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Abstract. Geophysical sensors combined with machine learning algorithms were used to understand the pedosphere system, 

landscape processes and to model soil attributes. In this research, we used parent material, terrain attributes, and data from 

geophysical sensors in different combinations, to test and compare different and novel machine learning algorithms to model 20 

soil attributes. We also analyzed the importance of pedo-environmental variables in predictive models. For that, we collected 

soil physico-chemical and geophysical data (gamma-ray emission from uranium, thorium and potassium, magnetic 

susceptibility and apparent electric conductivity) by three sensors (gamma-ray spectrometer - RS 230, susceptibilimeter KT10 

– Terraplus and Conductivimeter – EM38 Geonics) at 75 points and analyzed the data. The models with the best performance 

(R2 0.48, 0.36, 0.44, 0.36, 0.25 and 0.31) varied for clay, sand, Fe2O3, TiO2, SiO2 and Cation Exchange Capacity prediction, 25 

respectively. Modeling with the selection of covariates at three phases (variance close to zero, removal by correction, and 

removal by importance) was adequate to increase the parsimony. The results were validated using the method "nested leave 

one-out cross validation”. The prediction of soil attributes by machine learning algorithms yielded adequate values for field-

collected data, without any sample preparation, for most of the tested predictors (R2 values ranging from 0.20 to 0.50). Also, 

the use of four regression algorithms proved to be important since at least one of the predictors used one of the tested 30 

algorithms. The performances values of the best algorithms for each predictor were higher than those obtained with the use of 

a mean value for the entire area comparing the values of Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). 

The best combination of sensors that reached the highest model performance was that of the gamma-ray spectrometer and the 

susceptibilimeter. The most important variables were parent material, digital elevation, standardized height, and magnetic 
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susceptibility for most predictions. We concluded that soil attributes can be efficiently modelled by geophysical data using 35 

machine learning techniques and geophysical sensor combinations. This approach can facilitate future soil mapping in a more 

time-efficient and environmentally friendly manner. 

1 Introduction 

The pedosphere is composed of soils and their connections with the hydrosphere, lithosphere, atmosphere, and biosphere 

(Targulian et al, 2019). Soils are the result of several processes and factors and their interactions, resulting in specific soil types 40 

or horizons. The main soil processes are weathering and pedogenesis (Breemen and Buurman, 2003; Schaetzl and Anderson, 

2005), and the soil-forming factors are parent material, relief, climate, organisms and time (Jenny, 1994). Their interactions 

during soil genesis results in different soil attributes such as texture, mineralogy, color, structure, base saturation, clay activity, 

among others. 

In the last decades, there has been a growing demand for soil resource information worldwide  (Amundson et al., 2015; 45 

Montanarella et al., 2015). Soils are recognized as having a key influence on global issues such as, water availability, food 

security, sustainable energy, climate change and environmental degradation (Amundson et al., 2015; Pozza and Field, 2020). 

Therefore, understanding the role of spatial variations in surface and subsurface soil is fundamental for its sustainable use as 

well as for other connected environmental resources and monitoring (Agbu et al., 1990). In this sense, it is necessary to increase 

the acquisition of information on the functional attributes of soils, and to achieve this, relevant and reliable soil information, 50 

applicable from local to global scales is required (Arrouays et al., 2014). 

The acquisition of soil data and their attributes is generally achieved by traditional soil survey techniques. However, new 

geotechnologies have emerged in the last decades, allowing the acquisition of data at shorter times, with non-invasive and 

accurate methods such as reflectance spectroscopy, satellite imagery, and geophysical techniques (Mello et al., 2020; Demattê 

et al., 2017, 2007; Fioriob, 2013; Fongaro et al., 2018; Mello et al., 2021; Terra et al., 2018a, 2018b). Among these 55 

technologies, geophysical sensors have been recently used in pedology to understand pedogenesis and the relationship between 

these processes and soil attributes (Son et al., 2010; Schuler et al., 2011; Beamish, 2013; McFadden and Scott, 2013; Sarmast 

et al., 2017; Reinhardt and Herrmann, 2019). Among these geophysical techniques used, we highlight gamma-spectrometry, 

magnetic susceptibility (κ), and apparent electrical conductivity (ECa). 

Gamma-ray spectrometry can be defined as the measurements of natural gamma radiation emission from natural emitters, such 60 

as K40, the daughter radionuclides of U238 and Th232, and total emissions from all elements in soils, rocks and sediments (Minty, 

1988). Weathering and pedogenesis, concomitantly with the geochemical behavior of each radionuclide, determine their 

distribution and concentration in the pedosphere (Dickson and Scott, 1997; Wilford and Minty, 2006; Mello et al., 2021). 

Therefore, gamma-ray spectrometry can provide important information for the comprehension of soil processes and attributes 

(Reinhardt and Herrmann, 2019), soil texture (Taylor et al., 2002a), mineralogy (Wilford and Minty 2006; Barbuena et al. 65 

2013), pH (Wong and Harper, 1999) and organic carbon (Priori et al., 2016). 
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Soil magnetic susceptibility (κ) can be defined as the degree to which soil particles can be magnetized (Rochette et al., 1992). 

The κ is related to several pedoenvironmental factors, such as soil mineralogy, lithology, and geochemistry of ferrimagnetic 

secondary minerals, such as magnetite and maghemite (Ayoubi et al., 2018). Also, the κ parameter can be related to other soil 

secondary minerals, like ferrihydrite and hematite (Valaee et al., 2016). The great potential of this technique is related to 70 

geological studies (Shenggao 2000; Correia et al. 2010), soil texture and organic carbon studies (Camargo et al., 2014; Jiménez 

et al., 2017), soil surveys (Grimley et al., 2004), and pedogenesis and pedogeomorphological processes (Viana et al., 2006; 

Sarmast et al., 2017; Mello et al., 2020). 

Apparent electrical conductivity (ECa) is the ability of the soil to conduct an electrical current, expressed in millisiemens per 

meter. This soil property is related to the presence/amount of solutes in the soil solution, whose concentration in 1 dS/m is 75 

equivalent to 10 meq/L (Richards, 1954). Concerning the geophysical methods, the ECa is a geotechnology for identifying the 

soil physicochemical attributes and their spatial variation (Corwin et al., 2003). Various different soil attributes are related to 

the ECa, such as soil salinity (Narjary et al., 2019), soil texture (Domsch and Giebel, 2004), cation exchange capacity 

(Triantafilis et al., 2009), mineralogy, pore size distribution, temperature, soil moisture (McNeill, 1992; Rhoades et al., 1999;  

Bai et al., 2013; Farzamian et al., 2015; Cardoso and Dias, 2017).  80 

As various sensors scan only the soil surface, disregarding the entire soil tridimensional profile (Xu et al., 2019), a single 

sensor may not be able or be the best solution to quantify multiple soil attributes. In this context, the concept and use of multi-

sensor data acquisition and analysis is a complementary way to offer more robust and accurate estimations of a number of soil 

attributes (Xu et al., 2019; Javadi et al., 2021). The analysis of soil data acquired by multiple sensors requires a careful 

interpretation and a mathematical model, which can be considered the base of the observed variation and provides the basis 85 

for generalization, prediction and interpretation. (Heuvelink and Webster, 2001). 

Recently, many models have been used to estimate soil attributes and their spatial distribution from geophysical data (gamma-

ray, κ, and ECa) and soil attributes, including machine learning algorithms, such as Support Vector Machine-SVM (Priori et 

al., 2014; Heggemann et al., 2017; Li et al., 2017; Leng et al., 2018; Zare et al., 2020), Random Forests (Lacoste et al., 2011; 

Viscarra Rossel et al., 2014; Harris and Grunsky, 2015; Sousa et al., 2020), KNN  and artificial neural network (ANN) 90 

(Dragovic and Onjia, 2007) and Cubist (Wilford and Thomas, 2012). 

According to Batty and Torrens, (2001), the best models are those capable of explaining the same phenomena using the smallest 

number of variables without loss of performance, following the principle of parsimony - Occam's razor. Models that use fewer 

variables usually optimize the modelling process, making it easier to explain the influence of the variables on the modelling 

process and providing results that are easier to interpret. In addition, this facilitates the understanding and the faster computer 95 

processing of the data (Brungard et al., 2015). In this context, the Recursive Feature Elimination (RFE) algorithm may be used 

for the backward selection of optimal subsets of variables, while maintaining a satisfactory model performance (Vašát et al., 

2017; Hounkpatin et al., 2018).  

