
Response to reviews of manuscript: 

Validation of Terrestrial Biogeochemistry in CMIP6 Earth System Models: A 

Review 

We thank each reviewer for their constructive comments. We have responded to each comment 

below. The reviewer comments are presented in red italicized text, while author responses are in 

regular font, and the relevant changes to the manuscript are in blue. 

Referee 1 Comments: 

This article presents a review of the current practices for validating the terrestrial 

biogeochemistry in CMIP6 Earth system models. The authors use the literature to show that the 

terrestrial biogeochemistry is a major source of uncertainty in future climate projections, and 

that this uncertainty can be linked to model structure. They study how 11 modeling groups 

participating in the CMIP6 exercise validated the terrestrial biogeochemical cycles in their land 

surface models and their fully coupled Earth System Models. They analyze the different 

validations presented by the modeling groups in terms of number of variables validated, quantity 

represented (for instance GPP), spatial and temporal scales, reference dataset and statistical 

metrics used. They also present two community methods designed to validate land surface 

models (ILAMBv2.1) and Earth system models (ESMValTool2.0). They present a critique of the 

validation approaches and suggest ways forward: mainly developing a standard protocol for 

validation which could be based on the existing communal software packages ILAMBv2.1 and 

ESMValTool2.0. 

The article is very well written, very clear and very detailed. The authors read in detail the 

articles describing the validation of the CMIP6 models. They give a very detailed and 

informative description of the techniques used by each modelling group in Annex A.  

I have a few detailed comments (see below) and only two general comments: 

• I agree that the use of communal validation software packages would be highly beneficial 

to the community. However, these should be used to help understand the behavior of 

the models and help improve them. But I would be reluctant to see them used as tools 

to select models allowed to participate in certain exercises. If this was the case it 

would contradict Lovenduski and Bonan’s recommendation to improve process 

understanding and observation accuracy instead of reducing model spread (line 378). 

The authors don’t suggest to use these validation softwares as selection tools but it 

might be implied by their remark about GCP on line 217. 

We agree with and thank the referee for bringing this to our attention. We have adapted 

the manuscript as follows: 

Lines 212-218: “The validation of particular variables by different participants 

occasionally employed the same datasets, though in many cases inconsistent reference 

datasets were used for the same variable, and the spatial and temporal dimension of 



validations was often distinct. This contrasts with other works employing multiple 

models such as the Global Carbon Project (Friedlingstein et al., 2020; 2019; Le Quéré 

et al., 2018) which provide stringent quality explicit validation criteria for model 

inclusion, such as simulating recent historical net land-atmosphere carbon flux within a 

particular range and being within the 90% confidence interval of specified 

observations. The stringency of such criteria must be carefully chosen to acknowledge 

the role of observational uncertainty as well as uncertainty stemming from potential 

model tuning to forcing datasets. The use of different validation approaches impedes 

the comparison of performance across models, however it also provides a diverse 

collection of example methods.”  

• The authors don’t mention at all the links between the terrestrial biogeochemical cycles 

and the hydrological cycle. They mention that the modelers should evaluate the 

response of the biogeochemical cycles to temperature or the effect of nutrient 

limitations but never mention the effect of moisture conditions. I think the evaluation of 

the coupling between water and biogeochemical cycles at the land surface is as much 

of a concern. 

We thank the referee for bringing this important point to our attention. While validation 

of the physical components of land surface models and ESMs is outside of the focus of 

this review, we agree the moisture conditions are an important driving variable for 

terrestrial biogeochemistry. We have adapted the first and fourth sections of the 

manuscript as follows: 

 

Lines 22-25: “The future capacity of the terrestrial biosphere to sequester CO2 emissions 

is uncertain due to non-linear feedbacks such as CO2 fertilization, growing season 

extension in cold-limited regions, enhanced heterotrophic respiration, and potentially 

others feedbacks, as well as environmental and physiological constraints such as moisture 

availability, nutrient limitations, and stomatal closure (Fleischer et al., 2019; Green et al., 

2019; Xu et al., 2016; Wieder et al., 2015).” 

