(pHn,v)
(1)

where A′T = dAT/dpH and

∆AT(pHn,v) =AT(pHn,v)−AT(known) (2)

in which v is any of TC, fCO2
, [HCO−3 ] or [CO2−

3 ]. AT(pHn,v) is determined as described in Sects. C2.1 (when v is TC) and155

C2.3–C2.5 (when v is one of fCO2
, [CO2−

3 ] or [HCO−3 ]).

Unlike other implementations of CO2SYS, the equations that determine the relative abundances of different chemical species

as functions of pH and their total contents (Appendix B) appear only once in PyCO2SYS, in what we term the ‘main chemical

speciation function’. While this approach does not alter the calculated results, it does make the software more robust by

reducing the opportunity for typographical errors when similar equations are repeated across the code.160

The derivative term in Eq. (1) is evaluated from the main chemical speciation function using automatic differentiation, as

implemented by the Python package Autograd (Maclaurin, 2016). Distinct from numerical or symbolic differentiation, the

automatic approach breaks down the code to be differentiated into a sequence of individual arithmetic operations (addition,

subtraction, etc.) and simple functions (logarithms, exponentials, etc.), then combines the derivatives of these components to-

gether using the chain rule. The overall differentials to arbitrary order of complicated functions can thus be evaluated efficiently165

and accurate to the computer’s precision.

Through our approach, the effect of every component of alkalinity in the main chemical speciation equation is included

in the derivative term in Eq. (1). In contrast, some other implementations of CO2SYS use simplified expressions that only

include the contributions of carbonate, borate and water to the total alkalinity. Under typical open-ocean conditions, this makes

little practical difference, because the simplified equations include the most important components of the seawater solution.170

However, including every modelled component does make the solver more robust for more unusual solution compositions.

Automatic differentiation is also used to evaluate chemical buffer factors, again ensuring that the influence of every modelled

equilibrium system is accurately included. The calculated buffer factors are described in more detail in Sect. 3.3.4.

A further advantage of the automatic-differentiation approach is that if the main chemical speciation function is modified

in the future, for example to include additional components of alkalinity, then these changes are automatically incorporated175

into all the alkalinity-pH solvers without needing to modify the various solver functions. In short, our approach ensures that

PyCO2SYS calculations will remain internally consistent and reflect the influence of every solute and equilibrium modelled in

the main chemical speciation function, even if this function is modified in the course of future development (Sect. 5.5).
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3.1.2 Vectorised arguments and solver jumps

PyCO2SYS adjusts how to determine when the alkalinity-pH solver should stop solving for vectorised arguments. In CO2SYS-180

MATLAB v2.0.5, the solvers continue to iterate and update all values until the change in every element of the array satisfies

the ∆pH tolerance threshold (10−4 in CO2SYS-MATLAB, 10−8 in PyCO2SYS). This means that a given set of arguments

could return slightly different results depending on what data appears in the other, supposedly independent, elements of the

argument arrays. Although negligible for all practical purposes, these differences are detectable in code validation exercises.

In PyCO2SYS (and in CO2SYS-MATLAB v3.2.0; Sharp et al., 2020) this process has been changed such that each element185

stops being updated once it has reached the tolerance threshold, independent of the other elements.

The maximum solver jump — which constrains the greatest change in pH possible between solver iterations, thus helping

to prevent overshoot — is implemented slightly differently in PyCO2SYS than in other CO2SYS programs. In CO2SYS-

MATLAB, any ∆pH values with a magnitude greater than 1 are halved. In PyCO2SYS, the same applies, but any ∆pH values

with a magnitude still greater than 1 after halving are decreased to 1 (while preserving the sign). This has negligible effect on190

calculations but it is sometimes detectable in intercomparisons.

3.1.3 pH scale conversions

PyCO2SYS fixes a simplification in earlier CO2SYS implementations regarding how pH scales are converted within the main

chemical speciation function. This simplification is noted in the programmer’s comments in the relevant CO2SYS-MATLAB

functions, carried through from the original MS-DOS implementation (Lewis and Wallace, 1998): “Though it is coded for H on195

the total pH scale, for the pH values occuring in seawater (pH > 6) it will be equally valid on any pH scale (H terms negligible)

as long as the K Constants are on that scale.”

In short, pH and the equilibrium constants are provided to these functions on the same pH scale as each other — except for

K∗SO4
and K∗F, which are always on the Free scale (Sect. 2.2). Calculations of all alkalinity components except [HSO−4 ] and

[HF] have therefore always been correct. However, because K∗SO4
and K∗F are always on the Free scale, pH must be converted200

to this scale in order to determine the contributions of [HSO−4 ] and [HF] to total alkalinity. Other versions of CO2SYS prior to

CO2SYS-MATLAB v3.2.0 (Sharp et al., 2020) and CO2SYS-Excel v3 (Pierrot et al., 2021) assume that the user-selected pH

scale is Total, and thus apply the Total-to-Free scale conversion (Appendix A), regardless of what it the user-selected pH scale

actually is.

This simplification makes negligible difference to calculations at typical seawater pH (because [HSO−4 ] and [HF] are each on205

the order of 10−10 µmol·kg−1, relative toAT on the order of 2000 µmol·kg−1) and then only when the user-selected pH scale

is not Total. But, as implied in the original programmer’s note, it can have a noticeable adverse effect under other conditions,

such as the low pH values encountered during the acidimetric titrations of seawater used to measure AT. In PyCO2SYS,

CO2SYS-MATLAB v3.2.0, and CO2SYS-Excel v3, the correct conversion factor is used based on the user-selected pH scale.
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3.2 Initial pH estimates210

Like most iterative solvers, the Newton-Raphson method (Sect. 3.1) requires an initial pH value that is near to the true value in

order to prevent overshoot and guarantee convergence to a root. Previous versions of CO2SYS used 8 as the initial pH estimate

in every case. This works well for typical open-ocean seawater, but may be less appropriate in niche environments or when

modelling acidimetric titrations. Munhoven (2013) found a better initial pH estimate for solving from known AT and TC by

considering only the contributions of carbonate and borate species to AT, simplifying the AT equation:215

ACB = [HCO−3 ] + 2[CO2−
3 ] + [B(OH)−4 ] (3)

Following Munhoven (2013) and as also implemented elsewhere (e.g. Orr and Epitalon, 2015), PyCO2SYS and CO2SYS-

MATLAB v3.2.0 also take this approach (Appendix F). Furthermore, we have extended it to apply to the pH solvers that use

one of the components of TC as the second known parameter, as follows. We note that these extensions are equivalent to those

described and discussed in greater detail by Munhoven (2021), although they were added to the PyCO2SYS code in its v1.3.0220

release (https://doi.org/10.5281/zenodo.3780139), before the publication of that study.

3.2.1 Solving fromAT and fCO2

For clarity in the equations in this section, we abbreviate [CO2(aq)] as s, and [H+] as h. As noted in Appendix C1.2, the

approach described here is also used for known parameter pairs of AT plus any of pCO2 , xCO2 or [CO2(aq)].

First, fCO2 is converted to s using Eq. (C5). Carbonate-borate alkalinity (ACB) as a function of s and h is225

ACB(h,s) =
K∗1s(h+ 2K∗2 )

h2
+

K∗BTB
h+K∗B

(4)

This can be rearranged into a third-order polynomial in h:

Ps(h,s) = h3 +h2g2(s) +hg1(s) + g0(s) = 0 (5)

where

g2(s) =K∗B

(
1− TB

ACB

)
− K∗1s

ACB
(6)230

g1(s) =
(2K∗2 +K∗B)K∗1s

−ACB
(7)

g0(s) =
2K∗1K

∗
2K
∗
Bs

−ACB
(8)

Following an equivalent scheme to Munhoven (2013), the initial h value is determined by

h0(s) =


10−3 for AT ≤ 0

hmin +

√
− Ps(hmin)√

g22−3g1
for AT > 0

(9)
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Negative ACB is impossible because both terms in Eq. (4) are always positive, so the equations given above cannot be applied235

if AT is indeed negative (e.g. after the alkalinity end-point in an acidimetric titration). The default h0 of 10−3 mol·kg−1,

corresponding to a pH of 3, is therefore used in this case. Otherwise, hmin in Eq. (9) is found following Munhoven (2013):

hmin =

(−g2 +
√
g22 − 3g1)/3 for g2 < 0

−g1/(g2 +
√
g22 − 3g1) for g2 ≥ 0

(10)

When AT is positive, the square-rooted term g22 − 3g1 is always greater than zero, thus hmin has a real value. However, there

is an additional constraint: ACB cannot be greater than 2TC +TB (Munhoven, 2013). If AT is actually greater than this limit,240

then we use a default h0 of 10−7 mol·kg−1 instead (pH 7).

3.2.2 Solving fromAT and [HCO−
3 ]

For clarity in the equations in this section, we abbreviate [HCO−3 ] as b, and [H+] as h.

Carbonate-borate alkalinity as a function of b is

ACB(h,b) = b+
2K∗2 b

h
+

K∗BTB
h+K∗B

(11)245

This can be rearranged into a second-order polynomial in h:

Pb(h,b) = h2g2(b) +hg1(b) + g1(b) = 0 (12)

where

g2(b) = b−ACB (13)

g1(b) =K∗B(b+TB−ACB) + 2K∗2 b (14)250

g0(b) = 2K∗2K
∗
Bb (15)

The initial h value is estimated following:

h0(b) =


−g1−

√
g21−4g0g2
2g2

for b < AT

10−3 for b≥AT

(16)

When b < AT, the square-rooted term g21 − 4g0g2 is always positive and thus h0(b) has a real value. Otherwise, b can only be

greater than AT if the negative components of AT such as [H+] are dominant, as happens at low pH. The default initial pH255

estimate used by PyCO2SYS in that case is therefore 3.

