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Abstract. This research introduces a numerically efficient aerosol activation scheme and evaluates it by using stratus and 

stratocumulus cloud data sampled during multiple aircraft campaigns in Canada, Chile, Brazil, and China. The scheme 

employs a Quasi-steady state approximation of the cloud Droplet Growth Equation (QDGE) to efficiently simulate aerosol 

activation, the vertical profile of supersaturation, and the activated cloud droplet number concentration (𝐶𝐷𝑁𝐶) near the 15 

cloud base. We evaluate the QDGE scheme by specifying observed environmental thermodynamic variables and aerosol 

information from 31 cloud cases as input and comparing the simulated 𝐶𝐷𝑁𝐶 with cloud observations. The average of mean 

relative error (𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅) of the simulated 𝐶𝐷𝑁𝐶 for cloud cases in each campaign ranges from 17.30 % in Brazil to 25.90 % in 

China, indicating that the QDGE scheme successfully reproduces observed variations in 𝐶𝐷𝑁𝐶  over a wide range of 

different meteorological conditions and aerosol regimes. Additionally, we carried out an error analysis by calculating the 20 

Maximum Information Coefficient (MIC) between the mean relative error (𝑀𝑅𝐸) and input variables for the individual 

campaigns and all cloud cases. MIC values are then sorted by aerosol properties, pollution level, environmental humidity, 

and dynamic condition according to their relative importance to 𝑀𝑅𝐸 . Based on the error analysis we found that the 

magnitude of 𝑀𝑅𝐸  is more relevant to the specification of input aerosol pollution level in marine regions and aerosol 

hygroscopicity in continental regions than to other variables in the simulation. 25 

1 Introduction 

Aerosols play an important role in affecting the radiation balance of the earth-atmosphere system by scattering and absorbing 

shortwave radiation and altering the cloud reflectivity and lifetime (Twomey, 1974, 1977; Ghan, 2013; Forster et al., 2016; 
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Ramaswamy et al., 2019; Wang et al., 2020). Aerosol-cloud interactions remain as one of the largest sources of climate 

modeling uncertainty (Intergovernmental Panel on Climate Change, 2013).  30 

Aerosol-cloud interactions are largely driven by the activation of aerosols to form cloud droplets. The addition of activated 

aerosol to existing clouds can directly change the concentration and size of cloud droplets and thereby affect the 

microphysical properties and radiative forcing of the clouds. Aerosol activation is controlled by rapid and nonlinear aerosol 

and cloud microphysical processes (Meskhidze et al., 2005), which have not been explicitly resolved in climate models yet 

(Fountoukis et al., 2007; Kang et al., 2015). Nenes et al. (2001) pointed out that the cloud droplet activation process is 35 

subject to kinetic limitations, including inertial, evaporation, and deactivation mechanisms, which further adds to the 

complexity of the aerosol activation.  

Early parameterizations of aerosol activation in climate models were based on observations and derived through parameter 

fitting, using the aerosol number or mass concentration or other Cloud Condensation Nuclei (CCN) proxies (e.g., sulfate 

mass) to empirically determine the activated 𝐶𝐷𝑁𝐶 (Jones et al., 1994; Boucher and Lohmann, 1995; Jones and Slingo, 1996; 40 

Lohmann, 1997; Kiehl et al., 2000; Menon et al., 2002). Although these parameterizations have the advantages of 

convenience and low computational burden (Fountoukis et al., 2007), substantial uncertainties are resulting from limited 

spatiotemporal representativeness and unresolved variations in aerosol properties (Meskhidze et al., 2005). In the recent two 

decades, physically-based parameterization schemes of aerosol activation have emerged (Abdul-Razzak and Ghan, 2000; 

Cohard et al., 2000; Fountoukis and Nenes, 2005; Ming et al., 2006; Kivekäs et al., 2008; Khvorostyanov and Curry, 2009; 45 

Shipway and Abel, 2010; Zhang et al., 2015). These schemes are based on the Köhler theory and are used in climate models 

to parameterize aerosol activation near the cloud base. As Köhler theory fundamentally describes the process by which water 

vapor condenses and forms liquid cloud droplets, it can be applied to a wide range of atmospheric conditions and aerosol 

pollution levels. However, considerable approximations of the Köhler theory are employed for application in climate models, 

which leads to potential biases in comparison with results from more rigorous and accurate simulations of cloud droplet 50 

growth with adiabatic parcel models (e.g. Ghan et al. (2011)). The ongoing increase in computing power (Herrington and 

Reed, 2020) reduces the need to apply rigorous approximations of physicochemical processes in climate models. In the 

following, we will introduce a Quasi-steady state approximation of the cloud Droplet Growth Equation (QDGE) that 

provides an efficient alternative to parameterizations of activated 𝐶𝐷𝑁𝐶 in climate models. 

