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Abstract. At the leaf level, stomata control the exchange of water and carbon across the air-leaf interface. Stomatal conduc-

tance is typically modeled empirically, based on environmental conditions at the leaf surface. Recently developed stomatal

optimization models show great skills at predicting carbon and water fluxes at both the leaf and tree levels. However, it has

not been evaluated how well the optimization models perform at larger scales. Furthermore, stomatal models are often used

with simple single-leaf representations of canopy radiative transfer (RT), such as big-leaf models. Nevertheless, the single-leaf5

canopy RT schemes do not have the capability to model optical properties of the leaves or the entire canopy. As a result, they

are unable to evaluate the impact of vertical gradients within the canopy, or directly link canopy optical properties with light

distribution within the canopy to remote sensing data observed from afar. Here we incorporated one optimization-based and

two empirical stomatal models with a comprehensive RT model in the land component of a new Earth System model within

CliMA, the Climate Modelling Alliance. The model allowed us to simultaneously simulate carbon and water fluxes as well as10

leaf and canopy reflectance and fluorescence spectra. We tested our model by comparing our modeled carbon and water fluxes

and solar-induced chlorophyll fluorescence (SIF) to two flux tower observations (a gymnosperm forest and an angiosperm

forest) and satellite SIF retrievals, respectively. All three stomatal models quantitatively predicted the carbon and water fluxes

for both forests. The optimization model, in particular, showed increased skill in predicting the water flux given the lower error

(c. 14.2% and 21.8% improvement for the gymnosperm and angiosperm forests, respectively) and better 1:1 comparison (slope15

increases from c. 0.34 to 0.91 for the gymnosperm forest, and from c. 0.38 to 0.62 for the angiosperm forest). Our model also

predicted the SIF yield, quantitatively reproducing seasonal cycles for both forests. We found that using stomatal optimization

with a comprehensive RT model showed high accuracy in simulating land surface processes. The ever-increasing number of

regional and global datasets of terrestrial plants, such as leaf area index and chlorophyll contents, will help parameterize the

land model and improve future Earth System modeling in general.20
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1 Introduction

Anthropogenic emissions have resulted in an unprecedentedly rapid increase in atmospheric carbon dioxide (CO2) concen-

trations and thus global warming (IPCC, 2014). The land system, a big carbon sink (Quéré et al., 2018; Friedlingstein et al.,

2020), slows the increase of atmospheric [CO2] and climate change by taking up about one third of anthropogenic emissions.

Yet, whether the land system continues to be a carbon sink in the near future remains debatable (Anav et al., 2013; Arora et al.,25

2013; Jones et al., 2013; Sperry et al., 2019). Increasing tree mortality across the globe further complicates this prediction

(Hartmann et al., 2015). A key to addressing this problem is to better simulate and monitor the coupled carbon, water, and

energy fluxes at the land surface.

Terrestrial plants control the opening of tiny pores on leaves, called stomata, in response to a variety of environmental and

physiological stimuli. Accurately representing this process is therefore essential in land surface simulations, as stomata affect30

carbon and water fluxes as well as the surface energy balance. In the past decades, many stomatal models, based either on

statistical regressions (e.g., Ball et al., 1987; Leuning, 1995; Medlyn et al., 2011) or optimization theories (e.g., Cowan and

Farquhar, 1977; Wolf et al., 2016; Sperry et al., 2017; Mencuccini et al., 2019; Wang et al., 2020), have been proposed and

used to model leaf-level stomatal responses. The empirical models are computationally efficient and well-represent stomatal

responses to the environmental cues in the absence of water stress, and are thus widely used in land surface models. Yet, these35

empirical models rely on ad-hoc tuning factors to force stomatal response to drought (Powell et al., 2013), which introduces

additional uncertainty in carbon cycle modeling (Trugman et al., 2018).

In comparison, trait-based stomatal optimization models predict stomatal behavior based on the trade-off between benefits

of carbon gain and risk of water loss from stomatal opening (Wolf et al., 2016; Wang et al., 2020). For instance, when the soil

gets drier, the risk of transporting the same amount of water increases due to a higher risk of xylem cavitation (Sperry et al.,40

2017), while the carbon gain remains unchanged. As a result, plants ought to reduce stomatal opening and thus water loss to

balance gain and risk. A major advantage of the stomatal optimization models is that they couple environmental stress (from

both the atmosphere and soil) to plant physiology, and thus more accurately represent mechanistic processes while also being

less dependent on statistically fitted parameters. In particular, stomatal optimization models based on plant hydraulics have

shown great potential in predicting leaf- and tree-level stomatal behavior at multiple scales, ranging from potted saplings to45

common garden and natural forest stands (Anderegg et al., 2018; Venturas et al., 2018; Wang et al., 2019). Also, attempts to

employ the optimization theory at the regional scale showed improved predictive skills compared to empirical stomatal models

(Eller et al., 2020; Sabot et al., 2020). Furthermore, optimization theory can be readily extended to explain and model nighttime

stomatal responses to the environment (Wang et al., 2021).

While traits used in stomatal optimization models improve predictive skill, the number of traits required for parameterization50

makes it impractical to apply them at large spatial scales. As a result, stomatal optimization models have not been rigorously

evaluated at the stand level or larger spatial scales. Eddy covariance measurements of carbon, water vapor, energy exchange,

and environmental conditions give a good estimate of stand level fluxes and provide a platform to test stomatal theories at

the ecosystem level (Baldocchi et al., 2001; Baldocchi, 2020). Despite the often unknown plant traits and species composition
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within a flux tower footprint, continuous and high-quality data make it possible to invert a suite of average stand-level traits.55

However, more investigation is required to determine how well the stomatal optimization models perform at the stand level, a

gap this manuscript aims to address.

Ideally, the traits required to run stomatal optimization models can be inverted from flux tower observations. Yet, the sparse

distribution of flux towers across the globe may be too sparse to provide a good estimate for how traits vary globally (Schimel

et al., 2015), thus impeding the implementation of stomatal optimization theory at the landscape level. Though it is possible60

to interpolate these traits using climate as a driving force as done by Jung et al. (2020), these interpolated parameters cannot

be verified in terms of carbon and water flux measurements directly. The growing amount of remote sensing data, such as

canopy reflectance and fluorescence-based products, provides an alternative way to verify model parameterization (Schimel

et al., 2019). For instance, solar-induced chlorophyll fluorescence (SIF) and near infrared reflectance of vegetation correlate

with plant productivity (Frankenberg et al., 2011; Sun et al., 2018; Badgley et al., 2019). Furthermore, it is possible to directly65

compare model predicted reflectance and fluorescence spectra to satellite observations.

To date, all stomatal optimization models are used with simple canopy radiative transfer (RT) schemes due to their simplicity

and efficiency (including the big leaf model which partitions the canopy into sunlit and shaded fractions; Campbell and Nor-

man, 1998). The single leaf representation of the canopy, however, cannot be used to simulate the reflectance or fluorescence

of the entire canopy, which requires bidirectional radiation within the canopy to be simulated. More complex models with70

more detailed representations of the canopy RT scheme are therefore required for the purpose of simulating canopy optical

parameters, such as the radiative transfer scheme used in the Soil-Canopy Observation of Photosynthesis and Energy fluxes

model (mSCOPE; Yang et al., 2017).

Here, we aim to advance land surface modeling by incorporating a recently developed stomatal optimization model (Wang

et al., 2020) and the mSCOPE RT concept. With the advanced land model, we were able to link both plant productivity75

and canopy optical parameters to stomatal optimization theory. We evaluated our model by comparing the model predicted

ecosystem carbon and water fluxes to flux tower measurements, and the model predicted SIF to TROPOspheric Monitoring

Instrument (TROPOMI) SIF retrievals (Köhler et al., 2018).