Some of geophysical sensors can detect soil attributes in the upper soil layers (0 – 0.50 m for gamma-ray by the RS230 model, 

0.02 m for the magnetic susceptilimeter KT10 Terraplus model, and 1.5 m for the conductivimeter via  the EM38 model, for 100 
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example), which are explained by naturally occurring soil processes and formation by soil factors (Mello et al., 2020; Mello 

et al., 2021). However, there is still a knowledge gap regarding the identification of the best covariables and their possible 

combinations to deepen our knowledge of soil weathering, genesis, and their relation to soil attributes. A standard approach to 

selecting the best input data to soil prediction models has yet to be developed (Levi and Rasmussen, 2014), mainly for 

geophysical sensors, which are little used in soil science. The identification of such covariates may improve the understanding 105 

of the interplays between soil processes and attributes, allowing an enhanced comprehension of soils from the punctual to the 

landscape scale, supporting digital soil mapping and better soil use and management. 

In this context, this study aimed to: i) develop a new methodological framework on modelling soil attributes using combined 

data from three different geophysical sensors at five different sensor combinations; ii) assess the use of different machine 

learning algorithms and test the nested leave one out cross-validation method for prediction and selection of suitable models 110 

for each soil attribute evaluated; iii) evaluate the results and the importance of the variables and relate them to 

pedogeomorphological processes. Our main hypothesis is that the combined use of three geophysical sensor data enable a 

better prediction of soil attributes by different machine learning algorithms and better model performance. This study can 

provide an important background for geoscience studies and the improvement of geophysical and soil survey procedures. 

 115 

2 Material and methods 

2.1 Study area 

The study area was located on a sugarcane farm covering 184 hectares, located in São Paulo State, Brazil (23º 0’ 31.37” to 22º 

58’ 53.97” S and 53º 39’ 47.81” to 53º 37’ 25.65” W), in the Capivari River catchment, part of the Paulista Peripheric 

Depression geomorphological unit (Fig. 1). The lithology is mainly composed of Paleozoic sedimentary rocks, dominated by 120 

Itararé formation (siltites/meta-siltites) crossed by intrusive diabase dykes of the Serra Geral Formation. The lowlands are 

covered by Quaternary alluvial sediments deposited by the Capivari River in ancient fluvial terraces (Fig. 2a). 



5 

 

 

Figure 1. Study area, collection points, and geophysical sensors. A - Gamma-ray spectrometer (Radiation Solution - RS 230); 

B - Susceptibilimeter (KT-10 Terraplus); C - Geonics Ground Conductivity Meter (EM 38). 125 

 

The heterogeneity of the landform and the parent materials drove the formation of several soil types (Fig. 2b). Previous soil 

surveys and mapping have been performed in the study area by expert pedologists (Bazaglia Filho et al., 2013; Nanni and 

Demattê, 2006), in which the main soil classes mapped were as follows: Cambisols, Phaeozems, Nitisols, Acrisols, and Lixisols 

(IUSS Working Group WRB, 2015). Besides the soil profiles, 75 subsamples from 75 points (0–20 cm layer) were collected 130 

with an auger for physicochemical analyses, according to Figure 1. 
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Figure 2. a) Geological compartments of the landscape. b) Soil classes: CX: Haplic Cambisols, CY: Fluvic Cambisols, MT: 

Luvic Phaozem, NV: Rhodic Nitisol: PA: Xanthic Acrisol, PVA: Rhodic Lixisol. The geological and Soil classes maps were 

adapted from Bazaglia Filho et al. (2012). d) Slope. c) Digital elevation model.  135 

 

a) b)

c)

COORDINATE REFERENCE SYSTEM WGS 84
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According to the Köppen classification the region’s climate is subtropical, mesothermal (Cwa), with an average temperature 

from 18 °C (July-Winter) to 22 °C (February-Summer) and a, mean annual precipitation between 1,100 and 1,700 mm (Alvares 

et al., 2013).  

2.2 Laboratory physico-chemical analysis  140 

For soil physical analyses, the soil samples were first air-dried, ground, and sieved through a 2 mm mesh, followed by 

granulometric analysis. After that, clay, silt, and sand contents were determined by the densimeter method (Camargo et al., 

1986). Using the granulometry data, the textural groups were determined following the EMBRAPA (2011) methodology. 

The exchangeable cations aluminum, calcium, and magnesium (Al3+, Ca2+, and Mg2+) were determined using KCl solution (1 

mol L-1) and quantified by titration (Teixeira et al., 2017). Mehlich‐1 solution was used to extract K+, which was quantified by 145 

flame photometry. Potential acidity (H+ + Al3) was determined using calcium acetate solution (0.5 mol L-1) at pH 7.0; for the 

pH in water determination, the soil: solution ratio of 1:2.5 was used (Teixeira et al., 2017). More details about the analysis 

methods can be found elsewhere (EMBRAPA, 2017). Soil organic carbon was determined using the Walkley Black method 

via oxidation with potassium (EMBRAPA, 2017; Pansu, M., Gautheyrou, J., 2006). The total iron content was determined 

using selective dissolution in sulfuric acid (EMBRAPA, 2017; Lim, C.H., Jackson, 1986). The resulting extract was used to 150 

determine the contents of silicon dioxide (SiO2) and titanium dioxide (TiO2), using the EMBRAPA methodology (2017). All 

other chemical parameters, such as Base Sum (BS) Cation Exchange Capacity (CEC), Base Saturation (V%), and Aluminum 

Saturation (m%), were determined using the analytical data obtained previously, following the methodology described 

elsewhere (EMBRAPA, 2017). 

 155 

2.3.1 Radionuclides and gamma-ray spectrometry data  

The total radionuclide K40 amount was measured by the absorption energy (1.46 MeV). Thorium (Th232) and uranium (U238) 

were quantified by absorption energy (approximately 2.62 and 1.76 MeV, respectively). This quantification was indirectly 

performed through thallium (Tl208) and bismuth (Bi214), derived by radioactive decay, respectively, for Th232 and U238, which 

are expressed as eTh and eU (equivalent thorium and uranium, respectively). 160 

For soil gamma spectrometric characterization, we used the near-gamma-ray spectrometer (GM) model Radiation Solution RS 

230 – Radiation Solution INC – Ontario - Canada (Fig. 1A). The sensor can quantify the eTh and eU concentrations in parts 

per million (ppm), whereas K40 is quantified in % due to its major content in the pedosphere. Conventionally, radionuclides 

are expressed in mg kg-1 for eU and eTh, whereas for K40, percentage is used. The GM detects the gamma-ray radiation 

emission down to a depth of 30–60 cm, which varies mainly with soil bulk density and moisture content (Wilford et al., 1997; 165 

Taylor et al., 2002; Beamish, 2015). 

First, the GM was automatically calibrated by switching on and leaving the sensor on the ground surface for 5 minutes until 

readings of eU, eTh, and, K40 contents stabilized (Radiation Solutions, 2009). The measurements of radionuclides were taken 

in the “assay-mode” of the highest precision for quantification, in which the GM was kept at the soil surface for 2 minutes in 
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each sampling point (79 total collection points) (Fig. 1). The geographic position was taken by a GPS coupled to the GM (GPS 170 

– Radiation Solution INC – Ontario – Canada – precision of 1 m). The data collected from all points were concatenated with 

their respective information from the soil physico-chemical analyses for later geoprocessing. The same methodology has been 

applied by Mello et al. (2021) for gamma-ray spectrometric data acquisition. 

 

 175 

 2.3.2 Magnetic susceptibility (κ)  

For soil magnetic susceptibility (κ) characterization, surface readings were recorded at all 79 points, using a geophysical 

susceptibility meter sensor (KT10 – Terraplus) (Fig. 1b). This sensor can measure κ to a depth of 2 cm below the soil surface, 

with a precision of 10-6 SI units, expressed in m3 kg-1. To perform the readings, the sensor was first calibrated by determining 

the frequency of the outdoor oscillator. Subsequently, we followed the sequence required to obtain the measurements 180 

performed in three steps: 1 - determining the frequency and amplitude of the oscillator in free air; 2 – measuring the frequency 

and amplitude of the oscillator with the coil placed directly on the soil surface (sample) outcrop; 3 – repeating step 1 and 

displaying the results. For more information about these procedures, see Sales (2021). We performed the readings at scanner 

mode, which uses the best geometric correlation to direct κ readings, providing fast and accurate quantification. We performed 

three readings in triangulation around each collection point and used the mean value of κ in all our analyses. This procedure 185 

was adopted to reduce noise. The same methodology for κ readings has been performed by Mello et al. (2020). 

