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Abstract.

The Vegetation Optimality Model (VOM, Schymanski et al., 2009, 2015) is an optimality-based, coupled water-vegetation

model that predicts vegetation properties and behaviour based on optimality theory, rather than calibrating vegetation properties

or prescribing them based on observations, as most conventional models do. In order to determine whether optimality theory

can alleviate common shortcomings of conventional models, as identified in a previous model inter-comparison study along the5

North Australian Tropical Transect (NATT) (Whitley et al., 2016), a range of updates to previous applications of the VOM have

been made for increased generality and improved comparability with conventional models. To assess in how far the updates

to the model and input data would have affected the original results, we implemented them one-by-one while reproducing the

analysis of Schymanski et al. (2015).

The model updates included extended input data, the use of variable atmospheric CO2-levels, modified soil properties,10

implementation of free drainage conditions, and the addition of grass rooting depths to the optimized vegetation properties. A

systematic assessment of these changes was carried out by adding each individual modification to the original version of the

VOM at the flux tower site of Howard Springs, Australia.

The analysis revealed that the implemented changes affected the simulation of mean annual evapo-transpiration (ET) and

gross primary productivity (GPP) by no more than 20%, with the largest effects caused by the newly imposed free drainage15

conditions and modified soil texture. Free drainage conditions led to an underestimation of ET and GPP, whereas more fine-

grained soil textures increased the water storage in the soil and resulted in increased GPP. Although part of the effect of free

drainage was compensated for by the updated soil texture, when combining all changes, the resulting effect on the simulated

fluxes was still dominated by the effect of implementing free drainage conditions. Eventually, the relative error for the mean

annual ET, in comparison with flux tower observations, changed from an 8.4% overestimation to an 10.2% underestimation,20

whereas the relative errors for the mean annual GPP stayed similar with a change from 17.8% to 14.7%. The sensitivity to free

drainage conditions suggests that a realistic representation of groundwater dynamics is very important for predicting ET and

GPP at a tropical open-forest savanna site as investigated here. The modest changes in model outputs highlighted the robustness

of the optimization approach that is central to the VOM architecture.
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1 Introduction25

Novel modelling approaches that are able to explicitly model vegetation dynamics, may lead to an overall improved understand-

ing of flux exchanges with the atmosphere. Recent model inter-comparison studies also reveal that novel model approaches

are needed, especially related to vegetation dynamics (e.g. Whitley et al., 2016). Therefore, we use here optimality theory to

predict the variation and dynamics of vegetation cover, root systems, water use and carbon uptake without the need for site-

specific input about vegetation properties. The theory is based on the premise that the net carbon profit (NCP), which is the30

difference between carbon assimilated by photosynthesis and carbon expended on construction and maintenance of all the plant

tissues needed for photosynthesis and water uptake and storage, is an appropriate measure of plant fitness, given that assimi-

lated carbon is a fundamental resource of plant growth, development, survival and reproduction. The theory further assumes

that construction and maintenance costs of plant organ functionality are general and therefore transferable between species and

sites. Hence, the costs and benefits at different sites are determined in a consistent way, leading to vegetation properties that35

solely depend on physical conditions, such as meteorological forcing, soils and hydrology. As a result, this leads to a systematic

and consistent explanation of vegetation behaviour under different external conditions at different sites.

These optimality principles were employed in the Vegetation Optimality Model (VOM, Schymanski et al., 2009, 2015). The

VOM is a coupled water-vegetation model that optimizes vegetation properties to maximize the Net Carbon Profit (NCP) in

the long-term (20-30 years) for given climate and physical properties at the site under consideration. The NCP is defined as40

the difference between the total carbon amount assimilated by photosynthesis, and the total carbon costs for the maintenance

of leaf area, photosynthetic capacity and root surface area, as described in Schymanski et al. (2007, 2008b). The VOM has

been previously applied by Schymanski et al. (2009) and Schymanski et al. (2015) at Howard Springs, a flux tower site in

the North Australian Tropical Transect (NATT, Hutley et al., 2011). The NATT consists of multiple flux tower sites along a

precipitation gradient from north to south, which allows for a more systematic testing of the VOM under different climatological45

circumstances. The NATT has been used previously in an intercomparison of terrestrial biosphere models (TBMs) by Whitley

et al. (2016), which revealed that lacking or wrong vegetation dynamics and incorrect assumptions about rooting depths have

a strong influence on the performance of state-of-the-art TBMs. In contrast to these TBMs, the VOM predicts rooting depths

and vegetation dynamics, and provides therefore a novel approach for the simulation of these savanna sites.

To assess in how far the optimality-based simulation of rooting depths, tree cover and vegetation dynamics may alleviate the50

shortcomings of TBMs identified by Whitley et al. (2016), we propose to run the VOM using the same input data and similar

physical boundary conditions at the different sites as in Whitley et al. (2016). In the simulations by Whitley et al. (2016), all

TBMs were run under the assumption of a freely draining soil column, even though studies suggest an influence of groundwater

on the resulting fluxes (York et al., 2002; Bierkens and van den Hurk, 2007; Maxwell et al., 2007). Free draining conditions

can be mimicked in the VOM by setting drainage parameters to very fast drainage and the critical water table for the onset of55

drainage very low (see below).