2 Model description

We present our first step towards bridging stomatal control, plant hydraulics, and a comprehensive RT scheme in the land com-80

ponent of a new Earth System model developed by the Climate Modeling Alliance (CliMA). The CliMA Land model addresses

soil water movement, plant water transport, stomatal regulation, canopy radiative transfer, and water, carbon, and energy fluxes

in a highly modular manner (i.e., each component can be used as a stand-alone package). Code and documentation of the

in-development CliMA Land model are freely and publicly available at https://github.com/CliMA/Land. In the sections below,

we introduce the model framework by highlighting improvements and modifications to existing vegetation model components.85
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2.1 Plant Architecture

Here, we treated a site as a uniform “mono-species” stand. Therefore, a suite of average plant traits were applied to the stand,

and the stand level simulation was done using these bulk traits. The average plant was represented as a tree, and the modeled

tree consisted of a multi-layer root system, a trunk, and a multi-layer canopy to match the soil and canopy setups (Fig. 1a). Each

root layer corresponds to a horizontal soil layer, and contains a rhizosphere component and a root xylem in series (water flows90

through the rhizosphere and then the root xylem). All root layers are in parallel and connected to the base of the trunk. Each

canopy layer corresponds to a horizontal air layer, containing a stem and leaves in series (water flows through the stem and

then the leaves). All canopy layers are in parallel and connected to the top of the trunk. We assumed an uniformly distributed

leaf area in the canopy both vertically and horizontally, with leaf orientation being evenly distributed in the azimuth. At each

canopy layer and azimuth angle, we further adopted a leaf inclination angular distribution. By default, the leaf inclination angle95

is evenly distributed from 0◦ to 90◦. The inclusion of leaf area fraction and leaf angle distribution allows us to simulate the

bidirectional radiation within the canopy.
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Figure 1. The hydraulic system is customized to match the canopy layers to the canopy radiation model. (a) An example of hydraulic system

with multiple root layers, a trunk, and multiple canopy layers. (b) An example of xylem water pressure profile in the hydraulic system

when soil water potential is −0.2 MPa for all soil layers. For better visualization, we use three root layers and three canopy layers in this

example and compute the bulk mean leaf xylem pressure for all the leaves in each canopy layer. We note it here that there is an extraxylary

component downstream the leaf xylem. However, as the extraxylary flow does not impact xylem hydraulic conductance, it has little impact

on the stomatal models we use in our model. Yet, the extraxylary component impact leaf water potential at the evaporation site and leaf water

content, and it needs to be cautious if the stomatal models are formulated using these physiology parameters.
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We did not attempt to model the detailed hydraulic architecture within each root or canopy layer, and thus all transpiration

within a root or canopy layer was transported via a single root or stem. All leaves in each canopy layer are in parallel and

connected to the end of the stem. The hydraulic flow and pressure profile were simulated for each leaf in each canopy layer.100

We simulated the flow and pressure at steady state, and therefore the following criteria were met: the total transpiration rate in

each canopy layer was equal to the flow rate in the stem of that layer; the total flow rate of all canopy layers was equal to the

flow rate in the trunk and the total flow rate of all root layers; and the root xylem pressure at the end of each root xylem was

the same (namely the pressure at the tree base; Fig. 1b).

We used constant leaf physiological parameters (such as hydraulic and photosynthetic traits) throughout the canopy, i.e.,105

there was no difference between leaves with different azimuth or inclination angles. However, as we modeled the light envi-

ronment for leaves at different layers and with different azimuth and inclination angles, we allowed the leaves to have different

stomatal conductances and thus different photosynthetic rates. We note that our model framework allowed us to customize

vertical leaf area distribution, leaf angular distribution, and photosynthetic capacity profile vertically. Yet, for now we used

even distributions in our model simulations due to the limited knowledge of the true distributions at the study sites.110

2.2 Canopy Radiative Transfer

We used the mSCOPE model RT framework (Yang et al., 2017) to simulate the light environment within the canopy. However,

we made some modifications to make the model more realistic. The first difference was that we accounted for carotenoid light

absorption as part of absorbed photosynthetically active radiation (APAR; Frank and Cogdell, 1996; Kodis et al., 2004; Koyama

et al., 2004). When accounting for carotenoids, APAR-related absorption relative to the total pigment absorption increases in115

the wavelength range from 400 to 550 nm (Fig. 2a). APAR thus increases for all leaves in each canopy layer because of

the carotenoid absorption (an example in Fig. 2b). This extra light absorption by carotenoid drives increases in both SIF and

gross primary productivity. As a result, our modeled photosynthetic rate and fluorescence ought to be higher than the original

mSCOPE model for the same model setup.

The second difference was that we accounted for the bidirectional reflectance distribution function effect of canopy hori-120

zontal structure by incorporating a clumping index (CI; Braghiere et al., 2021). As CI impacts the effective leaf area index

(eLAI for effective value, and LAI for the true value) of an open canopy (Pinty et al., 2006; Braghiere et al., 2019, 2020):

eLAI = LAI ·CI, we used eLAI in our model, whereas the original mSCOPE used LAI. When CI = 1, leaves are uniformly

distributed in the horizontal; when CI< 1, there are gaps between and within clusters of leaves for each tree. The inclusion of a

CI < 1 under low soil albedo values (we used a constant soil albedo of 0.2 in our model) results in a higher sunlit leaf fraction125

for every canopy layer, lower APAR for upper canopy layers, higher APAR for lower canopy layers, a different reflectance

spectrum, and lower SIF (Fig. 3).

In the model simulations, we (1) calibrated the leaf chlorophyll fluorescence, reflectance, and transmittance spectra using

the FLUSPECT-B model (Vilfan et al., 2016); (2) computed canopy optical properties (extinction coefficients for direct and

diffuse light) from leaf inclination and azimuth distribution functions and sun-sensor geometry (Yang et al., 2017); (3) com-130

puted scattering coefficient matrices for direct and diffuse light based on the extinction coefficients and leaf reflectance and
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Figure 2. Impact of carotenoid light absorption on absorbed photosynthetically active radiation (APAR). (a) Fraction of APAR light absorp-

tion relative to all pigment absorption. The solid curve represents the scenario when both chlorophyll and carotenoid absorption are counted

as APAR. Dashed curve plots the scenario when only chlorophyll absorption is counted as APAR. (b) APAR difference between the two

scenarios for leaves with different azimuth angles (0◦ to 360◦) and inclination angles (axial direction, from 0◦ to 90◦). The colors indicate

the increase of APAR for sunlit leaves with different angles when accounting carotenoid absorption as APAR. White line on the color bar

indicates the increase of APAR for shaded leaves. The results are from the top canopy layer out of 20 layers for a canopy with leaf area index

of 3, clumping index of 1, and solar zenith angle of 30◦.

transmission spectra; (4) simulated the shortwave radiation through the canopy; (5) computed a variety of integrated fluxes,

such as absorbed soil radiation and direct and diffuse APAR per layer (including angles for direct light); (6) calculated the

steady state stomatal conductance based on different stomatal models for each leaf angle, and then the fluorescence quantum

yield from leaf photosynthesis; and (7) computed the four-stream radiation transport for SIF.135

In the model, we represented leaf azimuth angle from 0◦ to 360◦ at 10◦ increment steps (Nazi = 36), leaf inclination angle

from 0◦ to 90◦ at 10◦ increment steps (Nincl = 9). At each time step, we were able to calculate the fraction of sunlit leaf (fazi,incl)

and APAR for each leaf angle combination (azimuth and inclination; e.g., Fig. 3). Therefore, we had a total of Nazi×Nincl + 1

