Review of

PyCO2SYS v1.7:
marine carbonate system calculations in Python

submitted to Geoscientific Model Development
by Matthew P. Humphreys et al.

1 General comments

Matthew P. Humphreys and co-authors present PyCO2SYS, a Python version of
the “industry-standard” carbonate chemistry calculation package CO2SYS, orig-
inally developed for DOS by Lewis and Wallace| (1998) and over the years ported
to MATLAB and Microsoft Excel. The port to Python presented here derives
from the MATLAB version 2.0.5 of CO2SYS (Orr et al, 2018), but includes ex-
tensions from the v3 branch of CO2SYS-MATLAB up to version 3.2 (Sharp et al.,
2021). In addition to these improvements, PyCO2SYS also includes new develop-
ments not found in the MATLAB sub-family, such as automatic differentiation.
The amendments required to use input data pairs that could not be processed
with CO2SYS-MATLAB v2.0.5 (e.g., [HCO; ] or [COéf] in combination with any
other) are presented and a detailed assessment of the (generally negligible) dif-
ferences between the results obtained with previous versions of CO2SYS is pro-
vided. What I find missing is an analysis of the computational performance and
an exploration of the robustness of the adopted numerical procedures.

The paper fits well into the scope of Geoscientific Model Development. It is well
written, goes to an informative level of detail and yet remains well readable. The
material presentation is structured in an easy-to-follow way. There are a few mi-
nor imprecisions and inaccuracies here and there; a few things are missing in the
analysis and discussion. These shortcomings are nevertheless relatively minor
and can certainly be easily fixed. Until now, no similarly comprehensive carbon-
ate chemistry calculation package has been available for Python. I am only aware
of only two others, but that do not offer the same level of functionality: mocsy 2.0
and cbsyst 0.3.7. Making CO2SYS available for the ever growing Python users
community is a highly welcome move and will certainly contribute to further
increase its popularity and usefulness.

2 Specific comment

Auto differentiation

The automatic differentiation, performed with the help of the Python package
Autopar is highlighted as one of the distinguishing features of PyCO2SYS com-
pared to its predecessors.

It is, however, not explained to which parts of the calculations this automatic
differentiation is applied, and also not to what level: is it only used to differenti-


http://ocmip5.ipsl.jussieu.fr/mocsy/pyth.html
https://github.com/oscarbranson/cbsyst

ate the expressions of the different terms of Ar, or also for the parametrisations
of the chemical constants, and if so, with respect to which variables?

If it is only applied to the terms of A, automatic differentiation might actu-
ally make things unnecessarily inefficient. The derivatives of the rational func-
tion terms that make up At, which are all that would be required for the Newton-
Raphson solver, are actually quite straightforward and could just as well imple-
mented manually once and for all, instead of having to rely upon a package that
is adding another (unnecessary) layer of complexity and that is not actively de-
veloped any longer.

Finally, where automatic differentiation could really become useful, i.e., when
it comes to uncertainty propagation, automatic differentiation has to be aban-
doned because it is computationally inefficient.

3 Minor points and technical corrections

Abstract, Lines 15-16:

“We discuss new insights that arose during the development process,
for example that the marine carbonate system cannot be unambigu-
ously solved from the total alkalinity and carbonate ion parameter
pair.”

The insights referred to in this sentence are actually not new, but simply little-
known. The topology of the CO3~ concentration isolines in Tc-Ar space has
been known for more than fifty years (Deffeyes| 1965). The existence of two pH
roots for most pairs of AT—[COé’] values is an immediate consequence of that
topology. Twenty years ago, |[Zeebe and Wolf-Gladrow| (2001, pp. 276-277) also
acknowledged the existence of two roots for this problem and recommend to use
the larger one (in terms of [H"], i.e., the lower one in terms of pH). Please refer to
Munhoven| (2021) for a comprehensive discussion and a quantitative approach
to characterise the AC—COg_ problem (number of roots, bracketing intervals for
individual roots and individual starting values).

It might also be worth mentioning that the Tc—-HCOj problem is affected by
similar ambiguities, acknowledged again shortly by [Zeebe and Wolf-Gladrow
(2001, pp. 276), and analysed and discussed in more detail by Munhoven| (2021,
Appendix A).

Page 5, Table 2: While I understand that salinity is zero for freshwater, I do not

see why all the total concentrations from ammonia to sulfide have to be zero for

freshwater. Had these values not better be left under the control of the user?
The table’s footnote b states

“In GEOSECS-Peng, phosphate is not included in the definition of
total alkalinity.”

