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Abstract. Recent observational and modeling studies show that variations of stratospheric ozone and the resulting 

interaction between ozone and the stratospheric circulation play an important role for surface weather and climate. However, 

in many cases computationally expensive coupled chemistry models have been used to study these effects. Here, we 

demonstrate how a much simpler idealized general circulation model (GCM) can be used for studying the impact of 

interactive stratospheric ozone on the circulation. The model, named simplified chemistry-dynamical model (SCDM V1.0), 10 

is constructed from a preexisting idealized GCM, into which a simplified linear ozone scheme and a parameterization for the 

shortwave radiative effects of ozone are implemented. The distribution and variability of stratospheric ozone simulated by 

the new model are in good agreement with the MERRA2 reanalysis, even for extreme circulation events such as Arctic 

stratospheric sudden warmings. The model thus represents a promising new tool for the study of ozone-circulation 

interaction in the stratosphere and its associated effects on tropospheric weather and climate. 15 

1 Introduction 

Idealized models are becoming increasingly popular for the study of phenomena that are too difficult to understand with 

more comprehensive models. The idea behind idealized models is to not represent every detail of the system, and instead 

only include processes that are relevant for the phenomenon to be explained (Held, 2005; Polvani et al., 2017; Strevens, 

2017). The simplified environment then helps to isolate, study, and understand the behavior of the relevant processes. The 20 

relative simplicity also makes these models cheap to run, so that they are frequently used to explore the parameter 

sensitivities of specific processes, in which a large number of simulations with slightly different parameter settings are 

carried out. 

Idealized models in the atmospheric sciences have a relatively long history. One widely used class of models are simplified 

dry dynamical cores, which solve the primitive equations on a sphere to study the flow in a rotating atmosphere. Held and 25 

Suarez (1994) proposed a commonly used set-up for a dry dynamical core, in which the primitive equations are forced by a 

Newtonian relaxation term that nudges temperatures toward a given profile, with a Rayleigh damping term to mimic the 

momentum removal at the surface. Since the original proposal, dry dynamical cores have been expanded in many ways to 

address a wide range of problems. Examples include the addition of a stratosphere to investigate the dynamical coupling 

between the stratosphere and troposphere (Polvani and Kushner, 2002), the implementation of moisture and gray radiation to 30 
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focus on the interplay between latent heat release and the dynamics (Frierson et al., 2006), or the incorporation of an 

idealized (Gerber and Polvani, 2009) or actual topography (Wu and Reichler, 2018; Wu and Smith, 2016) to generate 

planetary waves. Some of the most recent developments like “Isca” by Vallis et al. (2018) or “EMIL” by Garny et al. (2020) 

are modular systems, which give users a choice of parameterizations to simulate the global atmosphere at varying levels of 

complexity.   35 

The present study is motivated by the need to better understand the role of ozone for the dynamics of the atmosphere. Ozone 

has long been realized as an important atmospheric trace gas that influences the trend of the Southern Annular Mode (SAM) 

and the strength of the Antarctic polar vortex through its radiative heating (Gillet and Thompson, 2003; Lin et al., 2017; 

Randel and Wu, 1999; Seviour et al., 2017; Son et al., 2010; Thompson and Solomon, 2002). The radiative effects of ozone 

also modulate the propagation and the breaking of planetary waves and the strength of Arctic polar vortex in the northern 40 

hemisphere (NH) winter (Albers and Nathan, 2012; Nathan and Cordero, 2007). However, there still remain many 

unanswered questions, for example about the existence and the nature of feedbacks between ozone and the circulation, and 

how important these feedbacks are. Some modelling studies have already suggested a stronger stratosphere-troposphere 

interaction when interactive ozone is introduced in their simulations (Haase and Matthes, 2019; Li et al., 2016; Lin and Ming, 

2021; Romanowsky et al., 2019), but these studies were based on full climate models coupled to chemistry modules of 45 

different complexities. Most of these models have a large computational burden and are often difficult to understand. We 

believe that a simpler, more idealized approach can also be used to study the problem if the underlying idealized model is 

capable of simulating the basic processes behind the ozone-dynamics interaction, including a realistic circulation, the 

transport of ozone by the circulation, the photochemical processes of ozone, and the radiative impact of ozone on the 

circulation.  50 

This paper represents the first step towards studying the influence of interactive ozone under a simplified modelling 

framework. We describe the construction and validation of an idealized model that simulates - in simplified ways - the 

interaction between ozone and the stratospheric circulation. The new model, denoted Simplified Chemistry-Dynamical 

Model (SCDM), is an extension of the dry dynamical core setup by Wu and Reichler (2018) (hereafter WR18). The model 

includes a simplified photochemical ozone scheme and a shortwave radiation parameterization for ozone. As we will show, 55 

the model creates realistic simulations of the global circulation, ozone distribution, and the diabatic heating by ozone, and 

the model produces faithful life-cycle composites of stratospheric sudden warming events (SSWs). This underlines the 

potential of the model to study the role of ozone for the dynamical variability of the atmosphere. 