APAR values in each canopy layer (1 for shaded leaf fraction), and the probability of each APAR value per layer was

pazi,incl,n =
1

Nazi ·Nincl
· fazi,incl,n (1)140

pshade,n = 1−
∑

1≤azi≤Nazi;1≤incl≤Nincl

(pazi,incl,n) (2)

where pazi,incl,n is the fraction of sunlit part for the “azi”th azimuth angle and “incl”th inclination angle at the “n”th canopy

layer (Nlay layers in total), and pshade,n is the fraction of shaded part in the “n”th layer. Also, we had canopy reflectance and

fluorescence spectra from a prescribed observation angle, from which we calculated SIF at 740 nm (SIF740).
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Figure 3. Impact of canopy clumping on canopy radiative transfer. (a) Impact of canopy clumping index (CI) on sunlit leaf fraction. (b) CI

impacts on mean sunlit and shaded leaf absorbed photosynthetic radiation (APAR). (c) CI impacts on canopy reflectance spectrum. (d) CI

impacts on solar-induced chlorophyll fluorescence spectrum. The model simulation was done using a canopy with a leaf area index of 3, 30

canopy layers, a solar zenith angle of 30◦, a viewing zenith angle of 0◦, and a constant fluorescence yield of 1%.
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2.3 Stomatal Models145

We used one optimization-based (Wang et al., 2020) and two empirical stomatal models (Ball et al., 1987; Medlyn et al., 2011)

along with our modified version of the mSCOPE RT scheme. For the optimization-based stomatal model (OSM), we calculated

the steady state stomatal conductance per leaf per canopy layer by maximizing the difference between the leaf level carbon

gain (represented by the net photosynthetic rate modeled using classic Farquhar et al. (1980) model for C3 plants, Anet in

µmol CO2 m−2 s−1) and a risk (represented via leaf hydraulics and photosynthesis):150

Anet︸︷︷︸
gain

−Anet ·
E

Ecrit︸ ︷︷ ︸
risk

(3)

where E is leaf level transpiration rate in mol m−2 s−1, and Ecrit is the critical transpiration rate for that leaf in mol m−2 s−1,

beyond which the leaf hydraulic conductance drops to 0.1% of the maximum value (Sperry and Love, 2015). Note that with the

ascent of sap along the xylem, xylem water pressure becomes more negative (Fig. 1b), and the xylem hydraulic conductance

decreases as a result of cavitation (Sperry and Tyree, 1988). The higher the leaf transpiration rate, the more negative leaf xylem155

pressure is at the end of the leaf xylem in order to match transpiration and resupply of water to the leaf from the root system.

However, leaf transpiration rate cannot be infinitely high because of xylem cavitation at negative xylem pressures. For example,

for a leaf with a given xylem pressure at the leaf base (Ψbase), E peaks while leaf xylem pressure gets more and more negative

(Fig. 4a), and E higher than this peak is physically unreachable.

−3 −2 −1 0

Ψ (MPa)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

�
(m

ol
H

2O
m
−2

s−
1 )

(a)

−3 −2 −1 0

Ψ (MPa)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

�
cr

it
(m

ol
H

2O
m
−2

s−
1 )

(b)

Figure 4. Leaf critical flow rate changes with leaf base xylem pressure. (a) Leaf xylem water supply curves at two different leaf base xylem

pressures (Ψbase; black solid curve for a Ψbase = 0 MPa and black dashed curve for a Ψbase = −1 MPa). A xylem water supply curve is the

plot of leaf xylem flow rate (E) vs. leaf xylem end pressure (Ψ) at a given Ψbase (Ψ = Ψbase when E = 0). The gray vertical line plots the

xylem pressure at which leaf xylem conductance reaches 0.1% of the maximum. The intersection of the gray line and xylem water supply

curve indicates the critical xylem flow rate (Ecrit). (b) Ecrit decreases with more negative Ψbase.
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We defined the transpiration rate at which leaf xylem hydraulic conductance decreases to 0.1% of the maximum value asEcrit160

in our model (namely at 99.9% loss of hydraulic conductance; Fig. 4a). We used a hybrid Bisection-Newton method algorithm

provided by ConstrainedRootSolvers.jl (https://github.com/Yujie-W/ConstrainedRootSolvers.jl) to numerically compute Ecrit

(through solving the intersection of the gray line and xylem water supply curve in Fig. 4a). Ecrit decreases when Ψbase becomes

more negative (Fig. 4; e.g., as a result of drier soil). The use of Ecrit in the risk function (equation 3) allowed us to predict

stomatal response to soil drought, because lower Ecrit resulted higher risk. See Fig. 5 for the theoretical whole plant responses165

to the environmental stimuli for OSM. Note that though equation 3 is the same as that in Wang et al. (2020), the two differ in

that equation 3 uses leaf-level flow rates so as to use with our adapted mSCOPE RT model, whereas Wang et al. (2020) model

uses whole plant-level flow rates to use with the big leaf model.

For the Ball et al. (1987) stomatal model (BBM), we calculated the steady state stomatal conductance (gsw in mol m−2 s−1)

using an empirical formulation:170

gsw = g0 + g1 ·RH · Anet

Cs
(4)

where RH is the relative humidity of the air (fraction; unitless), Cs is the leaf surface CO2 concentration in µmol mol−1 (after

accounting for leaf boundary layer conductance as a function of wind speed), and g0 (in mol m−2 s−1) and g1 (unitless) are

fitting parameters for BBM. For Medlyn et al. (2011) model (MED), the formulation reads

gsw = g0 + 1.6 ·
(

1 +
g1√
D

)
· Anet

Ca
(5)175

where D is the leaf-to-air vapor pressure deficit in kPa, and Ca is the atmospheric CO2 concentration in µmol mol−1, and g0

(in mol m−2 s−1) and g1 (in
√

kPa) are fitting parameters for MED. Note that these empirical stomatal models (BBM and

MED) do not respond to soil moisture. To account for the soil moisture response, we followed the Community Land Model

Version 5 (CLM5) approach by attenuating photosynthetic capacity via a stress factor (βw; Kennedy et al., 2019):

βw =
K

Kmax
(6)180

where K is the leaf hydraulic conductance calculated using the leaf xylem pressure, and Kmax is the maximal leaf hydraulic

conductance. The use of a tuning factor helps address the stomatal response to soil moisture for BBM and MED. Note here

that the tuning factor is applied per leaf per canopy layer. See Fig. 5 for the theoretical whole plant responses to environmental

stimuli for BBM and MED.

For each of the three stomatal models (BBM, MED, and OSM), with the steady state stomatal conductance for each APAR185

value, we computed the corresponding leaf net photosynthetic rate using the classic C3 photosynthesis model (Farquhar et al.,

1980). The whole canopy net primary productivity (CNPP, at an instant time) was then computed using

CNPP =
LAI
Nlay
·
{ ∑

azi,incl,n

[
Anet · pazi,incl,n

]
+
∑

n

[
Anet · pshade,n

]}
. (7)
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Figure 5. Responses to environmental cues of three stomatal models. The stomatal models are Ball et al. (1987), Medlyn et al. (2011),

and Wang et al. (2020) stomatal model predictions (BBM, MED, and OSM), respectively. (a) Canopy cumulative stomatal conductance per

ground area (G) response to atmospheric vapor pressure deficit (VPD). Red and blue dotted lines plot the responses of BBM and MED

models without a tuning factor (β) for photosynthetic capacity, respectively. Red and blue solid lines plot the response of BBM and MED

models with a tuning factor for photosynthetic capacity (equation 6), respectively. Cyan solid line plots the response of OSM model. The

turning point around VPD = 1400 Pa is because leaf stomatal conductance hits the maximum structural limitation (0.2 mol m−2 s−1 in

the example). (b) G responses soil water potential (Ψsoil). (c–d) Canopy net primary productivity per ground area (CNPP, total canopy net

photosynthetic rate per ground area, gross primary productivity minus canopy leaf respiration) responses to VPD and Ψsoil.