Something must be wrong here. Since the very first version of CO2SYS, option
7 (originally “Peng”, now “GEOSECS-Peng”) included the contribution of the

2



phosphates to total alkalinity, although in a peculiar way based upon a charge
weighted approach, instead of the proton donor/proton acceptor approach of
Dickson! (1981). Option 6 (originally “GEOSECS”, now “GEOSECS-Takahashi”),
on the other hand, used the Acp approximation to At. Please clarify.

The information in the GEOSECS column is anyway not entirely clear: nei-
ther GEOSECS-Takahashi nor GEOSECS-Peng include contributions from am-
monia or sulfides to At — the meaning of “User-defined” for these two at least is
not obvious. GEOSECS-Takahashi only considers carbonate and borate alkalin-
ity in their At definition: so what does PyCO2SYS do with the extra user-defined
data?

This should be presented more precisely.

Page 11, lines 209: The implementation in PyCO2SYS actually follows the ap-
proach of Munhoven|(2013a) more or less exactly. The subroutine ahini_for_at
in phsolvers.f90 from mocsy 2.0 was actually taken from SolveSAPHE 1.0.1
and the only adaptations made relate to the way the values for the chemical
constants are passed (cf. subroutine AHINI_FOR_AT in mod_phsolvers.£90 which
is contained in the codes included in Munhoven| (2013a, Supplement) or from
Munhoven| (2013b)).

Page 11, lines 225-226:

“[...1, so the approach of Munhoven| (2013a) cannot be applied if At
isindeed negative (e.g. after the alkalinity end-point in an acidimetric
titration).”

This statement is in clear contradiction with the SolveSAPHE code provided
by Munhoven (2013a, Supplement) which shows that if At < 0, hy is set to
103 mol/kg and if At > 2Tc + Tg, ho is set to 1010 mol/kg (see next com-
ment). The approach of Munhoven| (2013a) thus obviously also considers the
case At < 0 and addresses it exactly the same way as ... PyCO2SYS.

Please check out the original code and rewrite this sentence more accurately
(see also previous comment).

Page 12, line 230: Although /inin indeed always has a real value (and even has
a real positive value), that value does not always lead to a meaningful hy(s) as
the resulting Acg may possibly be greater than 2T¢ + Tg, which is not possible
ho(s) thus actually has to fulfil some conditions to keep Acp within bounds, as
explained in the “Mathematical and Technical Details” memo in the Supplement
toMunhoven| (2021)).

Starting a Newton-Raphson iteration with physically meaningless initial val-
ues may jeopardize convergence, which must of course be avoided.

Page 13, line 263: Is the reference to Cai et al. (2017) for the ammonia and sul-
fide extensions of CO2SYS correct? I would rather have expected Xu et al.| (2017).



Page 14, line 287: It would be good to cite the paper by Hagens and Middel-
burg| (2016) here, which also deals with various aspects of the calculation of gen-
eralised buffer factors.

Page 14, line 296-306: Do I understand this correctly: with the ‘automatic” ap-
proach, all the buffer factors are calculated analytically, in a way that is fully con-
sistent with the currently adopted At composition; with the ‘explicit” approach,
all the buffer factors are calculated from equations taken from the literature and
that may rely on simplified At composition, except for the Revelle factor, for
which only a finite difference approximation is calculated, for compatibility rea-
sons with previous CO2SYS versions?

It is somehow unsatisfactory that no direct equation was implemented for
the Revelle factor, which remains the best known of all buffer factors at the end
of the day. Why not add a third approach (‘legacy’ or similar), which would
only provide the finite difference approximation for the Revelle factor, and then
include a direct equation for the Revelle factor with the ‘explicit” approach and
so bring it on par with the others.

Finally: please provide us with individual references for each buffer factor
equation actually implemented.

Page 17, line 337-338:

“We use finite differences rather than automatic differentiation here
because the latter, while possible, is computationally inefficient to ap-
ply over the entire PyCO2SYS program.”

Why is this so computationally inefficient? Is this due to the usage of the Auto-
grad package? If only the derivatives of the alkalinity parts are required, why not
implement them manually once and for all? These are comparatively straightfor-
ward. Now, the derivatives of the chemical constants might possibly be required
as well—the text does unfortunately not include enough information about the
level to which the differentiation is pushed. If so this approach would indeed be
unrealistic. As requested in the specific comments above, additional information
about which expressions exactly in the code automatic differentiation is applied
to would be helpful.