3.2.3 Solving fromAT and [CO2−
3 ]

For clarity in the equations in this section, we abbreviate [CO2−
3 ] here as c, and [H+] as h.
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Carbonate-borate alkalinity as a function of c is:

ACB(h,c) =
ch

K∗2
+ 2c+

K∗BTB
h+K∗B

(17)260

This can be rearranged into a second-order polynomial in h:

Pc(h,c) = h2g2(c) +hg1(c) + g0(c) = 0 (18)

where

g2(c) = c (19)

g1(c) =K∗Bc+K∗2 (2c−ACB) (20)265

g0(c) =K∗2K
∗
B(2c+TB−ACB) (21)

The initial h value is estimated following:

h0(c) =


−g1+

√
g21−4g0g2
2g2

for AT > 2c+TB

10−3 for AT ≤ 2c+TB

(22)

When 2c+TB <AT, the square-rooted term g21−4g0g2 is always positive and thus h0(c) has a real value. Otherwise, 2c+TB

can only be greater than AT if the negative components of AT such as [H+] are dominant, as happens at low pH. The default270

initial pH estimate used by PyCO2SYS in that case is therefore 3.

3.3 New calculations, components and constants

3.3.1 Additional alkalinity components

The contributions of ammonia and bisulfide to alkalinity (Cai et al., 2017; Xu et al., 2017) plus the ability to solve from

carbonate and/or bicarbonate ion content have been added in collaboration with Sharp et al. (2020) to ensure consistency275

between PyCO2SYS and CO2SYS-MATLAB v3.2.0. However, the GEOSECS alkalinity definition did not account for these

species, so if using one of the GEOSECS options for the carbonic acid constants (Table 1) then the user should be sure to set

their total contents to zero for GEOSECS-compatible results. If values are provided, then they will be included in the alkalinity

equation just as for the non-GEOSECS cases.

The total substance contents and stoichiometric dissociation constants for up to two additional acid-base systems that con-280

tribute to total alkalinity can be provided as arguments to PyCO2SYS and are part of its speciation model. The effects of these

extra components are automatically incorporated into all PyCO2SYS calculations, including the iterative pH solvers (Sect. 3.1),

buffer factors (Sect. 3.3.4), and uncertainty propagation (Sect. 3.6). These extra components are modelled following Sharp and

Byrne (2020), as described in Appendix B11. No corrections of any sort (e.g. for pressure or pH scale; Sect. 2.2) are made to

the dissociation constants for these user-defined additional components within PyCO2SYS; the user must ensure that they are285

already suitable for the conditions being analysed and on the user-indicated pH scale.
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3.3.2 Gas constant

Previous versions of CO2SYS used an old value for the universal gas constant (R) of 8.31451 J·mol−1·K−1. PyCO2SYS

uses the 2018 CODATA recommended value by default instead (i.e. 8.314462618 J·mol−1·K−1), consistent with CO2SYS-

MATLAB v3.2.0 and CO2SYS-Excel v3. This has a minor effect on conversions between pCO2
, fCO2

and xCO2
(less than290

10−4 %), as well as on the pressure corrections for the equilibrium constants (less than 10−3 % at 5000 dbar). It is detectable

in comparisons with other versions of CO2SYS, but it is of no practical consequence.

3.3.3 Substrate:inhibitor ratio

Like CO2SYS-MATLAB v3.2.0, PyCO2SYS calculates the ‘substrate:inhibitor ratio’ of Bach (2015), which quantifies the

balance between the availability of a substrate for calcification (i.e. HCO−3 ) and the inhibition of calcification by H+ (Eq. (D2)).295

3.3.4 Buffer factors

A buffer factor quantifies the sensitivity of a certain marine carbonate system parameter to a change in another parameter. Best

known is the Revelle factor, which is the ratio of the fractional change in pCO2
corresponding to a fractional change in TC at

constant AT (Revelle and Suess, 1957). Frankignoulle (1994) derived a broader set of buffer factors for the marine carbonate

system, quantifying the responses of several different parameters to changes in TC and AT; these were later rediscovered by300

Egleston et al. (2010) and further extended by Hagens and Middelburg (2016). PyCO2SYS calculates the buffer factors of

Egleston et al. (2010) and uses the nomenclature of that manuscript.

Closely related to these buffer factors, Frankignoulle et al. (1994) introduced the factor ψ, which quantifies the change in

TC required to return to the original seawater pCO2
after the action of calcification (which reduces AT and TC in a 2:1 ratio)

or CaCO3 dissolution (the reverse). Humphreys et al. (2018) introduced the ‘isocapnic quotient’ (Q), which is the ratio of305

AT to TC change that does not affect seawater pCO2
, thus generalising the concept of ψ for application to all biogeochemical

processes that affect AT and TC (denoted φ). PyCO2SYS calculates both ψ and Q, the latter of which can be used to calculate

φ for any biogeochemical process (Humphreys et al., 2018).

PyCO2SYS offers two independent ways to evaluate the various buffer factors of the marine carbonate system: with explicit

equations and by automatic differentation. The latter is used by default.310

The ‘explicit’ approach follows equations reported in the literature (Frankignoulle et al., 1994; Egleston et al., 2010;

Humphreys et al., 2018), noting that the typographical errors in Egleston et al. (2010) identified in several studies (e.g. Orr,

2011; Álvarez et al., 2014; Richier et al., 2018; Orr et al., 2018) have been corrected. In general, these equations do not include

the effect of species beyond the carbonate, borate, and water contributions to total alkalinity, except that the buffer factors of

Egleston et al. (2010) were extended to include phosphate and silicate effects by Orr et al. (2018).315

The ‘automatic’ approach uses automatic differentiation to find the derivative necessary to evaluate each buffer factor. The

appropriate derivatives are taken from the functions that calculate a third carbonate system parameter from a known pair

(Appendix C). All species modelled in the main chemical speciation function are therefore included, including any extra
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alkalinity components (Sect. 3.3.1), and typographical errors from the literature cannot influence these calculations. The details

of the derivatives used are provided in Appendix E.320

Of the buffer factors, only the Revelle factor was included in previous versions of CO2SYS. It was evaluated using finite

central-difference derivatives, which is replicated as the ‘explicit’ option in PyCO2SYS (with the corrections described in

Appendix G). However, as for all other buffer factors, the Revelle factor calculation uses automatic differentiation by default.

To calculate the Revelle factor using a mathematically equivalent approach to the ‘explicit’ calculation of the other buffer

factors, one could calculate γTC
of Egleston et al. (2010) (see Appendix E1) with the explicit approach and then use Eq. (E7).325

3.3.5 Atmospheric pressure

For conversions between pCO2
, fCO2

and xCO2
, atmospheric pressure is assumed to be 1 atm by default, and it remains fixed

at this value in CO2SYS-MATLAB and CO2SYS-Excel. However, in PyCO2SYS, the user can also specify a value other than

1 atm, if necessary. Different values can be provided for input and output conditions (Sect. 2.3).

Atmospheric pressure can have a non-negligible effect on calculations in some regions: for example, over much of the330

Southern Ocean, atmospheric pressure is typically 3 % lower than the global mean, corresponding to a 10 µatm reduction in

pCO2
and fCO2

relative to the values calculated at 1 atm (Orr et al., 2017).

This optional argument is only intended for modelling the effects of variations in atmospheric pressure on samples from

the surface ocean or in the laboratory. It is not suitable for determining interior ocean pCO2
, fCO2

and xCO2
values that are

corrected for the pressure of the overlying water column. This separate issue is discussed further in Sect. 5.3.335

3.4 No-solve modes

As well as solving from a pair of parameters, PyCO2SYS can be run with one or no marine carbonate system parameter

arguments.

If no parameters are provided, then PyCO2SYS returns all the equilibrium constants and total salt contents that are calculated

from temperature, pressure, and salinity (Sect. 2.2), without actually using these to do any further computations.340

If one parameter is provided, then the results that can be computed with that parameter alone are returned. This applies to

pH, pCO2
, fCO2

, xCO2
, and [CO2(aq)], as follows.

pH can be converted between the different scales without knowledge of a second carbonate system parameter. Therefore if

pH alone is provided to PyCO2SYS, it is converted to every pH scale under the input conditions (Appendix A). Conversion to

a different temperature and/or pressure does require solving the carbonate system (Fig. 1), so output-condition values are not345

calculated.

Seawater pCO2
, fCO2

, xCO2
, and [CO2(aq)] can also be interconverted without knowledge of a second carbonate system

parameter (Appendix C1.2). Therefore if any of these parameters alone are provided to PyCO2SYS, all the others are calculated

under the input conditions. If an output-condition temperature is provided, then pCO2 is also adjusted to the new temperature

following Takahashi et al. (2009), and all others in this set of parameters are calculated under output conditions from the new350

pCO2
value.
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3.5 Multidimensional arguments

All arguments to PyCO2SYS, including settings, can be multidimensional. A combination of scalar and multidimensional

arguments can be provided, with the latter formatted as NumPy ndarrays (Harris et al., 2020). Results that depend only on

scalar arguments are themselves scalar, while results depending on multidimensional inputs are ‘broadcasted’ into consistently355

shaped arrays (Fig. 2). The code is optimised to efficiently compute across multidimensional arrays following the approach of

CO2SYS-MATLAB since its v1.1 (van Heuven et al., 2011). However, all multidimensional arrays in CO2SYS-MATLAB are

flattened into one-dimensional vectors and returned in the results in that same format.
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Figure 2. Schematic representation of broadcasting array shapes with NumPy in PyCO2SYS. (a) Two of the arguments to PyCO2SYS are

provided as arrays, each containing 11 different values for TC and temperature. Other arguments could be similarly shaped vectors or single

scalar values. (b) If the array arguments were all provided as one-dimensional rows, then the calculated results (e.g. aragonite saturation state)

would also be one-dimensional rows. Each element of the results array corresponds to the element in the same position in each argument

array. For scalar arguments, the same value is used across each result array. (c) If the array arguments are provided as a mixture of rows and

columns, then the results are calculated on a broadcasted grid including every combination of the arguments’ elements. The same principle

applies to arguments and results of arbitrarily higher dimensionality.
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3.6 Uncertainty propagation

Propagating the uncertainty in an argument through to a result requires knowing the derivative of the result with respect to the360

argument. Uncertainty propagation is available for a subset of the arguments in the original MS-DOS CO2SYS (Lewis and

Wallace, 1998) and was added to the Excel and MATLAB implementations more recently (Orr et al., 2018). However, while

much of the code to solve the marine carbonate system in PyCO2SYS has been directly inherited from CO2SYS-MATLAB,

its implementation of uncertainty propagation differs.

