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Abstract. Geophysical sensors combined with machine learning algorithms have been used to understand the pedosphere 

system, landscape processes and to model soil attributes. In this research, we used parent material, terrain attributes and data 

from geophysical sensors in different combinations, to test and compare different and novel machine learning algorithms to 20 

model soil attributes. Also, we analyzed the importance of pedoenvironmental variables in predictive models. For that, we 

collected soil physico-chemical and geophysical data (gamma-ray emission from uranium, thorium and potassium, magnetic 

susceptibility and apparent electric conductivity) by three sensors, gamma-ray spectrometer - RS 230, susceptibilimeter 

KT10 – Terraplus and Conductivimeter – EM38 Geonics) at 75 points and, we performed soil analysis afterwards. The 

results showed varying models with the best performance (R2 > 0.2) for clay, sand, Fe2O3, TiO2, SiO2 and Cation Exchange 25 

Capacity prediction. Modeling with selection of covariates at three phases (variance close to zero, removal by correction and 

removal by importance), demonstrated to be adequate to increase the parsimony. The prediction of soil attributes by machine 

learning algorithms demonstrated adequate values for field collected data, without any sample preparation, for most of the 

tested predictors (R2 ranging from 0.20 to 0.50). Also, the use of four regression algorithms proved important, since at least 

one of the predictors used one of the tested algorithms. The performances of the best algorithms for each predictor were 30 

higher than the use of a mean value for the entire area comparing the values of Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE). The best combination of sensors that reached the best model performance to predict soil attributes 

were gamma-ray spectrometer and susceptibilimeter. The most important variables were parent material, digital elevation 

model, standardized height and magnetic susceptibility for most predictions. We concluded that soil attributes can be 

https://doi.org/10.5194/gmd-2021-153
Preprint. Discussion started: 16 July 2021
c© Author(s) 2021. CC BY 4.0 License.



2 

 

efficiently modelled by geophysical data using machine learning techniques and geophysical sensors combinations. The 35 

technique can bring light for future soil mapping with gain of time and environment friendly. 

1 Introduction 

The pedosphere is composed by soils and their connections with hydrosphere, lithosphere, atmosphere and biosphere 

(Targulian et al, 2019). Soils are the result of several processes and factors and their interactions, which produces specific 

soils types or horizons. The main soil processes are weathering and pedogenesis (Breemen and Buurman, 2003; Schaetzl and 40 

Anderson, 2005), while the soil-forming factors are parent material, relief, climate, organisms and time (Jenny, 1994). Their 

interactions during soil genesis results in different soil attributes such as texture, mineralogy, color, structure, base 

saturation, clay activity and others. 

In the last decades, there is a growing demand for soil resource information worldwide  (Amundson et al., 2015; 

Montanarella et al., 2015). Soils are recognized as having a key influence on global issues such as, water availability, food 45 

security, sustainable energy, climate change and environmental degradation (Amundson et al., 2015; Pozza and Field, 2020). 

Understanding the role of spatial variations in surface and subsurface soil is fundamental for its sustainable use as well as 

other connected environmental resources and monitoring (Agbu et al., 1990). Therefore, it is necessary to increase the 

acquisition of information on the functional attributes of soils an ever-growing. To achieve this goal, relevant and reliable 

soil information, applicable from local to global scales is required (Arrouays et al., 2014). 50 

The acquisition of soils data and their attributes are traditionally achieved by traditional soil survey techniques. However, 

new geotechnologies have emerged in the last decades, allowing the acquisition of data at shorter times, with non-invasive 

and accurate methods, such as reflectance spectroscopy, satellite imagery and geophysical techniques (Mello et al., 2020; 

Demattê et al., 2017, 2007; Fioriob, 2013; Fongaro et al., 2018; Mello et al., 2021; Terra et al., 2018a, 2018b). Among these 

technologies, geophysical sensors have been recently used in pedology to understand pedogenesis and the relationship 55 

between these processes and soil attributes (Son et al., 2010; Schuler et al., 2011; Beamish, 2013; McFadden and Scott, 

2013; Sarmast et al., 2017; Reinhardt and Herrmann, 2019). Among these geophysical techniques used, we highlight the 

gamma-spectrometry, magnetic susceptibility (κ) and apparent electrical conductivity (ECa). 

Gamma-ray spectrometry can be defined as the measurements of natural gamma radiation emission from natural emitters, 

such as K40, the daughter radionuclides of U238 and Th232, and total emissions from all elements in soils, rocks and sediments 60 

(Minty, 1988). It is known that weathering and pedogenesis concomitantly with geochemical behavior of each radionuclide 

determine their distribution and concentration in the pedosphere (Dickson and Scott, 1997; Wilford and Minty, 2006; Mello 

et al., 2021). Therefore gamma-ray spectrometry can provide important information for comprehension of soil processes and 

attributes (Reinhardt and Herrmann, 2019), soil texture (Taylor et al., 2002a), mineralogy (Wilford and Minty 2006; 

Barbuena et al. 2013), pH (Wong and Harper, 1999) and organic carbon (Priori et al., 2016) and others. 65 

https://doi.org/10.5194/gmd-2021-153
Preprint. Discussion started: 16 July 2021
c© Author(s) 2021. CC BY 4.0 License.



3 

 

Soil magnetic susceptibility (κ) can be defined as the degree to which soil particles can be magnetized (Rochette et al., 

1992). The κ is related to several pedoenvironmental factors, such as soil mineralogy, lithology and geochemistry of 

ferrimagnetic secondary minerals, mainly magnetite and maghemite (Ayoubi et al., 2018). Also, the κ parameter can be 

related to other soil secondary minerals, like ferrihydrite and hematite (Valaee et al., 2016). The great potential of this 

technique is related to geological studies (Shenggao 2000; Correia et al. 2010), soil texture and organic carbon studies 70 

(Camargo et al., 2014; Jiménez et al., 2017), soil survey (Grimley et al., 2004) and pedogenesis e pedogeomorphological 

processes (Viana et al., 2006; Sarmast et al., 2017; Mello et al., 2020). 

Apparent electrical conductivity (ECa) is the ability of the soil to conduct electrical current, expressed in millisiemens per 

metre. This soil property is related to the presence/amount of solutes in soil solution, which concentration in 1 dS/m is 

equivalent to 10 meq/L (Richards, 1954). Concerning the geophysical methods consideration, the ECa is a geotechnology for 75 

identifying the soil physicochemical attributes and its spatial variation (Corwin et al., 2003). Many different soil attributes 

are related to the ECa such as soil salinity (Narjary et al., 2019), soil texture (Domsch and Giebel, 2004), cation exchange 

capacity (Triantafilis et al., 2009), mineralogy, pore size and distribution, temperature, soil moisture (McNeill, 1992; 

Rhoades et al., 1999;  Bai et al., 2013; Farzamian et al., 2015; Cardoso and Dias, 2017).  