In previous applications of the VOM (Schymanski et al., 2009, 2015), atmospheric CO2 concentrations were assumed

constant over the entire modelling period, whereas for inter-comparison with other models, we should use measured CO2-
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levels, which have increased considerably over the past years (Keeling et al., 2005). Previous applications of the VOM also

prescribed a grass rooting depth of 1 m, arguing that due to the presence of a hard pan at Howard Springs, only tree roots could60

penetrate into deeper layers. Since we do not know if such features exist at the other sites along the NATT, rooting depth of

seasonal vegetation should be optimised in a similar way as that of perennial vegetation.

To assess to what extent the various changes influence the VOM-results, a new set-up of the VOM was applied to the same

flux tower site in Australia, Howard Springs, as in Schymanski et al. (2009, 2015). This technical note describes the changes

to the VOM since its last application by Schymanski et al. (2015), and how they affect the results of the VOM one-by-one and65

in combination.

2 Methodology

All steps in the process, from pre- and post-processing to model runs, were done in an open science approach using the

RENKU1 platform. The workflows including code and input data can be found online2. In the following, we briefly describe

the study site, the VOM, and the various modifications done in this study, compared to Schymanski et al. (2015).70

2.1 Study site

The study site is Howard Springs (How-AU), which was previously used by Schymanski et al. (2009) and Schymanski et al.

(2015) and provides a long record of carbon dioxide and water fluxes starting from 2001 (Beringer et al., 2016). Howard Springs

is the wettest site (average precipitation of 1747 mm/year (SILO Data Drill, Jeffrey et al., 2001, calculated for 1980-2017))

along the North Australian Tropical Transect (NATT, Hutley et al., 2011), which has a strong precipitation gradient from north75

to south, with a mean annual precipitation around 500 mm/year at the driest site. The vegetation at Howard Springs consists

of a mostly evergreen overstorey (mainly Eucalyptus miniata and Eucalyptus tetrodonta) and an understorey dominated by

annual Sorghum and Heteropogon grasses. The soils at Howard Springs are well-drained red and grey kandosols, and have a

high gravel content and a sandy loam structure.

2.2 Vegetation Optimality Model80

The Vegetation Optimality Model (VOM, Schymanski et al., 2009, 2015) is a coupled water and vegetation model, that opti-

mizes vegetation properties by maximizing the Net Carbon Profit. The model code and documentation can be found online34

and version v0.55 of the model was used here. A general description is given below, whereas a more detailed description can

be found at Schymanski et al. (2009, 2015).

1https://renkulab.io/
2https://renkulab.io/gitlab/remko.nijzink/vomcases
3https://github.com/schymans/VOM
4https://vom.readthedocs.io
5https://doi.org/10.5281/zenodo.3630081
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Figure 1. Location of the Howard Springs site, together with the other flux tower sites that are part of the North Australian Tropical Transect

in the Nortern Territory of Australia, with the mean annual precipitation shown in the blue colorscale (SILO Data Drill, Jeffrey et al., 2001,

calculated for 1980-2017).

2.2.1 Vegetation model85

The VOM schematizes the ecosystem as two big leaves, one representing the seasonal vegetation (grasses) and one repre-

senting the perennial vegetation (trees). Photosynthesis was modelled according to Schymanski et al. (2007), who simplified

the canopy-gas exchange model of von Caemmerer (2000) for C3-plants. The model computes CO2-uptake as a function of

irradiance, atmospheric CO2-concentrations, temperature, photosynthetic capacity, projected foliage cover and stomatal con-

ductance, whereby photosynthetic capacity, projected foliage cover and stomatal conductance are optimized dynamically in a90

way to maximize the overall Net Carbon Profit (NCP) of the vegetation over the entire simulation period. Optimization is possi-

ble due to the carbon costs associated with each of these variables: photosynthetic capacity is linked to maintenance respiration,

projected cover to the turnover and maintenance of leaf area, while stomatal conductance is linked to transpiration (depending

on the atmospheric vapour pressure deficit) and hence root water uptake costs and limitations. Root water uptake is modelled

following an electrical circuit analogy, where the water potential difference between the plant and each soil layer drives the95

flow. Here, the root surface area and soil hydraulic conductivity in each soil layer determine the resistance (Schymanski et al.,

2008b). The root surface area, in return, generates carbon costs for maintenance and the vertical distribution in the soil profile

is optimized in a way to satisfy the canopy water demand with the minimum possible total root surface area.
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Table 1. Characteristics of the Howard Springs site. Vegetation data from Hutley et al. (2011), Hutley (2015) and Whitley et al. (2016), with

Eucalyptus (Eu.), Erythrophleum (Er.), Hetropogan (He.). Meteorological data is taken from the SILO Data Drill (Jeffrey et al., 2001) for

the model periods of 1-1-1980 until 31-12-2017, with the potential evaporation calculated according to the FAO Penman-Monteith formula

(Allen et al., 1998). The ratio of the net radiationRn with the latent heat of vaporization λmutiplied with the precipitation P , is defined here

as the aridity Rn/λP . Tree cover is determined as the minimum value of the mean monthly projective cover based on fPAR-observations

(Donohue et al., 2013). The maximum grass cover was found by subtracting the tree cover from the remotely sensed projective cover.