PyCO2SYS evaluates the derivatives using a finite forward-difference approach. We use finite differences rather than auto-365

matic differentiation here because the latter, while possible, is computationally inefficient to apply over the entire PyCO2SYS

program. We use forward- rather than central-difference derivatives because the former can be safely evaluated at zero for

variables where negative values are impossible (e.g. salinity). The derivative of a result r with respect to an argument a is

calculated thus:

∂r(a)

∂a
≈ r(a+ ∆a)− r(a)

∆a
(23)370

The value of ∆a is fixed for each argument (Appendix H). Different values for different arguments are necessary because some

arguments can differ by over 20 orders of magnitude from others. If ∆a is too large, then the derivative may be inaccurate

because the equations governing the marine carbonate system are non-linear, but if ∆a is too small, then the derivative may be

inaccurate due to the limitations of solver tolerance and computer precision. We therefore tested a range of ∆a values for each

variable under typical open-ocean conditions and selected an appropriate value between these extremes (e.g. Fig. 3). The full375

list of ∆a values is provided in Table H1.
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Figure 3. An example figure used to select a suitable ∆a value for uncertainty propagation, in this case for ∆K∗
1 . pH was calculated from

AT and TC and then the value of K∗
1 was incremented by the amounts shown on the horizontal axis; the vertical axis is for the corresponding

gradient calculated from the pH response, shown by the red curve. The perpendicular blue lines show the ∆a value selected in this case

(i.e. 10−12), which falls within the flat section towards the centre of the figure. To the left of this (i.e. at higher ∆a), the upwards curvature

of the red line is due to non-linearity, while the erratic deviations to the right (i.e. at lower ∆a) are due to solver tolerance and computer

precision limitations.

PyCO2SYS can conveniently obtain derivatives of all its results with respect to all of its arguments and also with respect to

all parameters that are normally calculated internally from temperature, pressure and/or salinity, such as equilibrium constants

and total salt contents.

The derivatives are calculated by a function that wraps the entire PyCO2SYS program, rather than by adding extra internal380

variables that keep track of the effects of differences in to the arguments, as has been implemented elsewhere (e.g. Orr et al.,

2018). The PyCO2SYS approach means that if the main program is producing valid results, then the derivatives can also be

considered reliable without needing to verify some separate calculation mechanism.

To determine the overall uncertainty in each result, the uncertainty components from different arguments are combined using

385

σ2(r) =
∑
i

(
∂r

∂ai

)2

σ2(ai) (24)

where σ is the uncertainty as a standard deviation (thus σ2 is a variance). However, Eq. (24) is only valid if the uncertainties in

all arguments are independent from each other. Propagation of co-varying uncertainties can still be carried out with PyCO2SYS,

because as noted above, the derivative of any result with respect to any argument can be calculated. The user can therefore

assemble the Jacobian matrix of partial derivatives needed to propagate any arbitrary set of co-varying argument uncertainties390

through to any result (JCGM, 2008).
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4 Validation

There are no ‘certified’ results of marine carbonate system calculations against which software like PyCO2SYS can be val-

idated. But we can test its internal consistency and we can compare its results with the calculations of other programs and

values reported in the literature.395

PyCO2SYS is developed and hosted on GitHub (https://github.com/mvdh7/PyCO2SYS), with releases archived on Zenodo

(Humphreys et al., 2021). Every validation test described in this section is built into PyCO2SYS’s test suite, therefore these

tests are executed automatically by GitHub’s continuous integration service every time the code is updated. Were any test to

fail, an email report would be sent to us, the developers, and the failure displayed publicly in a badge on the GitHub repository’s

public web page (Fig. 4). Updates to PyCO2SYS are made in a developmental branch of the repository and the tests must all400

pass before these changes may be incorporated into the main branch and publicly released in a new version. All validation

tests described below were run with PyCO2SYS v1.8.0 (https://doi.org/10.5281/zenodo.5602840), but these protocols should

ensure that the quantitative statements made here will hold true as the code continues to be developed.

For all versions of PyCO2SYS up to v1.8.0, the test suite runs on Python v3.7, 3.8 and 3.9. Other versions of Python may

also work, but are untested.405

Figure 4. The status badge for the validation tests, publicly visible at PyCO2SYS’s GitHub repository

(https://github.com/mvdh7/PyCO2SYS), when the current version of the code (a) passes every test or (b) fails any test.

4.1 Internal consistency

4.1.1 Round-robin test

In a ‘round-robin’ test, we first determine all of the core carbonate system parameters from one pair, and then solve the system

again using every possible pair of determined parameters. Under typical seawater conditions, we find the same results for

every parameter pair, to within better than the tolerance of the iterative pH solvers (i.e. 10−8 in pH). The maximum absolute410

difference in each parameter across all possible input pair combinations is acceptably small (Table 4).

4.1.2 Buffer factors

If we include only the solution components that appear in the ‘explicit’ equations for the buffer factors (i.e. zero nutrients

and total salts, except for TB) then we can compare these results with the ‘automatic’ values (Sect. 3.3.4). Under a range of

typical seawater conditions, we find that the differences between these two calculation approaches are totally negligible: on415

the order of 10−12 % for the Egleston et al. (2010) buffers; 10−9 % for ψ and Q; and 10−7 % for the Revelle factor. The
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Table 4. Results of an example round-robin test with PyCO2SYS with default parameterisation options. Other conditions: salinity = 33,

temperature = 22 °C, pressure = 1234 dbar, total silicate = 10 µmol ·kg−1, total phosphate = 1 µmol ·kg−1, total ammonia = 2 µmol ·kg−1,

total sulfide = 3 µmol · kg−1. The pH-solver tolerance in PyCO2SYS is 10−8 in terms of pH.

Parameter Value Maximum absolute difference

AT / µmol · kg−1 2300.0 5.91 · 10−11

TC / µmol · kg−1 2100.0 5.55 · 10−11

pHT 7.871 1.15 · 10−14

pCO2 / µatm 572.6 1.51 · 10−11

fCO2 / µatm 570.7 1.50 · 10−11

xCO2 / µatm 587.7 1.55 · 10−11

[CO2−
3 ] / µmol · kg−1 143.8 3.81 · 10−12

[HCO−
3 ] / µmol · kg−1 1938.5 5.16 · 10−11

[CO2(aq)] / µmol · kg−1 17.7 6.54 · 10−13

Revelle factor is less well-matched because its ‘explicit’ value is computed using a finite difference scheme (for consistency

with CO2SYS-MATLAB), which is inherently less accurate than using a direct equation.

Typically, one would not set the total salt contents to zero when computing buffer factors with the default automatic approach.

As a consequence, differences between the explicit and automatic buffer factors may be larger than described above, but still420

practically negligible: keeping nutrients at zero but using TSO4
and TF calculated from a salinity of 35, we find that the

automatic buffer factors change such that their differences with the corresponding explicit buffer factors increase to the order

of 0.01 %.

4.1.3 Uncertainty propagation simulations

The propagation of independent uncertainties using forward-difference derivatives (Sect. 3.6) is tested by comparison with425

Monte-Carlo simulations for all equilibrium constants and all known parameter pair combinations. In every case, the uncer-

tainty determined from the simulations (n= 104) as a standard deviation is either within 3 % of the directly calculated value if

the latter is non-zero, or negligibly small if it is zero (absolute value less than 10−10). The 3 % cutoff is relatively high because

of the relatively small number of simulations; the cutoff can be reduced if a greater number of simulations is used, but then the

computation time for the test suite becomes impractically long.430

4.2 Comparison with other CO2SYS software

We used CO2SYS-MATLAB v2.0.5 (Orr et al., 2018) as the main alternative software to compare our results with. PyCO2SYS

was originally created as an as-close-as-possible Python translation of this particular version, so any differences in the results
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should be both understood and intentional. Its predecessor, CO2SYS-MATLAB v1.1 (van Heuven et al., 2011), was included

in the software intercomparison study of Orr et al. (2015). Indeed, it was selected as the reference software to test the others435

against. CO2SYS-MATLAB v2.0.5 differs from v1.1 only in that it contains one additional parameterisation for the carbonic

acid dissociation constants plus some extra internal variables associated with uncertainty propagation. Comparing PyCO2SYS

with CO2SYS-MATLAB v2.0.5 therefore also shows PyCO2SYS’s performance and reliability in the context of the wider set

of software tested and discussed by Orr et al. (2015).

However, these CO2SYS-MATLAB versions do not permit solving with either carbonate or bicarbonate ion content as a440

known parameter, nor do they include ammonia or sulfide speciation. They also lack the parameterisations of Sulpis et al.

(2020) and Schockman and Byrne (2021) for the carbonic acid dissociation constants (options 16 and 17 in Table 1), and the

parameterisation of Waters and Millero (2013) for bisulfate dissociation (Table 3). We therefore also tested PyCO2SYS against

CO2SYS-MATLAB v3.2.0 (Sharp et al., 2020), which does include all these options.