Many sensors scan only the soil surface, disregarding the entire soil tridimensional profile (Xu et al., 2019). Therefore, a 80 

single sensor may not be able or be the best solution to quantify multiple soil attributes. In this context, the concept and use 

of multi-sensor data acquisition and analysis in a complementary way to offer more robust and accurate estimations of a 

number of soil attributes (Xu et al., 2019; Javadi et al., 2021). The analysis of soil data acquired by multiple sensors requires 

a careful interpretation and a mathematical model, which can be considered the base of observed  variation and provides the 

basis for generalization, prediction and interpretation. (Heuvelink and Webster, 2001). 85 

Recently, many models have been used to estimate soil attributes and their spatial distribution from geophysical data 

(gamma-ray, κ and ECa) and soil attributes, including machine learning algorithms, such as Support Vector Machine-SVM 

(Priori et al., 2014; Heggemann et al., 2017; Li et al., 2017; Leng et al., 2018; Zare et al., 2020), Random Forests (Lacoste et 

al., 2011; Viscarra Rossel et al., 2014; Harris and Grunsky, 2015; Sousa et al., 2020), KNN  and artificial neural network 

(ANN) (Ã and Onjia, 2007) and Cubist (Wilford and Thomas, 2012). 90 

According to Batty and Torrens, (2001), the bests models are those capable of explaining the same phenomena using the 

smallest number of variables without loss of performance, following the principle of parsimony - Occam's razor. This 

facilitates the understanding and the faster computer processing (Brungard et al., 2015). In this context, the Recursive 

Feature Elimination (RFE) algorithm may be used for backward selection of optimal subsets of variables, while maintaining 

a satisfactory model performance (Vašát et al., 2017; Hounkpatin et al., 2018).  95 

Some of geophysical sensors are able to detect soil attributes in the upper soil layers (0– 0.50m for gamma-ray by the RS230 

model, 0.02m for magnetic susceptilimeter KT10 Terraplus model and 1.5m for conductivimeter by EM38 model, for 

example), which are explained by naturally occurring soil processes and soil factor forming (Mello et al., 2020; Mello et al., 

2021). However, there is still a gap regarding the identification of the bests covariables and their possible combinations to 
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deepen the knowledge of the soil weathering, genesis and their relation to soil attributes. A standard approach to selecting 100 

the bests input data to soil prediction models has yet to be developed (Levi and Rasmussen, 2014), mainly for geophysical 

sensors, little few used in soil science. The identification of such covariates may improve the understanding of the soil 

processes and attributes interplays, allowing an enhanced comprehension of soils from punctual to landscape scale, 

supporting digital soil mapping and better soil use and management. 

Given this, the research aimed to: i) develop a new methodological framework on modelling soil attributes using combined 105 

data from three different geophysical sensors in five different sensors combinations; ii) using different machine learning 

algorithms for prediction and selection of suitable models for each soil attribute evaluated; iii) evaluating the results and the 

importance of the variables and relate to pedogeomorphological processes. Our main hypothesis is that the combined use of 

three geophysical sensors data affords a better prediction of soil attributes by different machine learning algorithms and 

better model performance. Also, this research can provide an important background for geoscience studies and improving 110 

geophysical and soil survey procedures. 

 

2 Material and methods 

2.1 Study area 

The study area is located on a sugarcane farm of 184 hectares, located in São Paulo State, Brazil (23º 0’ 31.37” to 22º 58’ 115 

53.97” S and 53º 39’ 47.81” to 53º 37’ 25.65” W), in the Capivari River catchment, part of the Paulista Peripheric 

Depression geomorphological unit (Fig. 1). The lithology is mainly composed by Paleozoic sedimentary rocks, dominant by 

Itararé formation (siltites/meta-siltites) crossed by intrusive diabase dykes of the Serra Geral Formation. The lowlands are 

covered by Quaternary alluvial sediments deposited by the Capivari River in ancient fluvial terraces (Fig. 2a). 
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 120 

Figure 1. Study area, collected points and geophysical sensors. A - Gamma-ray spectrometer (Radiation Solution - RS 230); 

B - Susceptibilimeter (KT-10 Terraplus); C - Geonics Ground Conductivity Meter (EM 38). 

 

The heterogeneity of landform and parent materials drove the formation of several soil types (Fig. 2b). Previous soil survey 

and mapping was performed in the study area by expert pedologists (Bazaglia Filho et al., 2013; Nanni and Demattê, 2006), 125 

in which the main soil classes mapped were: Cambisols, Phaeozems, Nitisols, Acrisols and Lixisols (IUSS Working Group 

WRB, 2015). Besides the soil profiles, 75 subsamples from 75 points (0 - 20 cm layer) were collected by augering for 

physicochemical analyses, according to Figure 1.  
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Figure 2. a) Geological compartments of landscape. b) Soil classes: CX: Haplic Cambisols, CY: Fluvic Cambisols, MT: 130 

Luvic Phaozem, NV: Rhodic Nitisol: PA: Xanthic Acrisol, PVA: Rhodic Lixisol. The geological and Soil classes maps were 

adapted from Bazaglia Filho et. al. (2012). d) Slope.c) Digital elevation model.  

 

a) b)

c)

COORDINATE REFERENCE SYSTEM WGS 84
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According to the Köppen classification the region’s climate is subtropical, mesothermal (Cwa), with an average temperature 

from 18 °C (July - Winter) to 22 °C (February - Summer), and mean annual precipitation between 1100 and 1700 mm 135 

(Alvares et al., 2013).  

2.2 Laboratory physico-chemical analysis  

For soil physical analyses, the soil samples were firstly  air-dried, grounded and sieved to 2mm mesh and then, the 

granulometric analysis were performed. After that, clay, silt and sand contents were determined by the densimeter method 

(Camargo et al., 1986). Using the granulometry data, the textural groups were determined following EMBRAPA (2011), 140 

methodology.  

The soil chemical analysis were performed: The exchangeable cations aluminium, calcium and magnesium (Al3+, Ca2+ and 

Mg2+) were determined by KCl solution (1 mol L-1) and quantified by titration (Teixeira et al., 2017). Mehlich‐1 solution 

were used to extract K+, which were quantified by flame photometry. Potential acidity (H+ + Al3) were determined using 

calcium acetate solution (0.5 mol L-1) at pH 7.0 and, for the pH in water determination, the soil:solution ratio of 1:2.5 was 145 

used (Teixeira et al., 2017). More details about the analysis methods, can be found in (EMBRAPA, 2017). The determination 

of soil organic carbon was performed using the Walkley–Black method, by oxidation with potassium the method 

(EMBRAPA, 2017; Pansu, M., Gautheyrou, J., 2006). Total iron content were determined using selective dissolution by 

attack with sulfuric acid (EMBRAPA, 2017; Lim, C.H., Jackson, 1986). The resulting extract was used to determine the 

contents of silicon dioxide (SiO2) and titanium dioxide (TiO2) EMBRAPA (2017) methodology. All other chemical 150 

parameters such as: Base Sum (BS) Cation Exchange Capacity (CEC), Base Saturation (V%) and Aluminum Saturation 

(m%) were determined using the analytical data obtained previously, following the methodology (EMBRAPA, 2017). The 

same methodology for physico-chemical soil analysis was used by  Mello et al., (2020); Mello et al., (2021).  

 

2.3.1 Radionuclides and gamma-ray spectrometry data  155 

The radionuclide K40 was quantified in total amount, measured by the absorption energy (1.46 MeV). The thorium (Th232) 

and uranium (U238) are quantified by absorption energy, (approximately 2.62 MeV and 1.76 MeV, respectively). This 

quantification is indirectly performed through thallium (Tl208) and bismuth (Bi214) derived by radioactive decay, respectively 

for Th232 and U238, which are used by expression eTh and eU (equivalent thorium and uranium respectively). 

For soil gamma spectrometric characterization, we used the near-gamma-ray spectrometer (GM) model Radiation Solution 160 

RS 230 – Radiation Solution INC – Ontario - Canada (Fig. 1A). The sensor is able to quantify the radionuclides eTh and eU 

concentration in parts per million (ppm), while the K40 is quantified in % due to its major content in pedosphere. 