Lines 245-250: “Another approach to validation which combines high-level variables and 

re-parameterization efforts is the assessment of functional relationships or emergent 

constraints, such as the relationship between GPP or turnover times and temperature, 

moisture, growing season length, and nutrient stoichiometry (Danabasoglu et al., 2020; 

Swart et al., 2019; Anav et al., 2015; McGroddy et al., 2004). Physically interpretable 

emergent constraints can aid in identifying model components which are particularly 

influential to climate projections (Eyring et al., 2019), such as the temperature control on 

carbon turnover in the top metre of soil in cold climates (Koven et al., 2017), GPP 

responses to soil moisture availability (Green et al., 2019), or regional carbon-climate 

feedbacks (Yoshikawa et al., 2008).” 

 

Lines 388-391: “Field experimental data provide unique insight as to the functional 

responses of vegetation to elevated CO2 concentration (Goll et al., 2017), temperature 

change (Richardson et al., 2018), moisture availability (Williams et al., 2019; Hovenden 



and Newton, 2018), and nutrient limitations (Fleischer et al., 2019), outside the current 

context of observations.” 

 

Lines 405-410: “Additionally, the universal inclusion of often overlooked processes such 

as moisture limitation, nitrogen and phosphorus cycles, dynamic vegetation, prognostic 

leaf phenology, and natural disturbance regimes should be a priority focus for 

participants in developing diagnostic models as these processes are highly influential on 

terrestrial biogeochemistry and physics (Eyring et al., 2020; Fleisher et al., 2019; Piao et 

al., 2019; Wieder et al., 2015; Achard et al., 2014; Richardson et al., 2013; Heimann and 

Reichstein, 2008; Tucker et al., 1986), and their omission contributes to widespread bias 

(Green et al., 2019; Anav et al., 2015). While outside the focus of this review, equal 

attention should be applied to the physical components of terrestrial biogeochemical 

cycles, including explicit representation of permafrost and riverine carbon transport 

dynamics. In fact, a study including four CMIP5 ESMs found that soil moisture 

variability prompted variability in terrestrial NBP on the order of gigatonnes, with non-

linear responses to both moisture scarcity and excess (Green et al., 2019). Further, many 

of the merits and limitations of the validation approaches discussed herein apply to the 

validation of these physical components as well.” 

 

Lines 417-419: “The strategic situation of nitrogen, and phosphorus, and soil moisture 

monitoring which coincides with current Fluxnet sites (Jung et al., 2020) could provide 

high fidelity insight as to nutrient and environmental limitations on GPP, coherent 

turnover time assessments, and broadly applicable functional relationships to facilitate 

upscaling.” 

 

Detailed comments: 

L94 I find the figure a bit difficult to understand. An example would help like GPP being the 

variable corresponding to the left-most bar (if I understand correctly). 

To improve the clarity of Figure 2, we have clarified the figure caption as follows.  

“Frequency of a given variable being validated by across participants (treating ESMs and LSMs 

separately). Most variables were validated only once across participants (leftmost x-axis), while 

GPP was validated by 11 participants (rightmost bar).”  

Table 6: the authors choose to separate vegetation carbon and vegetation biomass although 

these two type of data are very much related. I guess this is due to a choice made by iLAMB and 

ESMValTool. But Saatchi et al for instance, although being a tropical biomass dataset also gives 

data in terms of aboveground and belowground vegetation carbon mass. I’d suggest adding a 

comment specifying that these 2 quantities are not independent. 

We have modified the caption of Table 6 as follows: “Table 6: Select observation-based 

reference dataset sources for ESMValToolv2.0 (Eyring et al., 2020) and ILAMBv2.1 (Collier et 

al., 2018), including Net Biome Production (NBP), Leaf Area Index (LAI), Land Cover (LC), 

Gross Primary Production (GPP), 205 Net Ecosystem Exchange (NEE), Soil Carbon (SC), 



Vegetation Carbon (VC), Ecosystem Carbon Turnover (ECT), Vegetation Biomass (VB), and 

Burned Area (BA). Note that vegetation carbon is dependent upon vegetation biomass. ” 

L215: The problem with the quality criteria of the Global Carbon Project is that they neglect the 

uncertainties related to the atmospheric forcing. As shown by Lawrence et al, 2019 (and also 

shown in Figure 3 in this paper) these may have a pretty strong impact. GCP switched from the 

CRU-NCEP forcing to the GSWP3 forcing in 2019, and model results were very different. 