Parameterization schemes of aerosol activation were often evaluated with adiabatic parcel model simulations. These models 55 

explicitly solve aerosol activation and droplet growth processes by mimicking vertical uplifting of an air parcel containing a 

specified number of aerosol particles, predicting changes in temperature, humidity/supersaturation, activation of aerosols, 

and droplet growth from the cloud base upward. When utilizing identically specified aerosols, the results of a parcel model 

can be used as a benchmark to evaluate parameterizations. This approach has been extensively used to evaluate activation 

schemes (Table 1). Alternatively, a less commonly used approach is to evaluate parameterizations by conducting a “closure 60 

experiment”, that is, to carry out a parameterized calculation by specifying observed aerosol concentrations and 
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environmental thermodynamic conditions, and then compare the calculated and observed 𝐶𝐷𝑁𝐶 (e.g. Snider and Brenguier, 

2000; Guibert et al., 2003; Fountoukis and Nenes, 2005; Kivekäs et al., 2008). Though some parameterizations have been 

evaluated based on comparisons of simulated and observed 𝐶𝐷𝑁𝐶 from aircraft campaigns, mostly regional data sets were 

used for very specific meteorological conditions and pollution levels. It is essential to select a wide range of cloud data for 65 

different atmospheric conditions and pollution levels to arrive at meaningful conclusions for global climate model 

simulations.  

In this study, we introduce the QDGE scheme and evaluate it by using cloud data from multiple aircraft campaigns in four 

different regions over the world, covering marine and continental conditions. This paper is organized as follows. The next 

section describes the QDGE scheme and Sect. 3 summarizes the data and method used for the closure experiment and the 70 

evaluation. Section 4 illustrates the results of the closure experiment and analyzes the sources of simulation errors, followed 

by conclusions and discussion in Sect. 5. 

Table 1. A summary of activation parameterizations and the evaluation methods in previous studies. 

Parameterization Evaluation methods 

Abdul-Razzak et al. (1998) Parcel model 

Cohard et al. (2000) Parcel model 

Snider et al. (2003) Aircraft measurements 

Fountoukis and Nenes (2005) Parcel model; Aircraft measurements 

Ming et al. (2006) Parcel model 

Kivekäs et al. (2008) Other parameterizations; Aircraft measurements 

Khvorostyanov and Curry (2009) Twomey power law (Pruppacher et al., 1998) 

Shipway and Abel (2010) Parcel model 

2 QDGE scheme 

Aerosol particles that are suspended in a parcel of air activate and grow into cloud droplets by condensation of water vapor if 75 

supersaturation with respect to water exceeds a critical value. In stratus and convective clouds, aerosol activation is 

particularly efficient in the vicinity of the cloud base, where supersaturation typically reaches its local maximum. Although 

observations provide evidence that aerosol activation is not limited to the region near the cloud base, this is omitted in the 

aerosol activation scheme described here, similar to most parcel models and parameterizations. 

In order to determine the portion of the aerosols that activates and forms cloud droplets, a numerically efficient solution of 80 

the condensational droplet growth equation (e.g. Seinfeld and Pandis, 2016) is employed to simulate the growth of an 

ensemble of aerosol particles near the cloud base. The water vapor saturation ratio and cloud droplets above the cloud base 

are simulated by assuming a parcel of air with aerosols from below the cloud base, which ascends vertically to produce 

supersaturated conditions above the cloud base. The vertical velocity of the parcel of air, 𝑤𝑐(in m 𝑠−1), is either specified or 

parameterized, as described in Sect. 3.2.3. 85 
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The change in wet aerosol particle radius, 𝑅𝑝𝑤 (in m), by condensation of water vapor as a function of the water vapor 

saturation ratio (𝑆, e.g. Emanuel, 1994) in the scheme is given by 

𝑅𝑝𝑤
𝑑𝑅𝑝𝑤

𝑑𝑡
=

𝑆−𝑆𝑝

𝐶
 ,                      (1) 

where 𝑆𝑝 is the water vapor saturation ratio directly over the surface of the particle, which is obtained from 𝜅-Köhler theory 

(Petters and Kreidenweis, 2007), 90 

𝑆𝑝 − 1 =
𝐴

𝑅𝑝𝑤
−

𝐵

𝑅𝑝𝑤
3  ,                      (2)  

with the following parameters, which account for thermodynamic conditions in the cloud and physiochemical properties of 

the aerosol particles and droplets, 

𝐴 =
2𝑀𝑤𝜎

𝑅𝑇𝜌𝑤
 ,                                    (3) 

𝐵 = 𝜅𝑅𝑝
3 ,                       (4) 95 

and 

𝐶 =
𝜌𝑤𝑅𝑇

𝑒∗𝐷𝑣
′𝑀𝑤

+
𝐿𝑣𝜌𝑤

𝐾𝑎
′ 𝑇

(
𝐿𝑣𝑀𝑤

𝑅𝑇
− 1) ,                    (5) 

where 𝜅 is the aerosol hygroscopicity, 𝜎  the surface tension of the solution/air interface (which is approximated by the 

surface tension of water here), 𝜌𝑤 the density of water, 𝑀𝑤 the molecular weight of water, 𝑅 the universal gas constant, 𝑇 

the temperature, 𝑅𝑝 the dry aerosol particle radius, 𝑒∗ the saturation vapor pressure, 𝐿𝑣 the latent heat of vaporization, 𝐾𝑎
′  the 100 

modified thermal conductivity of air accounting for non-continuum effects, 𝐷𝑣
′  the modified diffusivity of water vapor in air 

accounting for non-continuum effects (Seinfeld and Pandis, 2016). Petters and Kreidenweis (2007) and Kreidenweis et al. 

(2008) provided tabulated values of the hygroscopicity parameter 𝜅  for a variety of chemical compounds, based on 

laboratory data and modeling. They found that parameterized water contents are often within experimental uncertainty. 