Conventionally, the radionuclides are expressed in mg kg-1 for eU and eTh, while for K40 is used %. The GM detect the 

gamma-ray radiation emission down to 30 - 60cm depth, and varies mainly with soil bulk density and moisture content 

(Wilford et al., 1997; Taylor et al., 2002; Beamish, 2015). 165 
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Firstly, the GM was automatically calibrated by switching on and leaving the sensor on the ground surface for five minutes 

until readings of eU, eTh and, K40 contents be stabilized (Radiation Solutions, 2009). The measurements of radionuclides 

were taken in the “assay-mode” of highest precision for quantification, which the GM was kept at the soil surface for two 

minutes, in each sampling point (79 total collect points) (Fig. 1). The geographic position was taken by a GPS coupled in the 

GM (GPS – Radiation Solution INC – Ontario – Canada – precision of 1m). The collected data in all points were 170 

concatenated with their respective information from the soil physico-chemical analyzes for later geoprocessing. The same 

methodology for gamma-ray spectrometric data acquisition has been applied by Mello et al., (2021). 

 

 2.3.2 Magnetic susceptibility (κ)  

For soil magneitic susceptibility (κ) characterization, surface readings were recorded at all 79 points using a geophysical 175 

susceptibility meter sensor (KT10 – Terraplus) (Fig. 1b). This sensor is able to measure κ to a depth of 2 cm below the soil 

surface, with a precision 10-6 SI units, expressed in m3 kg-1. To perform the readings,  the sensor was firstly calibrated by 

determining the frequency of the outdoor oscillator. Then, we followed the sequence required to obtain the measurements 

performed in three steps: 1- determine the frequency and amplitude of the oscillator in free air; 2 - The frequency and 

amplitude of the oscillator were measured with the coil placed directly on the soil surface (sample) outcrop; 3 – We repeated 180 

the step 1, and then the results were displayed. More information about the procedures see Sales, (2021). We performed the 

readings at scanner mode, which uses the best geometric correlation to direct κ readings, providing fast and accurate 

quantification. We performed three readings in triangulation around each augering/collected point and used the mean value 

of κ in all our analyses. This procedure was adopted to reduce noise. The same methodology for κ readings was performed 

by Mello et al., (2020). 185 

 

2.3.3. Apparent electrical conductivity (ECa) 

The ECa measurements was performed by the conductivity meter Geonics EM38 (Geonics Ltd., Mississauga, Ontario, 

Canada) (McNeill, 1986) (Fig. 1C). The EM38 provides measurement of the quad-phase (conductivity) without any 

requirement for soil-to-instrument contact (Geonics, 2002). The ECa measurements units are reported in mSm−1. 190 

Firstly, the EM38 was appropriately calibrated following the instructions of Heil and Schmidhalter, (2019), section 3.1.1. 

The values of the ECa are a function of calibration, coil orientation, and coil separation (Heil and Schmidhalter, 2019). More 

details about EM38 operation is discussed in Hendrickx and Kachanoski, (2002).  

After calibration, the ECa readings were performed at all 75collection points (Fig. 1), using the EM38 at vertical dipole 

orientation, which provide data from effective soil depth at 1.5 m. The field incursions to collect the data were undertaken in 195 

dry season, bare soil and, at same hour interval during the day to reduce environmental variables influence. Also, all metal 

objects were kept distant from the EM 38 to avoid readings interferences.  

Table 1. Terrain variables generated from the digital elevation model 
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  Cont.. 200 

 

 

Terrain attributes Abbreviations Brief description 

Convergence index CI Convergence/divergence index in relation to runoff 

Cross sectional curvature CSC Measures the curvature perpendicular to the down slope direction 

Flow line curvature FLC Represents the projection of a gradient line to a horizontal plane 

General curvature GC The combination of both plan and profile curvatures 

Hill HI Analytical hill shading 

Hill index HIINDEX Analytical index hill shading 

Longitudinal curvature LC Measures the curvature in the down slope direction 

Mass balance index MBI Balance index between erosion and deposition 

Maximal curvature MAXC Maximum curvature in local normal section 

Mid-slope position MSP Represents the distance from the top to the valley, ranging from 0 to 1 

Minimal curvature MINC Minimum curvature for local normal section 

Multiresolution index of ridge top 

flatness 
MRRTF Indicates flat positions in high altitude areas 

Multiresolution index of valley 

bottom flatness 
MRVBF Indicates flat surfaces at bottom of valley 

Normalized height NH Vertical distance between base and ridge of normalized slope 

Plan curvature PLANC 
Described as the curvature of the hypothetical contour line passing through 
a specific cell 

Profile curvature PROC Describes surface curvature in the direction of the steepest incline 

Slope S Represents local angular slope 

Slope height SH Vertical distance between base and ridge of slope 

Standardized height STANH Vertical distance between base and standardized slope index 

Surface specific points SSP Indicates differences between specific surface shift points 

Tangential curvature TANC Measured in the normal plane in a direction perpendicular to the gradient 

Terrain ruggedness index TRI Quantitative index of topography heterogeneity 

Terrain surface convexity TSC 
Ratio of the number of cells that have positive curvature to the number of 

all valid cells within a specified search radius 

Terrain surface texture TST Splits surface texture into 8, 12, or 16 classes 

Total curvature TC General measure of surface curvature 
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Cont. table 1 

Terrain attributes Abbreviations Brief description 

Topographic position index TPI 
Difference between a point elevation with 

surrounding elevation 

Valley depth VD 
Calculation of vertical distance at drainage 

base level 

Valley VA 
Calculation fuzzy valley using the Top Hat 

approach 

Valley Index VA 
Calculation fuzzy valley index using the 

Top Hat approach 

Topographic wetness index TWI 
Describes the tendency of each cell to 

accumulate water in relief 

 

2.3.5.  Modelling processing 205 

The modeling process is demonstrated in the flowchart (Fig. 3). The modeling can be divided into two parts: selection of 

covariates and training/test of the data. In the selection phase, the algorithm tries to produce the ideal set of covariates, 

following the principle of parsimony. This is performed by removing highly correlated variables, evaluating the importance 

of covariables and remove variables that have minor importance in training the model in the prediction process of each 

algorithm. Darst et al., (2018), considered joint application of the methods of selection of covariates by correlation and 210 

importance (RFE), since only the use RFE reduces the effect of highly correlated covariates, but does not eliminate it.  
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Figure 3. Methodological flowchart showing the sequence of methodologies applied for soil and geophysical attributes 

prediction. The most accurate model between Cubist, Random Forests (RF), Support Vector Machines (SVM), Earth and 

Linear Models (LM) was selected to model and map the geophysical and soil attributes maps. 215 
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The correlation selection process was used to calculate the correlation of the set of covariates and covariables, which were 

evaluated with a correlation greater than the limit (Pearson test > 95%). The pairs that showed higher values are evaluated 

due to their correlation with the complete set of covariates, eliminating the one with the highest value of the sum of the 

absolute correlation with the other covariables that started in this process. For this phase we  applied the cor and find 220 

correlation functions of the “stats” (Hothorn, 2021) and “caret” (Kuhn et al., 2020) packages, in R software, respectively 

(Kuhn and Johnson, 2013). In this phase, the covariables: curv_cross_secational and curv_longitudinal were eliminated for 

all tested sensor sets. The set of covariables that passed this phase joined the samples followed by the separation of samples 

from training and test. 