 

2.3.3. Apparent electrical conductivity (ECa) 

The ECa measurements were performed using the conductivity meter Geonics EM38 (Geonics Ltd., Mississauga, Ontario, 

Canada) (McNeill, 1986) (Fig. 1C). The EM38 provides measurements of the quad-phase (conductivity) without any 190 

requirement for soil-to-instrument contact (Geonics, 2002); the unit is m Sm-1.  

First, the EM38 was calibrated following the instructions of Heil and Schmidhalter, (2019), Section 3.1.1. The values of ECa 

are a function of calibration, coil orientation, and coil separation (Heil and Schmidhalter, 2019). More details about the EM38 

operation are provided in Hendrickx and Kachanoski (2002). After calibration, the ECa readings were performed at all 

75collection points (Fig. 1), using the EM38 at vertical dipole orientation, which provided data from an effective soil depth at 195 

1.5 m. Data were collected in the filed during the dry season, on bare soil, and at the same intervals to reduce the impacts of 

environmental variables. Also, all metal objects were kept away from the EM 38 to avoid reading interferences. 

We developed our research and analysis by using three geophysical sensors (near-gamma-ray spectrometer RS 230, near-

magnetic susceptibility sensor KT10, and conductivimeter Geonics EM38) due to the following reasons: these sensors are 

available in our institution and for our research partners, they are easy to operate, and the obtained data are highly accurate. In 200 

addition, the EM38 (conductivimeter) and RS 230 (gamma-ray spectrometer) provide information for the depth at which most 

of the pedogenetic processes occur. In addition, information obtained with EM38 and RS 230 can be associated with KT10 
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(susceptibilimeter) on the soil surface to provide additional information about some soil attributes related to soil subsurface 

horizons, which is also related to the other geophysical variables used (gamma-ray and apparent electrical conductivity).  

Table 1. Terrain variables generated from the digital elevation model. 205 

Terrain attributes Abbreviations Brief description 

Convergence index CI Convergence/divergence index in relation to runoff 

Cross-sectional curvature CSC Measures the curvature perpendicular to the down slope direction 

Flow-line curvature FLC Represents the projection of a gradient line to a horizontal plane 

General curvature GC Combination of both plan and profile curvatures 

Hill HI Analytical hill shading 

Hill index HIINDEX Analytical index hill shading 

Longitudinal curvature LC Measures the curvature in the down-slope direction 

Mass balance index MBI Balance index between erosion and deposition 

Maximal curvature MAXC Maximum curvature in local normal section 

Mid-slope position MSP Represents the distance from the top to the valley, ranging from 0 to 1 

Minimal curvature MINC Minimum curvature for local normal section 

Multiresolution index of ridge top 

flatness 
MRRTF Indicates flat positions in high-elevation areas 

Multiresolution index of valley 

bottom flatness 
MRVBF Indicates flat surfaces at the bottom of the valley 

Normalized height NH Vertical distance between base and ridge of normalized slope 

Plan curvature PLANC 
Curvature of the hypothetical contour line passing through a specific 

cell 

Profile curvature PROC Surface curvature in the direction of the steepest incline 

Slope S Represents local angular slope 

Slope height SH Vertical distance between base and ridge of slope 

Standardized height STANH Vertical distance between base and standardized slope index 

Surface specific points SSP Indicates differences among specific surface shift points 

Tangential curvature TANC 
Measured in the normal plane in a direction perpendicular to the 

gradient 

Terrain ruggedness index TRI Quantitative index of topography heterogeneity 

Terrain surface convexity TSC 
Ratio of the number of cells that have positive curvature to the number 

of all valid cells within a specified search radius 

 

  Cont.. 
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Cont. Table 1 210 

Terrain attributes Abbreviations Brief description 

Terrain surface texture TST Splits surface texture into 8, 12, or 16 classes 

Total curvature TC General measure of surface curvature 

Topographic position index TPI 
Difference between a point elevation to the surrounding 

elevation 

Valley depth VD Calculation of vertical distance at drainage base level 

Valley VA Calculation of the fuzzy valley using the Top Hat approach 

Valley Index VAI 
Calculation of the fuzzy valley index using the Top Hat 

approach 

Topographic wetness index TWI 
Describes the tendency of each cell to accumulate water in 

relief 

 

2.3.5.  Modelling processing 

The modeling process is demonstrated in the flowchart (Fig. 3) and can be divided into two parts: the selection of covariates 

and the training/testing of the data. In the selection phase, the algorithm tries to produce the ideal set of covariates, following 

the principle of parsimony. This is performed by removing highly correlated variables, evaluating the importance of 215 

covariables and removing variables that have a minor importance in training the model in the prediction process of each 

algorithm. Darst et al. (2018) considered the joint application of the methods for the selection of covariates by correlation and 

importance (RFE) since the use of RFE only reduces the effect of highly correlated covariates but does not eliminate it.  
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Figure 3. Methodological flowchart showing the sequence of methodologies applied for soil and geophysical attribute 220 

prediction. The most accurate model among Cubist, Random Forests (RF), Support Vector Machines (SVM), and Linear 

Models (LM) was selected to model and map the geophysical and soil attributes. 
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The correlation selection process was used to calculate the correlation of the set of covariates and covariables, which were 

evaluated with a correlation greater than the limit (Pearson test > 95%). The pairs that showed higher values were evaluated 

due to their correlation with the complete set of covariates, eliminating that with the highest value of the sum of the absolute 225 

correlation with the other covariables that started in this process. For this phase, we  applied the cor and find correlation 

functions of the “stats” (Hothorn, 2021) and “caret” (Kuhn et al., 2020) packages, in the R software, respectively (Kuhn and 

Johnson, 2013). In this phase, the covariables: curv_cross_secational and curv_longitudinal were eliminated for all tested 

sensor sets. The set of covariables that passed this phase joined the samples followed by the separation of samples from training 

and testing. 230 

The separation of training and testing was performed using the “nested” leave one out (nested LOOCV) method (Clevers et 

al., 2007; Honeyborne et al., 2016; Rytky et al., 2020). It is important to highlight that our number of soil samples and readings 

with geophysical sensors was small (75) due to several difficulties encountered in the field during data collection (high sugar 

cane size, sloping terrain, dense forest, etc.). In this sense, the nested LOOCV method is indicated for small sample sets (values 

near 100 samples) to which other validation/testing methods (as holdout validation) would not be viable due to the small 235 

sample set in the testing and/or training group (Ferreira et al., 2021). This is one of the main innovations of this research. 

The nested LOOCV method is a double-loop process. In the first loop, the model is trained with a data set of size n-1, and the 

test is done in the second loop with the missing sample to validate the training performance (Jung et al., 2020; Neogi and 

Dauwels, 2019). The final results of the performance of the machine learning algorithm will be the mean performance 

indicators for all points (training/testing). This is a robust method to evaluate the performance of the algorithm and to detect 240 

possible samples with problems in the collections or outliers. The training set generated in each loop went through the process 

of selecting covariates for importance and subsequent training. 

The selection of covariates by importance is performed using the back forward method, applying the Recursive Feature 

Elimination (RFE) function contained in the “caret” package (Kuhn and Johnson, 2013). The RFE is unique for each algorithm, 

with the result being the set of selected covariates used in the prediction of the final model in the same algorithm. The RFE is 245 

a selection method that eliminates the variables that least contribute to the model, based on a measure of importance for each 

algorithm (Kuhn and Johnson, 2013). The algorithm will be applied to complete sets of data (variable by the set of tested 

sensors) and 18 more subsets with 5,6,7, ... 19, 20 and 30 covariables. Reaching a set of fewer variables (more parsimonious), 

results in a better prediction performance. The optimization of the ideal covariate subset was based on leave one out (LOOCV), 

a repetition, and four values of each of the internal hype parameters of each tested algorithm (tuneLength). The 250 

hyperparameters of each algorithm are described in the caret package manual in chapter 6. “Models described” available at 

https://topepo.github.io/caret/train-models-by-tag.html. The metric for choosing the best subset for each model were R². For 

this work, five algorithms were tested: Random Forests (RF), Cubist (C), Support Vector Machines (SVM), Generalized Linear 

Models (lm). The choice was made with the use of families of different algorithms in mind, using linear and non-linear 

algorithms. The algorithms used are commonly applied in soil attribute mapping studies. At the end of the selection phase by 255 

importance, the most optimized set of covariates for training was generated for each algorithm.  

https://topepo.github.io/caret/train-models-by-tag.html
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Training was performed with the variables selected in the previous step and each tested algorithm by using LOOCV and 10 

repetitions. Four values of each of the internal hype parameters of each tested algorithm were also tested (tuneLength). At the 

end of the training phase, a sample prediction was made that was not used in the training and the result was saved for the 

performance study. The performance of the prediction of the algorithms and the set of sensors was determined with a set of 260 

samples from the outer loop of the nested LOOCV method. Three evaluation parameters were used: R-square - R2 (Eq. (1)), 

root mean squared error - RMSE (Eq. (2)), mean absolute error - MAE, (Eq. (3)). 