However, the accuracy of this approach tends to decrease with decreasing aerosol water content. In particular, simulations of 105 

highly concentrated, non-ideal aqueous solutions with strong electrostatic interactions between ions with the Aerosol 

Inorganic Model (AIM; Wexler and Clegg (2002); http://www.aim.env.uea.ac.uk/aim/aim.html) give evidence for 

systematically different results at low aerosol water contents for some compounds  (Kreidenweis et al., 2008). In order to 

improve biases at low relative humidity, the original method was extended to account for variations in 𝜅 with relative 

humidity in the QDGE scheme. Specifically, piecewise-linear relationships between 𝜅 and aerosol water activity for different 110 

chemical components were determined based on results from AIM. 

Direct numerical solutions of Eq. (1) are computationally expensive, given that the condensation rate of water vapor depends 

on the aerosol size distribution and chemical composition, which leads to the highly non-linear behavior of the water vapor 

saturation ratio vertical profile. Typically, time steps much shorter than 1 second is required to solve this equation, which 

implies computational expenses that would prohibit applications in climate models (Khain et al., 2015). However, numerical 115 
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efficiency can be achieved by using a Quasi-steady state approximated Droplet Growth Equation (QDGE), which can be 

derived by using the local approximation S ≈ const in Eq. (1), which can be conveniently expressed as follows, 

𝑑𝑥

𝑑𝑢
= 𝛿 − 𝑎 (

𝑏

𝑥1/2 −
1

𝑥3/2) ,                     (6) 

for the time period from 𝑡 to 𝑡 + ∆𝑡𝑠, with variable substitutions for particle size, 𝑥 = 𝑅𝑝𝑤
2 /2, and time, 𝑢 =  𝑡|𝑆 −  1|/𝐶, 

and parameters 120 

𝛿 = {
  −1   ,        if 𝑆 < 1 ,
     1    ,        if 𝑆 ≥ 1 ,

 ,                    (7) 

𝑎 =
𝐵

23/2|𝑆−1|
 ,                      (8) 

𝑏 =
2𝐴

𝐵
 .                       (9) 

In the QDGE aerosol activation scheme, numerical efficiency is achieved by using pre-calculated solutions 𝑥(𝑢) of Eq. (6), 

which are provided in the form of look-up tables (LUTs), for different values of 𝑎 and 𝑏. The 𝑆-dependent parameters 𝑎 125 

and 𝛿 , and 𝑢 , are determined through an iterative procedure, for each time step and vertical level near cloud base, as 

described in the following. 

A vertical grid with 𝑁𝑠𝑢𝑏 sub-levels and grid spacing ∆𝑧𝑠 = ∆𝑧/𝑁𝑠𝑢𝑏 is employed in the QDGE scheme, where ∆𝑧 is the grid 

spacing in the atmospheric host model, near cloud base. Calculations are only performed for the first host model grid layer 

above the cloud base, with typical values ∆𝑧𝑠 ≈ 1 − 10 m, to ensure that the supersaturation maximum is captured and 130 

sufficiently well resolved in model applications of the aerosol activation scheme. 

The growth calculations are performed for a sub-ensemble of aerosol particles which are selected from the full dry aerosol 

size distribution at regular size intervals, ∆𝜒 = 1/𝑝∆𝜑, where 𝑝 is on the order of 5 - 20 and ∆𝜑 is the simulated particle size 

range of Aitken and accumulation mode aerosols, expressed in terms of a dimensionless particle size parameter 𝜑 =

ln (𝑅𝑝/𝑅0), with 𝑅0 = 10−6 m. In this study, we set 𝑝 to 6, meaning that 6 discrete aerosol particle sizes are used. Sizes of 135 

other particles in the continuous aerosol size distribution are obtained from linear interpolation between the sizes of the 

particles in the discrete 6-member sub-ensemble. 

𝑆  and the dependent parameters in Eq. (6) are obtained through an iterative calculation, which explicitly requires the 

conservation of mass and energy. Specifically, a value of 𝑆 is first specified (“best guess” estimate) and Eq. (6) is integrated 

over the time step ∆𝑡𝑠 = ∆𝑧𝑠/𝑤𝑐  to obtain a first estimate of the particle sizes at 𝑧 + ∆𝑧𝑠. Next, an integration over the 140 

particle mass size distribution yields a first estimate of the liquid water mixing ratio, 𝐿𝑊𝐶, at 𝑧 + ∆𝑧𝑠, subject to the initially 

specified value of the water vapor saturation ratio. Secondly, the total water mass mixing ratio, 𝑟𝑡, and liquid water static 

energy, ℎ, in the ascending parcel of air are calculated, as defined by, 

𝑟𝑡 = 𝑟𝑣 + 𝐿𝑊𝐶 ,                     (10) 

ℎ = 𝑔𝑧 + 𝑐𝑝𝑇 − 𝐿𝑣𝐿𝑊𝐶 ,                   (11) 145 
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Here, 𝑟𝑣  is the water vapor mass mixing ratio, 𝑔 the gravitational constant, and 𝑐𝑝 the heat capacity at a constant pressure of 

dry air.  Currently, only adiabatic processes are considered, and therefore total water and liquid water static energy in Eqs. 