The separation of training and test was performed using the “nested” leave one out (nested LOOCV) method (Clevers et al., 225 

2007; Honeyborne et al., 2016; Rytky et al., 2020). It is important to highlight that our number of soil samples and readings 

with geophysical sensors is small (75), due to several difficulties encountered in the field in data collection (high sugar cane 

size, sloping terrain, dense forest, etc.). In this sense, the nested LOOCV method is indicated for small sample sets (values 

near 100 samples) to which other validation/test methods (as holdout validation) would not be viable due to the low sample 

set in the test and /or training group (Ferreira et al., 2021). This is one of the main innovations of this research. 230 

 The nested LOOCV method is a double loop process, where in the first loop the model is trained with a data set of size n-1, 

and the test is done in the second loop with the missing sample and used to validate the training performance (Jung et al., 

2020; Neogi and Dauwels, 2019). The final result of the performance of the machine learning algorithm will be the mean 

performance indicators for all points (Training / test). This is a robust method to evaluate the performance of the algorithm 

and detects possible samples with problems in the collections or outliers. The training set generated in each loop went 235 

through the process of selecting covariates for importance and subsequent training. 

The selection of covariates by importance is made using the back forward method using the Recursive Feature Elimination 

(RFE) function contained in the “caret” package (Kuhn and Johnson, 2013). The RFE is unique for each algorithm, the result 

being the set of selected covariates used in the prediction of the final model in the same algorithm. The RFE is a selection 

method that eliminates the variables that least contribute to the model, based on a measure of importance for each algorithm 240 

(Kuhn and Johnson, 2013). The algorithm will be applied to complete sets of data (variable by the set of tested sensors) and 

18 more subsets 5,6,7, ... 19, 20 and 30 covariables. Reaching a set of fewer variables (more parsimonious), achieving better 

prediction performance. The optimization of the ideal covariate subset was based on leave one out (LOOCV), a repetition 

and 5 values of each of the internal hype parameters of each tested algorithm (tuneLength). The hyperparameters of each 

algorithm are described in the caret package manual in chapter 6. “Models described” available at 245 

https://topepo.github.io/caret/train-models-by-tag.html. The metric for choosing the best subset for each model were R². For 

this work, five algorithms were tested: Random Forests (RF), Cubist (C), Support Vector Machines (SVM), Generalized 

Linear Models (lm). The choice was made with the use of families of different algorithms in mind, and using linear and non-
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linear algorithms. The algorithms used are commonly used in soil attribute mapping studies. At the end of the selection 

phase by importance, the most optimized set of covariates for training was generated for each algorithm.  250 

The training was performed with the variables selected in the previous step each tested algorithm by using leave one out 

(LOOCV) and ten repetitions. Five values of each of the internal hype parameters of each tested algorithm were also tested 

(tuneLength). At the end of the training phase, a sample prediction was made that was not used in the training and the result 

was saved for the performance study. The performance of the prediction of the algorithms and set of sensors was performed 

with a set of samples from the outer loop of the nested LOOCV method. Three evaluation parameters are used: R-square - 255 

R2 (Eq. (1)), root mean squared error - RMSE (Eq. (2)), mean absolute error - MAE, (Eq. (3)). 

 

 R² = 
[∑(Qpred – Qpred̅̅ ̅̅ ̅̅ ̅̅ )×(Qobs – Qobs̅̅ ̅̅ ̅̅ ̅)]

2

[∑(Qpred - Qpred̅̅ ̅̅ ̅̅ ̅̅ )2]×[∑(Qobs - Qobs̅̅ ̅̅ ̅̅ ̅)2]
 (1) 

 

 RMSE = √
1

n
× ∑(Qobs – Qpred)2 (2) 

   

 

MAE = 
1

n
× ∑|Qpred – Qobs| 

 
(3) 

For comparison purposes, null model values (NULL_RMSE and NULL_MAE) were also calculated. The null model 

considers using the average value quantified by the collected samples (EQ. 4 and EQ. 5). This methodology is widely used 260 

and spatialization processes in kriging when the variable in which spatialization is desired has spatial dependence (pure 

nugget effect). 

𝑅𝑀𝑆𝐸_𝑁𝑈𝐿𝐿 = [
1

𝑁
∑ (𝑂𝑚 − 𝑂𝑖)

2𝑁
𝑖=1 ]

1

2
  (EQ.4) 

𝑁𝑈𝐿𝐿_𝑀𝐴𝐸 =
1

n
× ∑ |𝑄𝑡𝑟𝑎𝑖𝑛𝑖 – 𝑄𝑜𝑏𝑠𝑖|  (EQ.5) 

 265 

The NULL_RMSE and NULL_MAE values lower than those observed in the prediction of the algorithm in the validation 

phase show that the use of mean of the samples of the desired propriety consist with the model created by the algorithms of 

machine learning. The NULL_RMSE and NULL_MAE were calculated using the nullMode function of the caret package 

(Kuhn et al., 2020). 
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The final result of the performance of the algorithms of each attribute was made using the 75 loops, the training results being 270 

the average of the performance and the results of the test samples calculated from the 75 external loops results using 

equations 1, 2 and 3. The importance of the algorithms was calculated by the caret package (Kuhn and Johnson, 2013), each 

model presents its creation methodology. The final importance for each algorithm and attribute, was created from the 

importance created in the loop, being the average of the importance of the 75 repetitions. 

 275 

3 Results 

3.1. Geophysical sensors combinations, models performance, uncertainty and covariates importance 

The worst performance in modeling soil attributes occurred excluding the use of geophysical sensors, where only parent 

material and terrain attributes were used (Table 2). In this case, the algorithms selected particular groups of terrain attributes 

for modelling each soil attributes (Table 1). 280 

 

Table 2. Models’ performance for non-use geophysical sensors, for all soil attributes, based on R2, RMSE, MAE and 

NULL_RMSE 

 

 285 

 

The Cubist algorithm showed the best performance to predict soil texture, clay (R2 of 0.386) and sand (R2 of 0.292) content, 

with the highest R2 and lowest RMSE and MAE, concomitantly (Table 2). The importance of covariates to sand content 

Clay Sand Fe2O3 TiO2 SiO2 CEC BS OM

Random Forest 0.38 0.284 0.159 0.12 0.12 0.149 0.131 0.000

Cubist 0.386 0.292 0.12 0.125 0.174 0.053 0.028 0.001

SVM 0.259 0.278 0.279 0.226 0.128 0.195 0.113 0.004

LM 0.285 0.225 0.217 0.16 0.247 0.002 0.003 0.051

Random Forest 136.778 185.398 61.686 12.229 41.701 41.3 20.206 8.469

Cubist 140.103 192.867 66.432 12.424 41.323 50.065 22.853 8.126

SVM 154.406 190.151 59.453 11.621 42.595 41.141 20.396 8.045

LM 156.646 215.355 66.357 13.118 38.976 997.529 1189.64 7.702

NULL_RMSE 140.885 176.521 53.341 10.239 35.450 36.139 17.142 6.158

Random Forest 110.485 149.205 40.742 8.206 31.757 28.931 16.3 6.357

Cubist 108.284 148.8 44.028 8.294 31.715 33.168 18.271 4.813

SVM 122.397 147.07 36.812 7.051 31.432 27.072 17.012 5.992

LM 119.139 169.218 43.673 8.749 29.458 149.114 158.638 5.719

NULL_MAE 119.751 153.803 41.578 8.074 29.534 27.187 14.425 4.813

RMSE2

MAE

Non-use of geophysical sensors

R2
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prediction showed that minimal curvature, was the most important variable, contributing 100% on the decreasing of the 

mean accuracy. On the other hand, for clay content the most important variable was parent material. In addition, for clay and 290 

sand the tangential curvature and DEM showed importance higher than 50% (Fig. 4). 