4.2.1 Temperature-salinity-pressure parameterisations445

All equilibrium constants and total salt contents, calculated from salinity, temperature, and pressure, are virtually identical

(absolute tolerance 10−12, relative tolerance 10−16, in pK∗ values or in µmol · kg−1) to those in both CO2SYS-MATLAB

v2.0.5 and v3.2.0. These tests are run across a range of practical salinity from 0 to 50, temperature from −1 to 50 °C, and

pressure from 0 to 105 dbar, including values of exactly zero in every case. Every pH scale and parameterisation option is

included (Tables 1 and 2).450

4.2.2 Solving the marine carbonate system

If PyCO2SYS is adjusted to match CO2SYS-MATLAB v2.0.5, i.e.:

1. Approximate slopes are used for the pH solvers, including only carbonate-borate-water alkalinity, instead of using auto-

matic differentiation to determine these exactly (Sect. 3.1.1);

2. pH solver tolerance is set to 10−4, instead of 10−8 (Sect. 3.1.2);455

3. The original approach to prevent overshoot from too-great solver jumps in pH is used (Sect. 3.1.2);

4. The iterative pH solver continues updating all elements until all pH changes fall beneath the tolerance threshold (Sect. 3.1.2);

5. The pH-scale conversion simplification is reinstated (Sect. 3.1.3);

6. Initial pH guesses are always set to 8, instead of using our extended Munhoven (2013) approach (Sect. 3.2);

then the differences between PyCO2SYS and CO2SYS-MATLAB calculations are virtually zero (no greater than 10−10 %,460

excluding the Revelle factor as noted above). The Revelle factor is an exception, but this is due to minor errors in its encoding

in CO2SYS-MATLAB (Appendix G). If we replicate these errors in PyCO2SYS, then we do return virtually identical Revelle

factor values.
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If the adjustments above, other than fixing the pH-scale conversion simplification, are not made, then the differences between

PyCO2SYS and CO2SYS-MATLAB v2.0.5 are up to the order of 10−5 %: greater, but still negligible for all practical purposes.465

Fixing the pH-scale conversion simplification too (Sect. 3.1.3) makes no difference to calculations where the user-defined

input pH scale is Total, but causes discrepancies between PyCO2SYS and CO2SYS-MATLAB v2.0.5 of up to 50 % in the

‘free’ hydrogen ion content and 10−2 % in other results when other input pH scale options are selected. The differences are

amplified at low pH, as the assumptions of the pH-scale conversion simplification do not hold (Sect. 3.1.3).

Repeating the exercise above for CO2SYS-MATLAB v3.2.0 has similar results, with differences negligible for all practical470

purposes. Only adjustments 1, 2 and 3 from the list above need to be made to PyCO2SYS in this case. With PyCO2SYS fully

adjusted to match CO2SYS-MATLAB v3.2.0, differences in calculated values are still mostly less than 10−10 %, and with

one exception all less than 10−6 %. The exception, a difference still less than 10−3 %, is for the aqueous CO2 content under

a limited set of input conditions and only with the new known parameter pair combinations added since CO2SYS-MATLAB

v2.0.5. It arises because there are several different ways to calculate [CO2(aq)]: by difference from known TC, [HCO−3 ] and475

[CO2−
3 ]; from any one of these three variables, [H+], andK∗1 andK∗2 equilibrium constants using the equations in Appendix C

(Sects. C2.6, C2.11 and C2.12); or from fCO2
or pCO2

and the CO2 solubility constant (K∗0 ). While these approaches are

identical in theory, in practice they return different results due to the limitations of solver tolerance and floating point precision.

PyCO2SYS and CO2SYS-MATLAB do not always use the same approach to calculate [CO2(aq)] in each situation (this

also varies between CO2SYS-MATLAB versions), hence their greater — but still negligible — differences from each other.480

Whatever the known parameter pair, PyCO2SYS always follows the principles that (i) the values of parameters provided as

arguments by the user should never be overwritten with recalculations, and (ii) the final unknown from TC, [CO2−
3 ], [HCO−3 ]

and [CO2(aq)] should always be calculated from the other three, by addition or by difference as appropriate.

4.2.3 Uncertainty propagation comparisons

PyCO2SYS reproduces all the derivatives reported by Orr et al. (2018) in their Tables 2 and 3 to within 10−3 % under the485

same input conditions, and all the propagated uncertainties reported by Orr et al. (2018) in their Table 4 to within 10−4 %. We

consider all these differences to be negligible.

Across all combinations of optional parameters, mean uncertainties in AT, TC, pCO2 , fCO2 , [HCO−3 ], [CO2−
3 ], [CO2(aq)],

Ω(calcite), Ω(aragonite) and xCO2
propagated from the standard values suggested by Orr et al. (2018) are within 0.5 %

of the corresponding uncertainty values calculated with CO2SYS-MATLAB v3.2.0 under the same input conditions. Greater490

differences in uncertainties calculated under output conditions arise because CO2SYS-MATLAB does not propagate the un-

certainties from input-condition equilibrium constants through to output-condition results.

4.3 Simulated seawater titration

PyCO2SYS can be used to reproduce the closed-cell seawater titration datasets simulated by Dickson (1981). Each simulated

dataset contains pH values for a seawater sample as it is titrated with incremental HCl additions across a pH range from495

approximately 8 to 3.
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Dickson (1981) specified exact values for all stoichiometric equilibrium constants. PyCO2SYS allows these to be provided,

instead of them being calculated internally from temperature and salinity (2.2). The titration is then simulated by calculating

how AT should change through the titration due to acid addition, accounting for dilution of AT, TC and all other dissolved

solutes by acid addition, and then solving the carbonate system for pH from the so-determined AT and TC. On test here is the500

ability to solve for pH from known AT and TC across a wide range of pH and AT values, including negative AT.

The first titration dataset, without phosphate, is reproduced perfectly by PyCO2SYS to the number of decimal places re-

ported by Dickson (1981). The second titration, with 10 µmol · kg−1 of total phosphate included, is reproduced perfectly by

PyCO2SYS with the exception of three values at different titrant masses:

– 0.45 g: pH either 6.588221 (Dickson) or 6.599221 (PyCO2SYS).505

– 0.60 g: pH either 6.366846 (Dickson) or 6.366486 (PyCO2SYS).

– 1.25 g: pH either 5.549957 (Dickson) or 5.549951 (PyCO2SYS).

The other 48 data points in this titration agree perfectly. The noted discrepancies occur in non-consecutive data points and

are therefore unlikely to all be associated with an error in a particular equilibrium. Coupled with the nature of the differences

(underlined above), that is, one or two specific digits switched or replaced rather than the entire number being different, we510

conclude that these differences most likely represent minor typographical errors and therefore that PyCO2SYS does accurately

reproduce these simulations in full.

5 Discussion

5.1 Initial pH estimates

The aim of our revised scheme for initial pH estimates, following Munhoven (2013), was to find values that were closer to515

the final solution across a wide range of pH, thus providing a more suitable starting point for the iterative solvers and thereby

reducing the number of iterations required to converge at the solution.

We find that the initial pH estimates determined according to the scheme described in Sect. 3.2 do follow a similar pattern

to the final solutions across wide ranges of argument values, including at the extremes where the initial-estimate equations

become invalid and default pH values are used instead (Fig. 5). The number of iterations required to fall beneath the solver’s520

tolerance threshold (10−8 in pH) is also reduced, compared with the original approach of always using an initial pH of 8.

Indeed, for typical ocean conditions we find that the iterative solver often does not alter the initial estimate at all. Suitable

starting points for the iterative solvers are clearly being found.
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Figure 5. Initial estimates (solid lines) and final solutions (dashed lines) of pH from known parameter pairs of total alkalinity (2.3

mmol·kg−1) with a range of values for (a) dissolved inorganic carbon (TC), (b) aqueous CO2 fugacity, (c) bicarbonate ion content, and

(d) carbonate ion content. The initial estimates track the final solution very closely across the range of typical seawater conditions. This

is expected, because these estimates were derived under the assumption that the carbonate and borate contributions are dominant in total

alkalinity (Sect. 3.2), as is true for typical seawater. The default high and low pH values of 10 and 3 used where the initial estimate equations

are not valid for the argument values (Eqs. (16) and (F6)) appear as flat sections in (a) and (c) respectively.

5.2 Parameter pairs with multiple solutions

It is not strictly true that the marine carbonate system can always be solved from any pair of its parameters. Some combinations525

have multiple solutions. For example, both the AT-[CO2−
3 ] and TC-[HCO−3 ] pairs can correspond to two different pH values

(Deffeyes, 1965; Zeebe and Wolf-Gladrow, 2001; Munhoven, 2021). In this section, we show how PyCO2SYS is designed to

return the root corresponding to typical seawater. However, it is important to realise that these alternative pH values are real

solutions that could be made up in the laboratory or be found in nature; they are not simply mathematical anomalies to be

ignored. We therefore used PyCO2SYS to explore the compositions of these alternatives.530

5.2.1 Total alkalinity and carbonate ion content

The iterative AT-pH solvers can be thought of as working by evaluating AT at a sequence of different possible pH values until

the pH that returns the true AT is found. This pH is known as the ‘root’ of the AT-pH equation. The difference between the

true AT and these estimates from pH is the ‘residual’ alkalinity, which is zero at the root. We find that the equations for initial
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pH estimates and final pH values have very similar roots and similar residuals in the region around these roots (Fig. 6). This535

similarity is why the initial pH estimates provide such suitable starting points for the final solvers.
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Figure 6. Residuals between known AT (2.3 mmol·kg−1) and (i) carbonate-borate alkalinity (solid lines; ACB) from Eqs. (F1), (4), (11)

and (17), and (ii) total alkalinity (dashed lines; AT) from Eq. (B1), calculated across a range of pH, with a second known parameter of

(a) dissolved inorganic carbon (2.15 mmol·kg−1), (b) CO2 fugacity (600 µatm), (c) bicarbonate ion content (2011 µmol · kg−1), and

(d) carbonate ion content (116 µmol · kg−1), all at a salinity of 35 and temperature of 15 °C. Each possible pH value returns a different

residual alkalinity, and the true pH root is where the residual alkalinity is zero. Both the initial estimates and the final solutions find this

zero-residual pH root, using the ACB and AT equations respectively (Sects. 3.1.1 and 3.2). The similarity between the ACB and AT residual

curves, particularly around zero residual alkalinity, shows that the initial estimates provide excellent starting values for the subsequent

iterative solvers. In (d), the final iterative solver has two possible roots, where residual alkalinity is zero. However, the initial estimate has

only one root, corresponding to the lower-pH final root. This ensures that the final solver will always converge to the lower-pH root, which

is usually appropriate for the seawater system.