(11) and (12) are conserved as the parcel ascends from 𝑧 to 𝑧 + ∆𝑧𝑠, with initial values for dry conditions from below cloud 

base. Consequently, the first estimates of 𝑟𝑣  and 𝑇 are determined from Eqs. (10) and (11), using the first estimate of 𝐿𝑊𝐶, 

as described above. Subsequently, these results are used to update the water vapor saturation ratio, based on the standard 150 

definition of the water vapor saturation ratio, 

𝑆 =
𝑟𝑣

𝑟∗
(

1+
𝑟∗

0.622

1+
𝑟𝑣

0.622

) ,                     (12) 

where 𝑟∗ is the saturation water vapor mass mixing ratio in the parcel of air, which depends on 𝑇. Subsequently, the updated 

value and the initial estimate of 𝑆 are compared and are used to determine an improved estimate of 𝑆 using a bisectional 

method that minimizes the difference between different available estimates of 𝑆 through iteration. The method quickly 155 

converges to a desired value of  𝑆, which solves Eq. (6) and satisfies all necessary constraints according to Eqs. (10), (11), 

and (12). After the iterations are complete and results are available at 𝑧 + ∆𝑧𝑠, the calculations are repeated in order to obtain 

𝑆 at the next higher level above until results are available at all 𝑁𝑠𝑢𝑏 levels. 

Finally, the maximum value of the simulated vertical water vapor saturation ratio profile, 𝑆𝑚𝑎𝑥 , is selected and used to 

diagnose the critical particle size, which separates activated from non-activated particles, i.e. by requiring that 𝑆𝑚𝑎𝑥 = 𝑆𝑝. 160 

Particles with sizes that are equal to or greater than the critical size are assumed to be activated. Consequently, the cloud 

droplet number concentration is obtained by integrating the activated particle size distribution accordingly. Above cloud base, 

a uniform vertical profile of the cloud droplet number mixing ratio is assumed, in good agreement with observations and 

detailed simulations of clouds (Gerber et al., 2008; Slawinska et al., 2012; Jarecka et al., 2013). Also, you can set the 

entrainment rate to consider the effect of entrainment on the vertical profile if necessary. 165 

The QDGE aerosol activation scheme has been previously used to assess Arctic indirect radiative forcing (Arora et al., 2015) 

and to determine the sensitivity of Arctic clouds to changes in future surface seawater dimethyl sulfide concentrations  

(Mahmood et al., 2019). 

3 Data and methods 

3.1 Campaign description  170 

The worldwide cloud data used for the evaluation were sampled from four aircraft campaigns. The locations and instrument 

information of the four campaigns are shown in Fig. 1 and Table 2. The Canada (CAN) campaign provided marine stratus 

cloud data observed during the Radiation, Aerosol and Cloud Experiment (RACE) in fall 1995 off the coast of Nova Scotia, 

Canada (Peng et al., 2002). The Chile (CL) campaign provided marine stratocumulus clouds data observed during the 
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VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), for near-climatological atmospheric 175 

conditions off northern Chile and southern Peru (Wood et al., 2011). The Brazil (AMA) campaign provided continental 

stratus clouds data observed in Manaus, Brazil during the Green Ocean Amazon (GoAmazon2014/5) Experiment (Martin et 

al., 2016). The China (CN) campaign provided polluted continental stratus clouds data sampled in Beijing, China by the 

Beijing Weather Modification Office (Liu et al., 2020). These worldwide datasets comprise continental (CN and AMA), 

coastal (CAN), and marine (CL) meteorological conditions. Additionally, they cover different levels of human influence on 180 

clouds, with an observed range of the mean aerosol number concentration (𝑁𝑎) within 100 m below the cloud base from 282 

cm−3 to 1350 cm−3.  

 
Figure 1. The geographical distribution of 31 selected cloud cases in the four aircraft campaigns. The text boxes provide the 

locations, the periods, and the names of the cloud cases for each campaign. 185 

Table 2. An overview of the four aircraft campaigns in this study.  

Name CAN CL AMA CN 

Date 1995/09 2008/10; 2008/11 2014/03; 2014/09 2018/05; 2018/08 

Location Nova Scotia, Canada Iquique, Chile Manaus, Brazil Beijing, China 

Cloud type stratus stratocumulus stratus stratus 

Campaign name RACE VOCALS-REx GoAmazon2014/5 / 

CDNC instrument 
FSSP (15 bins, 

2.0~47.0 μm) 

CAS (20 bins, 

0.6~56.3 μm) 

FCDP (20 bins, 

1.5~150.0 μm) 

FCDP (20 bins, 

1.5~150.0 μm) 

Aerosol instrument 

PCASP (15 bins, 

0.13~3.00 μm) 

ASAP (13 bins, 

0.183~2.37 μm) 

PCASP (30 bins, 

0.09~3.00 μm) 

PCASP (30 bins, 

0.09~3.45 μm) 

PCASP (30 bins, 

0.10~3.00 μm) 

Chemistry instrument AMS AMS AMS / 

LWC instrument King hot-wire probe King hot-wire probe 

King hot-wire probe 

and Johnson-

Williams probe 

King hot-wire probe 

Atmospheric 

condition instrument 
AIMMS AIMMS AIMMS AIMMS 

Number of selected 

cloud cases 
10 7 7 7 
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Number of cases for 

𝑤𝑐 calculation 
2 3 5 4 

𝑁𝑎 476±294 cm−3 282 ± 116 cm−3 846 ± 819 cm−3 1350 ± 916 cm−3 

Note: 𝑁𝑎 is the integrated number of particles detected by aerosol instruments and averaged within 100 m below the cloud base. The definition of cloud 

base and selection of cloud cases refer to Sect. 3.2.1. Calculation of 𝑤𝑐 refers to Sect. 3.2.3. 