The SVM algorithm presented moderate performance, for Fe2O3 (R
2 0.279), TiO2 (R2 0.226); whereas for SiO2, the LM 

presented the best result, also with a moderate performance (R2 0.247) (Table 2). The selected models presented the highest 

R2 and lowest RMSE and MAE, simultaneously. The most important covariates for Fe2O3 and TiO2 prediction by the SVM 

model, were parent material (100%) and DEM (more than 50%). For SiO2 prediction by LM model, the most important 295 

covariates were DEM (100%) and standardized height (90%), while parent material contributed with 40% (Fig. 4). 

For cation exchange capacity (CEC) the model with the best performance, after 75 runs was SVM, (R2 of 0.223) (Table 2). 

The most important covariates for CEC prediction to mean accuracy were DEM (100%), topographic wetness index (80%) 

and parent material (75%) (Fig. 4).  
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 300 

Figure 4.  Variable Importance for Non-use of geophysical sensors (only variables that contributed more than 50% are 

presented here (for further details see supplementary material). 
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In all models, there was a very low performance in the prediction of base saturation (BS) and organic matter (OM), with R2 

between 0.001 and 0.1 (Table 2, 3, 4, 5 and 6).  305 

The different combinations of geophysical sensors that contributed to moderate modeling performance of soil attributes 

were: Susceptibilimeter + Conductivimeter (S + C), Gamma-ray spectrometer + Conductivimeter (G + C), Combined use of 

the three geophysical sensors (G + S + C) (Tables 3, 4 and 6, respectively). The R2 values presented some variation between 

the R2 of best combination of geophysical sensors and the lowest R2 values from the without the use geophysical sensors in 

predictive models (Tables 3, 4 and 6). Among all the values of R2 evaluated for this session, we consider all the highest 310 

values and, among the highest values the lowest values we considered the worst result. 

 

Table 3. Models’ performance for combined use of susceptibilimeter and conductivimeter, for all soil attributes, based on 

R2, RMSE, MAE and NULL_RMSE 

 315 

 

 

Clay and sand content in g.kg-1 ; Fe2O3, TiO2 and SiO2 in g.kg-1 CEC in mmolc dm-3; Abbreviations: CEC: Cation Exchange 

Capacity; OM g.dm-3; BS: mmolc dm-3. 

 320 

 

 

Susceptibilimeter + Conductivimeter

Clay Sand Fe2O3 TiO2 SiO2 CEC BS OM

Random Forest 0.444 0.334 0.314 0.316 0.141 0.139 0.138 0.032

Cubist 0.433 0.365 0.407 0.338 0.25 0.178 0.079 0.077

SVM 0.484 0.322 0.153 0.263 0.169 0.223 0.065 0.039

LM 0.394 0.312 0.383 0.262 0.101 0.124 0.002 0.056

Random Forest 129.619 178.22 55.378 10.531 41.116 41.878 19.821 8.079

Cubist 136.834 178.253 52.416 10.583 39.138 41.91 21.543 7.494

SVM 127.598 181.811 64.573 11.052 42.22 40.134 22.307 7.924

LM 139.463 190.515 54.36 11.622 46.013 48.52 1219.091 8.007

NULL_RMSE 140.885 176.521 53.341 10.239 35.450 36.139 17.142 6.158

Random Forest 102.841 145.441 34.357 6.457 30.54 29.354 15.824 5.949

Cubist 105.12 139.737 32.246 6.593 28.954 28.912 17.372 5.713

SVM 92.812 146.016 40.303 6.65 31.153 26.689 18.953 6.108

LM 106.083 153.815 36.79 8.199 33.218 33.024 161.284 6.04

NULL_RMSE 119.751 153.803 41.578 8.074 29.534 27.187 14.425 4.813

RMSE2

MAE

R2
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Table 4. Models’ performance for combined use of gamma-ray spectrometer and conductivimeter, for all soil attributes, 

based on R2, RMSE, MAE and NULL_RMSE 

 325 

 

 

Clay and sand content in g.kg-1 ; Fe2O3, TiO2 and SiO2 in g.kg-1 CEC in mmolc dm-3; Abbreviations: CEC: Cation Exchange 

Capacity; OM g.dm-3; BS: mmolc dm-3. 

 330 

For clay, the model with the best performance was the SVM algorithm (R2 0.484) by S + C (Table 3), while the worst was 

by the Cubist algorithm (R2 0.38) by (G + S + C) (Table 6). For sand, the best model performance was the Cubist algorithm 

(R2 0.365) by S + C (Table 3) and the worst also by Cubist (R2 0.387) by (G + S + C). The most important covariates for 

clay prediction by the SVM model in S + C sensors combination were magnetic susceptibility (κ) (100%) and parent material 

(90%) (Fig. 5). For clay prediction by the Cubist model in G + S + C sensors combination, the most important covariate was 335 

parent material (100%) (Fig. 6). With respect to sand prediction, the most important covariates by the Cubist model in S + C 

were minimal curvature (100%) and magnetic susceptibility (κ) (80%) (Fig. 5) On the other hand, for G + S + C, the 

covariates that most contributed for sand prediction were DEM (100%), general curvature (80%) and minimal curvature 

(75%) (Fig. 6). 

Clay Sand Fe2O3 TiO2 SiO2 CEC BS OM

Random Forest 0.378 0.318 0.22 0.248 0.16 0.14 0.133 0.001

Cubist 0.433 0.265 0.282 0.189 0.163 0.077 0.065 0

SVM 0.406 0.3 0.158 0.048 0.17 0.241 0.068 0.059

LM 0.338 0.188 0.249 0.171 0.178 0.002 0.003 0.047

Random Forest 137.097 179.808 58.829 11.011 40.256 41.464 19.889 8.567

Cubist 134.231 197.657 56.918 12.026 42.209 47.809 21.704 8.356

SVM 134.035 182.644 61.758 13.076 40.493 40.463 21.586 7.72

LM 146.116 225.909 62.442 13.035 41.555 1499.11 33.64 7.738

NULL_RMSE 140.885 176.521 53.341 10.239 35.450 36.139 17.142 6.158

Random Forest 108.636 145.511 38.867 7.265 31.095 28.539 15.812 6.443

Cubist 105.954 160.722 37.335 8.241 32.419 33.06 17.471 6.07

SVM 106.779 148.469 39.185 8.197 32.189 26.449 17.325 5.578

LM 117.816 181.07 42.121 9.198 32.035 207.159 24.294 5.806

NULL_RMSE 119.751 153.803 41.578 8.074 29.534 27.187 14.425 4.813

RMSE2

MAE

R2

Gamma-ray spectrometer + Conductivimeter
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 340 

Figure 5.  Variable Importance for Susceptibilimeter + Conductivimeter sensors (only variables that contributed more than 

50% are presented here (for further details see supplementary material). 
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Figure 6.  Variable Importance for Combined use of the three geophysical sensors (only variables that contributed more than 

50% are presented here (for further details see supplementary material). 345 
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For the elemental composition, the models employed greatly variable performance.For Fe2O3 the best model performance, 

was reached by the LM algorithm (R2 0.441) by G + S + C (Table 6), while the worst performance was by the Cubist (R2 