Study Site Howard Springs

FLUXNET ID AU-How

Coordinates 12.49S

131.35E

Prec. (mm year−1) 1747

Pot. evap. (mm year−1 ) 1763

Aridity. (-) 1.03

Net Rad. (MJ m−2 year−1−1 ) 4392

Mean max. temp. [oC] 37.5

Mean min. temp. [oC] 27.4

Tree cover (%) 39.8

Max. grass cover (%) 44.3

Species

Overstorey Eu. miniata

Eu. tetrodonta

Er. chlorostachys

Understorey Sorghum spp.

He. triticeus

2.2.2 Long-term optimization

The rooting depths of the perennial trees and the seasonal grasses (yr,p and yr,s) as well as the foliage projected cover of100

the perennial vegetation (MA,p) are derived by optimizing these properties for the long-term, assuming that these do not vary

significantly during the simulation period (20-30 years). Similarly, water use strategies of both the perennial and the seasonal

vegetation component are assumed to be a result of long-term natural selection for a given site, and are also optimized in

order to maximize the Net Carbon Profit. To do so, the water use strategy was expressed as a functional relation between

the marginal water cost of assimilation (Cowan and Farquhar, 1977), represented by λp and λs for perennial and seasonal105
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Figure 2. Schematization of the Vegetation Optimality Model as two big leaves, with MA,p and MA,s the fractional cover of perennial trees

and seasonal grasses respectively, yr,p and yr,s the rooting depths of the perennial trees and seasonal grasses respectively, ∆Z the soil layer

thickness, CZ the total soil depth, and Zr the drainage depth.

vegetation respectively, and the sum of water suction heads (hi) in all soil layers within the root zone, after Schymanski et al.

(2009):

λs = cλf,s



ir,s∑

i=1

hi



cλe,s

(1)

λp = cλf,p



ir,p∑

i=1

hi



cλe,p

(2)

where cλf,s, cλe,s, cλf,p and cλe,p are the optimized parameters, while ir,p and ir,s represent the number of soil layers110

reached by perennial and seasonal roots, respectively. After the establishement of the optimized water use parameters in Eqs. 1

and 2 (i.e. the long-term relation between soil water marginal water costs), the values of λp and λs are calculated for each day

separately and then used to simulate the diurnal variation in stomatal conductance using Cowan-Farquhar optimality (Cowan

and Farquhar, 1977; Schymanski et al., 2008a). The values of cλf,s, cλe,s, cλf,p and cλe,p essentially express how quickly

plants reduce water use as soil water suction increases during dry periods. The slower λs and λp are reduced in response to115

drying soil, the larger the root costs are as the root systems are adjusted to satisfy the canopy water demand. The parameters
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(cλf,s, cλe,s, cλf,p and cλe,p) are optimized and constant in the long-term, along with yr and MA,p, to maximize the total NCP

over the entire simulation period.

2.2.3 Short-term optimization

Some vegetation properties, such as seasonal vegetation cover (MA,s), photosynthetic capacities and root surface area distribu-120

tions of the seasonal and perennial vegetation component, are allowed to vary on a daily basis to reflect their dynamic nature.

Their values are hence optimized from day to day in a way to maximize the daily NCP. This is done by using three different

values for each of these vegetation properties, the actual value and a specific increment above and below this value every day,

and at the end of the day the combination of values that would have achieved the maximum NCP on the present day is selected

for the next day. See Schymanski et al. (2009, 2015) for details.125

2.2.4 Carbon cost functions

As mentioned above, different carbon cost functions are used to quantify the maintenance costs for different plant organs. The

carbon cost related to foliage maintenance is based on a linear relation between the total leaf area and a constant leaf turnover

cost factor:

Rf = LAIcctcMA,p (3)130

where LAIc is the clumped leaf area (set to 2.5 (Schymanski et al., 2007)), ctc is the leaf turnover cost factor (set to 0.22

µmol−1 s−1 m−2, (Schymanski et al., 2007)) and MA,p is the perennial vegetation cover fraction.

The costs for root maintenance were defined as (Schymanski et al., 2008b):

Rr = cRr

(rr
2
SA,r

)
(4)

where cRr is the respiration rate per fine root volume (0.0017 mol s−1 m−3), rr the root radius (set to 0.3*10−3 m) and SA,r135

the root surface area per unit ground area (m2m−2). The values used in this parameterization stem from observations on citrus

plants, as described by Schymanski et al. (2008b).