Modeling teams had to retune their models to fit the criteria. That doesn’t mean criteria 

shouldn’t be imposed, it just shows their limit. 

To acknowledge the limitations of imposing quality criteria, we have modified the manuscript as 

shown above in response to the first general comment and below as well: 

Lines 212-218: “The validation of particular variables by different participants occasionally 

employed the same datasets, though in many cases inconsistent reference datasets were used for 

the same variable, and the spatial and temporal dimension of validations was often distinct. This 

contrasts with other works employing multiple models such as the Global Carbon Project 

(Friedlingstein et al., 2020; 2019; Le Quéré et al., 2018) which provide stringent quality explicit 

validation criteria for model inclusion, such as simulating recent historical net land-atmosphere 

carbon flux within a particular range and being within the 90% confidence interval of specified 

observations. The stringency of such criteria must be carefully chosen to acknowledge the role of 

observational uncertainty as well as uncertainty stemming from potential model tuning to forcing 

datasets. The use of different validation approaches impedes the comparison of performance 

across models, however it also provides a diverse collection of example methods.” 

 

L 249: I would argue that the soil moisture control on all the variables of the biogeochemical 

cycles is as crucial in a climate change perspective as temperature, if not more because more 

uncertain (for instance the future of peatland/wetland in the high latitudes) 

We have modified the manuscript as follows (shown above as well): 

Lines 245-250: “Another approach to validation which combines high-level variables and re-

parameterization efforts is the assessment of functional relationships or emergent constraints, 

such as the relationship between GPP or turnover times and temperature, moisture, growing 

season length, and nutrient stoichiometry (Danabasoglu et al., 2020; Swart et al., 2019; Anav et 

al., 2015; McGroddy et al., 2004). Physically interpretable emergent constraints can aid in 

identifying model components which are particularly influential to climate projections (Eyring et 

al., 2019), such as the temperature control on carbon turnover in the top metre of soil in cold 

climates (Koven et al., 2017), GPP responses to soil moisture availability (Green et al., 2019), or 

regional carbon-climate feedbacks (Yoshikawa et al., 2008).” 

 

L320-324: I totally agree that site-level evaluation is very important to really understand how a 

model behaves. This is partly because at site-level, there is usually much more information 

available: the type of vegetation, the type of soil, the presence of an aquifer, land-use practices 

(irrigation, multi-cropping) etc. The meteorological forcing is also much more precise. In a 



global simulation, this type of information comes from global dataset (for instance soil texture, 

depth to bedrock, vegetation type) or are calculated. And this adds a huge part of uncertainty not 

related to the model structure but to model dataset. I think it might be interesting for the readers 

to get that insight 

We thank the reviewer for their comment. We have added the following to the manuscript to 

highlight the value of site-level evaluations:  

Lines 318-326: “Despite these caveats, such global-scale data products provide a critical 

resource to the CMIP community in conducting model validation (Collier et al., 2018), and the 

relatively common use of Jung et al. (2011) for validations by CMIP6 participants coincidentally 

reduces the influence of observational contradiction (Xie et al., 2020; Anav et al., 2015). Site-

level GPP evaluation with observations from the tropics by Delire et al. (2020) and Vuichard et 

al. (2019) demonstrates a strategic approach to addressing the representation bias in GPP 

validations. Site-level evaluations often benefit from a wealth of available information including 

spatially consistent meteorological forcing, and avoid the influence of spatial extrapolation error. 

While Jung et al. (2011) do not provide uncertainty measures, several forms of uncertainty are 

explicitly presented for the Fluxnet2015 dataset by Pastorello et al. (2020). Therefore the utility 

of Fluxnet GPP data products could be improved with standardized use by participants in 

junction with other independent data products, select site-level evaluations, explicit uncertainty 

quantifications, and improved ecological representation in underlying site-level data.” 