 

 R² = 
[∑(Qpred – Qpred̅̅ ̅̅ ̅̅ ̅̅ )×(Qobs – Qobs̅̅ ̅̅ ̅̅ ̅)]

2

[∑(Qpred - Qpred̅̅ ̅̅ ̅̅ ̅̅ )2]×[∑(Qobs - Qobs̅̅ ̅̅ ̅̅ ̅)2]
 (1) 

 RMSE = √
1

n
× ∑(Qobs – Qpred)2 (2) 

 

MAE = 
1

n
× ∑|Qpred – Qobs| 

 

(3) 

Where: 

Qpred = predicted samples 265 

Qobs = observed samples 

n = number of samples 

 

For comparison purposes, null model values (NULL_RMSE and NULL_MAE) were also calculated. The null model considers 

using the average value quantified by the collected samples (EQ. 4 and EQ. 5). The null model (NULL_RMSE and 270 

NULL_MAE) emulates other model-building functions but returns the simplest model possible given a training set: a single 

mean for numeric outcomes. The percentage of the training set samples with the most prevalent class is returned when class 

probabilities are requested. The null model can be considered the simplest model that can be adjusted and that serves as a 

reference. Models that present similar or worse performances compared to the null model should be discarded. The best models 

had lower RMSE and MAE results than those found for NULL_MAE and NULL_RMSE. This shows that the final model is 275 

better than using the mean values, which also demonstrates a better quality in creating the models. 

Given above, the null model considers using the mean value quantified by the collected samples (EQ. 4 and EQ. 5). This 

methodology is widely used, as well as spatialization processes in kriging when the variable in which spatialization is desired 

has spatial dependence (pure nugget effect). The equations are as follows: 

𝑁𝑈𝐿𝐿_𝑅𝑀𝑆𝐸 = [
1

𝑁
∑ (𝑄𝑡𝑟𝑎𝑖𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑖 −  𝑄𝑜𝑏𝑠𝑖)2𝑁
𝑖=1 ]

1

2
 (Eq.4) 280 
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𝑁𝑈𝐿𝐿_𝑀𝐴𝐸 =
1

n
× ∑|𝑄𝑡𝑟𝑎𝑖𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑖 – 𝑄𝑜𝑏𝑠𝑖|  (Eq.5) 

Where: 

Qtrain = the mean of the training samples 

Qobsi = the validation sample  

N =number of samples (loop). 285 

 

Here NULL_RMSE and NULL_MAE values lower than those observed in the prediction of the algorithm in the validation 

phase show that the use of means of the samples of the desired propriety agrees with the model created by the algorithms of 

the machine learning. The NULL_RMSE and NULL_MAE were calculated using the nullMode function of the caret package 

(Kuhn et al., 2020). 290 

The final result of the performance of the algorithms of each attribute was obtained using the 75 loops, with the training results 

being the average of the performance and the results of the test samples calculated from the 75 external loops results using 

Equations 1, 2 ,and 3. The importance of the algorithms was calculated by the caret package (Kuhn and Johnson, 2013), each 

model presents its creation methodology. The final importance for each algorithm and attribute was determined from the 

importance created in the loop, being the average of the importance of the 75 repetitions. 295 

 

3 Results 

3.1. Geophysical sensor combinations, model performance, uncertainty, and covariate importance 

The worst performance in modeling soil attributes occurred excluding the use of geophysical sensors (non-use of the 

geophysical sensor), where only parent material and terrain attributes were used (Table 2). In this case, the algorithms selected 300 

particular groups of terrain attributes for the modelling of each soil attributes (Table 1). 

 

 

 

 305 

 

 

Table 2. Model performance for non-use geophysical sensors, for all soil attributes, based on R2, RMSE, MAE, and 

NULL_RMSE. 

Non-use of geophysical 

sensors 

R² 

Random Forest Cubist SVM LM - 

Clay   0.38 0.386 0.259 0.285 - 

Sand   0.284 0.292 0.278 0.225 - 
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Fe2O3   0.159 0.12 0.279 0.217 - 

TiO2   0.12 0.125 0.226 0.16 - 

SiO2   0.12 0.174 0.128 0.247 - 

CEC   0.149 0.053 0.195 0.002 - 

BS   0.131 0.028 0.113 0.003 - 

OM   0 0.001 0.004 0.051 - 

Non-use of geophysical 

sensors 

RMSE 

Random Forest Cubist SVM LM NULL_RMSE 

Clay   136.778 140.103 154.406 156.646 140.885 

Sand   185.398 192.867 190.151 215.355 176.521 

Fe2O3   61.686 66.432 59.453 66.357 53.341 

TiO2   12.229 12.424 11.621 13.118 10.239 

SiO2   41.701 41.323 42.595 38.976 35.45 

CEC   41.3 50.065 41.141 997.529 36.139 

BS   20.206 22.853 20.396 1189.64 17.142 

OM   8.469 8.126 8.045 7.702 6.158 

Non-use of geophysical 

sensors 

MAE 

Random Forest Cubist SVM LM NULL MAE 

Clay   110.485 108.284 122.397 119.139 119.751 

Sand   149.205 148.8 147.07 169.218 153.803 

Fe2O3   40.742 44.028 36.812 43.673 41.578 

TiO2   8.206 8.294 7.051 8.749 8.074 

SiO2   31.757 31.715 31.432 29.458 29.534 

CEC   28.931 33.168 27.072 149.114 27.187 

BS   16.3 18.271 17.012 158.638 14.425 

OM   6.357 4.813 5.992 5.719 4.813 

Clay and sand content in g.kg-1; Fe2O3, TiO2 and SiO2 in g.kg-1 CEC in mmolc dm-3; abbreviations: CEC: Cation Exchange 310 

Capacity; OM g.dm-3; BS: mmolc dm-3. Clay and sand content in g.kg-1; Fe2O3, TiO2 and SiO2 in g.kg-1 CEC in mmolc dm-3; 

abbreviations: CEC: Cation Exchange Capacity; OM g.dm-3; BS: mmolc dm-3. Support Vector Machines (SVM); Linear 

Models (LM). 

 

 315 

 

 

The Cubist algorithm (non-use of the geophysical sensor) showed the best performance in predicting soil texture, clay (R2 of 

0.386) and sand (R2 of 0.292) contents, with the highest R2 and the lowest RMSE and MAE values, concomitantly (Table 2). 

The importance of covariates to sand content prediction showed that minimal curvature, was the most important variable, 320 
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contributing 100% to the decrease mean accuracy. On the other hand, for clay content, the most important variable was parent 

material. In addition, for clay and sand, the tangential curvature and DEM showed an importance higher than 50% (Fig. 4). 

When the geophysical sensor was not used, the SVM algorithm presented a moderate performance for Fe2O3 (R2 0.279) and 

TiO2 (R2 0.226), whereas for SiO2, the LM presented the best result, also with a moderate performance (R2 0.247) (Table 2). 

The selected models simultaneously presented the highest R2 and lowest RMSE and MAE values. The most important 325 

covariates for Fe2O3 and TiO2 prediction by the SVM model were parent material (100%) and DEM (more than 50%). For 

SiO2 prediction by the LM model, the most important covariates were DEM (100%) and standardized height (90%), whereas 

parent material contributed with 40% (Fig. 4). 

For cation exchange capacity (CEC), the model with the best performance, after 75 runs was SVM, (R2 of 0.223) (Table 2) 

when the geophysical sensor was not used. The most important covariates for CEC prediction to mean accuracy were DEM 330 

(100%), topographic wetness index (80%), and parent material (75%) (Fig. 4).  