Water transport costs are assumed to depend on the size of the transport system, from fine roots to the leaves. The canopy

height is not modelled in the VOM, and the transport costs are therefore just a function of rooting depth and vegetated cover:

Rv = crvMAyr (5)140

where crv is the cost factor for water transport (mol m−3 s−1), MA the fraction of vegetation cover (−), and yr the rooting

depth (m). The costfactor crv was set to 1.0 µmol m−3 s−1 by Schymanski et al. (2015) after a sensitivity analysis for Howard

Springs, which is also adopted here.
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2.2.5 Water balance model

As described in Schymanski et al. (2015), the soil is schematized as a permeable block containing an unsaturated zone and145

a saturated zone, overlaying an impermeable bedrock with a prescribed drainage level. The model simulates a variable water

table based on the vertical fluxes between horizontal soil layers and a drainage flux computed as a function of the water table

elevation. Here, the thickness of soil layers was prescribed to 0.2 m, based on a sensitivity analysis for Howard Springs, see

also Supplement S2.

The hydrological parameters that determine the drainage outflow and groundwater tables are a hydrological length scale for150

seepage outflow, channel slope and drainage level zr, as defined by Schymanski et al. (2015) and based on Reggiani et al.

(2000). The seepage outflow is determined by the elevation difference between groundwater table and drainage level, divided

by a resistance term that uses the hydrological length scale and channel slope (Eq. 10, Schymanski et al., 2008b). Originally,

the hydrological length scale and channel slope were adopted from Reggiani et al. (2000) and set to 10 m and 0.033 rad,

respectively, in absence of more detailed knowledge about these parameters. At the same time, Schymanski et al. (2015) set155

the drainage level zr and total soil thickness cz to 10 m and 15 m, respectively, based on the local topography around the flux

tower site (Schymanski et al., 2008b). This hydrological schematization resulted in groundwater tables around 5 m below the

surface.

Here, the hydrological parameters were set in a way to resemble freely draining conditions, i.e. avoiding a significant in-

fluence of groundwater in Figure 2, for consistency with other model applications (e.g. Whitley et al., 2016), with a total soil160

thickness cz of 30 m, a fast drainage parameterization with a drainage level zr of 5 m, a length scale for seepage outflow set to

2 m and a channel slope set to 0.02 rad. As illustrated in Figure 2, when precipitation falls on this soil block, it either causes

immediate surface runoff or infiltrates. Once infiltrated, it can be taken up by roots and transpired, or it can evaporate at the

soil surface, or move downwards until it drains away at a depth of 30 m, well below the rooting zone (i.e. parameterized to

represent freely draining conditions for comparison with other models). The simulation of soil evaporation and vertical fluxes165

in the unsaturated zone are described in Schymanski et al. (2008b, 2015).

2.2.6 Model optimization

The VOM uses the Shuffled Complex Evolution algorithm (SCE, Duan et al., 1994) to optimize the vegetation properties listed

in Table 3 for maximum Net Carbon Profit (NCP) over the entire simulation period (37 years for the new VOM set-up, from

1-1-1980 until 31-12-2017). The SCE-algorithm uses first an initial random seed, subdivides the parameter sets into complexes170

and performs a combination of local optimization within each complex and mixing between complexes to converge to a global

optimum. Here, we set the initial number of complexes to 10.

2.2.7 Model input and data

A relatively long timeseries of meteorological inputs is required to run and optimize the VOM. For this reason, Schymanski

et al. (2015) used data from the Australian SILO Data Drill (Jeffrey et al., 2001), from which a newer version was applied to175
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the new VOM set-up. The meteorological data includes time series of daily maximum and minimum temperatures, shortwave

radiation, precipitation, vapour pressure and atmospheric pressure. Atmospheric CO2-levels were originally assumed constant

by Schymanski et al. (2015), but in the new set-up, these were taken from the Mauna Loa CO2-records (Keeling et al., 2005).

Observed atmospheric CO2-levels at the flux tower were not used due to the required length of the timeseries for the VOM

(20-30 years). The measured meteorological variables at the flux tower sites were only used to verify the SILO meteorological180

data, which revealed only minor differences in the resulting fluxes of the VOM when the SILO-data was replaced for the days

that flux tower observations were available (max. 6%, see Figure S4.3 in Supplement S4). See also Supplement S3, Figure S3.1

for the time series of meteorological data.

The soils, originally assumed vertically homogeneous by Schymanski et al. (2015), were parameterized based on field

measurements of sand, clay and silt content provided by L. B. Hutley and J. Beringer in the top 10 cm, and the Soil and185

Landscape Grid of Australia (Viscarra Rossel et al., 2014a,b,c) for the deeper layers. The soils were classified into one of the

soil textural groups of Carsel and Parrish (1988) based on the fractions of sand, silt and clay. Eventually, the parameters for the

soil water retention model of Van Genuchten (1980) and the hydraulic conductivity were taken from the accompanying tables6

from Carsel and Parrish (1988). See also Table 2 for the soil parameterization.