L419: I probably miss something here but I don’t see the link between N and P monitoring and 

turnover time assessment 

We have addressed the confusion regarding the potential strategic link between N, P, and 

turnover time monitoring as follows: 

Lines 417-422: “The strategic situation of nitrogen, and phosphorus, and soil moisture 

monitoring which coincides with current Fluxnet sites (Jung et al., 2020) could provide high 

fidelity insight as to nutrient and environmental limitations on GPP, coherent turnover time 

assessments, and broadly applicable functional relationships to facilitate upscaling. The co-

situation of multiple observational monitoring objectives at Fluxnet sites would enhance the 

utility of each site-level dataset and alleviate errors due to spatiotemporal inconsistencies 

between datasets in both performing evaluations and developing large scale data products. 

Following increased collaboration between empirical and modelling communities to strategically 

expand observations, and their inclusion in a comprehensive evaluation software, the CMIP-

designated use of such software would standardize, conserve, and augment validation efforts.” 

Technical comment 

L23:  I am not a native speaker but I find this sentence strange: “growing season extension in 

cold-limited regions, enhanced heterotrophic respiration, and potentially others, as well as 

environmental” 

To improve the readability of this sentence, we have modified the manuscript as follows:  



 

Lines 22-25: “The future capacity of the terrestrial biosphere to sequester CO2 emissions is 

uncertain due to non-linear feedbacks such as CO2 fertilization, growing season extension in 

cold-limited regions, enhanced heterotrophic respiration, and potentially others feedbacks, as 

well as environmental and physiological constraints such as moisture availability, nutrient 

limitations, and stomatal closure (Fleischer et al., 2019; Green et al., 2019; Xu et al., 2016; 

Wieder et al., 2015).” 

 

L378: I believe it should be “precedence” instead of “president” 

This has been fixed. 

 

 

 

  



 

Referee 2 Comments: 

This paper does an excellent job of reviewing the land biogeochemistry subcomponent evaluation 

approaches conducted by different modeling groups for 16 CMIP6-generation land surface models, 

both in a coupled and uncoupled context. This is useful since finding all the individual land model 

evaluation papers can be challenging. While Table 1, reprinted from Arora et al. (2020), provides 

such references, it lists only 11 models, not the 16 models identified in Figure 1.  This paper would 

better serve the community with a table similar to Table 1 that includes all the models reviewed in 

the paper. 

While the scope of this paper is to review only the land biogeochemistry subcomponents of land 
surface models, describing differences in  hydrology and radiation/energy subcomponents and 

summarizing the assessments of them would be beneficial. Even if the authors do not wish to expand 

the scope to include other interacting model subcomponents, I recommend adding more key model 

configuration characteristics to an updated Table 1 to provide additional context to the summary. 

For example, the table could identify which models employ a river transport scheme, which models 

have depth-resolved soil carbon, which have an explicit permafrost representation, which used a 

prognostic dynamic vegetation scheme, etc. 

The authors discuss the use of community-developed model evaluation and benchmarking packages, 

ESMValTool and ILAMB, which are increasingly being adopted as a means of standardizing model 

evaluation metrics and observationally constrained reference datasets. The wide variety of variables, 
datasets, and metrics employed in assessing model performance by different modeling groups makes 

direct comparison across models challenging. 

Section 4.1, Variable Choice, begins with, "A comprehensive validation of a process-based model 

should include all simulated interacting variables for which a reliable empirical reference is 

available." However, the discussion that follows includes only biogeochemistry variables and there is 

little acknowledgement of the important interactions with water and energy variables. It may be 

useful to add a sentence or two that explicitly mentions the interdependence of and need to co-

evaluate carbon, water, and energy cycles. 

We agree that the validation of hydrology, radiation, and energy subcomponents is equally 

important to review, however we feel that such an effort would be better served with its own 

paper led by authors who are experts in these topics. We have adapted the manuscript to 

acknowledge the importance of physical model component validations in response to a similar 

comment by Reviewer 1 (see the above response to the second general comment as well). We 

have added the following to the manuscript to convey this to readers: 

Lines 22-25: “The future capacity of the terrestrial biosphere to sequester CO2 emissions is 

uncertain due to non-linear feedbacks such as CO2 fertilization, growing season extension in 

cold-limited regions, enhanced heterotrophic respiration, and potentially others feedbacks, as 

well as environmental and physiological constraints such as moisture availability, nutrient 

limitations, and stomatal closure (Fleischer et al., 2019; Green et al., 2019; Xu et al., 2016; 

Wieder et al., 2015).” 