For the AT-[CO2−
3 ] parameter pair, there are generally two real pH roots and thus two possible equilibrium states of the

marine carbonate system (Fig. 6d). We used PyCO2SYS to conceptualise the two pH roots for the AT-[CO2−
3 ] parameter

pair, as follows. The lower-pH root corresponds to typical seawater: a relatively high-TC system, where bicarbonate ions are

the main component of TC, and carbonate alkalinity ([HCO−3 ] + 2[CO2−
3 ]) is the main component of AT. The higher-pH540

root corresponds to a low-TC system, where virtually all of TC is in the form of carbonate ion, and AT is dominated by

non-carbonate species (Fig. 7).
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Figure 7. Main components of (a) total alkalinity (AT) and (b) dissolved inorganic carbon (TC) at the two possible pH roots for a known

parameter pair of AT (2300 µmol ·kg−1) and [CO2−
3 ] (120 µmol ·kg−1). The low-pH root (left) represents typical seawater, with relatively

high TC (2143 µmol · kg−1), and both AT and TC dominated by bicarbonate ion (HCO−
3 ). The high-pH root (right) has the same AT and

[CO2−
3 ], but AT is dominated by hydroxide (OH−), and TC is much lower (122 µmol · kg−1) and comprised almost entirely of CO2−

3 .

These calculations were carried out at 15 °C, with a practical salinity of 35 and zero nutrients. If nutrients were present, then like borate

(B(OH)−4 ) they would have different contributions to AT at the different pH roots. pH is on the Total scale (Appendix A).

Which root the solver finds depends on the initial pH estimate and the residual alkalinity-pH slope at that point (Eq. (1)).

This is an advantage of the improved initial pH estimates in PyCO2SYS when working with seawater and similar systems: the

initial-estimate equation has only a single real root (Fig. 6d). Because the initial estimate is based on equations for a system545

that only includes carbonate and borate alkalinity (Sect. 3.2.3), the carbonate system contribution to total alkalinity will always

dominate, so the single root of the initial estimate will coincide with the lower-pH true root, which is appropriate for seawater.

The solver will thus more robustly find the correct root each time.
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In typical open-ocean work this is largely academic: the true pH is typically around 8, and the higher root greater than 10,

so a constant initial pH estimate of 8 would also return the correct root. But in more unusual environments, the new algorithm550

introduced here could help ensure that the solver identifies the correct root. It is possible for the user to specify a different

initial pH estimate, to control which root PyCO2SYS obtains (as we did to create Fig. 7).

5.2.2 Dissolved inorganic carbon and bicarbonate ion content

As noted previously (e.g. Zeebe and Wolf-Gladrow, 2001), there are also two possible pH solutions for the TC-[HCO−3 ]

parameter pair. We conceptualise these roots as follows: the remaining portion of TC not accounted for by HCO−3 is either555

dominantly composed of CO2−
3 if the solution’s pH is closer to pK∗2 (i.e. higher), or of CO2(aq) if the pH is closer to pK∗1

(i.e. lower).

Solving from TC and [HCO−3 ] is more straightforward than from AT and [CO2−
3 ] because the unknown pH can be deter-

mined from a second-order polynomial, which can be calculated directly using the quadratic formula, rather than needing to

use an iterative solver. Here, the root found does not depend upon the value of some initial pH estimate. Instead, the quadratic560

formula generates two possible roots, which must be chosen between. The usual approach, as advised by e.g. Zeebe and Wolf-

Gladrow (2001), is to take the higher-pH root, and this is the default behaviour of PyCO2SYS. However, PyCO2SYS can be set

to return the other root instead, which we used to illustrate the differing chemistry of the two possibilities (Fig. 8). Munhoven

(2021) discusses root-selection strategy for this parameter pair combination in more detail.
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Figure 8. Main components of (a) total alkalinity (AT) and (b) dissolved inorganic carbon (TC) at the two possible pH roots for a known

parameter pair of TC (2100 µmol · kg−1) and bicarbonate ion content ([HCO−
3 ]; 1900 µmol · kg−1). The high-pH root (left) represents

typical seawater, where most of the TC not accounted for by [HCO−
3 ] is composed of [CO2−

3 ]; AT is relatively high (2364 µmol · kg−1)

and fCO2 low (331 µatm). In the low-pH root (right), the non-HCO−
3 portion of TC is instead dominated by CO2(aq); alkalinity is lower

(1932 µmol · kg−1) and fCO2 high (5008 µatm). These calculations were carried out at 15 °C, with a practical salinity of 35 and zero

nutrients. pH is on the Total scale (Appendix A).

5.3 Pressure corrections for pCO2565

In PyCO2SYS, pCO2
(and by extension, fCO2

and xCO2
) is always evaluated at a total pressure near 1 atm; it is not corrected

for the pressure of the overlying water column (Sect. 2.2). This approach is consistent with all existing implementations of

CO2SYS. In practice, it means that these values represent the approximate pCO2 that seawater would have if it were brought

to the surface ocean without changing the solution composition — ‘approximate’ because this calculation should use potential

temperature, rather than in situ temperature, to retrieve the true value expected after adiabatic decompression (Orr and Epi-570
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talon, 2015). PyCO2SYS does not calculate potential temperature, but this could be provided by the user in place of in situ

temperature.

Although a pressure correction for pCO2 (i.e. a pressure correction for K∗0 and the fugacity factor; Appendix C1.2) is

theoretically possible (Weiss, 1974; Orr and Epitalon, 2015), it could be argued that this is unnecessary. First, the vast majority

of pCO2 measurements are carried out only at the surface ocean (e.g. Bakker et al., 2016), in part due to practical constraints575

of the ‘gold-standard’ equilibrator-based methodology. Second, the concept of pCO2
has utility only in the context of air-sea

CO2 exchange, which takes place only at the surface ocean.

However, recent developments in sensor technology are beginning to enable direct measurements of in situ pCO2
at depth in

the ocean (Clarke et al., 2017). There is also growing interest in calculating in situ pCO2
values at depth for intercomparison

exercises in which the marine carbonate system has been overdetermined by measuring more than two of its core parameters580

(e.g. Raimondi et al., 2019), and the relevant pressure correction is implemented in software tools such as seacarb and mocsy

(Orr and Epitalon, 2015; Orr et al., 2015). Therefore, we do anticipate an increasing need for pressure-corrected pCO2
values,

and while we have kept the approach in PyCO2SYS consistent with other CO2SYS software for now, we consider a robust

implementation of these calculations to be an important target for future code development.

5.4 Computational speed585

One does not choose to write code in Python for its computational speed. Therefore, while optimising performance was not

ignored in developing PyCO2SYS, it was not a main focus. We compared the computational speed of PyCO2SYS against

that of CO2SYS-MATLAB v3.2.0 across a few different tasks for reference purposes. We ran CO2SYS-MATLAB both in

MATLAB itself (expensive, proprietary software) and in GNU Octave, a free and open source MATLAB clone.

The different tasks are described in the subsequent sections and the results are summarised in Table 5. Details of the computer590

and software used for testing are provided in Appendix I.

Table 5. Comparison of computational speed for various tasks with PyCO2SYS and CO2SYS-MATLAB running in both MATLAB and

GNU Octave. Values shown are the mean ± standard deviation of 7 runs. The tasks are described in Sect. 5.4.

Task Python time / s MATLAB time / s GNU Octave time / s

All combinations 0.95 ± 0.04 0.68 ± 0.11 0.64 ± 0.01

GLODAP — input only 23.8 ± 0.3 13.1 ± 0.3 16.5 ± 0.9

GLODAP — input and output 49.9 ± 2.7 13.1 ± 0.3 16.5 ± 0.9

Overall, the PyCO2SYS computation time has the same order of magnitude as CO2SYS-MATLAB, but it is generally

somewhat slower. However, the difference is negligible in practice for relatively small datasets (up to about 105 data points),

but may become more noticeable in larger calculations. Potential future improvements to PyCO2SYS’s computational speed

are discussed in Sect. 5.5.595
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5.4.1 All combinations

The ‘all combinations’ task was the validation test described in Sect. 4.2.2, that is, a single call to the (Py)CO2SYS func-

tion that includes one calculation using every possible combination of parameter pair and optional setting (e.g. choices of

parameterisations for the equilibrium constants): 40,800 data points. Both input and output conditions were computed.

CO2SYS-MATLAB completed this task in a very similar time in both MATLAB and GNU Octave with the latter slightly600

faster, and PyCO2SYS took about 1.5 times longer (Table 5). However, this difference would generally be negligible, as all

three implementations of the test had an average run time of less than one second.

5.4.2 GLODAP

In this task, (Py)CO2SYS was run across the entire GLODAPv2.2021 Merged Master File (Lauvset et al., 2021) with AT and

TC as the known parameter pair. This file contains a little over 1.3 million data points for each variable. The results in Table 5605

show the mean and standard deviation of 7 runs in each case.

This calculation is an example where results would only be required under one set of temperature and pressure conditions,

rather than needing to evaluate both input and output conditions. This allows PyCO2SYS to be used more efficiently, as it only

calculates output-condition results if they are explicitly requested (Sect. 2.3), whereas CO2SYS-MATLAB always calculates

its results at both input and output conditions.610

The results in Table 5 show that CO2SYS-MATLAB running in MATLAB was the fastest, with GNU Octave taking longer

by a factor of about 1.3. When calculating only under input conditions, PyCO2SYS took longer by a factor of about 1.8 than

CO2SYS-MATLAB running in MATLAB, and by 3.8 if both the input- and output-condition calculations were carried out.

5.5 Outlook

The Autograd package that PyCO2SYS uses for automatic differentiation is still being maintained, and its most recent release615

(v1.3, July 2019) is stable, but it is no longer in active development. Its successor, JAX (Bradbury et al., 2018), has further

benefits including ‘just-in-time’ code compilation and parallelisation. These features could speed up computation speed in

PyCO2SYS, especially the components involving automatic differentiation, potentially by several orders of magnitude. How-

ever, JAX cannot currently run natively on the Microsoft Windows operating system, which would greatly restrict the usability

of PyCO2SYS for the oceanographic research community. This limitation is due to JAX’s dependence on the separate XLA620

(Accelerated Linear Algebra) compiler, rather than being an intrinsic issue with JAX itself. Should this compatibility issue be

resolved in the future, we envision updating PyCO2SYS to use JAX instead of Autograd. This should be relatively straight-

foward thanks to the close similarities between the API (application programming interface) of these packages.