10

https://doi.org/10.5194/gmd-2021-154
Preprint. Discussion started: 1 June 2021
c© Author(s) 2021. CC BY 4.0 License.



3 Carbon and water fluxes

3.1 Flux tower sites190

We used data from two flux tower sites to test the CliMA Land model. The first study site is located at a subalpine forest

of the Niwot Ridge AmeriFlux core site (US-NR1) in the Rocky mountains in Colorado, USA (40.03◦N, 105.55◦W, 3050 m

above the sea level; Fig. 6). The US-NR1 flux tower is surrounded by three dominate evergreen gymnosperm species: Abies

lasiocarpa, Picea engelmannii, and Pinus contorta (Monson et al., 2002). The second study site is located at a broad leaf forest

of the Missouri Ozark AmeriFlux site (US-MOz, MOFLUX) in Missouri, USA (38.74◦N, 92.20◦W, 219 m above the sea level;195

Fig. 6). The US-MOz flux tower site is dominated by a deciduous angiosperm white oak (Quercus alba) mixed with several

other deciduous species, including sugar maple (Acer saccharum) and hickory (Carya spp.) (Yang et al., 2007; Wood et al.,

2019). See Table 1 and 2 for details of the US-NR1 and US-MOz sites and the values used as model inputs. Hereafter, we refer

the two sites as the gymnosperm site (US-NR1) and the angiosperm site (US-MOz).

© Google © Google

Figure 6. Regions chosen to filter TROPOMI SIF observations. Left: Google Earth map for US-NR1 flux tower site (Niwot Ridge, Colorado,

USA). Right: Google Earth map for US-MOz flux tower site (Ozark, Missouri, USA). The blue symbols show the flux tower locations, and

the shaded regions are representative area around the flux tower site. Maps Data: Google Landset / Copernicus.

3.2 Model simulations200

The flux tower sites have half-hourly mean flux estimates, as well as environmental conditions since 1998 (US-NR1) and 2004

(US-MOz). We chose the data from 2006 to 2019 to test our model given the higher data quality (we omitted the year 2020

because the data was not yet available). We tested our model on an annual basis by splitting the original dataset into subsets (14

subsets for US-NR1, and 12 subsets for US-MOz given missing data on years 2006 and 2011). For each year, at each half-hour

time step, we simulated the steady state stomatal conductance and fluxes for the three stomatal models. To reduce uncertainty,205
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Table 1. Site and plant information of Niwot Ridge flux tower site.

Variable Description Reference

Site name Niwot Ridge, AmeriFlux core site US-NR1

Latitude 40.03◦N Monson et al. (2002)

Longitude 105.55◦W Monson et al. (2002)

Elevation Height above sea level, 3050 m Monson et al. (2002)

Canopy height Canopy height, 12–13 m. A mean canopy height of 12.5 m was used in the model. As

to the tree geometry, we assumed the trunk has a height of 6 m, and the canopy spanned

from 6 to 12.5 m. We divided the canopy to 13 layers (0.5 m in height per layer).

Bowling et al. (2018)

LAI Leaf area index, 3.8–4.2. A mean LAI of 4.0 was used in the model. Monson et al. (2002)

Chlorophyll Leaf chlorophyll content, 524 µmol m−2 Zarter et al. (2006)

Tree density Trees per ground area, 4000 ha−1. Abies lasiocarpa: 16 trees per 100 m2; Picea engel-

mannii: 10 trees per 100 m2; Pinus contorta: 9 trees per 100 m2. Addressed by basal area

per ground area (namely basal area index).

Bowling et al. (2018)

Weibull B/C A. lasiocarpa:B = 4.28 MPa,C = 1.47; P. engelmannii:B = 4 MPa,C = 12; P. contorta:

B = 4 MPa, C = 4. Mean B = 4.09 MPa and C = 5.82 were used.

Tai et al. (2019)

Basal area Mean basal area per tree. A. lasiocarpa: 0.063 m2; P. engelmannii: 0.08 m2; P. contorta:

0.144 m2. Total basal area per ground area for the three species are 0.031 m2 m−2; and

thus a mean ground area per basal area of 32.09 m2 m−2 was used in the model.

Sproull (2014)

Clumping index MODIS clumping index, 0.48. A constant CI was used in the test site because of the lack

of knowledge on how CI varies with solar zenith angle in the test site.

He et al. (2012)

Root depth Root depth, 0.4–1.0 m. A maximal root depth of 1 m was used. Yet, as we prescribed soil

water content, the root depth was only used to calculate gravitational pressure drop in the

roots.

Monson et al. (2002)

Soil type Soil texture class, Cambisol. See Mello et al. (2005) for the detailed van Genuchten pa-

rameter for Cambisol type soil.

https://soilgrids.org/

Stomatal model Ball et al. (1987) model: g1 = 9; Medlyn et al. (2011) model: g1 = 2.35
√

kPa. CLM tech notes
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Table 2. Site and plant information of Missuri Ozark flux tower site (MOFLUX).

Variable Description Reference

Site name Missouri Ozark AmeriFlux site, US-MOz

Latitude 38.74◦N Yang et al. (2007)

Longitude 92.20◦W Yang et al. (2007)

Elevation Height above sea level, 219.4 m Yang et al. (2007)

Canopy height Canopy height, 17–20 m.A mean canopy height of 18.5 m was used in the model. As to

the tree geometry, we assumed the trunk has a height of 9 m, and the canopy spanned

from 9 to 18.5 m. We divided the canopy to 19 layers (0.5 m in height per layer).

Yang et al. (2007)

LAI Leaf area index, 4.2 Yang et al. (2007)

Chlorophyll Leaf chlorophyll content, 57.23 µg cm−2. Value is estimated from the leaf mass per area

of Quercus alba at ambient CO2 (Norby et al., 2000) and chlorophyll content per mass

of sunlit leaves of Quercus alba (Rebbeck et al., 2012).

Norby et al. (2000)

Rebbeck et al. (2012)

Tree density Trees per ground area, 583 ha−1. Dominated by a deciduous angiosperm white oak

(Quercus alba) mixed with several other deciduous species, including sugar maple (Acer

saccharum) and hickory (Carya spp.)

Wood et al. (2019)

Weibull B/C B = 5.703 MPa, C = 0.953. Kannenberg et al. (2019)

Basal area Basal area per ground area, 0.00242 m2 m−2. Yang et al. (2007)

Clumping index MODIS clumping index, 0.69.A constant CI was used in the test site because of the lack

of knowledge on how CI varies with solar zenith angle in the test site.

He et al. (2012)

Root depth Root depth. A maximal root depth of 1 m was used. Yet, as we prescribed soil water

content, the root depth was only used to calculate gravitational pressure drop in the roots.

-

Soil type Soil texture class, Weller silt loam.van Genuchten parameters for this site was fitted using

the soil moisture retention curve, where soil moisture was from flux tower measurements,

and soil water potential was estimated using predawn leaf water potential (data from

https://tes-sfa.ornl.gov/node/80; Gu et al., 2015).