17 

 

 

Figure 4.  Variable importance for non-use of geophysical sensors (only variables that contributed more than 50% are 

presented here). For further details, see supplementary material. 
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 335 

All models showed a low performance in the prediction of base saturation (BS) and organic matter (OM), with R2 values 

between 0.001 and 0.1 (Tables 2, 3, 4, 5, and 6). 

The different combinations of geophysical sensors that contributed to the moderate modeling performance for soil attributes 

were as follows: Susceptibilimeter + Conductivimeter (S + C), Gamma-ray spectrometer + Conductivimeter (G + C), combined 

use of the three geophysical sensors (G + S + C) (Tables 3, 4, and 6, respectively). The R2 values presented some variations 340 

between the R2 of the best combination of geophysical sensors and the lowest R2 values when the geophysical sensors were 

not used in the predictive models (Tables 3, 4, and 6). Among all the values of R2 evaluated for this session, we considered 

all the highest values; among the highest values, we considered the lowest values as the worst results. 
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Table 3. Model performance for the combined use of susceptibilimeter and the conductivimeter, for all soil attributes, based 

on R2, RMSE, MAE and NULL_RMSE. 370 

Susceptibilimeter + 

Conductivimeter 

R² 

Random Forest Cubist SVM LM - 

Clay     0.444 0.433 0.484 0.394 - 

Sand      0.334 0.365 0.322 0.312 - 

Fe2O3     0.314 0.407 0.153 0.383 - 

TiO2     0.316 0.338 0.263 0.262 - 

SiO2     0.141 0.25 0.169 0.101 - 

CEC     0.139 0.178 0.223 0.124 - 

BS     0.138 0.079 0.065 0.002 - 

OM     0.032 0.077 0.039 0.056 - 

Susceptibilimeter + 

Conductivimeter 

RMSE 

Random Forest Cubist SVM LM NULL_RMSE 

Clay     129.619 136.834 127.598 139.463 140.885 

Sand      178.22 178.253 181.811 190.515 176.521 

Fe2O3     55.378 52.416 64.573 54.36 53.341 

TiO2     10.531 10.583 11.052 11.622 10.239 

SiO2     41.116 39.138 42.22 46.013 35.45 

CEC     41.878 41.91 40.134 48.52 36.139 

BS     19.821 21.543 22.307 1219.091 17.142 

OM     8.079 7.494 7.924 8.007 6.158 

Susceptibilimeter + 

Conductivimeter 

MAE 

Random Forest Cubist SVM LM NULL_MAE 

Clay     102.841 105.12 92.812 106.083 119.751 

Sand      145.441 139.737 146.016 153.815 153.803 

Fe2O3     34.357 32.246 40.303 36.79 41.578 

TiO2     6.457 6.593 6.65 8.199 8.074 

SiO2     30.54 28.954 31.153 33.218 29.534 

CEC     29.354 28.912 26.689 33.024 27.187 

BS     15.824 17.372 18.953 161.284 14.425 

OM     5.949 5.713 6.108 6.04 4.813 

Clay and sand content in g.kg-1; Fe2O3, TiO2 and SiO2 in g.kg-1 CEC in mmolc dm-3; abbreviations: CEC: Cation Exchange 

Capacity; OM g.dm-3; BS: mmolc dm-3. Clay and sand content in g.kg-1; Fe2O3, TiO2 and SiO2 in g.kg-1 CEC in mmolc dm-3; 

abbreviations: CEC: Cation Exchange Capacity; OM g.dm-3; BS: mmolc dm-3. Support Vector Machines (SVM); Linear 

Models (LM). 

 375 
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Table 4. Model performance for the combined use of gamma-ray spectrometer and the conductivimeter, for all soil attributes 

based on R2, RMSE, MAE and NULL_RMSE. 

Gamma-ray spectrometer + 

Conductivimeter 

R² 

Random Forest Cubist SVM LM - 

Clay     0.378 0.433 0.406 0.338 - 

Sand      0.318 0.265 0.3 0.188 - 

Fe2O3     0.22 0.282 0.158 0.249 - 

TiO2     0.248 0.189 0.048 0.171 - 

SiO2     0.16 0.163 0.17 0.178 - 

CEC     0.14 0.077 0.241 0.002 - 

BS     0.133 0.065 0.068 0.003 - 

OM     0.001 0 0.059 0.047 - 

Gamma-ray spectrometer + 

Conductivimeter 

RMSE 

Random Forest Cubist SVM LM NULL RMSE 

Clay     137.097 134.231 134.035 146.116 140.885 

Sand      179.808 197.657 182.644 225.909 176.521 

Fe2O3     58.829 56.918 61.758 62.442 53.341 

TiO2     11.011 12.026 13.076 13.035 10.239 

SiO2     40.256 42.209 40.493 41.555 35.45 

CEC     41.464 47.809 40.463 1499.11 36.139 

BS     19.889 21.704 21.586 33.64 17.142 

OM     8.567 8.356 7.72 7.738 6.158 

Gamma-ray spectrometer + 

Conductivimeter 

MAE 

Random Forest Cubist SVM LM NULL MAE 

Clay     108.636 105.954 106.779 117.816 119.751 

Sand      145.511 160.722 148.469 181.07 153.803 

Fe2O3     38.867 37.335 39.185 42.121 41.578 

TiO2     7.265 8.241 8.197 9.198 8.074 

SiO2     31.095 32.419 32.189 32.035 29.534 

CEC     28.539 33.06 26.449 207.159 27.187 

BS     15.812 17.471 17.325 24.294 14.425 

OM     6.443 6.07 5.578 5.806 4.813 

Clay and sand content in g.kg-1; Fe2O3, TiO2 and SiO2 in g.kg-1 CEC in mmolc dm-3; abbreviations: CEC: Cation Exchange 

Capacity; OM g.dm-3; BS: mmolc dm-3. Clay and sand content in g.kg-1; Fe2O3, TiO2 and SiO2 in g.kg-1 CEC in mmolc dm-3; 

abbreviations: CEC: Cation Exchange Capacity; OM g.dm-3; BS: mmolc dm-3. Support Vector Machines (SVM); Linear 380 

Models (LM). 
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For clay, the model with the best performance was the SVM algorithm (R2 0.484) by S + C (Table 3), whereas that with the 385 

worst performance was the Cubist algorithm (R2 0.38) by (G + S + C) (Table 6). For sand, the best model performance was 

obtained with the Cubist algorithm (R2 0.365) by S + C (Table 3) and the worst also by Cubist (R2 0.387) by (G + S + C). The 

most important covariates for clay prediction by the SVM model in S + C sensors combination were magnetic susceptibility 

(κ) (100%) and parent material (90%) (Fig. 5). For clay prediction by the Cubist model in G + S + C sensors combination, the 

most important covariate was parent material (100%) (Fig. 6). With respect to sand prediction, the most important covariates 390 

by the Cubist model in S + C were minimal curvature (100%) and magnetic susceptibility (κ) (80%) (Fig. 5) On the other 

hand, for G + S + C, the covariates that most contributed for sand prediction were DEM (100%), general curvature (80%) and 

minimal curvature (75%) (Fig. 6). 
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Figure 5.  Variable importance for Susceptibilimeter + Conductivimeter sensors (only variables that contributed more than 395 

50% are presented here (for further details see supplementary material). 
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Figure 6.  Variable importance for Combined use of the three geophysical sensors (only variables that contributed more than 

50% are presented here (for further details see supplementary material). 
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 400 

For the elemental composition, the models employed greatly variable performance. For Fe2O3 the best model performance, 

was reached by the LM algorithm (R2 0.441) by G + S + C (Table 6), while the worst performance was by the Cubist (R2 

0.282) by G + C (Table 4). With respect to TiO2, the best model performance was by Cubist algorithm (R2 0.358) by G + S + 

C (Table 6) and the worst was RF (R2 0.248) by G + C (Table 4). For SiO2, the best model performance was the Cubist 

algorithm (R2 0.250) by S + C (Table 3) and the worst was the LM (R2 0.178) by G + C (Table 4). The importance of 405 

covariates in predicting Fe2O3 by LM in G + S + C, demonstrated that magnetic susceptibility (κ), standardized height and 

DEM were the most important variables, contributing 100%, 65%, 55%, respectively (Fig. 6). For Fe2O3 predicted by the 