Page 17, line 339: duplicate “an”
Page 18, line 385: duplicate “than”

Page 19, line 396: I suggest to rename section 4.2 to “Comparison with previ-
ous versions of CO2SYS” — “other software” is somewhat misleading as only
CO2SYS variants are considered in this discussion.

Page 24,line 496: From experience, I think that “often” better had to read “most
often” or “generally” in this context.



Page 25, line 504:
“Which root the solver finds depends on the initial pH estimate [...]”

This is a rather unsatisfactory behaviour as it makes it impossible to foresee
whether the pH calculation can terminate reliably. Such unpredictable (and there-
fore unwanted) behaviour can nevertheless be safely avoided by first proceeding
to a root localisation, and then using a bracketing root-finding algorithm instead
of a plain Newton-Raphson (see, e.g., Munhoven, 2021).

Page 24, line 552-554:

“Now that the basis of PyCO2SYS is established, we would welcome
more direct interaction with the groups developing these other tools,
working towards a set of marine-carbonate-system-solving tools that
return identical results regardless of the software platform.”

This is an excellent idea. Such a joint effort could also define standard benchmark
problems in order to assess the numerical and computational performances of
the different tools.

Page 28, Code availability section: Does PyCO2SYS require any particular ver-
sion of Python? If so, it would be good to state this here.

Page 29, Eq. (B2): The expression for A, should actually read

Ay = [OHf] — [H+]free = [IIfI‘?vi-] - IEZICJ;]t,

where phcot is a factor to convert from the free to the working (total?) pH scale.
This nevertheless appears to be correctly implemented in the code.

Page 32, Eq. (B20): This is not in line with the PyCO2SYS code. Since K¢, is
on the free pH scale, [H"] must actually be [H ¢ in this equation.

Page 32, Eq. (B22): This is not in line with the PyCO2SYS code. Since Kf is on
the free pH scale, [H"] must actually be [H ¢ in this equation

Page 32, Eq. (B24): This extension is not consistent with the definition of total
alkalinity (Dickson, 1981), which states that

“[t]he total alkalinity of a natural water is thus defined as the num-
ber of moles of hydrogen ion equivalent to the excess of proton ac-
ceptors (bases formed from weak acids with a dissociation constant
K < 10745, at 25°C and zero ionic strength) over proton donors
(acids with K > 10~%°) in one kilogram of sample.”



So, it is not K} that has to be compared against this decisive threshold, but K,,
and not at any arbitrary combination of temperature, salinity and pressure, but
at a clearly defined set. How reliable is the adopted approach, given that approx-
imation?

Page 32, line 686: According to Wolf-Gladrow et al. (2007) the zero level of pro-
tons is a species, not a concentration or some other pZLP. Each acid-base system
actually has a different zero level of protons. In order to define the zero levels
of protons for a complex mixture of acids and bases in a consistent way, Wolf-
Gladrow et al. (2007) call upon a threshold pK value (their Sect. 2.4.4). They
denote that threshold pK value by pKy, (it would be recommendable to stick to
that notation in order to avoid unnecessary confusion). The currently accepted
definition of At by |Dickson (1981) is thus based upon pKap = 4.5. However,
pKaip is not the zero level of protons (there as many zero levels of protons as
there are acid-base systems in the solution). Please rewrite this more precisely.

Page 34, Sect. C2.2: It might be worth mentioning that some pairs of At—pH
data values lead to negative Ac (see, e.g., Munhoven, 2021, for illustrative ex-
amples), which is physically impossible. Does pyCO2SYS catch that kind of ex-
ception?

Page 34, Sect. C2.9: Similarly to the A;—CO3~ problem, the Tc—-HCOj problem
may have zero, one or two pH roots. There is actually an upper limit, which is
strictly lower than 1, for the [HCO; ]/ T¢ fraction above which there is no solu-
tion; at that exact limit, there is one, and below that limit there are two roots.
Zeebe and Wolf-Gladrow| (2001, p. 276) already mention the possibility of two
roots and recommend to chose the low-[H™] (high-pH) one, without any further
explanation though. Munhoven (2021, Appendix A) provides a comprehensive
analysis of this problem and a short discussion about the respective side effects
of each one of the two roots, which may contribute to discriminate between the
two and help to chose the relevant one.