Yang et al. (2007)

Stomatal model Ball et al. (1987) model: g1 = 9; Medlyn et al. (2011) model: g1 = 4.45
√

kPa CLM tech notes
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we prescribed soil moisture, leaf temperature, and reported constant leaf area index (more details of the values we used can be

found in Tables 1 and 2), and then we ran offline simulations. We inverted leaf temperature using

LWout = εσT 4
leaf (8)210

where LWout is the surface emitted longwave radiation from the flux tower measurement, ε is the emissivity of the leaf (0.97

following Campbell and Norman, 1998), σ is the Stefan-Boltzmann constant (5.67× 10−8 W K−4), and Tleaf is the mean leaf

temperature in K.

To maximally reduce the uncertainty when comparing model simulations to observations, we compared the modeled carbon

and water fluxes directly to flux tower estimations. Thus, we did not perform the typical step that partitions observed net215

ecosystem exchange of CO2 (NEE) into gross primary productivity and ecosystem respiration. Instead, we performed the

partition the ecosystem to canopy and non-canopy parts. We simulated NEE as the difference between canopy net exchange

(namely CNPP) and remaining respiration (wood and soil, represented by Rremain): NEE = CNPP−Rremain. In this way, the

daytime canopy net photosynthetic rate and nighttime respiration rate were used as CNPP, whereas the remaining respiration

of wood and soil was computed as a function of soil temperature (Tsoil):220

Rremain =Rbase · f(Tsoil) =Rbase ·
(
Tsoil− 298.15

10

)Q10

(9)

where Rbase is the respiration normalized to a reference temperature (298.15 K in our model), f(Tsoil) is the temperature

correction, and Q10 is the exponent used for temperature correction (1.4 for angiosperm and 1.7 for a gymnosperm plant

following Lavigne and Ryan, 1997).

At each time step, we (1) calculated soil water potential and leaf temperature from the flux tower measurements; (2) com-225

puted the solar zenith angle based on the site latitude and local time; (3) simulated the canopy radiative transfer, and obtained

APAR values for sunlit and shaded leaves in each canopy layer; (4) updated environmental conditions and leaf temperature per

canopy layer; (5) computed the steady state stomatal conductance for each leaf angle in each canopy layer using the classic C3

photosynthesis model (Farquhar et al., 1980), and summed the canopy carbon and water fluxes of the entire canopy; (6) with

the computed steady state photosynthetic rate, we modeled leaf level fluorescence yield using van der Tol et al. (2014) model230

parameters and site-level SIF740 using the updated version of the mSCOPE model; (7) calculated Rremain from soil temperature

using equation 9; and (8) compared site level modeled NEE and water fluxes (ET) to flux tower estimates. For the hydraulic

system, we assumed the xylem hydraulic conductance recovers when soil rehydrated (in other words, we did not modeled the

drought legacy effect within or across growing seasons).

3.3 Fit unknown parameters235

Note that there were some missing essential parameters in our model: site level bulk photosynthetic capacity (represented

by maximal carboxylation rate and maximal electron transport rate at a reference temperature, Vcmax25, and Jmax25 at 25 ◦C,

respectively), hydraulic conductance per basal area (namely Kmax), and Rbase. These parameters have a large impact on model

simulations as Vcmax25, Jmax25, and Kmax affect stomatal opening (and thus canopy carbon and water fluxes), and Rbase affects
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stand carbon flux. We note that there were some Vcmax25 and Jmax25 observations for US-MOz for a few years (Gu et al., 2015),240

but a complete time series of the Vcmax25 and Jmax25 was not available. Therefore, we fitted these parameters by minimizing the

mean absolute standardized error of both carbon and water fluxes for each year:

minimize
mean(|NEEmod−NEEobs|)

std(|NEEobs|)
+

mean(|ETmod−ETobs|)
std(ETobs)

(10)

where subscripts “mod” and “obs” represent model and observation, respectively. Note that we fitted Vcmax25 (Jmax25 = 1.67 ·
Vcmax25), Kmax (we assumed a constant root:stem:leaf resistance ratio of 2:1:1), and Rbase for each stomatal model to make245

fair comparison of three models. We used only the flux data from growing season of each year, and the growing season period

was defined as the time when the mean daily carbon flux was higher than 1 µmol m−2 s−1 for seven consecutive days. Note

that a constant Vcmax25 was used for all three models rather than a time serious. However, because of the model setup, OSM

used constant Vcmax25 thoughtout the growing season, whereas BBM and MED used variable effective Vcmax25 as a result of the

tuning factor to account for stomatal response to soil moisture. See Figs. 7 and 8 for the examples of the fitted results for the250

gymnosperm and angiosperm forests, respectively.

3.4 Model performance

All three stomatal models (one optimization-based and two empirical) were able to track the diurnal and seasonal carbon

and water fluxes (e.g., Fig. 7 for gymnosperm site and Fig. 8 for angiosperm site). In general, all three models quantitatively

predicted the net ecosystem carbon flux (Figs. 7a,c, 8a,c, 9, 10). However, predicted water fluxes diverged across the models,255

as the BBM and MED models tended to underestimate water fluxes, and the OSM model better matched the magnitude of

water flux (Figs. 7b,d, 8b,d). See Figures S1–S26 for the comparison of time series of carbon and water fluxes for each site at

each growing season.

3.4.1 Fitting parameter variation

The same amount of variables: Vcmax25, Rbase, and Kmax were fitted for all three stomatal models. In terms of fitting parameter260

variation, in general, OSM had the lowest standard deviation, whereas BBM and MED had higher standard deviation (Figs. 9a,

10a; Table 3). In terms of MASE, OSM had the lowest error (sum for both carbon and water fluxes), whereas BBM and MED

had higher error (Figs. 9b, 10b; Table 4).

While all three stomatal models had similar fitted soil respiration (Rbase), the models had divergent fitted photosynthetic

capacity (Vcmax25) and maximal hydraulic conductance (Kmax). In general, the empirical models required higher Vcmax25 (Figs.265

9a and 10a). The reason is that the empirical models in the present study were used along with a tuning factor for effective

Vcmax25 (Kennedy et al., 2019). In comparison, the stomatal optimization model weighs the carbon gain and risk trade-off

to determine stomatal opening, and effective Vcmax25 is held constant throughout the simulation. Thus, for empirical models,

leaf-level effective Vcmax25 is always lower than the fitted value because of the negative leaf xylem pressure.

We note that varying effective Vcmax25 based on leaf hydraulic conductance loss is only one form of the ad-hoc tuning factor270

to force stomatal responses to drought (e.g., see Powell et al. (2013), Trugman et al. (2018), and Kennedy et al. (2019) for
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Figure 7. Comparison of model predicted carbon/water fluxes to US-NR1 (Niwot Ridge, evergreen gymnosperm forest) flux tower observa-

tions for year 2014. (a) Gray curve plots the daily CO2 flux in the growing season. Shaded red, blue, and cyan curve each plots the Ball et al.

(1987), Medlyn et al. (2011), and Wang et al. (2020) stomatal model predictions (BBM, MED, and OSM), respectively. (b) Comparison of

modeled and observed daily total transpiration flux. (c) Comparison of half-hourly modeled and observed net ecosystem carbon flux (NEE)

for days 256–257 of year 2014. (d) Comparison of modeled and observed ecosystem water flux (ET) for days 256–257 of year 2014.
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Figure 8. Comparison of model predicted carbon/water fluxes to US-MOz (MOFLUX, deciduous angiosperm forest) flux tower observations

for year 2014. (a) Gray curve plots the daily CO2 flux in the growing season. Shaded red, blue, and cyan curve each plots the Ball et al.

(1987), Medlyn et al. (2011), and Wang et al. (2020) stomatal model predictions (BBM, MED, and OSM), respectively. (b) Comparison of

modeled and observed daily total transpiration flux. (c) Comparison of half-hourly modeled and observed net ecosystem carbon flux (NEE)

for days 256–257 of year 2014. (d) Comparison of modeled and observed ecosystem water flux (ET) for days 256–257 of year 2014.