As future developments are made to PyCO2SYS, we will aim to maintain consistency with other CO2SYS-family tools,

but cannot guarantee that all new features or updates will be added simultaneously across all implementations. In practice, the625

workload required to achieve this is not currently feasible, and we would not wish to hold back development because of the
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time required to replicate changes across multiple implementations. That said, the results should remain consistent enough that

users can select which implementation to use based on their preferred software environment, rather than the other way around.

This ambition could also extend beyond the CO2SYS family of software. Independently developed tools for solving the

marine carbonate system exist in other languages, such as seacarb in R (Gattuso et al., 2021) and mocsy in Fortran (Orr and630

Epitalon, 2015). These give sufficiently consistent results with each other that the selection of which tool to use does not

affect scientific interpretation (Orr et al., 2015), and we have shown that PyCO2SYS is, and will remain, no exception. Even

so, development and validation of PyCO2SYS so far has focused on comparisons with only CO2SYS-family software, for

practical reasons. Now that the basis of PyCO2SYS is established, we would welcome more direct interaction with the groups

developing these other tools, working towards a set of marine-carbonate-system-solving tools that return identical results635

regardless of the software platform. There can be a great advantage in having independent implementations led by different

groups of researchers and developers. For example, this approach can help catch bugs and typographical errors, especially if

each group extracts equations and parameterisations from the original literature instead of copying existing code. Working

together, the groups would have a greater pool of knowledge and experience to identify errors in the literature (see e.g. Lewis

and Wallace (1998), their Appendix A), which are often unpublished and known only through personal communications. But640

calculations must be regularly compared with each other if this advantage is to be realised.

Thanks largely to the efforts of Orr et al. (2018), many tools now have an uncertainty propogation capability, as does

PyCO2SYS. However, we still lack meaningful and statistically equivalent estimates for the actual uncertainties in the equi-

librium constants. The software therefore stands ahead of our knowledge: as more work is done to robustly quantify these

uncertainties, the tools are already in place to propagate them through to all marine carbonate system calculations.645

As development of PyCO2SYS continues, we do not anticipate changing its fundamental approach to solving the marine

carbonate system, but we will try to incorporate the latest research, including keeping up-to-date with new parameterisations,

for example of stoichiometric equilibrium constants (e.g. Sulpis et al., 2020; Schockman and Byrne, 2021). Integration with a

speciation model that can determine the equilibrium constants based on chemical activities, rather than parameterising these

based on salinity, is an area of interest (Turner et al., 2016), but would likely require such substantial changes as to constitute a650

separate software tool. We do envision further additions to the main chemical speciation function in PyCO2SYS, for example

to better represent the impact of organic contributions to alkalinity (e.g. Cantrell et al., 1990; Muller and Bleie, 2008; Kuliński

et al., 2014; Abril et al., 2015; Ulfsbo et al., 2015) — noting that a simplified representation of such extra components can

already be modelled in PyCO2SYS (Sect. 3.3.1).

Through all these efforts, we aim to ensure that PyCO2SYS remains a reliable and comprehensive tool for analysing seawater655

chemistry, from samples and experiments in the laboratory through to the changing marine carbonate system across the global

ocean.

Code availability. The current version of PyCO2SYS is freely available from its GitHub repository at https://github.com/mvdh7/PyCO2SYS

under the GNU General Public License v3. Installation is recommended from the Python Package Index (PyPI) via pip and documenta-
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tion is available online (https://PyCO2SYS.readthedocs.io). The exact version of PyCO2SYS used to produce the results discussed in this660

paper (v1.8.0), including input data and scripts to run the model and perform all validation tests described here, is archived on Zenodo

(https://doi.org/10.5281/zenodo.5602840).

Appendix A: pH scales and conversions

The pH scales in PyCO2SYS are Free (pHF ), Total (pHT ), Seawater (pHS) and NBS (pHN ), defined following e.g. Zeebe and

Wolf-Gladrow (2001) and Velo et al. (2010):665

pHF =− log10{[H+]} (A1)

pHT =− log10{[H+](1 +TSO4
/K∗SO4

)} (A2)

pHS =− log10{[H+](1 +TSO4
/K∗SO4

+TF/K
∗
F)} (A3)

pHN =− log10{[H+](1 +TSO4
/K∗SO4

+TF/K
∗
F)γH+} (A4)

where γH+ is the chemical activity coefficient for H+ (Table 3). Note that in PyCO2SYS, [H+] in all these definitions is670

a substance content (Sect. 2.1). pH values and stoichiometric equilibrium constants (K∗) are thus converted between these

different pH scales using the following factors:

Y TF = 1 +TSO4
/K∗SO4

; Y FT = 1/Y TF (A5)

Y SF = 1 +TSO4
/K∗SO4

+TF/K
∗
F ; Y FS = 1/Y SF (A6)

Y NS = γH+ ; Y SN = 1/Y NS (A7)675

where γH+ is the hydrogen ion activity, calculated from temperature and salinity following either Peng et al. (1987) or Taka-

hashi et al. (1982) (see Table 3). The different scales are denoted by the subscript and superscript letters, with F for Free, T

for Total, S for Seawater and N for NBS. To convert from any pH scale A to any other pH scale B using these factors:

pHB = pHA + pY BA = pHA− log10

(
Y BA
)

(A8)

Alternatively and equivalently:680

[H+]B = Y BA [H+]A (A9)

The equations above are used in the same way to convert K∗ values between pH scales.

Appendix B: Total alkalinity and its components

Each equation here is written assuming that [H+] and all equilibrium constants (K∗) are supplied on the same pH scale as each

other.685
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B1 Total alkalinity

Total alkalinity (AT) is calculated as the sum of all its components (Dickson, 1981; Wolf-Gladrow et al., 2007; Sharp and

Byrne, 2020):

AT =Aw +AC +AB +AP +ASi +ANH3 +AH2S +ASO4 +AF +Aα +Aβ (B1)

Equations for all the individual alkalinity components (AC, AB, etc.) are given in the subsequent sections in terms of pH-690

independent total substance contents (TC, TB, etc.) and [H+].

B2 Water

H2O 
 OH−+ H+ ; K∗w = [OH−][H+] (BR1)

Aw = [OH−]− [H+] =
K∗w
[H+]

− [H+] (B2)695

B3 Carbonic acid

TC = [CO2(aq)] + [HCO−3 ] + [CO2−
3 ] (B3)

CO2(aq) + H2O 
 HCO−3 + H+ ; K∗1 =
[HCO−3 ][H+]

[CO2(aq)]
(BR2)

700

HCO−3 
 CO2−
3 + H+ ; K∗2 =

[CO2−
3 ][H+]

[HCO−3 ]
(BR3)

AC can be expressed in terms of [H+] and any of TC, fCO2 , [HCO−3 ] or [CO2−
3 ]:

AC = [HCO−3 ] + 2[CO2−
3 ] (B4)

AC([H+],TC) =
TCK

∗
1 ([H+] + 2K∗2 )

K∗1K
∗
2 +K∗1 [H+] + [H+]2

(B5)705

AC([H+],fCO2
) =

fCO2K
∗
0K
∗
1 ([H+] + 2K∗2 )

[H+]2
(B6)

AC([H+], [HCO−3 ]) = [HCO−3 ] +
2K∗2 [HCO−3 ]

[H+]
(B7)
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710

AC([H+], [CO2−
3 ]) =

[CO2−
3 ][H+]

K∗2
+ 2[CO2−

3 ] (B8)

Undissociated H2CO3 is considered negligible and thus not explicitly modelled, but rather implicitly included as part of the

[CO2(aq)] term (Zeebe and Wolf-Gladrow, 2001).

B4 Boric acid

TB = [B(OH)3] + [B(OH)−4 ] (B9)715

B(OH)3 + H2O 
 B(OH)−4 + H+ ; K∗B =
[B(OH)−4 ][H+]

[B(OH)3]
(BR4)

AB = [B(OH)−4 ] =
TBK

∗
B

K∗B + [H+]
(B10)

B5 Phosphoric acid720

TP = [H3PO4] + [H2PO−4 ] + [HPO2−
4 ] + [PO3−

4 ] (B11)

H3PO4 
 H2PO−4 + H+ ; K∗P1 =
[H2PO−4 ][H+]

[H3PO4]
(BR5)

H2PO−4 
 HPO2−
4 + H+ ; K∗P2 =

[HPO2−
4 ][H+]

[H2PO−4 ]
(BR6)725

HPO2−
4 
 PO3−

4 + H+ ; K∗P3 =
[PO3−

4 ][H+]

[HPO2−
4 ]

(BR7)

AP = [HPO2−
4 ] + 2[PO3−

4 ]− [H3PO4] =
TP(K∗P1K

∗
P2[H+] + 2K∗P1K

∗
P2K

∗
P3− [H+]3)

K∗P1K
∗
P2K

∗
P3 +K∗P1K

∗
P2[H+] +K∗P1[H+]2 + [H+]3

(B12)

B6 Orthosilicic acid730

TSi = [H4SiO4] + [H3SiO−3 ] (B13)

H4SiO4 
 H3SiO−4 + H+ ; K∗Si =
[H3SiO−4 ][H+]

[H4SiO4]
(BR8)
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ASi = [H3SiO−4 ] =
TSiK

∗
Si

K∗Si + [H+]
(B14)735

Further deprotonation of H3SiO−4 is considered negligible and thus not modelled.

B7 Ammonium

TNH3 = [NH3] + [NH+
4 ] (B15)

NH+
4 
 NH3 + H+ ; K∗NH3

=
[NH3][H+]

[NH+
4 ]

(BR9)740

ANH3
= [NH3] =

TNH3
K∗NH3

K∗NH3
+ [H+]

(B16)

B8 Sulfide

TH2S = [H2S] + [HS−] (B17)

745

H2S 
 HS−+ H+ ; K∗H2S =
[HS−][H+]

[H2S]
(BR10)

AH2S = [HS−] =
TH2SK

∗
H2S

K∗H2S
+ [H+]

(B18)

Further deprotonation of HS− is considered negligible and thus not modelled (Schoonen and Barnes, 1988).