The paper is structured as follows. Section 2 provides details of the model setup, ozone scheme, shortwave parameterization, 

and design of the simulations. Section 3 describes the diabatic forcing of the model. Section 4 presents the model 60 

climatologies in terms of the global circulation and ozone and analyzes the circulation and ozone responses to SSWs. A 

summary and an outlook are provided in Section 5. 
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2 Simplified Chemistry-Dynamical Model (SCDM) 

SCDM consists of an idealized general circulation model (GCM), a simplified linear photochemical ozone scheme, and a 

shortwave parameterization for the radiative effects of ozone. The GCM treats ozone as a passive tracer to simulate the 3-65 

dimensional dynamical ozone transport, and receives additional photochemical ozone tendency updates from the ozone 

scheme. The temperatures are influenced by the dynamics and a Newtonian relaxation term, and also by the shortwave 

radiation parameterization scheme that considers the distribution of ozone. The radiation creates a feedback of ozone on 

temperatures and thus on the dynamics, accomplishing our goal to simulate the interaction between ozone and the dynamics. 

The source code of the model can be obtained at https://doi.org/10.5281/zenodo.4780888. 70 

2.1 Idealized GCM 

The idealized model is based on the Geophysical Fluid Dynamics Laboratory’s (GFDL) spectral dynamical core at a 

horizontal resolution of T42 and 40 hybrid levels (Polvani and Kushner, 2002), with a model top at 0.01 hPa. Following 

Held and Suarez (1994), the model is driven by a seasonally varying Newtonian relaxation term 

𝑄𝑄 = −𝑇𝑇−𝑇𝑇𝑒𝑒𝑒𝑒
𝜏𝜏

,            (1) 75 

where Q represents the diabatic forcing calculated as the difference between temperature T and a prescribed equilibrium 

temperature Teq, divided by a relaxation time τ as in Jucker et al. (2014). The horizontal wind v is damped near the boundary 

layer using Rayleigh friction of the form 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑘𝑘𝜕𝜕(𝜎𝜎)𝑣𝑣,            (2) 

where σ denotes the model’s vertical sigma level. The damping rate kv decreases linearly with height from a surface value kf 80 

and has the form: 

𝑘𝑘𝜕𝜕 = 𝑘𝑘𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚 �0, 𝜎𝜎−𝜎𝜎𝑏𝑏
1−𝜎𝜎𝑏𝑏

�,           (3) 

where σb = 0.7. WR18 showed that a surface drag of kf = 1.35 results in good simulations of the zonal wind and the 

frequency of SSWs. We also use a realistic bottom topography derived from the GFDL AM2.1 climate model (Anderson et 

al., 2004) and a zonally asymmetric and seasonally varying Teq as in WR18. 85 

2.2 Ozone scheme 

We use version 2.9 of the simplified linear ozone scheme of Cariolle and Teyssèdre (2007), which has been widely used in 

similar previous studies with numerical models (e.g., Monge-Sanz et al., 2021). The scheme was initially developed by 

Cariolle and Déqué (1986) from a two-dimensional photochemical model, and has since then been widely used in studies 

with simpler GCMs and chemical transport models. Cariolle and Teyssèdre (2007) improved the original scheme by 90 

recalculating the necessary coefficients using more accurate representations of chemical reaction rates and dynamical 

transport processes, and by including the effects of heterogeneous ozone chemistry.  
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The scheme calculates the photochemical ozone tendencies from a first-order (linear) Taylor expansion associated with the 

local deviations from climatology of (1) the volume ozone mixing ratio 𝑟𝑟𝑂𝑂3 , (2) the temperature T, and (3) the column 

amount of ozone Σ𝑂𝑂3 above the current pressure level, with an extra independent term that describes ozone destruction by 95 

heterogeneous chemistry 
𝑑𝑑𝑟𝑟𝑂𝑂3
𝑑𝑑𝜕𝜕

= 𝑐𝑐0 + 𝑐𝑐1�𝑟𝑟𝑂𝑂3 − 𝑟𝑟𝑂𝑂3����� + 𝑐𝑐2(𝑇𝑇 − 𝑇𝑇�) + 𝑐𝑐3(Σ𝑂𝑂3 − Σ𝑂𝑂3�����) + 𝑐𝑐4𝑟𝑟𝑂𝑂3 .      (4) 