Lines 245-250: “Another approach to validation which combines high-level variables and re-

parameterization efforts is the assessment of functional relationships or emergent constraints, 

such as the relationship between GPP or turnover times and temperature, moisture, growing 

season length, and nutrient stoichiometry (Danabasoglu et al., 2020; Swart et al., 2019; Anav et 

al., 2015; McGroddy et al., 2004). Physically interpretable emergent constraints can aid in 

identifying model components which are particularly influential to climate projections (Eyring et 

al., 2019), such as the temperature control on carbon turnover in the top metre of soil in cold 

climates (Koven et al., 2017), GPP responses to soil moisture availability (Green et al., 2019), or 

regional carbon-climate feedbacks (Yoshikawa et al., 2008).” 

 

Lines 388-391: “Field experimental data provide unique insight as to the functional responses of 

vegetation to elevated CO2 concentration (Goll et al., 2017), temperature change (Richardson et 

al., 2018), moisture availability (Williams et al., 2019; Hovenden and Newton, 2018), and 

nutrient limitations (Fleischer et al., 2019), outside the current context of observations.” 

 

Lines 405-410: “Additionally, the universal inclusion of often overlooked processes such as 

moisture limitation, nitrogen and phosphorus cycles, dynamic vegetation, prognostic leaf 

phenology, and natural disturbance regimes should be a priority focus for participants in 

developing diagnostic models as these processes are highly influential on terrestrial 

biogeochemistry and physics (Eyring et al., 2020; Fleisher et al., 2019; Piao et al., 2019; Wieder 

et al., 2015; Achard et al., 2014; Richardson et al., 2013; Heimann and Reichstein, 2008; Tucker 

et al., 1986), and their omission contributes to widespread bias (Green et al., 2019; Anav et al., 

2015). While outside the focus of this review, equal attention should be applied to the physical 

components of terrestrial biogeochemical cycles, including explicit representation of permafrost 

and riverine carbon transport dynamics. In fact, a study including four CMIP5 ESMs found that 

soil moisture variability prompted variability in terrestrial NBP on the order of gigatonnes, with 

non-linear responses to both moisture scarcity and excess (Green et al., 2019). Further, many of 

the merits and limitations of the validation approaches discussed herein apply to the validation of 

these physical components as well.” 

 

Lines 417-419: “The strategic situation of nitrogen, and phosphorus, and soil moisture 

monitoring which coincides with current Fluxnet sites (Jung et al., 2020) could provide high 

fidelity insight as to nutrient and environmental limitations on GPP, coherent turnover time 

assessments, and broadly applicable functional relationships to facilitate upscaling.” 

 

We have also clarified the scope of the manuscript as follows:  

Lines 58-63: “Here we focus on validations of the stocks and biological fluxes of fully coupled 

ESMs and associated LSM releases from 2017 onwards with explicit terrestrial biogeochemical 

cycle representation contributed by CMIP6 participating modelling groups (hereafter 

participants; Table 1; Arora et al., 2020). Validations are analyzed in terms of variables included, 

spatiotemporal scales, reference datasets, and metrics of performance. Section 2 compares the 

methods of historical terrestrial biogeochemical cycle validation used by participants, Section 3 

summarizes the methods used in community analyses of CMIP5 era models, and a critique of 

these methods. A future outlook is presented in Section 4.” 



We have updated Table 1 as shown below. All 16 models included in Figure 1 are provided in 

the table, though the recently updated land surface model component (where available) is 

referenced on the same row as each ESM to preserve space and avoid redundancy (each ESM 

has identical model configurations (ie. dynamic vegetation, prognostic LAI, etc.) as its associated 

LSM). We have provided more information for readers in Table 1, though did not include model 

features which are not consistently included in descriptions of land surface model components 

for the included models (ie. riverine carbon transport). We felt adding these additional model 

features to Table 1 would confuse readers if we did not mention these features throughout the 

manuscript. In addition, further model configuration details are provided in Table 2 of Arora et 

al. (2020). 