17

https://doi.org/10.5194/gmd-2021-154
Preprint. Discussion started: 1 June 2021
c© Author(s) 2021. CC BY 4.0 License.



+cmax 'base  max
0

10

20

30

40

+
cm

ax
or
'

ba
se

(μ
m
ol

CO
2
m
−2

s−
1 ) (a)

BBM
MED
OSM

NEE ET NEE&ET
0

20

40

60

80

M
A
SE

(%
)

(b)

0.000

0.025

0.050

0.075

0.100

 
m

ax
(m

ol
s−

1
M
Pa
−1
)

Figure 9. Comparisons of fitted model parameters and model predictive skills for US-NR1 (Niwot Ridge, evergreen gymnosperm forest)

flux tower. (a) Red bars plot the mean of fitted parameters for Ball et al. (1987) stomatal model (BBM). The fitting parameters are maximal

carboxylation rate 25 ◦C (Vcmax25), soil respiration rate at 25 ◦C (Rbase), and maximal whole plant hydraulic conductance (Kmax). Blue and

cyan bars plot the means for Medlyn et al. (2011) (MED) and Wang et al. (2020) (OSM) models, respectively. Black error bars plot the

standard deviation of the fitting parameter. (b) Comparison of mean absolute standardized error (MASE, equation 10) for carbon flux (NEE),

water flux (ET), and both NEE and ET.
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Figure 10. Comparisons of fitted model parameters and model predictive skills for US-MOz (MOFLUX, deciduous angiosperm forest) flux

tower. (a) Red bars plot the mean of fitted parameters for Ball et al. (1987) stomatal model (BBM). The fitting parameters are maximal

carboxylation rate 25 ◦C (Vcmax25), soil respiration rate at 25 ◦C (Rbase), and maximal whole plant hydraulic conductance (Kmax). Blue and

cyan bars plot the means for Medlyn et al. (2011) (MED) and Wang et al. (2020) (OSM) models, respectively. Black error bars plot the

standard deviation of the fitting parameter. The fitted Kmax of BBM and MED reaches the maximum limit of Kmax ranges (4 mol H2O

s−1 MPa−1), and is way higher than that of OSM; thus the bars are cut off to compare with the OSM. (b) Comparison of mean absolute

standardized error (MASE, equation 10) for carbon flux (NEE), water flux (ET), and both NEE and ET.
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Table 3. Fitting parameters of three stomatal models. the models are Ball et al. (1987) model (BBM), Medlyn et al. (2011) model (MED),

and Wang et al. (2020) model (OSM). Numbers show in the table are mean ± standard deviation. The fitted parameters include: maximum

carboxylation rate at 25 ◦C (Vcmax), root respiration at 25 ◦C (Rbase), maximal tree hydraulic conductance per basal area (Kmax), and empirical

stomatal parameter g1 (unitless for BBM, in
√

kPa for MED).

Site Model
Vcmax25 Rbase Kmax g1

µmol m−2 s−1 mol m−2 s−1 MPa−1 - or
√

kPa

When g1 was not fitted for BBM and MED

Niwot Ridge

BBM 35.4 ± 2.6 4.5 ± 0.4 0.050 ± 0.000 -

MED 37.7 ± 2.8 4.8 ± 0.3 0.057 ± 0.019 -

OSM 16.3 ± 2.0 4.4 ± 0.3 0.050 ± 0.000 -

MOFLUX

BBM 41.8 ± 10.8 1.0 ± 0.0 4.000 ± 0.000 -

MED 45.2 ± 12.2 1.0 ± 0.0 4.000 ± 0.000 -

OSM 22.2 ± 3.8 1.0 ± 0.0 0.260 ± 0.178 -

When g1 was fitted for BBM and MED

Niwot Ridge

BBM 21.8 ± 1.5 5.1 ± 0.5 0.093 ± 0.018 18.5 ± 1.4

MED 21.1 ± 1.2 4.8 ± 0.3 0.054 ± 0.013 6.5 ± 0.5

OSM 16.3 ± 2.0 4.4 ± 0.3 0.050 ± 0.000 -

MOFLUX

BBM 30.4 ± 7.8 1.1 ± 0.2 4.000 ± 0.000 23.9 ± 14.5

MED 30.8 ± 7.9 1.1 ± 0.2 4.000 ± 0.000 16.0 ± 9.3

OSM 22.2 ± 3.8 1.0 ± 0.0 0.260 ± 0.178 -
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Table 4. Statistics of three stomatal model predictive skills. The models are Ball et al. (1987) model (BBM), Medlyn et al. (2011) model

(MED), and Wang et al. (2020) model (OSM). The NEE section shows the regression details of modeled versus observed net ecosystem

carbon flux (NEE); whereas the ET section shows the regression details of modeled versus observed ecosystem water flux (ET). Row

“MASE” shows the mean absolute standardized error (mean for each year). Row “Pslope=1” indicates the P value for whether the slope is

different from 1. Columns “BBM-g” and “MED-g” display the results when an extra empirical parameter “g1” (equations 4 and 5) is also

fitted for the empirical model.

Model
Niwot Ridge MOFLUX

BBM MED OSM BBM-g MED-g BBM MED OSM BBM-g MED-g

NEE

MASE 35.1% 32.4% 34.5% 33.6% 33.4% 42.3% 43.8% 44.0% 42.2% 42.2%

R2 0.78 0.82 0.78 0.79 0.79 0.62 0.60 0.60 0.62 0.62

Intercept 0.32 0.37 0.47 0.32 0.37 1.16 1.04 1.12 1.41 1.44

Slope 0.88 0.90 0.84 0.83 0.79 0.63 0.63 0.52 0.59 0.60

Pslope=1 All < 0.001

ET

MASE 54.4% 55.8% 47.3% 38.7% 37.9% 39.3% 42.8% 32.1% 28.7% 29.3%

R2 0.58 0.66 0.58 0.64 0.66 0.74 0.72 0.73 0.75 0.73

Intercept 8.0E-5 8.2E-5 9.6E-5 1.4E-4 1.4E-4 2.5E-4 2.5E-4 3.9E-4 3.7E-4 3.9E-4

Slope 0.35 0.32 0.91 0.69 0.65 0.41 0.34 0.62 0.69 0.62

Pslope=1 All < 0.001
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alternative formulations). The advantage of a Vcmax25 tuning factor is that it helps account for the decreasing effective Vcmax25

during drought (either due to real drop in photosynthetic capacity or mesophyll conductance; Dewar et al., 2018), and thus

could be more realistic in water limiting scenarios; however, tuning effective Vcmax25 for short term changes in leaf water

potential may harm the model performance (such as diurnal changes of leaf water potential when there is no soil drought;275

Wang et al., 2020). In comparison, the OSM used a constant Vcmax25 throughout a growing season, and would not be able

to capture the decrease of Vcmax25 if it happens. Despite the fact that Vcmax25 does decrease during drought (e.g., Zhou et al.,

2014, 2016), there is no direct evidence that Vcmax25 varies linearly with leaf water potential, plant/leaf hydraulic conductance,

soil moisture, or soil water potential for all species. Better understanding of how Vcmax25 varies during and after a drought will

improve the accuracy in modeling carbon and water fluxes for all stomatal models.280

The fitted Kmax was comparable for all three models at the gymnosperm site, but was much higher for empirical models at

the angiosperm site. The reason for this contrasting behavior was also the tuning factor based on hydraulic conductivity loss.