At Howard Springs, a flux tower that is part of the regional FLUXNET network OzFlux (Beringer et al., 2016), provides190

time series of net ecosystem exchange (NEE) of carbon dioxide and latent heat flux (LE) for model evaluation. The Dingo-

algorithm (Beringer et al., 2017) was applied to the data for a gap-filled estimation of gross primary productivity (GPP) and

latent heat flux (LE). LE was converted to evapo-transpiration (ET), defined here as the sum of all evaporation and transpiration

processes, even though these processes are different in nature (Savenije, 2004). Eventually, the gap-filled observations of GPP

and ET were compared with the modelled fluxes. The original model application of Schymanski et al. (2015) was run until195

31-12-2005, and the modelled fluxes were for that reason evaluated for the overlapping period between model and flux tower

observations from 07-08-2001 until 31-12-2005. For consistency, the new VOM runs were evaluated for the same time period.

To evaluate the foliage projected cover (FPC) dynamics of seasonal and perennial vegetation predicted by the VOM, we

used satellite-derived monthly fractions of Photosynthetically Active Radiation absorbed by vegetation (fPAR) from Donohue

et al. (2008, 2013), which were converted into estimates of FPC. The maximum possible value of fPAR was defined as 0.95200

by Donohue et al. (2008) and relates to maximum projective cover (i.e. FPC = 1.0). The linear relation of FPC with fPAR-data

(Asrar et al., 1984; Lu, 2003) allowed for the calculation of FPC by dividing the fPAR-values by the maximum value of 0.95.

2.2.8 Modifications to the VOM set-up

In comparison with previous applications of the VOM (Schymanski et al., 2009, 2015), several changes were made regarding

the input data and process representation. Each individual change was added to the reference set-up of Schymanski et al. (2015)205

to assess the sensitivity of the model results for that change (see also Supplement S1). Briefly, the changes were assessed by

the following cases:

6see also https://vom.readthedocs.io/en/latest/soildata.html
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Table 2. Vertical profile of soil characteristics at Howard Springs, based on data from the Soil and Landscape Grid of Australia (Vis-

carra Rossel et al., 2014a,b,c), in addition to field measurements of J. Beringer and L. B. Hutley. Here, θr refers to the residual moisture

content, θs the saturated water content, α and n the Van Genuchten soil parameters (Van Genuchten, 1980) and Ksat the saturated hydraulic

conductivity.

Howard Springs Soil type θr (-) θs (-) α (1/m) n (-) Ksat (m/s)

0.00-0.20m Sandy Loam 0.065 0.41 7.5 1.89 1.228 * 10−5

0.20-0.40m Sandy Loam 0.065 0.41 7.5 1.89 1.228 * 10−5

0.40-0.60m Sandy Clay Loam 0.1 0.39 5.9 1.48 3.639 * 10−6

0.60-bedrock Sandy Clay Loam 0.1 0.39 5.9 1.48 3.639 * 10−6

– Reproduction the results of (Schymanski et al., 2015): the VOM was run with the same vegetation parameters and input

data as (Schymanski et al., 2015), in order to check the new version of the VOM-code for reproducibility. The model

was run from 1-1-1976 until 31-12-2005.210

– Re-run SCE: the VOM was re-optimized with the same settings and input data as (Schymanski et al., 2015), in order to

assess wheter the optimization algorithm converges to the same results as (Schymanski et al., 2015). The model was run

from 1-1-1976 until 31-12-2005.

– Variable CO2-levels: instead of using static atmospheric CO2-concentrations of 350 ppm, the CO2-concentrations from

the Mauna Loa CO2-records (Keeling et al., 2005) were used in the new model runs. The model was optimized here for215

the period 1-1-1976 until 31-12-2005.

– Reduced soil layer thickness: the soil layer thickness was set to 0.2 m, instead of the 0.5 m used by Schymanski et al.

(2015), after running a sensitivity analyses (see also Supplement S2). The model was optimized here for the period

1-1-1976 until 31-12-2005.

– Variable atmospheric pressure: a new version of the meteorological data from the Australian SILO Data Drill (Jeffrey220

et al., 2001) provided time series of atmospheric pressure starting from 1-1-1980, whereas originally this had been fixed

at a level of 1013 hPa. The model was optimized here for the period 1-1-1980 until 31-12-2005, due to the available time

series from 1-1-1980.

– Optimized grass rooting depth: the rooting depth of grasses was prescribed at 1.0 m by Schymanski et al. (2009, 2015),

which is roughly the position of a hard pan in the soil profile at Howard Springs. In this study, grass rooting depth is225

optimized along with the tree rooting depth at each site separately. The model was optimized here for the period 1-1-1976

until 31-12-2005.
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– Updated meteorological data: a new version of the meteorological data from the Australian SILO Data Drill (Jeffrey

et al., 2001) was used, starting from 1-1-1980. Therefore, the model was optimized here for the period 1-1-1980 until

31-12-2005. The time series of daily maximum and minimum temperatures, shortwave radiation, precipitation, vapour230

pressure and atmospheric pressure were all updated, but the CO2-concentrations kept fixed at 350 ppm.