Cubist algorithm by G + C, the most important covariates were standardized height, parent material, ECa and DEM (100%) 

(Fig. 7). For TiO2 prediction by the Cubist algorithm by G +S + C the most important covariate was magnetic susceptibility 

(κ) (100%) (Fig. 6), while for the RF algorithm by G + C were parent material (100%) and ECa (75%) (Fig. 7). In relation to 410 

SiO2 prediction by the Cubist by S + C, the most important covariates were standardized height, mid-slope position magnetic 

susceptibility (κ) and DEM (100%) (Fig. 5), while SiO2 predicted by the LM algorithm by G + C were DEM and standardized 

height (100% and 65%, respectively) to mean accuracy (Fig. 7). 
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Figure 7.  Variable importance for Gamma-ray spectrometer + Conductivimeter sensors (only variables that contributed more 415 

than 50% are presented here (for further details see supplementary material). 
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In relation to CEC, the LM algorithm was the best model (R2 0.317) by G + S + C (Table 6) and the worst was the SVM 

algorithm (R2 0.223) by S + C (Table 3). The most important covariate for prediction of CEC by LM algorithm by G + S + C 

and by S + C was magnetic susceptibility (κ) (100%) (Fig. 6 and 5). 420 

Overall, the best combination of geophysical sensors, which allowed the best model performance for different algorithms in 

the prediction of soil attributes, was Gamma-ray spectrometer + Susceptibilimeter (G + S) (Table 5). 
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Table 5. Model performance for combined use of gamma-ray spectrometer and susceptibilimeter, for all soil attributes, based 450 

on R2, RMSE, MAE and NULL_RMSE. 

Gamma-ray spectrometer + 

Susceptibilimeter 

R² 

Random Forest Cubist SVM LM - 

Clay     0.465 0.441 0.494 0.366 - 

Sand      0.422 0.152 0.367 0.233 - 

Fe2O3     0.36 0.426 0.096 0.47 - 

TiO2     0.308 0.282 0.284 0.328 - 

SiO2     0.159 0.207 0.169 0.167 - 

CEC     0.147 0.152 0.296 0.303 - 

BS     0.169 0.082 0.112 0.002 - 

OM     0.046 0.033 0.028 0.034 - 

Gamma-ray spectrometer + 

Susceptibilimeter 

RMSE 

Random Forest Cubist SVM LM NULL_RMSE 

Clay     127.149 132.977 123.84 148.11 140.885 

Sand      165.624 244.635 175.35 202.104 176.521 

Fe2O3     53.418 52.737 67.759 48.513 53.341 

TiO2     10.724 11.37 10.846 10.659 10.239 

SiO2     40.898 40.244 42.207 42.993 35.45 

CEC     41.902 44.296 38.723 37.645 36.139 

BS     19.294 21.318 20.856 1024.32 17.142 

OM     7.8 7.842 7.81 8.131 6.158 

Gamma-ray spectrometer + 

Susceptibilimeter 

MAE 

Random Forest Cubist SVM LM NULL_MAE 

Clay     102.229 105.123 97.173 117.097 119.751 

Sand      134.525 168.957 140.318 166.083 153.803 

Fe2O3     33.284 32.411 42.282 33.124 41.578 

TiO2     6.548 6.573 6.447 7.049 8.074 

SiO2     30.394 29.691 30.396 32.951 29.534 

CEC     28.977 30.945 25.376 25.815 27.187 

BS     15.597 17.321 16.96 137.422 14.425 

OM     5.805 5.836 5.966 6.262 4.813 

Clay and sand content in g.kg-1; Fe2O3, TiO2 and SiO2 in g.kg-1 CEC in mmolc dm-3; abbreviations: CEC: Cation Exchange 

Capacity; OM g.dm-3; BS: mmolc dm-3. Clay and sand content in g.kg-1; Fe2O3, TiO2 and SiO2 in g.kg-1 CEC in mmolc dm-3; 

abbreviations: CEC: Cation Exchange Capacity; OM g.dm-3; BS: mmolc dm-3. Support Vector Machines (SVM); Linear 

Models (LM). 455 
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Table 6. Model performance for all combined use of geophysical sensors, for all soil attributes, based on R2, RMSE, MAE 

and NULL_RMSE. 

Combined use of the three 

geophysical sensors 

R² 

Random Forest Cubist SVM LM - 

Clay     0.356 0.387 0.331 0.258 - 

Sand      0.318 0.322 0.278 0.129 - 

Fe2O3     0.281 0.406 0.309 0.441 - 

TiO2     0.322 0.358 0.267 0.252 - 

SiO2     0.162 0.212 0.21 0.125 - 

CEC     0.171 0.266 0.246 0.317 - 

BS     0.122 0.097 0.107 0.002 - 

OM     0.003 0.073 0.002 0.047 - 

Combined use of the three 

geophysical sensors 

RMSE 

Random Forest Cubist SVM LM NULL_RMSE 

Clay     139.61 139.41 144.532 160.894 140.885 

Sand      180.339 188.745 189.768 256.078 176.521 

Fe2O3     57.225 52.66 57.589 50.038 53.341 

TiO2     10.472 10.547 11.053 11.499 10.239 

SiO2     40.642 40.534 40.355 43.949 35.45 

CEC     41.451 39.226 39.815 37.134 36.139 

BS     19.951 21.749 21.178 1045.896 17.142 

OM     8.234 7.569 8.134 7.752 6.158 

Combined use of the three 

geophysical sensors 

MAE 

Random Forest Cubist SVM LM NULL_MAE 

Clay     112.126 108.346 117.645 120.83 119.751 

Sand      143.98 145.661 145.187 198.059 153.803 

Fe2O3     35.597 32.751 35.387 34.724 41.578 

TiO2     6.414 6.541 6.7 8.102 8.074 

SiO2     30.215 30.197 30.001 33.649 29.534 

CEC     29.014 27.169 26.201 25.273 27.187 

BS     15.887 17.694 17.025 140.716 14.425 

OM     6.223 5.854 5.945 5.798 4.813 

Clay and sand content in g.kg-1; Fe2O3, TiO2 and SiO2 in g.kg-1 CEC in mmolc dm-3; abbreviations: CEC: Cation Exchange 

Capacity; OM g.dm-3; BS: mmolc dm-3. Clay and sand content in g.kg-1; Fe2O3, TiO2 and SiO2 in g.kg-1 CEC in mmolc dm-3; 460 

abbreviations: CEC: Cation Exchange Capacity; OM g.dm-3; BS: mmolc dm-3. Support Vector Machines (SVM); Linear 

Models (LM). 
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The best combination of sensors, resulting in the best model performance, was G + S. (Table 5). For soil texture, the SVM 465 

and RF algorithms showed the best performance for clay (R2 0.494) and sand (R2 0.422), respectively, by G + S, with the 

highest R2 and lowest RMSE and MAE values (Table 5). The importance of covariates in predicting soil texture by the SVM 

(for clay) and the RF (for sand) demonstrated that magnetic susceptibility (κ) was the most important covariate (100%). In 

addition, parent material contributed 60% for clay prediction and DEM 60% for sand prediction (Fig. 8). 

The LM algorithm presented the best performance for Fe2O3 (R2 0.470) and TiO2 (R2 0.328), by G + S, whereas for SiO2, the 470 

Cubist algorithm was most suitable (R2 0.207), also by G + S (Table 5). The most important covariates for Fe2O3 and TiO2 

prediction via LM by G + S were magnetic susceptibility (κ) and standardized height (100 and 60%, respectively, for both) 

(Fig. 8). For SiO2 prediction via the Cubist algorithm by G + S, the most important covariates were mid-slope position and 

magnetic susceptibility (κ) (100% for both) (Fig. 8). 