Overbars denote relaxation climatologies, which in the SCDM are monthly mean three-dimensional climatologies from 

MERRA2 reanalysis (Bosilovich et al., 2015) over 1980-2018. c0 - c4 are monthly and spatially varying coefficients that 

represent the chemical reaction rates associated with each process, derived from off-line calculations with a chemistry model. 100 

c4 is associated with the heterogeneous ozone destruction, for which Cariolle and Teyssèdre (2007) provide two prescriptions 

for assigning a non-zero value to it: one requires the instantaneous local temperatures to reach the critical threshold for the 

formation of polar stratospheric cloud (T < 195K), while the other one additionally includes a cold tracer that considers the 

movement of the cold air mass (see their study for details). We use the latter set-up for our SCDM. 

Fig. 1 compares the relaxation time τ (fixed in time) of the Newtonian forcing (Eq. 1) (Fig. 1a) with the chemical relaxation 105 

time for ozone (for February) (Fig. 1b), given by (-1/c1) (Eq. 4). Below 10 hPa, the chemical relaxation time for ozone is 

much longer than the Newtonian time scale, demonstrating that in this region of the atmosphere the distribution of ozone is 

largely controlled by transports from the dynamics and that photochemical processes play only a minor role here. The 

situation reverses in the upper stratosphere, where the chemical time scale is much shorter than the Newtonian one. 

2.3 Radiative parameterization 110 

We implement the shortwave parameterization by Lacis and Hansen (1974) into the SCDM to describe the absorption of 

solar radiation by ozone in the ultraviolet (𝜆𝜆 ≲ 0.35 𝜇𝜇m) and visual (0.5 𝜇𝜇m ≲ 𝜆𝜆 ≲ 0.7𝜇𝜇m) parts of the spectrum. The 

parameterization is based on accurate multiple-scattering computations that consider the amount of clouds, humidity, solar 

zenith angle, surface albedo, and vertical distribution of ozone. Since the SCDM is based on a dry dynamical core, we use 

the prescription for clear sky conditions. The surface albedo is obtained from the daily MERRA2 climatology (1980-2018). 115 

The shortwave parameterization calculates the fraction of absorbed total solar flux Al at model level l, and the resulting 

temperature tendency is calculated using 
∆𝑇𝑇
∆𝜕𝜕

= 𝑆𝑆𝑆𝑆𝐴𝐴𝑙𝑙
𝑐𝑐𝑝𝑝∆𝑝𝑝∆𝜕𝜕

,            (5) 

where S is the incoming solar flux, and the remaining quantities follow standard notation. S varies with the Earth-Sun 

distance (d) and thus with the day of year 𝑑𝑑𝑛𝑛. It is calculated from 𝑆𝑆 = (�̅�𝑑 𝑑𝑑)⁄ 2 𝑆𝑆𝑜𝑜, where So = 1361 W m-2 is total solar 120 

irradiance, and �̅�𝑑/𝑑𝑑 represents variations in the Earth-Sun distance estimated by  

�𝑑𝑑
�

𝑑𝑑
�
2

= ∑ 𝑚𝑚𝑛𝑛2
𝑛𝑛=0 cos �𝑛𝑛 2𝜋𝜋𝑑𝑑𝑛𝑛

365
� + 𝑏𝑏𝑛𝑛 sin �𝑛𝑛 2𝜋𝜋𝑑𝑑𝑛𝑛

365
� ,   𝑑𝑑𝑛𝑛 = 0, 1, … , 364.      (6) 

The coefficients are an = [1.000110, 0.034221, 0.000719] and bn = [0.0, 0.001280, 0.000077], taken from Hartmann (2016). 
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2.4 Simulation set-up 

The starting point for our simulations is the zonally and monthly varying Teq from WR18 to represent the Newtonian forcing 125 

(Eq. 1). However, the Teq from WR18 also represents the effects from ozone shortwave heating, which must be removed 

because ozone heating is explicitly represented in the SCDM. Following WR18, this is achieved through an iterative 

technique that minimizes the difference between the simulated and observed temperature climatology according to 