0.282) by G + C (Table 4). With respect to TiO2, the best model performance was by Cubist algorithm (R2 0.358) by G + S 350 

+ C (Table 6) and the worst was RF (R2 0.248) by G + C (Table 4). For SiO2, the best model performance was the Cubist 

algorithm (R2 0.250) by S + C (Table 3) and the worst was the LM (R2 0.178) by G + C (Table 4). The importance of 

covariates in predicting Fe2O3 by LM in G + S + C, demonstrated that magnetic susceptibility (κ), standardized height and 

DEM were the most important variables, contributing 100%, 65%, 55%, respectively (Fig. 6). For Fe2O3 predicted by the 

Cubist algorithm by G + C, the most important covariates were standardized height, parent material, ECa and DEM (100%) 355 

(Fig. 7). For TiO2 prediction by the Cubist algorithm by G +S + C the most important covariate was magnetic susceptibility 

(κ) (100%) (Fig. 6), while for the RF algorithm by G + C were parent material (100%) and ECa (75%) (Fig. 7). In relation to 

SiO2 prediction by the Cubist by S + C, the most important covariates were standardized height, mid-slope position magnetic 

susceptibility (κ) and DEM (100%) (Fig. 5), while SiO2 predicted by the LM algorithm by G + C were DEM and 

standardized height (100% and 65%, respectively) to mean accuracy (Fig. 7). 360 
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Figure 7.  Variable Importance for Gamma-ray spectrometer + Conductivimeter sensors (only variables that contributed 

more than 50% are presented here (for further details see supplementary material). 
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In relation to CEC, the LM algorithm was the best model (R2 0.317) by G + S + C (Table 6) and the worst was the SVM 365 

algorithm (R2 0.223) by S + C (Table 3). The most important covariate for prediction of CEC by LM algorithm by G + S + 

C and by S + C was magnetic susceptibility (κ) (100%) (Fig. 6 and 5). 

Overall, the best combination of geophysical sensors, which allowed the best model performance for different algorithms in 

the prediction of soil attributes, was Gamma-ray spectrometer + Susceptibilimeter (G + S) (Table 5). 

 370 

Table 5. Models’ performance for combined use of gamma-ray spectrometer and susceptibilimeter, for all soil attributes, 

based on R2, RMSE, MAE and NULL_RMSE 

 

 

Clay and sand content in g.kg-1 ; Fe2O3, TiO2 and SiO2 in g.kg-1 CEC in mmolc dm-3; Abbreviations: CEC: Cation Exchange 375 

Capacity; OM g.dm-3; BS: mmolc dm-3. 

 

 

 

 380 

 

 

 

Gamma-ray spectrometer + Susceptibilimeter

Clay Sand Fe2O3 TiO2 SiO2 CEC BS OM

Random Forest 0.465 0.422 0.36 0.308 0.159 0.147 0.169 0.046

Cubist 0.441 0.152 0.426 0.282 0.207 0.152 0.082 0.033

SVM 0.494 0.367 0.096 0.284 0.169 0.296 0.112 0.028

LM 0.366 0.233 0.47 0.328 0.167 0.303 0.002 0.034

Random Forest 127.149 165.624 53.418 10.724 40.898 41.902 19.294 7.800

Cubist 132.977 244.635 52.737 11.37 40.244 44.296 21.318 7.842

SVM 123.84 175.35 67.759 10.846 42.207 38.723 20.856 7.81

LM 148.11 202.104 48.513 10.659 42.993 37.645 1024.32 8.131

NULL_RMSE 140.885 176.521 53.341 10.239 35.450 36.139 17.142 6.158

Random Forest 102.229 134.525 33.284 6.548 30.394 28.977 15.597 5.805

Cubist 105.123 168.957 32.411 6.573 29.691 30.945 17.321 5.836

SVM 97.173 140.318 42.282 6.447 30.396 25.376 16.96 5.966

LM 117.097 166.083 33.124 7.049 32.951 25.815 137.422 6.262

NULL_RMSE 119.751 153.803 41.578 8.074 29.534 27.187 14.425 4.813

RMSE2

MAE

R2
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Table 6. Models’ performance for all combined use of geophysical sensors, for all soil attributes, based on R2, RMSE, MAE 

and NULL_RMSE 385 

 

 

 

Clay and sand content in g.kg-1 ; Fe2O3, TiO2 and SiO2 in g.kg-1 CEC in mmolc dm-3; Abbreviations: CEC: Cation Exchange 

Capacity; OM g.dm-3; BS: mmolc dm-3. 390 

 

For soil texture, the SVM and RF algorithms, showed the best performance for clay (R2 0.494) and sand (R2 0.422), 

respectively, by G + S, with the highest R2 and lowest RMSE and MAE, simultaneously (Table 5). The importance of 

covariates in predicting soil texture by the SVM (for clay) and the RF (for sand) demonstrated that, magnetic susceptibility 

(κ) was the most important covariate (100%). In addition, parent material contributed 60% for clay prediction and DEM 60% 395 

for sand prediction (Fig. 8). 

The LM algorithm presented the best performance for Fe2O3 (R
2 0.470) and TiO2 (R

2 0.328), by G + S, while for SiO2 was 

the Cubist algorithm (R2 0.207), also by G + S (Table 5). The most important covariates for Fe2O3 and TiO2 prediction by 

LM by G + S were magnetic susceptibility (κ) and standardized height (100% and 60%, respectively for both) (Fig. 8). For 

SiO2 prediction by the Cubist by G + S, the most important covariates were mid-slope position and magnetic susceptibility 400 

(κ) (100% for both) (Fig. 8). 

For CEC, the best model performance was the LM algorithm (R2 0.303) by G + S (Table 5). In this case, the covariates that 

most contributed to model prediction were magnetic susceptibility (κ) (100%) and DEM (60%) (Fig. 8). 

Combined use of the three geophysical sensors

Clay Sand Fe2O3 TiO2 SiO2 CEC BS OM

Random Forest 0.356 0.318 0.281 0.322 0.162 0.171 0.122 0.003

Cubist 0.387 0.322 0.406 0.358 0.212 0.266 0.097 0.073

SVM 0.331 0.278 0.309 0.267 0.21 0.246 0.107 0.002

LM 0.258 0.129 0.441 0.252 0.125 0.317 0.002 0.047

Random Forest 139.61 180.339 57.225 10.472 40.642 41.451 19.951 8.234

Cubist 139.41 188.745 52.66 10.547 40.534 39.226 21.749 7.569

SVM 144.532 189.768 57.589 11.053 40.355 39.815 21.178 8.134

LM 160.894 256.078 50.038 11.499 43.949 37.134 1045.896 7.752

NULL_RMSE 140.885 176.521 53.341 10.239 35.450 36.139 17.142 6.158

Random Forest 112.126 143.98 35.597 6.414 30.215 29.014 15.887 6.223

Cubist 108.346 145.661 32.751 6.541 30.197 27.169 17.694 5.854

SVM 117.645 145.187 35.387 6.7 30.001 26.201 17.025 5.945

LM 120.83 198.059 34.724 8.102 33.649 25.273 140.716 5.798

NULL_RMSE 119.751 153.803 41.578 8.074 29.534 27.187 14.425 4.813

RMSE2

MAE

R2
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Figure 8.  Variable Importance for Gamma-ray spectrometer + Susceptibilimeter sensors (only variables that contributed 405 

more than 50% are presented here (for further details see supplementary material). 
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4 Discussion 

4.1. Geophysical sensors combinations, models performance and uncertainty 

The methodological approach optimized the prediction of soil variables by applying different geophysical sensors 410 

combination, parent material and terrain attributes for selecting covariates and models, as well as for assessing prediction 

uncertainty.  