– Updated and extended meteorological data: the new version of the meteorological data from the Australian SILO Data

Drill (Jeffrey et al., 2001) covers also more recent years. Therefore, the model period was extended and the model was

optimized from 1-1-1980 until 31-12-2017. The time series of daily maximum and minimum temperatures, shortwave

radiation, precipitation, vapour pressure and atmospheric pressure were all updated, but the CO2-concentrations kept235

fixed at 350 ppm.

– Modified hydrology: in order to simulate freely draining conditions over the transect, in accordance with model simula-

tions reported by Whitley et al. (2016), the position of drainage channels was set to 25 m below the surface and drainage

parameters were set in a way to not let groundwater rise significantly above this (see also sect 2.2.5). The model was

optimized here for the period 1-1-1976 until 31-12-2005.240

– Modified soil properties: To improve realism, physical soil properties were not assumed to be vertically homogeneous,

but varied with 20 cm depth increments (Table 2). Soil textures in the top 10 cm were based on field measurements

provided by L. B. Hutley and J. Beringer, whereas the soil textures for the deeper soil layers were based on data from the

Soil and Landscape Grid of Australia (Viscarra Rossel et al., 2014a,b,c). As a result, the soil profile at Howard Springs

is now assumed to consist of sandy loam in the top 0.4 m and sandy clay loam below, whereas Schymanski et al. (2015)245

assumed the soil to be sandy loam in the entire soil profile. The model was optimized here for the period 1-1-1976 until

31-12-2005.

– Modified soil properties and hydrology: the modified soils and hydrology, as described above, will strongly interact. For

that reason, their combined effect was assessed by implementing both changes in the set-up of Schymanski et al. (2015),

keeping everything else constant.250

3 Results

3.1 Effects of modifications to the VOM

To compare previous simulations using the VOM (Schymanski et al., 2015) with the new VOM set-up that includes the mod-

ifications as outlined in Sect. 2.2.8, each modification was applied to the previous setup in a stepwise manner to quantify the

influence of each change in isolation. The resulting simulations were compared with those presented in Schymanski et al.255

(2015) for the site Howard Springs. In general, sensitivities varied between +20% and -25% in total GPP and ET, and are

summarized in Figure 3. See also Supplement S1 for detailed time series.
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Figure 3. Relative changes in the annual values for the different (incremental) changes, as described in sect. 2.2.8, in comparison with

Schymanski et al. (2015), with a) mean annual ET, b) mean annual GPP, c) transpiration perennials (trees), d) mean annual GPP perennials

(trees), e) mean annual transpiration seasonals (grasses), f) mean annual GPP seasonals (grasses), g) mean annual soil evaporation, h) mean

annual seepage face flow (Qsf ), i) prjected cover perennials (trees), j) projected cover seasonals (grasses), k) root depth perennials (trees)

and l) root depth seasonals (grasses).
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Figure 4. Comparison between the results of Schymanski et al. (2015) in green, simulations using new soil and hydrological parameterization

(red), and simulations using all changes in combination (black). a) ET, b) transpiration by perennials (trees), c) transpiration seasonals

(grasses), d) soil evaporation, e) GPP, f) GPP perennials (trees), g) GPP seasonals (grasses), and h) projective cover. Time series in a)-g)

were smoothed using a moving average of 7 days. The daily average quality flags of the flux tower observations are shown as a dashed line

in Panel (e), with a value of 100 for a completely gap-filled day and 1 for gap-free observations.
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Table 3. Vegetation properties in the Vegetation Optimality Model optimized for maximizing the Net Carbon Profit.

Parameter Description Initial range Timescale Unit

cλf,p water use parameter perennial vegetation 0.0 - 10000.0 Long-term mol mol−1 m−1

cλe,p water use parameter perennial vegetation -3.0 - 0.0 Long-term -

cλf,s water use parameter seasonal vegetation 0.0 - 10000.0 Long-term mol mol−1 m−1

cλe,s water use parameter seasonal vegetation -3.0 - 0.0 Long-term -

MA,p fractional cover perennial vegetation 0 - 1 Long-term -

yr,p rooting depth perennial vegetation 1.0 - 9.0 Long-term m

yr,s rooting depth seasonal vegetation 0.05 - 2 Long-term m

MA,s fractional cover seasonal vegetation 0.00 - (1.0-pct) Daily -

Jmax25,p electron transport capacity perennial vegetation - Daily mol s−1 m−2

Jmax25,s electron transport capacity annual vegetation - Daily mol s−1 m−2

Gs,p stomatal conductance perennial vegetation - Daily mol s−1 m−2

Gs,s stomatal conductance seasonal vegetation - Daily mol s−1 m−2

SAdr,i,s root surface area distribution of perennial vegetation - Daily m2 m−3

SAdr,i,s root surface area distribution of annual vegetation - Daily m2 m−3

The updated meteorological input data, for the runs until 31-12-2005 as well as the extended runs until 31-12-2017, hardly

influenced the outcomes, with less than 10% relative change in the resulting fluxes (Figure 3a and b). However, a higher

contribution of the perennial vegetation in the fluxes can be observed, related to an increase in perennial vegetation cover260

(Figure 3i). This happened as well for re-running the SCE-algorithm, pointing at a relatively large uncertainty in the predicted

perennial cover, with a range of values that results in similar fluxes.