Aerosol and cloud measuring instruments utilized in the four campaigns are briefly presented in Table 2. The observed 

variables mainly include 𝐶𝐷𝑁𝐶 , 𝐿𝑊𝐶 , the aerosol number-size distribution, the chemical compositions of aerosol, and 190 

atmospheric condition parameters. For the measurement of 𝐶𝐷𝑁𝐶, the forward scattering spectrometer probe (FSSP) was 

used in the CAN campaign. The cloud, aerosol, and precipitation spectrometer (CAS) was used in the CL campaign. The fast 

cloud droplet probe (FCDP) was used in the AMA and CN campaigns. Although FCDP, FSSP, or CAS can observe cloud 

droplets with a particle size up to 150 μm, we only integrated the number for droplets with a particle size of 2 to 30 μm to 

derive the 𝐶𝐷𝑁𝐶. Because cloud droplets larger than 30 μm are subject to collision-coalescence, and droplets smaller than 195 

2 μm may be deactivated by evaporation (Fountoukis and Nenes, 2005). For the measurements of the 𝐿𝑊𝐶, the King hot-

wire probe was used in all campaigns, and the Johnson-Williams probe was also equipped as an alternative option in 

GoAmazon2014/5. In terms of the aerosol observation, all the four campaigns utilized an onboard passive cavity aerosol 

spectrometer probe (PCASP), and some flights during the CAN campaign used the atmospheric solids analysis probe 

(ASAP), providing aerosol number concentration in multiple size bins roughly from 0.1 to 3 μm. We integrated the number 200 

for particles within the detected size range to determine 𝑁𝑎. In the CAN, AMA, and CL campaigns, the mass concentrations 

of aerosol chemical species, including  𝑁𝐻4
+ , 𝑁𝑂3

− , 𝑆𝑂4
2− , 𝐶𝑙− , and organics (𝑜𝑟𝑔), were measured using the aerodyne 

aerosol mass spectrometer (AMS). The CN campaign lacked data for aerosol chemical composition (see Sect. 3.2.2). For the 

CL campaign, five aircraft (i.e. Lockhead C-130, BAe-146, Gulfstream-1, Dornier-228, and Twin Otter) carried out 

observations (Wood et al., 2011). In order to ensure data integrity and consistency for aerosol number-size distribution and 205 

chemical composition measurements in the subsequent analysis, we only selected data from the Gulfstream-1 flights. The 

atmospheric condition parameters (𝑇, pressure (𝑃), relative humidity (𝑅𝐻), vertical velocity (w)) were mainly observed by 

the airborne integrated meteorological measurement system (AIMMS), in all campaigns. For the CL campaign, vertical 

velocity data were not available from the Gulfstream-1 flights, thus we used the observed w data from the Twin Otter flights 

that occurred simultaneous with Gulfstream-1 flights. Some meteorological variables that are required by the QDGE scheme, 210 

particularly including 𝑟𝑣 , 𝑟𝑡, and ℎ, were not available from the aircraft observations. Therefore, we calculated these based on 

other variables (Sect. 3.2.4). Detailed descriptions of the aforementioned observational instruments and data quality control 

procedures can be obtained from the relevant publications for the different aircraft campaigns (Li et al., 1998; Peng et al., 

2002; Wood et al., 2011; Kleinman et al., 2012; Martin et al., 2016, 2017; Wang et al., 2020). 
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3.2 Data processing for closure experiment 215 

3.2.1 Data extraction 

The flow chart of data extraction and processing is shown in Fig. 2. In the first step, we conducted a screening of 

observational data to obtain suitable cloud cases fulfilling the following conditions (Step 1 in Fig. 2). First, we selected cloud 

cases with continuous 𝐿𝑊𝐶 profile with  𝑇 > 0 ℃ and 𝐿𝑊𝐶 ≥ 0.05 g cm−3 in each layer, identifying the height of the cloud 

base as 𝐻𝑙𝑜𝑤  (see Fig. A1). Second, we checked whether the 𝐿𝑊𝐶  near the cloud base approximately satisfies the wet 220 

adiabatic assumption, that is, nearly free from entrainment. As shown in Fig. A1, we plotted the observed 𝐿𝑊𝐶 and the 

adiabatic 𝐿𝑊𝐶 (𝐿𝑊𝐶𝑎𝑑) profiles, the later ones were calculated by assuming that 𝐿𝑊𝐶 increases linearly with the height 

above cloud base (𝐻𝑐), i.e. 𝐿𝑊𝐶𝑎𝑑 = 𝐶𝑤𝐻𝑐 . 𝐶𝑤 is the adiabatic liquid water lapse rate, which is a function of temperature  

(Brenguier, 1991). For liquid clouds, the value of 𝐶𝑤 varies from 0.5 × 10−3 to 3.0 × 10−3 g m−4 (Peng et al., 2002). For 

the cases shown in Fig. A1, 𝐶𝑤 ranges from 0.6 × 10−3 to 2.8 × 10−3 g m−4. The mean of 𝐶𝑤 in each cloud case is shown in 225 