B9 Sulfate750

TSO4 = [HSO−4 ] + [SO2−
4 ] (B19)

HSO−4 
 SO2−
4 + H+ ; K∗SO4

=
[SO2−

4 ][H+]

[HSO−4 ]
(BR11)

ASO4
=−[HSO−4 ] =

−TSO4

1 +K∗SO4
/[H+]

(B20)755

Undissociated H2SO4 is considered negligible and thus not modelled.
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B10 Fluoride

TF = [HF] + [F−] (B21)

HF 
 F−+ H+ ; K∗F =
[F−][H+]

[HF]
(BR12)760

AF =−[HF] =
−TF

1 +K∗F/[H
+]

(B22)

B11 Arbitrary additional components

Tα = [Hα] + [α−] (B23)

765

Hα
 α−+ H+ ; K∗α =
[α−][H+]

[Hα]
(BR13)

Aα =

−[Hα] for − log10(K∗α)≤ 4.5

+[α−] for − log10(K∗α)> 4.5
(B24)

The reactions and equations for the second additional component β and its alkalinity contribution Aβ are identical to those

given for α above. PyCO2SYS automatically determines how to modify the alkalinity equation following Eq. (B24) based on770

the user-provided K∗α and K∗β values, with a zero-level of protons corresponding to a pK∗ of 4.5 (Wolf-Gladrow et al., 2007).

Though the definition of alkalinity (Dickson, 1981) states that species are separated into proton acceptors and donors based

on their dissociation constant at zero ionic strength and 25 °C, we use the user-defined dissociation constants at the given

conditions because one cannot convert arbitrary dissociation constants to their alkalinity-relevant values. Interpretations of

results when arbitrary components are supplied to PyCO2SYS with pK∗ values close to 4.5 should consider this nuance.775

Appendix C: Solving the core marine carbonate system

Here, we lay out all the equations that are used to convert between different carbonate system parameters in PyCO2SYS. These

follow long-established approaches from the literature (Zeebe and Wolf-Gladrow, 2001; Dickson et al., 2007). The equations

are organised based on which parameter pair is initially known.
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C1 General considerations780

C1.1 pH to [H+] conversions

As the stoichiometric equilibrium constants are converted to the user-specified pH scale, i.e. consistent with the pH values, pH

and [H+] are interconverted in the equations throughout this section using

pH =− log10[H+] (C1)

regardless of which pH scale is being used.785

C1.2 Known pCO2 , xCO2 or [CO2(aq)]

If one of pCO2
, xCO2

or [CO2(aq)] is in the known parameter pair, then its values are first converted to fCO2
as follows.

For known pCO2
:

fCO2 =GpCO2 (C2)

where G is the fugacity factor (Table 2), typically near 0.997.790

For known xCO2
:

fCO2
=GPvxCO2

(C3)

where Pv is the humidity correction (Table 3):

Pv = Pa− pw (C4)

in which Pa is total atmospheric pressure (assumed to be 1 atm unless a different value is provided by the user) and pw is the795

water vapour pressure (Weiss and Price, 1980).

For known [CO2(aq)]:

fCO2
=

[CO2(aq)]

K∗0
(C5)

where K∗0 is the solubility factor for CO2 (Table 3).

The calculation steps given below for fCO2 are then followed to solve the core marine carbonate system. Afterwards, pCO2 ,800

xCO2 and [CO2(aq)] are calculated where they were not in the original known parameter pair: pCO2 and xCO2 are calculated

using Eqs. (C2) and (C3), while [CO2(aq)] is calculated by difference using the definition of TC in Eq. (B3).

C2 Solving routines

C2.1 FromAT and TC

An initial pH estimate is determined as described in Appendix F. The estimate is then revised using the iterative approach of805

Sect. 3.1, in which the AT(pHn,v) term in Eq. (2) is calculated from Eq. (B1) for AT substituting in Eq. (B5) for the AC term.

Equation (2) is the automatically differentiated with respect to pH to obtain the ∆A′T term in Eq. (1).
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The components of TC are then calculated from TC and the final pH value:

fCO2
=

TC[H+]2

K∗0 ([H+]2 +K∗1 [H+] +K∗1K
∗
2 )

(C6)

810

[HCO−3 ] =
TCK

∗
1 [H+]

[H+]2 +K∗1 [H+] +K∗1K
∗
2

(C7)

[CO2−
3 ] =

TCK
∗
1K
∗
2

[H+]2 +K∗1 [H+] +K∗1K
∗
2

(C8)

C2.2 FromAT and pH

First, we determine AC from known AT and pH by using Eq. (B1). TC is then calculated from AC:815

TC =
AC([H+]2 +K∗1 [H+] +K∗1K

∗
2 )

K∗1 ([H+] + 2K∗2 )
(C9)

The components of TC are then calculated from TC and pH using Eqs. (C6), (C7) and (C8).

There is an upper limit on pH for each given AT value, above which negative AC would be required to balance Eq. (B1).

PyCO2SYS prints a warning if such an impossible pairing is used and returns NaN (not a number) for TC (and all other results

calculated from it) instead of a negative value.820

C2.3 FromAT and fCO2

An initial pH estimate is determined as described in Appendix F. The estimate is then revised using the iterative approach of

Sect. 3.1, in which the AT(pHn,v) term in Eq. (2) is calculated from Eq. (B1) for AT substituting in Eq. (B6) for the AC term.

Equation (2) is the automatically differentiated with respect to pH to obtain the ∆A′T term in Eq. (1).

TC is then calculated fromAT and pH following Sect. C2.2, and its remaining unknown components with Eqs. (C7) and (C8).825

C2.4 FromAT and [CO2−
3 ]

An initial pH estimate is determined as described in Appendix F. The estimate is then revised using the iterative approach of

Sect. 3.1, in which the AT(pHn,v) term in Eq. (2) is calculated from Eq. (B1) for AT substituting in Eq. (B8) for the AC term.

Equation (2) is the automatically differentiated with respect to pH to obtain the ∆A′T term in Eq. (1). The lower of the two pH

roots is returned by default, as discussed in Sect. 5.2.2.830

TC is then calculated fromAT and pH following Sect. C2.2, and its remaining unknown components with Eqs. (C6) and (C7).

C2.5 FromAT and [HCO−
3 ]

An initial pH estimate is determined as described in Appendix F. The estimate is then revised using the iterative approach of

Sect. 3.1, in which the AT(pHn,v) term in Eq. (2) is calculated from Eq. (B1) for AT substituting in Eq. (B7) for the AC term.

Equation (2) is the automatically differentiated with respect to pH to obtain the ∆A′T term in Eq. (1).835
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TC is then calculated fromAT and pH following Sect. C2.2, and its remaining unknown components with Eqs. (C6) and (C8).

C2.6 From TC and pH

First, AT is calculated from TC and pH using Eq. (B1). The components of TC are then calculated from TC and pH using

Eqs. (C6), (C7) and (C8).

C2.7 From TC and fCO2840

First, pH is calculated from TC and fCO2 using

[H+] =
K∗1r+

√
(K∗1r)

2 + 4(1− r)K∗1K∗2r
2(1− r)

(C10)

where

r =K∗0 · fCO2
/TC (C11)

AT and the remaining unknown components of TC are then calculated from TC and pH using Eqs. (B1), (C7) and (C8).845

C2.8 From TC and [CO2−
3 ]

First, pH is calculated from TC and [CO2−
3 ] using

[H+] =
−K∗1 +

√
K∗21 − 4K∗1K

∗
2 (1−TC/[CO2−

3 ])

2
(C12)

AT and the remaining unknown components of TC are then calculated from TC and pH using Eqs. (B1), (C6) and (C7).

C2.9 From TC and [HCO−
3 ]850

First, pH is calculated from TC and [HCO−3 ] using

[H+] =
TC− [HCO−3 ]−

√
([HCO−3 ]−TC)2− 4[HCO−3 ]2K∗2/K

∗
1

2[HCO−3 ]/K∗1
(C13)

AT and the remaining unknown components of TC are then calculated from TC and pH using Eqs. (B1), (C6) and (C8).

C2.10 From pH and fCO2

First, TC is calculated from pH and fCO2
using855

TC =
K∗0 · fCO2

([H+]2 +K∗1 [H+] +K∗1K
∗
2 )

[H+]2
(C14)

AT and the remaining unknown components of TC are then calculated from TC and pH using Eqs. (B1), (C7) and (C8).
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C2.11 From pH and [CO2−
3 ]

First, fCO2
is calculated from pH and [CO2−

3 ] using

fCO2 =
[CO2−

3 ][H+]2

K∗0K
∗
1K
∗
2

(C15)860

TC is then calculated from pH and fCO2 using Eq. (C14). Finally, AT and [HCO−3 ] are calculated from TC and pH using

Eqs. (B1) and (C7) respectively.

C2.12 From pH and [HCO−
3 ]

First, TC is calculated from pH and [HCO−3 ] using

TC = [HCO−3 ]

(
1 +

[H+]

K∗1
+

K∗2
[H+]

)
(C16)865

AT and the remaining unknown components of TC are then calculated from TC and pH using Eqs. (B1), (C6) and (C8).

C2.13 From fCO2 and [CO2−
3 ]

First, pH is calculated from fCO2
and [CO2−

3 ] using

[H+] =

√
K∗0K

∗
1K
∗
2 · fCO2

[CO2−
3 ]

(C17)

TC is then calculated from pH and fCO2
using Eq. (C14). Finally, AT and [HCO−3 ] are calculated from TC and pH using870

Eqs. (B1) and (C7) respectively.

C2.14 From fCO2 and [HCO−
3 ]

First, [CO2−
3 ] is calculated from fCO2

and [HCO−3 ] using

[CO2−
3 ] =

[HCO−3 ]2K∗2
K∗0K

∗
1 · fCO2

(C18)

pH is then calculated from fCO2 and [CO2−
3 ] using Eq. (C17). Next, TC is calculated from pH and fCO2 using Eq. (C14).875

Finally, AT is calculated from TC and pH using Eq. (B1).

C2.15 From [CO2−
3 ] and [HCO−

3 ]

First, fCO2
is calculated from [CO2−

3 ] and [HCO−3 ] using

fCO2 =
[HCO−3 ]2K∗2
K∗0K

∗
1 [CO2−

3 ]
(C19)

pH is then calculated from fCO2 and [CO2−
3 ] using Eq. (C17). Next, TC is calculated from pH and fCO2 using Eq. (C14).880

Finally, AT is calculated from TC and pH using Eq. (B1).