𝑇𝑇𝑒𝑒𝑒𝑒,(𝑁𝑁+1) = 𝑇𝑇𝑒𝑒𝑒𝑒,(𝑁𝑁) −
2
3
�𝑇𝑇�(𝑁𝑁)

𝑌𝑌 − 𝑇𝑇��,    𝑁𝑁 = 1, 2, … 29,   𝑌𝑌 = 4 … 500.      (7) 

Here,  𝑇𝑇�(𝑁𝑁)
𝑌𝑌  indicates the monthly varying three-dimensional model temperature climatology from the Nth iteration which is Y-130 

years-long (with the first year discarded because of spin-up), and 𝑇𝑇� is the MERRA2 temperature climatology as in Eq. (4). 

We start with Teq from WR18 and integrate only for Y = 4 years to prevent the build-up of unrealistically high temperatures 

as the model is forced initially by both the uncorrected Teq and the ozone scheme. For the following iterations, we gradually 

increase Y from 50 to 500, and end after 29 iterations as the model converges towards a realistic temperature climatology. 

The new Teq implicitly represents the effects from all diabatic heating sources, except the one associated with ozone 135 

shortwave heating, as this is explicitly represented in the model. The overall diabatic heating rate of the SCDM is then Q = 

Qnewtonian + Qozone. The updated Teq is used to perform a 2000-years-long control run, needed to derive the necessary 

climatologies. 

2.5 Dynamics diagnostics 

To diagnose the upward propagating planetary wave activity, we use the vertical component of quasi-geostrophic Eliassen-140 

Palm flux (Fp; Andrews et al., 1987), given by  

𝐹𝐹𝑝𝑝 = −𝑚𝑚𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜕𝜕′𝜃𝜃′������

𝜃𝜃𝑝𝑝
,           (8) 

where all symbols are standard notations. To validate the simulated climatologies against the MERRA2 reanalysis we use a 

two-tailed Student’s t test at the 95% confidence level. 

3 Model forcing 145 

In this section we validate the model’s shortwave parameterization scheme and the structure of its diabatic forcing. 

3.1 Shortwave ozone heating 

We test the SCDM shortwave parameterization by overriding the model’s internally generated ozone with daily MERRA2 

ozone. We perform an ensemble of 39 one-year-long simulations, using MERRA2 ozone from years 1980-2018 as external 

input to the model’s shortwave heating scheme. We then compare the daily mean shortwave heating rate from the 39 150 

independent simulations with that from the MERRA2 climatology. Since the shortwave heating only related to ozone is not 
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available from MERRA2, the temperature tendency due to shortwave radiation under clear sky conditions is used as a proxy 

for it. This is a reasonable approximation in the stratosphere, where ozone is the dominant shortwave absorber. Fig. 2 

compares the resulting January-March zonal mean shortwave heating rates from MERRA2 and the SCDM. The two fields 

are fairly similar, except in the lower troposphere and upper stratosphere. The underestimation by SCDM of 0.5-0.7 K/day in 155 

the upper stratosphere can be attributed to trace gases other than ozone, such as oxygen. Likewise, the underestimation in the 

tropical lower troposphere is probably due to the dominant role of water vapor for the shortwave absorption in this region, 

which is also not included in the model’s shortwave scheme. 

3.2 Model diabatic heating 

To further test the SCDM and its simple physical parameterizations, we present in Fig. 3 the January-March mean vertically 160 

integrated diabatic heating (Qclm) in the stratosphere (1-150 hPa) and the troposphere (150-1000 hPa), for MERRA2 and the 

2000-years-long run with the SCDM. Mathematically, the calculations can be written as follows: 

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐 = ∫ 𝑄𝑄𝑝𝑝2
𝑝𝑝1 𝑑𝑑𝑑𝑑/(𝑑𝑑2 − 𝑑𝑑1),          (9) 

where Q indicates the local diabatic heating at pressure level p. The MERRA2 temperature tendency due to physics is used 

to validate the diabatic heating of the SCDM.  165 

As demonstrated by WR18, using zonally asymmetric Teq improves the structure of the tropospheric diabatic heating in an 

idealized model, and indeed, our model’s diabatic heating in the troposphere agrees fairly well with MERRA2 (Fig. 3, 

bottom), in particular in a zonal mean sense (Fig. 3c) of the middle and high latitudes. However, there are also some 

discrepancies, mostly in the tropical troposphere. WR18 explained the too small diabatic heating in the tropical troposphere 

from the unrealistic representation of convection and latent heat release in an idealized model. The diabatic heating in the 170 

stratosphere from SCDM also agrees well with MERRA2 (Fig. 3, top). The major discrepancies occur in low latitudes, 

which we believe are related to errors in tropical ascent and the correction of the resulting adiabatic heating and temperature 

errors by the iterative procedure. In the zonal mean, MERRA2 and the model are in rather good agreement.  