The xylem vulnerability curve in our model was represented by a Weibull function: kx = kx,max · exp[−(−P/B)C ], where B

indicates the xylem pressure at c. 63% loss of conductivity and C indicates the steepness of the decrease in k. Though the

tested angiosperm forest had a higherB = 5.70 MPa compared to 4.09 MPa of the gymnosperm forest, C = 0.95 of angiosperm285

site was much lower than that of gymnosperm site (5.82). As a result, effective Vcmax25 used in BBM and MED models dropped

dramatically at relatively less negative soil water potential for the angiosperm site (e.g.,>−2 MPa), while the effective Vcmax25

barely changed for the gymnosperm site. At the default g1 setting, the empirical models underestimate water flux, and thus the

optimized Kmax would be higher to increase the canopy water flux. Yet, we note that the error does not change much for very

high Kmax because the water flux is mainly controlled by the g1 parameter in the empirical models.290

3.4.2 Quantitative comparison

In terms of minimal under- or overestimation, OSM showed the highest predictive skill because of the better performance in

predicting water fluxes. For the gymnosperm site, combining all data and simulation from 14 growing seasons from 2006 to

2019, we found that model predicted carbon fluxes were overall near 1:1 compared to flux tower observations for all the three

models (Fig. 11a–c). However, the slopes of the linear regressions (red lines in Fig. 11a–c) for carbon flux were all significantly295

lower than 1 (despite that the slopes were close to 1; P < 0.001; more detailed statistics in Table 4). As for the water flux,

all three models underestimated water fluxes compared to the flux tower observations (Fig. 11d,e), and the slopes were all

significantly lower than 1 (P < 0.001; Table 4). The stomatal optimization model based on plant hydraulics (OSM), however,

better predicted the water flux (Fig. 11f) compared to the empirical models. We found similar pattern for the angiosperm site

(Fig. 12; Table 4). The model performances were in general slightly worse in MOFLUX, given the higher error in predicted300

NEE and shallower slope for both NEE and ET. The relatively worse performances were likely due to the higher variation in

observed NEE and ET, e.g., many NEE observations were higher than 10 µmol m−2 s−1.

Our model simulations suggest that implementing plant hydraulic trait-based stomatal optimization model into vegetation

models has great potential in improving the model predictive skills, particularly for the water flux (Figs. 11 and 12), adding

new evidences to existing literature (e.g., Anderegg et al., 2018; Venturas et al., 2018; Wang et al., 2019; Eller et al., 2020;305
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Figure 11. Comparison of half-hourly modeled and observed carbon and water fluxes for three stomatal models for US-NR1 (Niwot Ridge,

evergreen gymnosperm forest) flux tower. (a) Comparison of modeled (y axis) and observed (x axis) net ecosystem carbon flux (NEE) for

Ball et al. (1987) stomatal model (BBM). Shading represents density; the darker the hexagon, the more data that fell within the hexagon. The

red solid line plots the linear regression of the data, and the black dotted line plots the 1:1 line. (b) Comparison of NEE for Medlyn et al.

(2011) model (MED). (c) Comparison of NEE for Wang et al. (2020) model (OSM). (d) Comparison of ecosystem water flux (ET) for BBM.

(e) Comparison of ET for MED. (f) Comparison of ET for OSM.
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Figure 12. Comparison of half-hourly modeled and observed carbon and water fluxes for three stomatal models for US-MOz (MOFLUX,

deciduous angiosperm forest) flux tower. (a) Comparison of modeled (y axis) and observed (x axis) net ecosystem carbon flux (NEE) for Ball

et al. (1987) stomatal model (BBM). Shading represents density; the darker the hexagon, the more data that fell within the hexagon. The red

solid line plots the linear regression of the data, and the black dotted line plots the 1:1 line. (b) Comparison of NEE for Medlyn et al. (2011)

model (MED). (c) Comparison of NEE for Wang et al. (2020) model (OSM). (d) Comparison of ecosystem water flux (ET) for BBM. (e)

Comparison of ET for MED. (f) Comparison of ET for OSM.
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Sabot et al., 2020). Moreover, while the stomatal optimization model (Wang et al., 2020) had lower errors than the empirical

models (Ball et al., 1987; Medlyn et al., 2011), the optimization model fitting parameters did not vary much (Figs. 9 and 10).

In comparison, the empirical models required more variable parameterization among years to achieve a similar error (Figs. 9a

and 10a). Furthermore, as the stomatal optimization model did not rely on empirical parameters like g0 and g1, the stomatal

optimization model can be used to simulate plant carbon and water fluxes with acclimated traits (Sperry et al., 2019). In310

comparison, it is unclear how g0 and g1 may vary with plant traits, adding extra uncertainties to modeling plant responses to

future climate.

3.4.3 Land model parameterization

The empirical models using default CLM setups, in general, did not perform as well as the stomatal optimization model. This

under-performance was probably related to (i) model parameterization, such as the g1 we used may not be ideal for the two315

forest sites, and (ii) the use of a Vcmax25 tuning factor interfered the prescribed g1. For example, if the g1 was meant to use with

a tuning factor that affects g1 itself rather than Vcmax25, then the use of g1 with a Vcmax25 tuning factor would make the model

more sensitive to air humidity when the plant suffers from a drought stress. The reason is that a Vcmax25 tuning factor would

translate into changes in leaf water potential to changes in effective Vcmax25, and thus stomatal conductance decreases faster in

response to drier air. In this case, the prescribed g1 needs to be higher to mitigate the increased sensitivity resulted from the320

Vcmax25 tuning factor.

Indeed, when we fitted an extra g1 for both BBM and MED models, we found improved predictive skills in tracking water

flux as the slope between modeled and observed ET were closer to 1 (though still significantly lower than 1; Table 4; Figs. 13

and 14). However, the increase in the slopes of ET was accompanied with decreases in the slopes of NEE (Table 4; Figs. 13

and 14). As we expected, the fitted g1 was much higher than in the CLM5 default setups (Table 3). The alteration of g1 indeed325

shows potential in better capturing carbon and water fluxes than the tested stomatal optimization model (Table 4); and we

believe more site-specific g1 setups ought to improve the empirical model predictive skills. Yet, whether the fitted parameters

also apply to other forests, and how to best represent the spatial and temporal variations of g1 requires further investigation.

Nevertheless, as g1 is supposed to change with time, empirical model predicted future carbon and water fluxes may be of great

uncertainty. In comparison, OSM was less dependent on empirical curve fitted parameters and had lower variation in the fitting330

parameters (Figs. 9 and 10), and thus the model predicted future carbon and water fluxes ought to be more reliable.

Our model simulations highlighted the importance of land model parameterizations, and the potential pitfalls for using

unpaired or untested parameter sets in land surface modeling. Comparatively, the tested optimization model shows comparable

predictive skills and it is less dependent on the empirical parameters (better than default CLM setups, worse than the scenario

of fitting an extra g1). Better future land model parameterization ought to improve the land surface modeling and thus Earth335

System modeling.
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Figure 13. Comparison of modeled and observed carbon and water fluxes for three stomatal models when fitting an extra empirical model

stomatal model parameter for US-NR1 (Niwot Ridge, evergreen gymnosperm forest) flux tower site. (a) Comparison of modeled (y axis) and

observed (x axis) net ecosystem carbon flux (NEE) for Ball et al. (1987) stomatal model (labeled as BBM). The darker the hexagon is, the

more data fall into the hexagon region. The red solid line plots the linear regression of the data, and the black dotted line plots the 1:1 line.