“Table 1: Modelling group contributions to C4MIP of CMIP6 from Arora et al. (2020). 

Modelling 

Group 

ESM Land Surface 

Model 

Biogeochemistry 

Component 

Explicit 

N Cycle 

Dynamic 

Vegetation 

Prognostic 

LAI 

Prognostic 

Leaf 

Phenology 

Reference(s) 

CSIRO ACCESS-

ESM1.5 

CABLE2.4 Yes No Yes No Ziehn et al., 

2020 

BCC BCC-

CSM2-

MR 

BCC-AVIM2 No No Yes Yes (for 

deciduous) 

Wu et al., 

2019;  

Li et al., 

2019 

CCCma CanESM5 CLASS-CTEM No No Yes Yes Swart et al., 

2019 

CESM CESM2 CLM5 Yes No Yes Yes Danabasoglu 

et al., 2020; 

Lawrence et 

al., 2019 

CNRM CNRM-

ESM2-1 

ISBA-CTRIP No No Yes Yes (from 

leaf carbon 

balance) 

Séférian et 

al., 2019; 

Delire et al., 

2020 

GFDL GFDL-

ESM4 

LM4.1 No Yes - - Dunne et al., 

2020 

IPSL IPSL-

CM6A-LR 

ORCHIDEE, 

version 2.0 

No No Yes Yes 

 

Boucher et 

al., 2020; 

Vuichard et 

al., 2019 

JAMSTEC MIROC-

ES2L 

VISIT-e Yes No Yes Yes Hajima et al., 

2020 

MPI MPI-

ESM1.2-

LR 

JSBACH3.2 Yes Yes Yes Yes Mauritsen et 

al., 2019; 

Goll et al., 

2017 

NCC NorESM2-

LM 

CLM5 Yes No Yes Yes Seland et al., 

2020 

UK UKESM1-

0-LL 

JULES-ES-1.0 Yes Yes Yes Yes Sellar et al., 

2019 

” 



The authors do not describe the difference between metrics useful for evaluating offline models 

versus those that can be used for fully coupled models. Fully coupled models should exhibit the same 

statistical variability over decadal time scales as indicated by observational data, but the observed 

timing of ENSO and other drivers of climate variability are not reproduced in fully coupled models. 
Thus, metrics that assess biases or RMSE of time series model output should not be used when 

evaluating fully coupled model output. This discussion of applicable approaches should likely be 

included in Section 4.3. 

To acknowledge the need for model specific evaluation metrics, we have altered the manuscript as 

follows: 

Lines 327-374:“4.3 Statistical Metrics and Validation Approaches  

Several participants relied primarily on residual-based metrics such as bias (simulated-observed) 

for validation of terrestrial biogeochemical cycle model components. On a spatial basis bias can 

identify significant regional over- or under-estimations of a given variable. However, the 

attribution of model error from global maps of bias can be ambiguous, as the displayed bias is 

the combined result of different forms of uncertainty, including model structural representations, 

unforced variability, and spatial disagreement (Deser et al., 2020; Lovenduski and Bonan, 2017; 

Koch et al., 2016). Such residual-based metrics may not indicate how well the model would 

perform in simulating future conditions beyond the current contextual envelope of observations 

(Gulden et al., 2008), and neglect the contribution of uncertainty from observations. These 

limitations are considerable in the context of ESMs and LSMs as tools for predicting terrestrial 

biogeochemical function. A more contextualized bias assessment is the Wilcoxon test as applied 

by Swart et al. (2019) to filter insignificant bias. In a LSM evaluation, Orth et al. (2017) provides 

an observationally robust bias assessment by subtracting mean seasonal cycles from each grid 

cell and correlating the resulting anomalies between observation-based datasets and model 

output. In addition, RMSE normalized by the mean or standard deviation of the observed 

quantity, NRMSE, contextualizes the difference between simulated and observed variable 

quantities in terms of the magnitude or inherent variability of the variable of interest (Swart et 

al., 2019; Fan et al., 2018), which is advantageous for variables such as GPP with large 

interannual variability. Caution is warranted however in the evaluation of fully coupled model 

output due to the inability of fully coupled models to reproduce the timing of internal climate 

variability phenomena such as El Niño-Southern Oscillation (ENSO) and volcanic eruptions 

(Flato et al., 2013). While the magnitude of observed and simulated internal climate variability 

may be statistically consistent, bias, RMSE, and NRMSE assessments of fully coupled model 

output should encompass decadal or longer periods to address the influence of temporal 

mismatches in simulated internal climate variability relative to observational records. 