In general, without the use of geophysical sensors the poorest results were obtained, in terms of R2, RMSE and MAE, for all 

the prediction algorithms used for modeling soil attributes (Table 2). These results are consistent with Frihy et al., (1995) 

who also compared combined use and the non-use of sensors to model geochemical attributes of soil by the Cubist algorithm 415 

and obtained the worst result without using the sensors. The worst performance of the models can be attributed to a very 

complex interaction between soil forming factors and processes, determining soil attributes (Jenny, 1994).  

The moderate performance of the models can be attributed to the different combinations of the geophysical sensors pairwise, 

and the different data presented by the sensors contributed in different ways to the modelling process. In this concern, 

O’Rourke et al., (2016) also demonstrated a moderate performance of the models (R2 ranging from 0.21 to 0.94) when using 420 

data from the VisNir and, with  R2 ranging from 0.61 to 0.94, when using XRF sensor, to model soil attributes. The 

explanation can be related to correlations of different data provided by different sensors and, their relation with soil 

attributes. 

The best combination of geophysical sensors was Gamma-ray spectrometer + Susceptibilimeter (G+S), with the highest 

values of R2 and lowest values of RMSE and MAE, concomitantly, among all combinations of geophysical sensors and 425 

algorithms used in the modeling processes (Table 5). Probably the explanation lies in the fact that the gamma-ray 

spectrometer and susceptibilimeter are more closely associated with pedogenesis, pedogeomorphology and soil attributes, as 

recently demonstrated by Mello et al. (2020); Mello et al. (2021), who modeled soil attributes such as texture, Fe2O3, TiO2, 

SiO2 and CEC in relation to Thorium, Uranium and Potassium (K40) levels and magnetic susceptibility. 

In general, the Cubist algorithm was the best model for clay and sand content prediction, (Table 7). Similar results were 430 

found by Greve and Malone, (2013); Ballabio et al., (2016); Nawar et al., (2016) and Silva, (2019) who used the Cubist and 

Earth algorithm to predict soil texture using different data source (3D imagery, Land Use and Cover Area frame Statistical 

survey and reflectance spectroscopy), reaching satisfactory performance. In all of these models the R2 was not greater than 

0.5 in all cases. The probable explanation is the small variation or limited distribution of the data set, which caused a poor 

prediction in the modeling. Zhang and Hartemink, (2020), states that textural classes with fewer samples presented more 435 

unstable prediction performances than those with more samples, which agree with our results. 

 

 

 

 440 
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Table 7. Number of times that each model achieved the best performance for each soil attribute 

Soil attributes 
R2 

Random Forest Cubist SVM LM 

Clay  3 2  

Sand 2 3   

Fe2O3  2 1 2 

TiO2 1 2 1 2 

SiO2  3  1 

CEC   3 2 

Clay and sand content in g.kg-1 ; Fe2O3, TiO2 and SiO2 in g.kg-1 CEC in mmolc dm-3; Abbreviations: CEC: Cation Exchange 

Capacity 

 

The better model performance for elemental composition (Fe2O3, TiO2 and SiO2) was the Cubist (Table 7) with a R2 (0.2 – 445 

0.47). This is contrasting with results obtained by Henrique et al., (2018), who showed that the best models for predicting 

soil mineralogy Fe2O3 and TiO2 (R
2 0.89 and 0.96, respectively) and RF only for Fe2O3 (R

2 0.95) by pXRF was the simple 

linear regression. The R2 variation in our results for G + S combination is probably related to low correlation with parent 

material and consequently with soil mineralogy, or to the low representativeness by the limited number of samples, and high 

soil variability (Fiorio, 2013). However, it is important to highlight that in-situ have many intrinsic environmental influences 450 

that can interfere in modelling processes. It can justify the low R2 values obtained. For soil mineralogical attributes predicted 

by machine learning algorithms, results can be classified as satisfactory from 0.2 to 0.5, as for preliminary evaluation, since 

these values present more informative results (Beckett, 1971; Dobos, 2003; Malone et al., 2009). According to Nanni and 

Demattê (2006), the R2 may be explained by standardized laboratory conditions during their determination, which have less 

environmental interference compared with direct field methods.  455 

For CEC the best model performance was SVM (R2 0.296) (Table 5). This results is corroborated  by Liao et al., (2014), 

who compared the models performance of  multiple stepwise regression, artificial neural network models and SVM for CEC 

prediction, and attributed their results to a nonlinear relationship between CEC and soil physicochemical properties. In 

addition, other study (Jafarzadeh et al., 2016) demonstrated that, despite of the ability of SVM to predict CEC in acceptable 

limits, there is a poor performance in extrapolating the maximum and minimum values of CEC data. Despite this, 460 

uncertainties estimated for SVM predictions may not be associated with an incorrect classification. As pointed out by 

Cracknell and Reading, (2013). 

Even for the best combination of sensors (G + S) and the overall models’ performance, the R2 values were not greater than 

0.5 (Table 5). Models generated by field data, without sample preparation, R2 values varying between 0.20 - 0.50 can be 

considered satisfactory and reliable results (Dobos, 2003; Malone et al., 2009). In our study, low R2 values can be related to 465 
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the limited number of collecting points or field distribution, which does not represent the spatial variation of soil attributes, 

in agreement with Johnston et al. (1997) and Lesch et al. (1992), who evaluated soil salinity. 

The best results for predictors of soil attributes through geophysical data, have the lowest values when compared to the 

values of NULL_RMSE and NULL_MAE. This demonstrates that the use of machine learning models has lesser errors than 

the use of means values for the entire area (Table 5) so that it shows better performance and accuracy. 470 

There are little studies using NULL_RMSE and NULL_MAE as parameters for model evaluation and decision making. 

These values can be used to evaluate the performance of the models. Algorithms that have RMSE and MAE values greater 

than the values found in the NULL method, perform less than the use of the mean value for the entire area. The values of 

NULL_RMSE and NULL_MAE can be used concurrently with kriging to evaluate the performance of the models. However, 

we could not apply ordinary kriging in our case because the most predictors did not have spatial dependence (pure nugget 475 

effect), as demonstrated by Mello et al., (2021). 

 

4.1.2 Variables importance, models performance and pedogeomorphology 

In general, for all geophysical sensor combinations, the majority of terrain attributes used did influence significatively sand 

and clay content prediction (Fig. 4, 5, 6 and 8). However, in most cases parent material and magnetic susceptibility strongly 480 

influences clay content prediction, except for G + C (Fig. 7). Ließ et al. (2012) found that the best performance was by the 

RF model with altitude and overland flow distance strongly affecting the model performance. According to Bauer (2010), 

the greater relation sand/clay ratio upslope is explained by selective transport of fine material downslope, whereas in the 

present study, clay content increased by the influence of parent material (diabase) as demonstrated by Mello et al. (2020). 