Changing the fixed atmospheric CO2-levels (350 ppm) in the set-up of Schymanski et al. (2015) to variable atmospheric

CO2-levels had a relatively large influence on perennial vegetation, yielding values of GPP for perennial vegetation that were

up to 21.0% higher (Figure 3d). Note that the CO2-levels of the Mauna Loa records have a mean of 369 ppm and a maximum265

of 410 ppm during the modelling period, i.e. mostly higher than the 350 ppm prescribed in Schymanski et al. (2015), who also

simulated an increase in GPP by perennial plants in response to elevated CO2. See Figure S3.1f in Supplement S3 for more

details about the CO2-levels used here.

Changing the vertical soil discretization of 0.5 m in Schymanski et al. (2015) to a finer resolution of 0.2 m had a minor

influence, with a change of 2.6 % in the resulting GPP and 0.3 % in ET (Figure 3b, a). Similarly, when the grass rooting depths270

were optimized instead of the prescribed grass rooting depth of 1 m (everything else being the same as in Schymanski et al.

(2015)), simulated GPP and ET were changed by 1.0% and -2.3% respectively (Figure 3b and a). The optimization led to

shallower grass roots of 0.5 m (incurring lower carbon costs) and therefore to reductions in GPP and ET.
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Stronger effects were found for the updated soil texture, which resulted in slightly reduced ET (-1.5%) but clearly increased

GPP by 9.5% (Figure 3a and b). The reduction in ET for an updated soil texture was mainly due to a large reduction in275

transpiration by seasonal vegetation. At the same time, simulated soil evaporation was increased, relating to an increased soil

water storage and pointing at a reduced ability of the roots to take up water due to reduced hydraulic conductivity in the

soil. The increase in simulated GPP was largely due to increased GPP by perennial vegetation, which at the same time slightly

increased its transpiration. These changes were connected to a largely increased perennial vegetation cover and reduced rooting

depth compared to the original simulations (vegetation cover went up to 0.51 from 0.31, while rooting depth went down to 3.5280

m from 4 m). Overall, the perennial vegetation benefited from the finer soil texture due to larger soil moisture storage capacity

and carry-over of soil moisture into the dry season, whereas the seasonal vegetation suffered from reduced root water uptake

due to lower hydraulic conductivity and increased soil evaporation during the wet season.

The implementation of free draining conditions had strong effects on the simulated fluxes as well, with lower values of

both ET and GPP (-20.4% and -6.9% respectively, Figure 3a and b). However, here especially the simulated ET of perennial285

vegetation was reduced, whereas the transpiration by seasonal vegetation stayed relatively similar (Figure 3c and e). This is

because in the original simulations, capillary rise from the water table was most important during the dry season, when seasonal

vegetation is inactive, and a change in the water table due to free draining conditions affects therefore mostly the perennial and

not so much the seasonal vegetation.

Combining the new soils with the new hydrological settings still resulted in a reduction in ET by -11.5%, whereas their290

combined effect on GPP led to only a small reduction by -1.1% (Figure 3a and b). Here, the reduction of ET occured mainly

during the wet season, and related to reductions in the perennial transpiration (Figure 4a-c), whereas the GPP stayed relatively

similar (Figure 4e).

These findings are in accordance with the isolated effects of the new soils and hydrology, where free drainage conditions

resulted in a large reduction in ET and GPP, while finer soil texture resulted in a small reduction in ET but large increase in295

GPP. Hence, the finer soil texture largely compensated the effect on GPP, but not on ET.

The other changes had smaller effects on the fluxes, so we do not discuss them here individually. Instead, we will perform a

more in-depth analysis of the differences in model results when all changes were combined.

3.2 Resulting differences

After incorporating all the changes, the relative error for mean annual evapo-transpiration (ET) changed from an overestimation300

by 8.4% to an underestimation of -10.2%, whereas the relative error for the mean annual GPP changed from 17.8% to 14.7%.

The ensemble years in Figure 5 revealed that the evapo-transpiration (ET) was most strongly underestimated by the VOM

during the dry season at Howard Springs. The observed groundwater tables (Figure 6a) ranged from 5-15 m depth seasonally,

whereas the VOM was parameterized now to keep groundwater tables close to 25 m depth, for consistence with free drainage

conditions in other models. Schymanski et al. (2015) originally assumed a much shallower drainage level at Howard Springs,305

which led to groundwater tables around 5 meters depth, and better correspondence with the observed fluxes (Fig. 5).
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Figure 5. Ensemble years of evapo-transpiration (ET) and gross primary productivity (GPP) for the VOM (dark green), flux tower observa-

tions (black), results of Schymanski et al. (2015) (light green), all smoothed by a 7-day moving average. The ensemble years are calculated

for the overlapping time periods with the flux tower observations (7-8-2001 until 21-12-2016).