Table A1. Considering that the entrainment rate was set to 1.0 × 10−3 m−1 (weak entrainment, Barahona and Nenes, (2007)) 

when running the QDGE scheme in order to be close to the real atmosphere, we identify the nearly adiabatic part in the 

cloud case (i.e. data sampled between 𝐻𝑙𝑜𝑤 and 𝐻ℎ𝑖𝑔ℎ in Fig. A1) for obtaining the observed cloud properties for evaluating 

the simulation. Third,  we excluded the impact of collision-coalescence in the selected cloud cases, by ensuring that the 

water contents of cloud droplets with size greater than 30 μm were less than 0.05 g cm−3. Finally, we checked to make sure 230 

each cloud case has 𝑁𝑎 larger than 𝐶𝐷𝑁𝐶. Ultimately, we obtained 31 eligible cloud cases, as shown in Fig. A1. Table A1 

listed the observed data in the selected cloud cases, 𝐶𝐷𝑁𝐶𝑂 and 𝐿𝑊𝐶 were averaged over the adiabatic part of each cloud 

case, 𝑁𝑎 and 𝑅𝐻 were averaged within 100 m below the cloud base. 

As shown in Step 2 of Fig. 2, we classified data samples of each cloud case into cloudy and clear conditions by utilizing the 

following criteria. Data sampled inside the cloud (cloudy condition) requires that 𝐿𝑊𝐶 ≥ 0.05 g cm−3, 𝐶𝐷𝑁𝐶 > 10 cm−3, 235 

and 𝑅𝐻 ≥ 99.5 %, and data samples outside the cloud  (clear condition) requires that 𝐿𝑊𝐶 < 0.05 g cm−3, 𝑁𝑎 > 10 cm−3, 

and 𝑅𝐻 < 99.5 %. 

During each flight, the sampling along the horizontal flight track was continuous, which allowed us to better characterize the 

cloudy conditions or atmospheric conditions inside or outside the cloud. In all the 31 selected cloud cases, we were able to 

extract data samples at 𝑛𝑙 levels (𝑙𝑖 , 𝑖 = 1, 2, … , 𝑛𝑙 from the cloud base; where 𝑛𝑙 is usually 4, at least 2.) along horizontal 240 

flight tracks in each cloud case, and calculated the mean value of the observed variable 𝑣 (𝑉𝑣,𝑙𝑖
) along the horizontal track in 

each level 𝑙𝑖. 𝑉𝑣,𝑙𝑖
 is then extended to the vertical model levels (𝐿𝑗 , 𝑗 = 1, 2, … , 𝑁𝐿; where 𝐿𝑗 refers to the interfaces of the 

vertical layers in the model, i.e. ∆𝑧 = 𝐿𝑗+1 − 𝐿𝑗) for running the QDGE scheme, which is Step 3 as shown in Fig. 2. The 

extension proceeded with the following rules: The meteorological variables profile in clear condition, such as 𝑇, 𝑃, and 𝑟𝑡, 

were extended downwards to the surface by using hydrostatic equation and ideal gas law, then extended to the top by linear 245 
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extrapolation, and interpolated between 𝑙1 and 𝑙𝑛𝑙. The aerosol mass and number profiles were extended to surface and top 

by linear extrapolation and interpolated between 𝑙1 and 𝑙𝑛𝑙. 𝑅𝐻 was filled between 𝑙1 and 𝑙𝑛𝑙 by linear interpolation. 

For each cloud case, the data samples in the clear air were used to obtain aerosol-related input information for the model 

simulations (number and mass concentrations of aerosol components in different particle size sections) and the profiles of 

meteorological parameters. The data samples in cloudy conditions were used to obtain the vertical velocity and  𝐿𝑊𝐶 as 250 

input for the model, and to provide measured 𝐶𝐷𝑁𝐶 for comparisons with model results and closure verification. These are 

Steps 4, 5, and 6, as shown in Fig. 2 and described in the next three subsections. 

Observation

Clear samplesCloudy samples

Mass fraction of 

chemical 

components

Aerosol 

number-size 

distribution

QDGEMeasured CDNC

Meteorology  

and LWC

Evaluation

Error analysis

Vertical 

velocity

31 Cloud cases

Step 2: 

The classification of samples

Step 1: 

Screen suitable clouds

Step 3: 

The extraction and extension of data

 

Step 4: 

Aerosol data for input

Step 6: 

Meteorological input

Step 5: 

Vertical velocity for input

 

Figure 2. A flow chart to schematically show the data extraction and processing for this work. 
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3.2.2 Aerosol data for input 255 

In each of the cloud cases from the different aircraft campaigns, aerosol number concentrations 𝑁𝑎_𝑝 (𝑝 = 1, . . . , 𝑛𝑝; where 

𝑛𝑝 is the number of size bins detected in observation, see Table 2) sampled by ASAP or PCASP were categorized in 13, 15, 

or 30 bins. The size-resolved aerosol number concentrations were subsequently interpolated to a common particle size 

distribution (PSD) with 6 prescribed size sections for model input based on the following method (as depicted in Fig. 3). 

First, we used the aerosol number concentration in each size bin of the PCASP (or ASAP) data to fit a continuous PSD using 260 

cubic spline interpolation (Fig. 3b). Second, we integrated the fitted PSD to obtain the aerosol number concentration 𝑁𝑎_𝑘 

(k=1, … , 6) in the aerosol size sections employed by the QDGE scheme (the dry aerosol particle radius boundaries are at 

0.050, 0.088, 0.155, 0.274, 0.483, 0.851, 1.500 μm, as shown in Fig. 3c). By utilizing this method, the total 𝑁𝑎 obtained by 

integration over the 6 QDGE sections was slightly different from the observed total aerosol number due to the fitting of PSD, 

thus we further weighed the total fitted aerosol number concentration by the observed aerosol number to ensure the 265 

conservation of total number concentration  (i.e., the total 𝑁𝑎 integrated over the QDGE sections in Fig. 3c is the same as the 

aerosol number integrated over the observed PSD in Fig. 3a). Finally, the PSD of the aerosol number concentration in 6 

sections (Fig. 3c) was used as input to the QDGE scheme. 