4 Model validation 

In this section, model climatologies from the 2000-years-long control simulation with the SCDM are presented and validated 175 

against the MERRA2 climatologies over 1980-2018. We note that the SCDM has by construction a quite realistic 

temperature climatology due to the relaxation towards the MERRA2 climatology (see Sect. 2.4).  

4.1 Dynamical quantities 

The vertical component of the Eliassen-Palm (EP) flux vector (Eliassen and Palm, 1961) is a common measure for the 

upward propagating planetary wave activity from the troposphere. Due to its dominant role in driving the wintertime residual 180 

mean circulation and the transport of ozone in the stratosphere, we begin our discussion on the vertical EP-flux component (-
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Fp) during boreal winter (Fig. 4). Compared with MERRA2, the SCDM simulates well the -Fp over the NH, with a 

maximum and upward extension at ~60°N. The maximum over the southern hemisphere (SH) is somewhat poleward shifted. 

Fig. 4b shows the seasonal evolution of –Fp at 100 hPa over the mid to high latitudes of the two hemispheres. The model 

captures realistically the magnitude and the seasonal cycle of –Fp, with a wintertime maximum in each hemisphere. However, 185 

-Fp is also somewhat underestimated, especially over the NH during summer when the wave activity flux is weak and year-

round over the SH.  

Fig. 5 shows the zonal mean zonal wind for boreal winter (January-March) and austral winter (July-September). Overall, the 

zonal mean zonal wind of the SCDM resembles closely the MERRA2 in terms of the positions of the subtropical and polar 

night jets. However, the SCDM somewhat underestimates the strength of the polar vortex. The difference between SCDM 190 

and MERRA2 (Fig. 5c) reveals magnitudes of 4 m s-1 in the Arctic and 8 m s-1 in the Antarctic. The rather barotropic 

structure of the differences indicates that the negative wind biases are related to the representation of the surface drag in the 

SCDM, as was suggested by WR18. There are also some negative zonal wind biases in the tropical stratosphere, perhaps 

related to the inability of the SCDM to simulate the quasi-biennial oscillation (QBO). 

In Fig. 6 we compare the residual mean mass streamfunction (or Brewer-Dobson circulation) between MERRA2 and the 195 

SCDM. The stream function values of the SCDM over the NH at 100 hPa and below are generally too weak, suggesting that 

the strength of the tropical upwelling from the troposphere into the stratosphere is also somewhat too small. This can be 

linked to the reduced planetary wave driving (Fig. 4), which controls the strength of the residual mean circulation, 

particularly in the lower stratosphere (Gerber, 2012). In the upper stratosphere, the SCDM shows a too strong and elongated 

residual circulation at low latitudes and a too weak circulation at the middle latitudes over the winter hemispheres, giving the 200 

impression of an overall too narrow Brewer-Dobson circulation. Gerber (2012) suggested that too deep Brewer-Dobson 

circulation could be related to a too strong polar vortex, allowing more wave propagation into the upper stratosphere. 

Although the polar vortex in our model is weaker than that in MERRA2, the EP-flux divergence in the SCDM, which 

compared to MERRA2 shows more wave breaking in the subtropical upper stratosphere (not shown), is consistent with 

stronger streamfunction values and thus tropical upwelling in the upper stratosphere.  205 

4.2 Ozone 

We now present ozone climatologies for the SCDM in terms of its spatial structure, seasonality, and interannual variability, 

and connect some of the shortcomings that we find to the previously discussed biases in the dynamics. We begin with the 

seasonal mean zonal mean ozone climatology (Fig. 7). The SCDM generally simulates the distribution of ozone well, with a 

maximum in the tropics at ~10 hPa, and with increases from the tropics to the poles in the dynamically controlled lower 210 

stratosphere (below ~30 hPa). The differences (Fig. 7c) show positive biases in the middle and high latitudes during January-

March, maximizing at ~0.9 ppmv at 30°N. This corresponds to an overestimation by 10-20% compared to MERRA2. The 

positive biases must be due to the simplified nature of the ozone scheme and internal circulation biases of the model (Fig. 6). 