For CEC, the best model performance was obtained using the LM algorithm (R2 0.303) by G + S (Table 5). In this case, the 475 

covariates that most contributed to model prediction were magnetic susceptibility (κ) (100%) and DEM (60%) (Fig. 8). 
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Figure 8.  Variable importance for Gamma-ray spectrometer + Susceptibilimeter sensors (only variables that contributed more 

than 50% are presented here (for further details see supplementary material). 
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 480 

4 Discussion 

4.1. Geophysical sensor combinations, models performance, and uncertainty 

The methodological approach optimized the prediction of soil variables by applying different geophysical sensors 

combinations, parent material and terrain attributes for selecting covariates and models, as well as for assessing prediction 

uncertainty.  485 

In general, without the use of geophysical sensors, the poorest results were obtained in terms of R2, RMSE, and MAE for all 

prediction algorithms used for modeling soil attributes (Table 2). These results are consistent with Frihy et al. (1995), who 

also compared the combined use and the non-use of sensors regarding model geochemical attributes of soil by the Cubist 

algorithm and obtained the worst results without using the sensors. Most likely, this is a result of the highly complex interaction 

between soil forming factors and processes determining soil attributes (Jenny, 1994). 490 

The moderate performance of the models can be attributed to the different combinations of the geophysical sensors pairwise, 

and the different data presented by the sensors contributed in different ways to the modelling process. In this regard, O’Rourke 

et al. (2016) also demonstrated a moderate performance of the models (R2 ranging from 0.21 to 0.94) when using data from 

the VisNir, with R2 ranging from 0.61 to 0.94 when using the pXRF sensor to model soil attributes. This might be related to 

the different sensors and, their relation with soil attributes. The VisNIR spectroscopy acts on targets with low energy levels, 495 

showing the ability to identify soil mineral species, strongly linked to soil attributes (Coblinski et al., 2021). In addition, pXRF 

spectroscopy allows the identification of total elementary contents by acting with high levels of ionizing energy, which is not 

identified by Vis-NIR, and is strongly correlated with minerals and soil attributes (Silvero et al., 2020). Therefore, the addition 

of pXRF with Vis-NIR data for obtaining information about soil constituents is highly efficient for modeling soil attributes. 

The best combination of geophysical sensors was Gamma-ray spectrometer + Susceptibilimeter (G+S), with the highest values 500 

of R2 and the lowest values of RMSE and MAE (Table 5). Most likely, the gamma-ray spectrometer and the susceptibilimeter 

are more closely associated with pedogenesis (argilluviation, ferralitization and others), pedogeomorphology, and soil 

attributes, as recently demonstrated by Mello et al. (2020); Mello et al. (2021), who modeled soil attributes such as texture, 

Fe2O3, TiO2, SiO2 and CEC in relation to thorium, uranium and potassium (K40) levels as well as magnetic susceptibility. 

In general, the Cubist algorithm was the best model for clay and sand content prediction (Table 7). Similar results have been 505 

found by Greve and Malone (2013); Ballabio et al. (2016); Nawar et al. (2016), and Silva (2019), who used the Cubist and 

Earth algorithm to predict soil texture using different data sources (3D imagery, Land Use and Cover Area frame Statistical 

survey, and reflectance spectroscopy). In all these models, the R2 was not greater than 0.5, which can be explained by the small 

variation or limited distribution of the data set, causing poor modeling prediction. Zhang and Hartemink (2020) state that 

textural classes with fewer samples presented a more unstable prediction performance than those with more samples, which 510 

agrees with our results. 
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Table 7. Number of times that each model achieved the best performance for each soil attribute 

Soil attributes 
R2 

Random Forest Cubist SVM LM 

Clay  3 2  

Sand 2 3   

Fe2O3  2 1 2 

TiO2 1 2 1 2 

SiO2  3  1 

CEC   3 2 

Clay and sand content in g.kg-1; Fe2O3, TiO2 and SiO2 in g.kg-1 CEC in mmolc dm-3; abbreviations: CEC: Cation Exchange 

Capacity; OM g.dm-3; BS: mmolc dm-3. Clay and sand content in g.kg-1; Fe2O3, TiO2 and SiO2 in g.kg-1 CEC in mmolc dm-3; 

abbreviations: CEC: Cation Exchange Capacity; OM g.dm-3; BS: mmolc dm-3. Support Vector Machines (SVM); Linear 

Models (LM). 520 

 

 

The better performance for elemental composition (Fe2O3, TiO2 and SiO2) was obtained using the Cubist algorithm, (Table 

7), with an R2 of0.2–0.47. This is contrasting with the results obtained by Henrique et al. (2018), who showed that the best 

model for predicting soil mineralogy Fe2O3 and TiO2 (R2 0.89 and 0.96, respectively) and RF only for Fe2O3 (R2 0.95) by 525 

pXRF was the simple linear regression. In our study, the R2 variation for the G + S combination was probably related to the 

low correlation with the parent material and, consequently, with soil mineralogy or to the limited number of samples and the 

high soil variability (Fiorio, 2013). However, it is important to highlight that in situ, various intrinsic environmental influences 

can interfere with modelling processes. For example, the relatively low R2 values (approximately between 0.2 and 0.5) can be 

attributed to the difficulty in modeling soils and their attributes. This is related to the high complexity of soils, such as, the 530 

high spatial variability in surface and depth, the occurrence of geomorphic processes, weathering, and pedogenesis, and the 

different soil formation factors. For soil mineralogical attributes predicted by machine learning algorithms, the results can be 

classified as satisfactory from 0.2 to 0.5, as for the preliminary evaluation, since these values represent more informative results 

(Beckett, 1971; Dobos, 2003; Malone et al., 2009). According to Nanni and Demattê (2006), the R2 may be explained by 

standardized laboratory conditions (such as temperature, humidity, substance concentrations, and other variables that interfere 535 

with the analysis results during their determination), with less environmental interference compared with direct field methods.  

For CEC, the best model performance was obtained for SVM (R2 0.296) (Table 5). This result is corroborated  by Liao et al. 

(2014), who compared the model performance of  multiple stepwise regression, artificial neural network models, and SVM for 

CEC prediction and attributed their results to a nonlinear relationship between CEC and soil physicochemical properties. In 
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addition, in our previous study (Jafarzadeh et al., 2016), we demonstrated that, despite of the ability of SVM to predict CEC 540 

in acceptable limits, there is a poor performance in extrapolating the maximum and minimum values of CEC data. Despite 

this, uncertainties estimated for SVM predictions may not be associated with an incorrect classification, as pointed out by 

Cracknell and Reading (2013). 

Even for the best combination of sensors (G + S) and the highest overall model performance, the R2 values were not greater 

than 0.5 (Table 5). In models generated by field data, without sample preparation, R2 values varying between 0.20 and 0.50 545 

can be considered satisfactory and reliable (Dobos, 2003; Malone et al., 2009). In our study, the low R2 values can be related 

to the limited number of collecting points or to the low field distribution, which does not represent the spatial variation of soil 

attributes; this is in agreement with Johnston et al. (1997) and Lesch et al. (1992), who evaluated soil salinity. 

The best results for predictors of soil attributes through geophysical data have the lowest values when compared to the values 

of NULL_RMSE and NULL_MAE. This demonstrates that the use of machine learning models has less errors than the use of 550 

mean values for the entire area (Table 5), resulting in a better performance and accuracy. 

The null model is a simple model (naive) that expresses the value of the mean of the Y (variable to be predicted or target 

variable). The RMSE and MAE values are calculated for the null model and further compared with MAE and RMSE values 

calculated by other models. If the RMSE and MAE values from other models present similar or worse performance than the 

null model, the model that compared it is not an informative model. In this case, it is better to choose a simple mean as a 555 

predictor rather than using a more complex model to explain a given phenomenon. The null model sets a minimum performance 

threshold to be reached by models (Kuhn et al., 2020); however, there are only few studies using NULL_RMSE and 

NULL_MAE as parameters for model evaluation and decision making. 

 

4.1.2 Variables importance, model performance, and pedogeomorphology 560 

In general, for all geophysical sensor combinations, the majority of terrain attributes used did significantly influence sand and 

clay content prediction (Figs. 4, 5, 6, and 8). However, in most cases, parent material and magnetic susceptibility strongly 

influenced clay content prediction, except for G + C (Fig. 7). Ließ et al. (2012) found that the best performance was obtained 

using the RF model, with elevation and overland flow distance strongly affecting the model performance. According to Bauer 

(2010), the greater sand/clay ratio upslope is explained by the selective transport of fine material downslope, whereas in the 565 

present study, the clay content increased because of the influence of parent material (diabase), as also demonstrated by Mello 

et al. (2020). 