(b) Comparison of NEE for Medlyn et al. (2011) model (labeled as MED). (c) Comparison of NEE for Wang et al. (2020) model (labeled as

OSM). (d) Comparison of ecosystem water flux (ET) for BBM. (e) Comparison of ET for MED. (f) Comparison of ET for OSM. This figure

differs from Fig. 11 in that g1s (equations 4 and 5) for BBM and MED are also fitted.
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Figure 14. Comparison of modeled and observed carbon and water fluxes for three stomatal models when fitting an extra empirical model

stomatal model parameter for US-MOz (MOFLUX, deciduous angiosperm forest) flux tower site. (a) Comparison of modeled (y axis) and

observed (x axis) net ecosystem carbon flux (NEE) for Ball et al. (1987) stomatal model (labeled as BBM). Shading represents density; the

darker the hexagon, the more data that fell within the hexagon. The red solid line plots the linear regression of the data, and the black dotted

line plots the 1:1 line. (b) Comparison of NEE for Medlyn et al. (2011) model (labeled as MED). (c) Comparison of NEE for Wang et al.

(2020) model (labeled as OSM). (d) Comparison of ecosystem water flux (ET) for BBM. (e) Comparison of ET for MED. (f) Comparison

of ET for OSM. This figure differs from Fig. 12 in that g1s (equations 4 and 5) for BBM and MED are also fitted.
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4 Solar-induced chlorophyll fluorescence

4.1 Model simulations

We used the TROPOMI SIF retrievals that fell within the region of the flux tower sites to test our model, excluding retrievals

that had a cloud fraction higher than 10% (see Fig. 6 for the region map). For the gymnosperm site, we chose retrievals that had340

at least 50% overlap with a representative area around the flux tower site (a total of 99 data points in year 2018 and 2019); for

the angiosperm site, we chose retrievals that had at least an 80% overlap with the representative site region (a total of 218 points

in year 2018 and 2019). For each valid TROPOMI SIF retrieval, we simulated the SIF emission using the actual sun-sensor

geometry angles with our CliMA Land model (solar zenith angle, viewing zenith angle, and relative azimuth angle).

We first aligned the TROPOMI SIF retrievals with flux tower data (e.g., if the satellite observation occurred at 12:48 PM, we345

aligned the data to a flux tower observation ranging from 12:30 PM to 13:00 PM). With the fitted Vcmax25, Kmax, and Rbase, we

calculated the photosynthetic rate and fluorescence quantum yield at each time step (van der Tol et al., 2014). We then used the

modeled quantum yield to simulate the canopy SIF spectrum for the given sun-sensor geometry. We modeled SIF at 740 nm

for both the gymnosperma and angiosperm forests for year 2018 and 2019, and compared our model simulated SIF740 against

TROPOMI SIF740. We simulated SIF in two scenarios: (i) a constant LAI (same prescribed value as the carbon and water flux350

simulations) was used to simulate SIF throughout the year, and (ii) a time series of LAI from Moderate Resolution Imaging

Spectroradiometer (MODIS) were used (data from Yuan et al., 2011, spatial resolution: 1/20◦, temporal resolution: 8 days).

4.2 Model performance

For both scenarios of LAI (using constant site LAI, or using variable MODIS LAI), modeled SIF well captured the trend of

TROPOMI SIF retrievals (Fig. 15, P < 0.001 for all four linear regressions). When using variable MODIS LAI, modeled355

SIF had better agreement with the SIF retrievals (lower RMSE for both forests; Fig. 15). The statistically significant linear

correlation between modeled and observed SIF suggests that satellite-based remote sensing data has potential in constraining

future land model parameterization.

Our model captured the seasonal cycle of SIF compared to satellite observations, underscoring the potential to constrain

land model parameterization using remote sensing products. Yet, we were not able to obtain a one-to-one relationship between360

modeled and retrieved SIF given the significant intercept (P < 0.001; Fig. 15). There are many potential reasons for the offset,

e.g. retrieval noise (some TROPOMI SIF values were lower than 0), mismatches in the spatial and temporal domain, inaccurate

parameters to model SIF (leaf biomass per area, leaf chlorophyll content, and seasonal changes in leaf area index), and high

sustained non-photochemical quenching (NPQ) at Niwot Ridge due to low temperature (accounting for the sustained NPQ

will make the modeled SIF lower in winter time, namely the points with lower observed SIF; Porcar-Castell, 2011; Raczka365

et al., 2019). Despite all these imperfections, we still found a strong correlation between modeled and satellite-based SIF.

Further, when we used a time series of LAI (Yuan et al., 2011), the agreement between modeled and satellite-based SIF

increased, which indicated the potential of constraining land model parameters using remote sensing based results. Future
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Figure 15. Comparison of modeled and satellite observed solar-induced chlorophyll fluorescence at 740 nm (SIF740). (a) Comparison for

the US-NR1 flux tower site (evergreen gymnosperm forest). The black circles plot the comparison with modeled SIF using a constant site

LAI, and the cyan “+” plot that using a variable MODIS LAI time series. The black line with shaded confidence interval regions plots the

linear regression for black circles (y = 0.40x+ 1.22,R2 = 0.17,P < 0.001). The cyan line with shaded regions plots the linear regression

for cyan symbols (y = 0.39 + 0.65,R2 = 0.14,P < 0.001). (b) Comparison for US-MOz flux tower site (deciduous angiosperm forest).

The linear regressions are y = 0.32x+1.05,R2 = 0.54,P < 0.001 for black circles, and y = 0.55x+0.67,R2 = 0.69,P < 0.001 for cyan

symbols.

research with improved parameterization of our land model and more accurate plant and site traits would likely improve the

model performance.370

5 Conclusions

We implemented and tested a new land surface model that couples a comprehensive canopy radiative transfer scheme with a

stomatal optimization model based on plant hydraulic traits, as well as two empirical stomatal models. We investigated how the

three models performed at two flux tower sites (one dominated by gymnosperm species, and the other dominated by angiosperm

species). We compared model predicted carbon and water fluxes to flux tower estimations, and model predicted SIF to satellite-375

based TROPOMI SIF retrievals. All three stomatal models performed well in predicting site-level carbon fluxes, showing

similar 1:1 correlations and errors among all three models. However, the stomatal optimization model showed better agreement

with water flux observations, given the improved 1:1 comparison with the flux tower observation. In comparison, the empirical

stomatal models underestimated water fluxes and had higher error, probably because of the non-ideal parameterization. Our

model also reproduced the seasonal pattern of canopy SIF, with dynamic ranges being different most likely due to heterogeneity380

in the area around the tower. We concluded that the representation of the land model using the stomatal optimization theory
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along with a more comprehensive RT model has great potential in predicting site-level carbon and water fluxes. Furthermore,

the use of a comprehensive RT scheme allows us to quantitatively and directly link land surface processes to remote sensing,

making it possible to constrain land model parameterization with a broad range of remote sensing datasets. The rapidly growing

regional and global datasets will make it easier to better parameterize and evaluate land surface modeling and better predict the385

future carbon cycle and climate.

Code and data availability. Flux tower dataset are freely available at AmeriFlux (registration required). The gridded MODIS LAI was

available at http://globalchange.bnu.edu.cn/research/laiv6, and we also made available via “GriddingMachine.jl” (https://github.com/CliMA/

GriddingMachine.jl). We refer the reader to the online documentation of “GriddingMachine.jl” for access of the datasets (along with other

high quality gridded datasets such as TROPOMI SIF). We coded our model and did the analysis using Julia (version 1.6.0), and current390

version of the CliMA Land model is available from the project website: https://github.com/CliMA/Land under the Apache 2.0 License. The

exact version of the model used to produce the results used in this paper is archived on Zenodo (Wang, 2021), as are input data and scripts to

run the model and produce the plots for all the simulations presented in this paper (Wang, 2021).
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