Page 37, paragraph at lines 802-808: There are unfortunately several inaccu-
rate statements in this paragraph. The described procedure indeed follows Orr
and Epitalon| (2015) who follow ... Munhoven! (2013a). The solver engines in
mocsy 2.0 (Orr and Epitalon, 2015) stem from SolveSAPHE 1.0.1 (Munhoven,
2013a, Supplement) — this is clearly stated in the comments in the mocsy 2.0
code. The initialisation subroutine from SolveSAPHE — which was included
in mocsy 2.0 modified only to transfer the chemical constants differently — fur-
thermore uses a fall-back value /o(Tc) = 1077 mol/kg in case g5 — 3g1 < 0, not
mentioned in the text here, but nevertheless implemented exactly that same way
in PyCO2SYS (according to solve/initialise.py).

Please have a look at the original code (also available from Munhoven, 2013b)
and rewrite this paragraph more accurately.



Page 45, line 1039: The DOI provided for CO2SYS-MATLAB v1.1 has been
dead for a long time. It does not resolve correctly since the CDIAC collections
were moved to ESS-DIVE. Perhaps, you may get this problem fixed upstream,
otherwise, it would be best to remove that DOI.

References

K. S. Deffeyes. Carbonate equilibria : A graphic and algebraic approach. Limnol.
Oceanogr., 10(3):412-426, 1965. doi: 10.4319/10.1965.10.3.0412.

A. G. Dickson. An exact definition of total alkalinity and a procedure for the
estimation of alkalinity and total inorganic carbon from titration data. Deep-
Sea Res. A, 28(6):609-623, 1981. doi: 10.1016/0198-0149(81)90121-7.

M. Hagens and J. J. Middelburg. Generalised expressions for the response of pH
to changes in ocean chemistry. Geochim. Cosmochim. Ac., 187:334-349, 2016. doi:
10.1016/j.gca.2016.04.012.

E. Lewis and D. Wallace. Program developed for CO, system calculations.
Technical Report 105, Carbon Dioxide Analysis Center, Oak Ridge National
Laboratory, Oak Ridge (TN), 1998. URL http://cdiac.ornl.gov/oceans/
co2rprt.html.

G. Munhoven. Mathematics of the total alkalinity-pH equation — pathway to
robust and universal solution algorithms: the SolveSAPHE package v1.0.1.
Geosci. Model Dev., 6(4):1367-1388, 2013a. doi: 10.5194/gmd-6-1367-2013.

G. Munhoven. SolveSAPHE (Solver Suite for Alkalinity-PH Equations), v1.0.1,
August 2013b.

G. Munhoven. SolveSAPHE-r2 (v2.0.1): revisiting and extending the Solver Suite
for Alkalinity-PH Equations for usage with CO,, HCO; or CO3™ input data.
Geosci. Model Dev., 14(7):4225-4240, 2021. doi: 10.5194/gmd-14-4225-2021.

J. C. Orr and J.-M. Epitalon. Improved routines to model the ocean carbonate
system : mocsy 2.0. Geosci. Model Dev., 8(3):485-499, 2015. doi: 10.5194/
gmd-8-485-2015.

J. C. Orr, J.-M. Epitalon, A. G. Dickson, and J.-P. Gattuso. Routine uncertainty
propagation for the marine carbon dioxide system. Mar. Chem., 207:84-107,
2018. doi: 10.1016/j.marchem.2018.10.006.

J. D. Sharp, D. Pierrot, M. P. Humphreys, J.-M. Epitalon, J. C. Ort, E. R. Lewis,
and D. W. R. Wallace. CO25YSv3 for MATLAB, v3.2, May 2021.

D. A. Wolf-Gladrow, R. E. Zeebe, C. Klaas, A. Kortzinger, and A. G. Dickson.
Total alkalinity : The explicit conservative expression and its application to
biogeochemical processes. Mar. Chem., 106(1-2):287-300, 2007. doi: 10.1016/j.
marchem.2007.01.006.


http://cdiac.ornl.gov/oceans/co2rprt.html
http://cdiac.ornl.gov/oceans/co2rprt.html

Y.-Y. Xu, D. Pierrot, and W.-J. Cai. Ocean carbonate system computation for
anoxic waters using an updated CO2SYS program. Mar. Chem., 195:90-93,
2017. doi: 10.1016/j.marchem.2017.07.002.

R. E. Zeebe and D. Wolf-Gladrow. CO; in seawater : Equilibrium, kinetics,
isotopes, volume 65 of Elsevier Oceanography Series. Elsevier, Amsterdam
(NL), 2001. ISBN 978-0-444-50579-8. URL http://www.sciencedirect.com/
science/bookseries/04229894/65.

Liege, 8th July 2021
Guy Munhoven


http://www.sciencedirect.com/science/bookseries/04229894/65
http://www.sciencedirect.com/science/bookseries/04229894/65

	General comments
	Specific comment
	Minor points and technical corrections