Alternatively, as offline simulations can be directly forced with historical observation data, the 

output of offline simulations can be validated on a finer temporal scale.  

 

Beyond these, a variety of targeted model skill metrics have been published for process-based 

modelling which provide detailed assessments of different forms of model uncertainty (Collier et 

al., 2018; Orth et al., 2017; Eyring et al., 2016b; Koch et al., 2016; Law et al., 2015; Kumar et 

al., 2012; Taylor, 2001; Kobayashi and Salam, 2000). Mean squared deviation, the sum of 

squared bias, squared difference between standard deviations, and lack of correlation weighted 

by standard deviations, presented by Kobayashi and Salam, (2000), was used by Vuichard et al. 



(2019). This metric is readily applicable to the objective validation and improvement of 

mechanistic models, as its dissection allows for the accurate attribution of different sources of 

model errors. Additionally, a Taylor diagram (Fig. 4, Taylor, 2001) conveys several dimensions 

of model error and allows for the concise simultaneous display of variables and models and was 

utilized in the evaluation of BCC-AVIM2 (Li et al., 2019), and NORESM2 (Seland et al., 2020), 

as well as several LSMs and ESMs by Anav et al. (2015) and is incorporated into ILAMBv2.1 

(Collier et al., 2018). The Taylor diagram was designed for simultaneous performance 

comparison of several simulated variables and serves as a concise and informative validation 

tool.  

The validation process of terrestrial biogeochemical cycles and dissection of model uncertainty 

may also be enhanced through offline simulations or models with intermediate complexity as 

these allow for a greater replication of simulations with different initializations, forcing datasets, 

and model configurations, due to their computational affordability (Bonan et al., 2019; Umair et 

al., 2018; Orth et al., 2017). Offline simulations also reduce the potential for incidental 

compounding error from coupling components, though this leads to an underestimation in 

uncertainty for equivalent fully coupled simulations. Replicate simulations with different initial 

conditions allow for the attribution of uncertainty from unforced variability, such as performed 

by Danabasoglu et al. (2020), which accounted for half of the inter-model spread in key variables 

previously (Deser et al., 2020; Eyring et al., 2019). In addition, replicate simulations with 

different forcing datasets can indicate the role of forcing uncertainty (Wei et al., 2018), which 

Lawrence and Bonan et al. (2019) found to be significant. Further, sensitivity analyses or 

perturbed parameter analyses involving replicated simulations with one or more variables fixed 

as performed by Hajima et al. (2020) and Lawrence et al. (2019) illuminate structural 

uncertainty. The use of well-established statistical and model performance metrics in addition to 

strategic simulations facilitates a detailed analysis of model uncertainty.” 

” 

The citation to Lawrence and Bonan et al. (2019) in line 371 should likely be Bonan et al. (2019). 

We have fixed this error (see above). The intended citation was Lawrence et al. (2019), who 

demonstrated the important role of forcing uncertainty through the use of three different forcing 

datasets. 

On line 378, "president" should be "presedence". 

We have fixed this error.  

On line 426, "in junction" likely should be "in conjunction". 

We have fixed this error. 

Developing a standard validation protocol for model intercomparison activities within CMIP would 

be useful, and it has been done to some extent for CMIP6 historical land and ocean model 

performance in comparison with corresponding CMIP5 models in the IPCC AR6 Working Group I 



report in Figure 5.22, currently accessible at 

https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter_05.pdf#page=214 

We thank the reviewer for bringing this to our attention. It is great to see some work has already been 

done to address the need for a standard validation protocol in AR6. 
 

 

Citation: https://doi.org/10.5194/gmd-2021-150-RC2 
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