 

Figure 3. The processing of the observed aerosol number-size distribution for the input to the QDGE scheme. (a) shows the 270 

observed aerosol number concentration in each size bin sampled by PCASP, (b) the particle size distribution curve (red line) 

fitted to the observations (the asterisks refer to the observations that were derived from (a)), and (c) aerosol number 

concentration in 6 size sections, as prescribed in model simulations with the QDGE scheme. 

For each of the CAN, AMA, and CL campaigns, the AMS provided measurements of chemical components over the entire 

campaign, providing concentrations of 𝑁𝐻4
+, 𝑁𝑂3

−, 𝑆𝑂4
2−, 𝐶𝑙−, and 𝑜𝑟𝑔. The various chemical components in the aerosol 275 

were assumed to be internally mixed, thus different components share the same aerosol number concentration in each size 

section. To obtain the PSD of mass concentration of each chemical component, we made use of the AMS measurements. For 
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continental campaigns such as CN and AMA, we assumed that aerosols are composed of 𝑁𝐻4𝑁𝑂3, (𝑁𝐻4)2𝑆𝑂4, 𝑁𝐻4𝐶𝑙, and 

organics (𝑂𝑟𝑔) (Shilling et al., 2018; Zhou et al., 2019; Li et al., 2020). For coastal or oceanic campaigns such as CAN and 

CL, we took sea salt (𝑁𝑎𝐶𝑙) into account, too. For the CAN, AMA, and CL campaigns, we converted the AMS data of ion 280 

mass (𝐴𝑀𝑆𝑐𝑖 , 𝑐𝑖 is 𝑁𝑂3
−, 𝑆𝑂4

2− , 𝐶𝑙−, or 𝑜𝑟𝑔)  to the mass of each chemical component (𝑚𝑐 , 𝑐 is 𝑁𝐻4𝑁𝑂3 , (𝑁𝐻4)2𝑆𝑂4 , 

𝑁𝐻4𝐶𝑙, organics (𝑂𝑟𝑔), or 𝑁𝑎𝐶𝑙).  

𝑚𝑁𝐻4𝑁𝑂3
=

𝐴𝑀𝑆𝑁𝑂3
−

𝑀𝑁𝑂3
−

𝑀𝑁𝐻4𝑁𝑂3
,                                                                     (13) 

𝑚(𝑁𝐻4)2𝑆𝑂4
=

𝐴𝑀𝑆
𝑆𝑂4

2−

𝑀
𝑆𝑂4

2−
𝑀(𝑁𝐻4)2𝑆𝑂4

,                       (14) 

𝑚𝑁𝐻4𝐶𝑙 =
(1−𝛼)𝐴𝑀𝑆𝐶𝑙−

𝑀𝐶𝑙−
𝑀𝑁𝐻4𝐶𝑙,                  (15) 285 

𝑚𝑁𝑎𝐶𝑙 =
𝛼𝐴𝑀𝑆𝐶𝑙−

𝑀𝐶𝑙−
𝑀𝑁𝑎𝐶𝑙 ,                    (16) 

𝑚𝑂𝑟𝑔 = 𝐴𝑀𝑆𝑜𝑟𝑔,                    (17) 

where 𝑀𝑐𝑖  and 𝑀𝑐  are the molecular weight of ion 𝑐𝑖  and chemical component 𝑐 , respectively. Here we assume that 

concentrations of  𝑁𝐻4
+ are sufficiently high to balance all anions. The mass of sea salt in different campaigns is controlled 

by a given factor 𝛼 to partition the amount of  𝐶𝑙− in sea salt and continental chemical components. We set the values of 𝛼 as 290 

0, 90%, and 95% for AMA, CAN, and CL campaigns. That is, 90% and 95% of 𝐶𝑙− are attributed to sea salt in the coastal 

campaign CAN and the oceanic campaign CL, respectively. Based on the calculated mass concentration of each chemical 

component, the average density of aerosol can be obtained: 

𝜌𝑎 =
∑ 𝑚𝑐

5
𝑐=1

∑ 𝑚𝑐/𝜌𝑐
5
c=1

,                                  (18) 

where 𝜌𝑐  is the density of each component 𝑐 , and they are 1725, 1769, 1527, 1900, and 1400 kg m−3  for 𝑁𝐻4𝑁𝑂3 , 295 

(𝑁𝐻4)2𝑆𝑂4, 𝑁𝐻4𝐶𝑙, 𝑁𝑎𝐶𝑙, and 𝑂𝑟𝑔, respectively (Ferek et al., 1998; Nakao et al., 2013). Consequently, we can obtain the 

mass concentration (unit kg cm−3) of each component 𝑐 in section 𝑘 following this equation: 

𝑀𝑎𝑠𝑠𝑐,𝑘 =
𝑚𝑐

∑ 𝑚𝑐
5
c=1

∙ 𝑁𝑎_𝑘
4𝜋

3
𝑅𝑘

3𝜌a ,                                                                                                                (19) 

where 𝑅𝑘 is the median radius of section 𝑘. 