We suspect that the model’s circulation discrepancies are the dominant source for these biases. The ozone differences during 
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austral winter (July-September) resemble their northern counterparts, except for an additional negative bias over the high 215 

latitudes.  

The seasonal evolution of the mean total (column integrated) column ozone are shown in Fig. 8. In the Arctic, the MERRA2 

total column ozone exhibits a springtime maximum due to the enhanced meridional transport in winter (Fig. 8a). By contrast, 

Antarctic ozone undergoes a minimum in spring, resulting from anthropogenic ozone depletion. While the SCDM quite 

faithfully simulates the observed evolution of the total column ozone (Fig. 8b), the ozone biases seen before (Fig. 7c) also 220 

imprint on the column ozone (Fig. 8c). This leads to an overestimation of ozone over most latitudes and times, except over 

Antarctica during the time of the ozone hole. Overall, our results demonstrate that the SCDM is capable of simulating a quite 

realistic global distribution and seasonal evolution of ozone.  

Strong interannual circulation variability from intermittent SSWs is an important characteristic of the northern high-latitude 

stratosphere. We therefore examine next how this variability affects the circulation and ozone over the two polar caps (Fig. 225 

9). We note that, in contrast to the real atmosphere, the SCDM contains no interannually varying forcings (e.g., from varying 

sea surface temperatures), and that the internal dynamics of the model (e.g., SSWs) are the only source for its interannual 

variability. Considering this, we expect a reduced interannual variability in the SCDM.  

In MERRA2 over the Arctic (Fig. 9a, e, i), the variability of lower stratospheric zonal wind, temperature, and ozone (below 

10 hPa) strengthens from November and reaches a maximum during February-March. The increased variability is associated 230 

with intermittently enhanced planetary wave forcing (Fig. 4b), often resulting in SSWs and associated increases in poleward 

ozone transports. The Arctic temperature and ozone variability in the SCDM (Fig. 9f, j) is somewhat too low during early 

winter, consistent with a reduced stratospheric wave driving during this period (Fig. 4b). But during mid-winter, the Arctic 

ozone variability in the SCDM (Fig. 9j) is somewhat too high, perhaps related to the positive ozone bias seen in the lower 

stratosphere. There is also a too weak Arctic ozone variability during NH summer. Over Antarctica, the SCDM overall 235 

somewhat underestimates the temperature and ozone variability throughout the entire year (Fig. 9h, l), consistent with the 

negatively biased stratospheric wave driving over the SH (Fig. 4b). Another reason for the reduced variability over the SH is 

the much-simplified parameterization of heterogeneous ozone depletion. 

4.3 SSW Composites 

SSWs over the NH are the most important form of stratospheric circulation variability on intraseasonal to interannual time 240 

scales, and the evolution of stratospheric ozone in response to SSWs is probably a key component for the interaction 

between ozone and the circulation (e.g., Butler et al., 2017; De la Cámara et al., 2018; Hocke et al., 2015; Hong and Reichler, 

2021). In the following, we test the ability of the SCDM to simulate the dynamics and the transport of ozone during mid-

winter (January-February) SSWs. We follow the common SSW definition by Charlton and Polvani (2007), in which the 

onset of a major warming event is defined when the zonal mean zonal wind at 10 hPa and 60°N reverses from westerly to 245 

easterly. We only consider midwinter SSWs with onset dates in January or February, because SSWs during this time are 

strong and presumably associated with large ozone perturbations. In the 39 years of MERRA2 data (1980-2018), there 
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occurred 13 midwinter SSWs, whereas in the 2000 years of the SCDM simulation, we find 665 midwinter SSWs. Thus, the 

observed and model simulated SSW frequencies are identical (0.33/year).  

SSWs are usually triggered by bursts of tropospheric planetary wave activity penetrating into the stratosphere (Limpasuvan 250 

et al., 2004; Polvani and Waugh, 2004). We therefore start with examining composites of the vertical EP-flux over the life 

cycle of midwinter SSWs (Fig. 10a, b). MERRA2 shows that the onset of SSWs is preceded by abrupt increases in upward-

propagating planetary wave activity at lead times of about 10 days; after the onset, the upward EP-fluxes are reduced for 

several weeks, presumably because the weakened vortex wind inhibits the upward propagation of the waves (Charney and 

Drazin, 1961). The SSW composite of the SCDM captures the basic sequence of these events quite well, but the reduction of 255 

the upward EP-fluxes after the onset of SSWs is weaker than in the observations. This may be related to the non-

representation of gravity waves in the SCDM, as such waves and their filtering play an important role during the recovery 

phase of SSWs (Limpasuvan et al., 2012). 