41



Appendix D: Other marine carbonate system variables

Calcite and aragonite saturation states (Ω) are calculated from the definition:

Ω =
[Ca2+][CO2−

3 ]

K∗sp
(D1)

where K∗sp is the solubility product, a function of salinity, temperature and pressure that is different for each mineral (Table 2).885

The ‘substrate:inhibitor ratio’ of Bach (2015) is calculated from the bicarbonate and free hydrogen ion contents:

SIR =
[HCO−3 ]

[H+]
(D2)

Note that in Eq. (D2), the [H+] term is always calculated on the Free pH scale of Eq. (A1).

Appendix E: Buffer factors with automatic differentiation

E1 Buffer factors of Egleston et al. (2010)890

To evaluate the buffer factors of Egleston et al. (2010) with automatic differentiation (AD), we first evaluated the following

partial differentials (with the subscripted variable held constant):

– (∂TC/∂pH)AT
by AD of Eq. (C9) with respect to pH;

– (∂AT/∂pH)TC
by AD of Eq. (B1), substituting AC by Eq. (B5), with respect to pH;

– (∂ ln[CO2(aq)]/∂pH)TC
by taking the natural log of the product of K∗0 and Eq. (C6), then AD with respect to pH;895

– (∂ ln[CO2(aq)]/∂pH)AT by taking the natural log of the product of K∗0 and Eq. (C6), substituting TC by Eq. (9), then

AD with respect to pH.

The buffer factors γTC , γAT , βTC and βAT are thus defined (Egleston et al., 2010) and calculated in PyCO2SYS:

γTC
=

(
∂ ln[CO2(aq)]

∂TC

)−1
AT

=

(
∂TC
∂pH

)
AT

(
∂ ln[CO2(aq)]

∂pH

)−1
AT

(E1)

900

γAT
=

(
∂ ln[CO2(aq)]

∂AT

)−1
TC

=

(
∂AT

∂pH

)
TC

(
∂ ln[CO2(aq)]

∂pH

)−1
TC

(E2)

βTC
=

(
∂ ln[H+]

∂TC

)−1
AT

=− log10(e)

(
∂TC
∂pH

)
AT

(E3)

βAT
=

(
∂ ln[H+]

∂AT

)−1
TC

=− log10(e)

(
∂AT

∂pH

)
TC

(E4)905
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where e is Euler’s number (2.71828. . . ).

For the saturation-state buffers ωTC
and ωAT

we also evaluate

– (∂ lnΩ/∂[CO2−
3 ]) by AD of the natural log of Ω(aragonite), calculated with Eq. (D1), with respect to [CO2−

3 ] (note

that this is the same value as for Ω(calcite), due to the logarithm and the fact that these terms differ by the constant ratio

of their solubility products);910

– (∂[CO2−
3 ]/∂pH)TC by AD of Eq. (C8) with respect to pH;

– (∂[CO2−
3 ]/∂pH)AT

by AD of Eq. (C8), substituting TC by Eq. (C9), with respect to pH.

The buffer factors are then given by

ωTC
=

(
∂ lnΩ

∂TC

)−1
AT

=

(
∂TC
∂pH

)
AT

(
∂ lnΩ

∂[CO2−
3 ]

)−1
AT

(
∂[CO2−

3 ]

∂pH

)−1
AT

(E5)

915

ωAT
=

(
∂ lnΩ

∂AT

)−1
TC

=

(
∂AT

∂pH

)
TC

(
∂ lnΩ

∂[CO2−
3 ]

)−1
TC

(
∂[CO2−

3 ]

∂pH

)−1
TC

(E6)

The approach taken here avoids AD evaluations over the iterative solvers, because while possible, that is computationally

slower than over non-iterative functions.

E2 Revelle factor

The Revelle factor (RF; Broecker et al., 1979) is computed from TC and γTC
, with the latter evaluated as described in Sect. E1,920

following Egleston et al. (2010):

RF =

(
∂fCO2

∂TC

)(
TC
fCO2

)
=
TC
γTC

(E7)

E3 Isocapnic quotient and ψ

To evaluate the isocapnic quotient (Q) of Humphreys et al. (2018), we first evaluate the derivatives

– (∂TC/∂pH)fCO2
by AD of Eq. (C14) with respect to pH;925

– (∂AT/∂pH)fCO2
by AD of Eq. (B1), using Eq. (B6) for the AC term, with respect to pH.

The isocapnic quotient is defined and calculated in PyCO2SYS as follows:

Q=

(
∂AT

∂TC

)
fCO2

=

(
∂AT

∂pH

)
fCO2

(
∂TC
∂pH

)−1
fCO2

(E8)

Finally, the ‘released CO2:precipitated carbonate ratio’ (ψ) of Frankignoulle et al. (1994) is calculated following Humphreys

et al. (2018):930

ψ =
2

Q
− 1 (E9)
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Appendix F: Initial pH estimate when solving fromAT and TC

For clarity in the equations in this section, we abbreviate [H+] as h.

Following Munhoven (2013), carbonate-borate alkalinity (ACB) from Eq. (3) as a function of TC and h is

ACB(h,TC) =
TCK

∗
1 (h+ 2K∗2 )

h2 +K∗1h+K∗1K
∗
2

+
TBK

∗
B

h+K∗B
(F1)935

This can be rearranged into a third-order polynomial in h:

PTC(h) = h3 +h2g2(TC) +hg1(TC) + g0(TC) = 0 (F2)

where

g2(TC) =K∗B

(
1− TB

ACB

)
−K∗1

(
1− TC

ACB

)
(F3)

g1(TC) =K∗1

[
K∗B

(
1− TB +TC

ACB

)
+K∗2

(
1− 2TC

ACB

)]
(F4)940

g0(TC) =K∗1K
∗
2K
∗
B

(
1− 2TC +TB

ACB

)
(F5)

The initial h value is determined by

h0(TC) =


10−3 for AT ≤ 0

hmin +

√
−PTC

(hmin)√
g22−3g1

for AT > 0

10−10 for AT ≥ 2TC +TB

(F6)

where hmin is defined in Eq. (10). Negative ACB is impossible because its equation contains only positive terms, so the

equations above cannot be applied if AT is indeed negative. The default h0 of 10−3 mol·kg−1, corresponding to a pH of 3,945

is therefore used for that case (e.g. after the alkalinity end-point in an acidimetric titration). The maximum possible ACB is

2TC+TB, where TC is entirely CO2−
3 and TB is entirely B(OH)−4 . WhereAT is actually higher than this limit of this simplified

expression, we expect a high pH (given the dominance of CO2−
3 within TC) and therefore use an initial estimate pH of 10.

Otherwise, hmin in Eq. (F6) is found using Eq. (10). A default h0 of 10−7 mol·kg−1 (pH 7) is used when g22 − 3g1 ≤ 0 in

Eq. (F6) (Munhoven, 2013).950

Appendix G: Revelle factor calculation errors in older versions of CO2SYS-MATLAB

Older versions of CO2SYS-MATLAB, including v2.0.5 (Orr et al., 2018) from which PyCO2SYS was originally converted,

have minor errors in how the Revelle factor is evaluated. These have been corrected in PyCO2SYS (also in CO2SYS-MATLAB

v3.2.0 and CO2SYS-Excel v3), leading to small differences in the calculated values. These differences are on the order of 0.1;

for context, the Revelle factor typically has a value on the order of 10. The differences are thus notable from a computational955
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perspective (i.e. many orders of magnitude greater than solver tolerance and floating point errors) but still mostly negligible in

practical applications.

Rather than being corrected explicitly in PyCO2SYS, these errors are corrected automatically thanks to the approach of

using automatic differentiation instead of finite-difference derivatives. The key errors in the original CO2SYS-MATLAB im-

plementation of the finite-difference approach are960

1. An incorrect reference TC value is used in the final evaluation. Rather than using the ‘central’ TC value, the change in

pCO2 is divided by the adjusted (TC−∆TC).

2. Under output conditions, the ‘Peng correction’ is not included in the evaluation of the Revelle factor (Sect. 2.2).

The lesser accuracy of the finite-difference method relative to automatic differentiation, particularly given the relatively

large ∆TC used in the original finite-difference implementation (i.e. 1 µmol · kg−1), explains the differences between the two965

approaches that remains after the errors above have been corrected.
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Appendix H: Fixed ∆a values for uncertainty analysis

Table H1. Fixed ∆a values for uncertainty analysis.

Argument(s) − log10 ∆a Argument(s) − log10 ∆a

Core parameters 4 Pressure 3

K∗NH3
16 Salinity 3

K∗sp(aragonite) 13 Temperature 3

K∗SO4
7 Tα 3

K∗B 15 TNH3
3

K∗sp(calcite) 13 Tβ 3

K∗1 12 TB 3

K∗2 15 TCa 3

K∗CO2
8 TF 3

K∗HF 9 TP 3

K∗P1 4 TSi 3

K∗P2 12 TSO4
3

K∗P3 15 TH2S 3

K∗Si 16 Pv 5

K∗H2S
13 Pa 4

K∗w 20 G 5

Any pK∗ 4 R 4

Appendix I: Set-up for computational speed testing

The computational speed tests described in Sect. 5.4 were run on an HP Spectre x360 laptop with Intel Core i7-8565U CPU

(1.80 GHz) and 16 GB of RAM. The operating system was Windows 10.970

The Python tests were run using Python v3.9.7, Autograd v1.3, NumPy v1.21.2, and PyCO2SYS v1.8.0.

The MATLAB tests were run using MATLAB R2019b (Update 9) and CO2SYS-MATLAB v3.2.0.

The GNU Octave tests were run using GNU Octave v6.3.0 via its command-line interface and CO2SYS-MATLAB v3.2.0.

Author contributions. MPH: Conceptualisation, Methodology, Software, Validation, Writing—Original Draft, Visualisation. ERL: Soft-

ware, Writing—Review & Editing. JDS: Software, Validation, Writing—Review & Editing. DP: Software, Writing—Review & Editing.975
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