The simulated soil moisture in the top soil layer, as illustrated in Fig. 6b, remained similar to the soil moisture values of

Schymanski et al. (2015). The higher vertical resolution in the new model runs (20 cm cf. 50 cm soil layers) resulted in stronger

surface soil moisture spikes around rainfall events, which makes the red line appear generally more noisy than the green line

in Fig. 6b. Observed soil moisture in the upper 5 cm was generally lower than the simulated soil moisture in the top soil layer,310

particularly in the wet season. The total water storage in the top 5 m of the soil profile was substantially higher (up to 5-fold)

in the new model simulations compared to Schymanski et al. (2015) (Figure 6c). The water retention curves (Figure 7) also

show a clear shift, especially for the layers below 0.4 m, indicating extra storage. However, the water potentials again showed

strong similarities between the current model runs and the results of Schymanski et al. (2015) (Figures 6d and e, respectively),

with differences reflecting the vertical resolutions of the soil domains and simulated rooting depths.315

4 Conclusions

The Vegetation Optimality Model has undergone several changes regarding model set-up and input data since its last application

by Schymanski et al. (2015). The modifications consisted of updated and extended input data, the use of variable atmospheric

CO2-levels, modified soil properties, modified drainage levels as well as the addition of grass rooting depths to the optimized

vegetation properties. The changes were applied to the VOM in a step-wise manner, by applying each modification to the320

previous set-up of Schymanski et al. (2015) in isolation to evaluate its effect on the results, before combining all modifica-

tions and analyzing their effect in combination. This analysis revealed that updated soil textures and a changed hydrological

schematization had a strong influence on the results. An underestimation of dry season ET at Howard Springs was much more

apparent when compared to the results of Schymanski et al. (2015), where the drainage parameterization maintained a water

table depth much closer to the observed water table at this site. The effect of a much deeper groundwater table in the present325

simulations was partly buffered by a more fine-grained soil texture below 0.4 m (sandy clay loam instead of sandy loam), which

resulted in an increase in water storage at otherwise similar water potentials in the top 5 m of soil compared to the simulations
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Figure 6. Simulated and observed hydrological state variables at Howard Springs. (a) groundwater depths, with dashed lines representing

the prescribed bedrock depths, dotted lines the rooting depths (trees in red and grasses in orange), the VOM-results in red, the results of

Schymanski et al. (2015) in green, and observations of three different bore holes in the vicinity of the study site in blue (Northern Territory

Government, Australia, 2018); (b) the volumetric water content in the upper soil layer with the VOM results in red, the results of Schymanski

et al. (2015) in green and measurement-based values at 5 cm depth at the flux tower sites in blue; (c) the total water storage in the upper 5

m for the VOM (red) and the results of Schymanski et al. (2015) in green; (d) the matrix water potentials for the current model runs of the

VOM; and (e) the matrix water potentials of Schymanski et al. (2015). Observed water tables in Panel a) were obtained from the Water data

portal, (Northern Territory Government, Australia, 2018, accessed 8-3-2019).

by Schymanski et al. (2015). The use of variable atmospheric CO2-levels also had a strong influence on the results, which is

especially important as the model time period has been extended in this study. This was mainly due to generally higher levels

of atmospheric CO2 in recent observations, compared to the constant values used by Schymanski et al. (2015).330

The stepwise analysis of modifications to a model setup and comparison against a benchmark dataset proved very helpful for

identifying sensitivities of simulations to the different changes that might otherwise remain undiscovered due to compensating
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Figure 7. Water retention curves at Howard Springs for the current VOM-results (red: top two layers, blue: deeper layers), and the results

of Schymanski et al. (2015) in green. Note that multiple red lines are shown due to the different soil parameterizations per soil layer in the

current model runs, whereas Schymanski et al. (2015) used one soil parameterization for all soil layers. The upper soil layers have however

the same soil parameters, leading to overlapping curves (red and dashed green).

effects of the various modifications during model development. In this way, we found that the neglect of a varying water table

may have a strong effect on simulated surface fluxes, especially when soils are highly permeable. The common assumption of

free draining conditions in modelling studies should be revised, and if such an assumption is necessary, due to a lack of better335

hydrological understanding of a given site, or for comparison with other model simulations using this assumption (e.g. Whitley

et al., 2016), potential bias in simulation results has to be acknowledged.

Code and data availability. Model code is available on github (https://github.com/schymans/VOM), release v0.5 is used in this study (http:

//doi.org/10.5281/zenodo.3630081). The full analysis including all scripts and data are available on renku (https://renkulab.io/gitlab/remko.

nijzink/vomcases). Before final publication, static versions of these repositories will be uploaded to zenodo.org and receive a separate DOI.340
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