The remaining panels of Fig. 10 are SSW composites of the zonal mean zonal wind, temperature, ozone mixing ratio, and 

shortwave heating by ozone over the Arctic. The onset of SSWs is characterized by negative wind anomalies and warming 260 

temperatures over the entire stratosphere (Fig. 10c, e) (see also Limpasuvan et al., 2004). These anomalies persist 

particularly long in the lower stratosphere, for more than 60 days. At the same time, significant increases of ozone are 

observed over the Arctic polar cap due to enhanced eddy mixing and vertical transport by the residual circulation (de la 

Cámara et al., 2018; Hong and Reichler, 2021) (Fig. 10g), creating concurrent shortwave heating anomalies in the 

stratosphere (Fig. 10i). Ozone in the chemically controller upper stratosphere is anti-correlated with temperatures (Craig and 265 

Ohring, 1958), helping to explain the positive ozone anomalies (Fig. 10g) and negative temperature anomalies (Fig. 10e) 

above 5 hPa.  

The SCDM generally captures the observed dynamical responses to SSWs, albeit the magnitudes of simulated anomalies are 

sometimes weaker (Fig. 10b, d, f, h, j). For example, the temperature anomalies of the SCDM have a maximum of 10 K 

during the SSW onset (Fig. 10f), while MERRA2 shows a temperature maximum of more than 14 K. The persistence and 270 

downward propagation of the zonal wind anomalies (Fig. 10d) and also the temperatures (Fig. 10f) after SSW onset also 

exhibit some discrepancies compared to MERRA2 (Fig. 10c, e). We believe that these discrepancies are related to the 

inability of the SCDM to simulate correctly the reduction in stratospheric wave driving after SSWs (Fig. 10a, b). These 

circulation biases impact to some extent the transport of ozone, for example in terms of more persistent ozone anomalies (Fig. 

10h) and corresponding shortwave heating (Fig. 10j) in the lower stratosphere.  275 

Overall, despite the simplicity of the SCDM, there is good agreement between the model and the reanalysis, with a 

reasonable simulation of the instantaneous ozone response to SSWs in both lower and upper stratosphere. When comparing 

the SCDM with MERRA2, one also has to take into account that the sampling uncertainty of MERRA2 (consisting of only 

13 events) is large.  However, we believe that the SCDM in its current form represents a useful and computationally 

inexpensive tool to study the role of interactive ozone chemistry for the dynamics of the stratosphere. 280 
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5 Summary and Outlook 

We introduce a dry dynamical core model with interactive ozone, denoted simplified chemistry-dynamical model (SCDM). 

With its very basic ozone-chemistry-radiation setup, the new model is located at the hierarchy between idealized GCMs and 

complex chemistry-climate models. SCDM is primarily targeted to investigate - in a simplified manner - the two-way 

coupling between stratospheric ozone and the circulation. 285 

SCDM is based on the dry dynamical core from GFDL, with a horizontal resolution of T42 and 40 hybrid levels. We relax 

temperatures using an empirically-determined seasonally varying equilibrium temperature profile to create a more realistic 

circulation than traditional dry dynamical cores. Ozone is transported by the model’s dynamical core as a passive tracer, and 

a simplified linear ozone scheme introduces additional photochemical ozone tendencies based on the circulation-induced 

perturbations in ozone, partial column ozone, and temperature. We employ an accurate and fast parameterization for the 290 

ozone absorption of solar radiation, which feeds back on the temperatures and the dynamics. With this setup, SCDM 

becomes an economical and fast tool for the study of the two-way interactions between ozone and the dynamics.  

We validate the model against the MERRA2 reanalysis, a rather high benchmark given the simplicity of the SCDM. Overall, 

the model compares favorably against the reanalysis climatology of the stratosphere-troposphere system, both in terms of the 

large-scale dynamics and the distribution of ozone. The spatial structure in the upward-propagating planetary wave activity, 295 

crucial for the residual mean circulation and the transport of ozone, is quite well simulated, but its overall magnitude is 

somewhat underestimated (Fig. 4). Climatological ozone is overestimated by up to 20% in the middle latitudes (Fig. 7), 

likely due to the biases in the residual circulation (Fig. 6) and the simplicity of the ozone scheme. Despite these biases, the 

seasonality (Fig. 8) and the interannual variability of ozone (Fig. 9) over both poles are well simulated. 