The magnetic susceptibility (κ), followed by DEM and parent material were key the variables that contributed to sand and 485 

clay content prediction by RF and SVM, respectively for G + S (Fig. 8). Siqueira et al. (2010) and  Mello et al. (2020) found 

a positive correlation between soil magnetic susceptibility and clay content and a negative correlation between magnetic 

susceptibility and sand content. In fact, the mineralogical composition of parent material strongly affects soil magnetic 

susceptibility (Ayoubi et al., 2018), mainly in tropical soils under top of basalt spills (Da Costa et al., 1999), where our study 

was undertaken. 490 

In general, for Fe2O3 and TiO2 the most important variables were parent material, magnetic susceptibility and DEM, which in 

most cases contributed 100% (Fig. 4, 5, 6, 7 and 8). In fact, the mineralogical composition of the parent material and 

pedoenvironmental conditions strongly influences the amount of Fe/Ti oxides in soils (Schwertmann and Taylor, 1989; 

Kämpf and Curi, 2000; Bigham et al., 2002), and faster redistributed by erosion downslope (Mello et al., 2020). Also, the 

mineralogical composition of parent material (Mullins, 1977; Ayoubi et al., 2018) and landform evolution (Blundell et al., 495 

2009; Sarmast et al., 2017) controls the magnetic susceptibility of soil. Since the sensors used record the surface response 

and topography effect, it is expected that the most important variables indicated by the models would be related to surface 

processes. For the best combination of sensors (G + S), magnetic susceptibility and standardized height were more important 

variables in the prediction of Fe2O3 (100%) and TiO2 (55%) contents (Fig. 8), corroborating the expected surface processes 
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and materials in the magnetic susceptibility of the soil (Shenggao, 2000; Damaceno et al., 2017) and the relief in the 500 

distribution of these materials (De Jong et al., 2000). 

For SiO2, the most important variable was DEM which in most of cases contributed 100% (Fig. 4, 5, 6 and 7). The levels of 

SiO2 in soil is directly related to  the nature of parent material and erosion processes at different topographic positions at the 

landscape (Bockheim et al., 2014; Breemen and Buurman, 2003). This can explain the greater contribution of the DEM in 

the prediction models. For the best sensor combination (G + S), the variable that most contributed was mid-slope position, 505 

which also is related to topographic features. 

For CEC, the variables DEM and magnetic susceptibility were the most important, contributing 100% in most of cases (Fig. 

4, 5, 6, 7 and 8). This can be explained by the high correlation between magnetic susceptibility and clay content, and that  

with CEC (Siqueira et al., 2010; de Souza Bahia et al., 2017; Mello et al., 2020). They vary with parent material and surface 

geomorphic processes, concentrating the rich ferrimagnetic minerals (Frihy et al., 1995; Mello et al., 2020). 510 

Considering that the gamma spectrometer sensor is composed of three channels (eU, eTh and K40), we can call it “three 

sensors”. Thus, considering the combination of sensors used, it is possible to create a performance graph of the modeling by 

the number of sensors used through learning curves (Fig. 9). A learning curve shows a measure of predictive performance of 

a given domain as a function of some measure of varying amounts of learning effort (Perlich, 2010). In our case, the varying 

amounts were the number of sensors: non-use of geophysical sensors (0 sensors), S + C (2 sensors), G + S (4 sensors) and S 515 

+ G + C (5 sensors). In this analysis, the combination of G + C sensors will not be used because they present the same 

number of G + S sensors (4 sensors). However, the combination G + C presented lower results than those for G + S.  

The results show that for 5 soil properties (clay, sand, CEC, Fe2O3 and SiO3), the best results did not occur with a greater 

number of sensors, showing that increasing number of covariables can lead to lower performance (Fig. 9). This fact is 

associated with the addition of a new sensor as a covariate that may be leading to conflicting information to the set of other 520 

sensors found, where the ECa may have presented conflicting values with the sensors generated by the gamma spectrometry 

channels, which generates a loss of performance when with sensor sets together. The application of the RFE importance 

selection method was able to amortize this, being a reliable method to reduce this effect. 
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Figure 9.  Learning curves calculated on the metric by which the parameters of the model were optimized and on the metric 525 

by which the model was evaluated and selected. The most common form of learning curves in the general field of machine 

learning shows predictive accuracy on the test examples as a function of the number of training examples (Perlich, 2010). 

 

4.1.3 General evaluation 

For this study, the independent RMQS data set was not large enough (75 sites). So, validation using 74 sites provided erratic 530 

and inconsistent results, mainly when compared different pedoenvironmental indicators, even considering that this dataset, in 

theory, provide “unbiased” estimates of forecast performance (Loiseau et al., 2020). Similarly, Lagacherie et al., (2019) 

showed that the location and number of samples used for independent assessment can significantly impact the value of these 

indicators. This indicates the greatest variations were observed for evaluation sets with less than 100 samples.  
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Modeling soil attributes using relief and geophysical data presented promising results for geosciences studies and soil 535 

scientists. The use of several algorithms from different “families”, the training and validation method also made the study 

more robust and more reliable. In addition, machine learning models allowed to define the importance of covariates, which 

are, sometimes, not possible use ordinary spatialization methods, such as kriging and the inverse square of distance. 

The “nested leave-one-out validation” method was usefulness with small samples, being a potential tool to be used in 

geosciences studies. However, still there is a poor knowledge in the academic community on the potential applicability of 540 

machine learning techniques.  

 

5. Conclusions 

It is possible to model soil attributes satisfactorily, with easily acquired input data (parent material + DEM) combined with 

data set from different geophysical sensors. In addition, geophysical data from proximal sensors coupled with Cubist 545 

algorithms can provide accurate estimates for several soil attributes. This may assist soil survey programs to reduce the need 

for new soil samples and wet chemistry. 

The combination of geophysical sensors with the best model performance (higher R2 and lower RMSE and MAE, 

concomitantly) for the prediction of soil attributes, was Gamma-ray spectrometer + Susceptibilimeter (G + S). The use of 

three equipment in simultaneous did not optimize model’s performance. On the other hand, the Non-use of geophysical 550 

sensors, presented the lower performance of soil attributes prediction by machine learning algorithms.  

In general, the algorithms showed varying performances. In general, the Cubist was the best one for clay, sand, Fe2O3, TiO2, 

SiO2. For CEC the best performance was by SVM. The second-best algorithm performance was SVM for clay, RF for sand 

and LM for Fe2O3, TiO2, SiO2 and CEC. 

The prediction performance for most soil attributes showed R2 greater than 0.2, considered satisfactory for machine learning 555 

algorithms applied to field data without expensive laboratory analysis, especially when compared with data from fieldwork 

with the use of remote sensing covariates. All soil attributes obtained superior performance considering an average value for 

the entire area. 

 The use of the null model methodology provided a way of comparing those generated by machine learning, when it 

is not possible to use other methods. The use of four algorithms proved necessary since at least one of the soils attributes 560 

performed better in each of the tested algorithms. 

The final model was more parsimonious with an ideal number of covariates with a three steps selection. This reduced the 

effect of overfitting by the use of a large number of covariates. Also, the nested leave-one-out validation methodology 

proved to be appropriate for small number of samples when compared to the hold-out validation and cross-validation. 

The covariables that most contributed to the prediction of soil attributes (clay, sand, Fe2O3, TiO2, SiO2 and CEC), in the most 565 

of algorithms used and sensors combinations were DEM, magnetic susceptibility, parent material and standardized height. 
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For each study area, a conceptual pedogeomorphological and geophysical model must be created due to the complex 

interaction between environmental variables, pedogenesis and soil attributes. These factors affect geophysical variables 

which are detected and quantified by the sensors and will later serve as input data for the modeling processes. 

The machine learning technique is a potential tool for modelling soil attributes with geophysical data, when only field data 570 

with proximal sensors are available. The combined use of gamma-ray spectrometer and susceptibilimeter, allowed for an 

optimization of the models. 
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