Magnetic susceptibility (κ), followed by DEM and parent material, were the key variables that contributed to sand and clay 

content prediction by RF and SVM, respectively, for G + S (Fig. 8). Siqueira et al. (2010) and Mello et al. (2020) found a 

positive correlation between soil magnetic susceptibility and clay content and a negative correlation between magnetic 570 

susceptibility and sand content. In fact, the mineralogical composition of the parent material strongly affects soil magnetic 

susceptibility (Ayoubi et al., 2018), mainly in tropical soils under the top of basalt spills (Da Costa et al., 1999), where our 

study was undertaken. 
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In general, for Fe2O3 and TiO2, the most important variables were parent material, magnetic susceptibility, and DEM, which, 

in most cases, contributed 100% (Figs. 4, 5, 6, 7, and 8). In fact, the mineralogical composition of the parent material and the 575 

pedo-environmental conditions strongly influence the amount of Fe/Ti oxides in soils (Schwertmann and Taylor, 1989; Kämpf 

and Curi, 2000; Bigham et al., 2002) and accelerate redistribution by downslope erosion (Mello et al., 2020). Also, the 

mineralogical composition of the parent material (Mullins, 1977; Ayoubi et al., 2018) and the landform evolution (Blundell et 

al., 2009; Sarmast et al., 2017) control the magnetic susceptibility of soil. Since the sensors used record the surface response 

and topography effect, it is expected that the most important variables indicated by the models would be related to surface 580 

processes. For the best combination of sensors (G + S), magnetic susceptibility and standardized height were more important 

variables in the prediction of Fe2O3 (100%) and TiO2 (55%) contents (Fig. 8), corroborating the expected surface processes 

and materials in the magnetic susceptibility of the soil (Shenggao, 2000; Damaceno et al., 2017) and the relief in the distribution 

of these materials (De Jong et al., 2000). 

For SiO2, the most important variable was DEM, which, in most of cases, contributed 100% (Figs. 4, 5, 6, and 7). The level 585 

of SiO2 in soil is directly related to the nature of the parent material and the erosion processes at different topographic positions 

(Bockheim et al., 2014; Breemen and Buurman, 2003). This can explain the greater contribution of the DEM in the prediction 

models. For the best sensor combination (G + S), the variable that most contributed was mid-slope position, which also is 

related to topographic features. 

For CEC, the variables DEM and magnetic susceptibility were the most important ones, contributing 100% in most of the 590 

cases (Figs. 4, 5, 6, 7 and 8). This can be explained by the high correlation between magnetic susceptibility, clay content, and 

CEC (Siqueira et al., 2010; de Souza Bahia et al., 2017; Mello et al., 2020). These variables vary with parent material and 

surface geomorphic processes, concentrating ferrimagnetic minerals (Frihy et al., 1995; Mello et al., 2020). 

Considering that the gamma spectrometer sensor is composed of three channels (eU, eTh, and K40), it can be called “three 

sensors”. Thus, considering the combination of sensors used, it is possible to create a modeling performance graph using the 595 

number of sensors used through learning curves (Fig. 9). Such a learning curve shows a measure of the predictive performance 

of a given domain as a function of some measurements of varying amounts of learning effort (Perlich, 2010). In our case, the 

varying amounts were the number of sensors: non-use of geophysical sensors (0 sensors), S + C (two sensors), G + S (four 

sensors), and S + G + C (five sensors). In this analysis, the combination of G + C sensors will not be used because they present 

the same number of G + S sensors (four sensors). However, the combination G + C presented lower results than G + S.  600 

For five soil properties (clay, sand, CEC, Fe2O3, and SiO3), the best results did not occur with a greater number of sensors, 

showing that increasing the number of covariables can lead to a lower performance (Fig. 9). This fact is associated with the 

addition of a new sensor as a covariate, which may provide conflicting information for the set of the other sensors found, where 

the ECa may have presented conflicting values with the sensors generated by the gamma spectrometry channels, which 

generates a loss of performance when with sensors are combined. The application of the RFE importance selection method 605 

was able to amortize this, making it a reliable method to reduce this effect. 
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Figure 9. Learning curves calculated on the metric by which the parameters of the model were optimized and on the metric 

by which the model was evaluated and selected. The most common form of learning curves in the general field of machine 

learning shows predictive accuracy on the test examples as a function of the number of training examples (Perlich, 2010). 640 
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0-NU: Non-use of geophysical sensors; 2-S+C: (2 channels corresponding to susceptibilimeter + conductivimeter); 3-G: (3 

channels corresponding to eU, eTh and K40 from gamma-ray); 4-G+S: (4 channels corresponding to eU, eTh and K40 from 

gamma-ray spectrometer + susceptibilimeter). 645 

 

4.1.3 General evaluation 
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For this study, the independent RMQS data set was not large enough (75 sites). Therefore, validation using 74 sites provided 

erratic and inconsistent results, mainly when comparing different pedo-environmental indicators, even considering that this 

dataset, in theory, provides “unbiased” estimates of forecast performance (Loiseau et al., 2020). Similarly, Lagacherie et al. 650 

(2019) showed that the location and number of samples used for independent assessment can significantly impact the values 

of these indicators. This indicates that the greatest variations were observed for evaluation sets with less than 100 samples.  

Modeling soil attributes using relief and geophysical data presented promising results for geosciences studies and soil 

scientists. The use of several algorithms from different “families”, as well as the training and validation method, also made the 

study more robust and more reliable. In addition, machine learning models allow to define the importance of covariates, which 655 

is, sometimes, not possible when using ordinary spatialization methods, such as kriging and the inverse square of distance. 

The “nested leave-one-out validation” method was useful with small sample sizes, being a potential tool to be used in 

geosciences studies. However, the academic community still knows little about the potential applicability of machine learning 

techniques. 

 660 

5. Conclusions 

It is possible to model soil attributes satisfactorily, with easily acquired input data (parent material + DEM) combined with 

data sets from different geophysical sensors. In addition, geophysical data from proximal sensors coupled with Cubist 

algorithms can provide accurate estimates for several soil attributes. This may reduce the need for new soil samples and wet 

chemistry methods. 665 

The combination of geophysical sensors with the best model performance (higher R2 and lower RMSE and MAE, 

concomitantly) for the prediction of soil attributes was Gamma-ray spectrometer + Susceptibilimeter (G + S). For this 

combination of sensors, the R2 values were 0.494 (clay), 0.422 (sand), 0.470 (Fe2O3), 0.328 (TiO2), 0.207 (SiO2) and 0.303 

(CEC) for the SVM, RF, LM, Cubist, and LM algorithms, respectively. The simultaneous use of three sensors did not optimize 

model performance. On the other hand, when the geophysical sensors were not used, soil attribute prediction by machine 670 

learning algorithms was less reliable. 

In general, the algorithms showed varying performance levels. The Cubist algorithm was most suitable for clay, sand, Fe2O3, 

TiO2, and SiO2. For CEC, the best performance was obtained by SVM. The second-best algorithm performance observed using 

SVM for clay, RF for sand, and LM for Fe2O3, TiO2, SiO2, and CEC. 

For soil attributes, we obtained R2 values greater than 0.2, which are considered satisfactory for machine learning algorithms 675 

applied to field data without expensive laboratory analysis, especially when compared with data from fieldwork with the use 

of remote sensing covariates. All soil attributes were more reliably predicted considering an average value for the entire area. 

The use of the null model methodology provided a way of comparing the values generated by machine learning when it is not 

possible to use other methods. The use of four algorithms proved necessary since at least one of the soils attributes performed 

better in each of the tested algorithms. 680 
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The use of nested-LOOCV method was appropriate to be used in geoscience and soil science for modeling using a database 

with a small number of samples. In addition, the nested-LOOCV approach proved to be a robust method to evaluate the 

algorithm’s performance, allowing concomitantly the optimisation and increasing the efficiency of training and testing of 

models. 

The final model was more parsimonious, with an ideal number of covariates with a three-step selection. This reduced the effect 685 

of overfitting by the use of a large number of covariates. Also, the nested leave-one-out validation methodology proved to be 

appropriate for a small number of samples when compared to hold-out validation and cross-validation. 

The covariables that most contributed to the prediction of soil attributes (clay, sand, Fe2O3, TiO2, SiO2, and CEC), in most of 

the algorithms used and sensor combinations, were DEM, magnetic susceptibility, parent material, and standardized height. 

For each study area, a conceptual pedogeomorphological and geophysical model must be created due to the complex interaction 690 

among environmental variables, pedogenesis and soil attributes. These factors affect the geophysical variables which are 

detected and quantified by the sensors and will later serve as input data for the modeling processes. 

The machine learning technique is a potential tool for modelling soil attributes with geophysical data when only field data with 

proximal sensors are available. The combined use of gamma-ray spectrometer and susceptibilimeter, allowed for an 

optimization of the models. 695 
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