As a proof-of-concept, we examine the dynamical variability and changes in ozone in the stratosphere and troposphere 300 

during the composite life-cycle of stratospheric sudden warmings (SSWs). The model quite faithfully simulates the well-

known characteristics of SSWs, including the variations in planetary wave activity, zonal wind, temperature, and 

stratospheric ozone (Fig. 10). Some differences with respect to MERRA2 exist, most notably an insufficient suppression of 

the planetary wave activity and a too weak over-recovery of the polar vortex after the onset of SSWs. We suspect that this 

problem is systemic to models with Held-Suarez forcing, related to the missing gravity wave drag and the simplified forcing 305 

of such models. Despite this, the SCDM simulates quite well all the processes relevant for the ozone-dynamics coupling in 

the stratosphere.  

Our study contributes to an increasing diversity of idealized models, which are essential tools in the pursuit of a deeper 

understanding for complex atmospheric phenomena. In upcoming work, we will use SCDM for an in-depth study of the role 

of interactive ozone for the variability of the coupled stratosphere-troposphere system and its associated feedbacks. We will 310 

conduct simulations with different ozone setups (e.g., interactive or fixed) to investigate how important interactive ozone is 

for the circulation variability of the stratosphere. Possible future model enhancements will include an updated version of the 

ozone parameterization, a parameterization for gravity waves, and an enhanced radiation scheme that also considers 



11 
 

longwave radiation. We will also consider retuning the Newtonian relaxation time scale to bring the model in even better 

agreement with the observations.  315 
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Figure 1. Latitude-height cross-sections of relaxation times (days). (a) is the temperature (Newtonian) relaxation time τ, and (b) is 
the chemical relaxation time for ozone (-1/c1) in February. 
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Figure 2. January-March zonal mean shortwave heating rate (K day-1) climatology over 1980-2018. Shown are latitude-height 
cross-sections for (a) MERRA2, (b) SCDM, and (c) the difference between SCDM and MERRA2. 

 475 

 

 

 

 

 480 

 

 

 



17 
 

 

 485 

 

 
Figure 3. January-March diabatic heating rate Qclm (K day-1) for (a) MERRA2, (b) SCDM, and (c) zonal means of (a) and (b). 
Shown are vertical averages over (top) the stratosphere (1-70 hPa) and (bottom) the troposphere (150-1000 hPa). The MERRA2 
diabatic heating data are estimated from the temperature tendency due to physics. 490 
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Figure 4. Vertical EP-flux component (105 kg m s-4). Shown are (a) latitude-height cross-sections for January-March means and (b) 
daily climatologies averaged over the NH (45ºN-75ºN) and the SH (45ºS-75ºS) at 100 hPa. 
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Figure 5. Latitude-height cross-sections of zonal mean zonal wind (m s-1) for (a) MERRA2, (b) SCDM, and (c) SCDM minus 
MERRA2. Shown are seasonal climatologies for boreal winter (January-March) and austral winter (July-September). Shading in 
Fig. 5c passes statistical significance at the 95% level. 
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 540 
Figure 6. As Fig. 5, but for the residual mean mass streamfunction (106 kg s-1). 

 

 
Figure 7. As Fig. 5, but for the zonal mean volume ozone mixing ratio (ppmv). 
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Figure 8. Time-latitude cross-sections of daily total column ozone (DU) for (a) MERRA2, (b) SCDM, and (c) SCDM minus 
MERRA2. Shading in Fig. 8c passes statistical significance at the 95% level. 550 

 

 

 
Figure 9. Interannual variability of zonal-mean (a-d) zonal wind, (e-h) temperature, and (i-l) ozone. The interannual variability is 

estimated by standard deviation of T and O3 over the Arctic (60ºN-90ºN) and the Antarctic (60ºS-90ºS) and by standard deviation 555 
of U at 60ºN and 60ºS. Results are shown for (a, c, e, g, i, k) MERRA2 and (b, d, f, h, j, l) SCDM. 
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 560 
Figure 10. SSW composite for (a-b) the vertical EP-flux (104 kg m s-4) and zonal mean (c-d) zonal wind U (m s-1), (e-f) temperature 
T (K), (g-h) ozone mixing ratio O3 (ppmv), and (i-j) shortwave heating by ozone QSW (10-3 K day-1). Shown are anomalies for (a-b) 
40°N-80°N, (c-d) 60ºN, and (e-j) 60ºN-90ºN. Contours indicate statistical significance at 95% levels. 
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