Since no AMS data are available for the CN campaign, we assumed the mass fraction of different chemical components 300 

according to contemporaneous measurements in Beijing, China (Zhou et al., 2019; Li et al., 2020), as shown in Table A2. 

Under the assumption of 𝜌𝑎 = 1600 kg m−1 (Levy Zamora et al., 2019), 𝑀𝑎𝑠𝑠𝑐,k in the CN campaign can be obtained from 

Eq. (19).  

Finally, we obtained the number concentration of total aerosol and the mass concentration of each chemical component from 

PCASP/ASAP and AMS measurements in each cloud case and calculated aerosol number and mass concentrations in 6 305 
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prescribed size sections following the above procedures (Step 4 in Fig. 2). We then used the aerosol information as input to 

drive the QDGE scheme.  

3.2.3 Vertical velocity for input 

The averaged updraft velocity (𝑤+) and sub-grid vertical velocity (𝑤𝑠𝑢𝑏) obtained from the observed vertical velocity (𝑤) 

samples in clouds were used to calculate 𝑤𝑐 (𝑤𝑐 = 𝑤+ + 𝑤𝑠𝑢𝑏) as input for running the QDGE scheme (Step 5 in Fig. 2). 310 

The updraft velocity is a key variable for parameterizing aerosol activation. Peng et al. (2005) pointed out that using a 

characteristic value of the vertical velocity distribution (0.8 times the standard deviation of the distribution) is a good 

approximation for simulating the nucleated cloud droplet number of marine stratus when running the parcel model. 

Meskhidze et al. (2005) also gave a method to calculate 𝑤+, which had the optimal closure for cumulus and stratocumulus 

clouds. Here, we derived a universal method for calculating 𝑤+ in stratus and stratocumulus based on the above two studies.  315 

According to Meskhidze et al. (2005), the averaged updraft velocity (𝑤+) can be calculated by probability density function 

(PDF) of 𝑤, 𝑝(𝑤):  

𝑤+ =
∫ 𝑤𝑝(𝑤)𝑑𝑤

∞
0

∫ 𝑝(𝑤)𝑑𝑤
∞

0

 .                                                                                                                                                                     (20) 

For the normal PDF with the mean velocity 𝑤0 and standard deviation σ, 𝑝(𝑤) can be represented as 

𝑝(𝑤) =
1

√2𝜋𝜎
exp (−

(𝑤−𝑤0)2

2𝜎2 ) = 𝛽ϕ(𝜔) ,                                                                                                                                (21) 320 

where 𝜔 = 𝛽𝑤 + 𝛾, 𝛽 = 1/σ, 𝛾 = −𝑤0/𝜎, and ϕ(𝜔) is the standard normal PDF.  

Take Eq. (21) into Eq. (20) and obtain 

𝑤+ =
ϕ(𝛾)

(1−Φ(𝛾))𝛽
−

𝛾

𝛽
=

ϕ(𝛾)

(1−Φ(𝛾))
𝜎 + 𝑤0 ,                                                                                                                                   (22) 

where Φ(𝛾) is the cumulative distribution function of the standard normal PDF that can be represented by error function 

(erf): 325 

Φ(𝛾) = ∫ ϕ(𝑡)𝑑𝑡 =
1

2
(1 + erf (

𝛾

√2
))

𝛾

−∞
.                                                                                                                                   (23) 

Especially, when 𝑤0 = 0,  

𝑤+ =
ϕ(0)

(1−Φ(0))
𝜎 = √

2

𝜋
𝜎 ≅ 0.8𝜎,                                                                                                                                              (24) 

which is consistent with the characteristic velocity pointed by Peng et al. (2005) used for assessing cloud droplet closure for 

stratocumulus clouds sampled in the CAN campaign. 330 

A sub-grid vertical velocity (𝑤𝑠𝑢𝑏) is needed for the QDGE scheme, and it can be derived from the square root of the 

Turbulent Kinetic Energy (𝑇𝐾𝐸) following Morrison and Pinto (2005): 

𝑤𝑠𝑢𝑏 = √
2

3
𝑇𝐾𝐸,                                                                                                                                                                        (25) 
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where the 𝑇𝐾𝐸 can be calculated according to its definition, which is half the sum of the variances (square of standard 

deviations) of the velocity components: 335 

𝑇𝐾𝐸 =
1

2
((𝑢′)2̅̅ ̅̅ ̅̅ ̅ + (𝑣′)2̅̅ ̅̅ ̅̅ ̅ + (𝑤′)2̅̅ ̅̅ ̅̅ ̅),                                                                                                                                           (26) 

In this study, we assume that no horizontal movement occurs in cloud during the horizontal flight tracks, that is, (𝑢′)2̅̅ ̅̅ ̅̅ ̅ =

(𝑣′)2̅̅ ̅̅ ̅̅ ̅ = 0 and (𝑤′)2̅̅ ̅̅ ̅̅ ̅ = 𝜎2. Therefore, the sub-grid vertical velocity can be represented by σ: 

𝑤𝑠𝑢𝑏 =
𝜎

√3
 .                                                                                                                                                                                (27) 

If the observed 𝑤 in each selected cloud case obeyed the normal distribution, we could calculate  𝑤𝑐  (𝑤𝑐 = 𝑤+ + 𝑤𝑠𝑢𝑏 ) 340 

following Eqs. (22) and (27) as input for running the QDGE scheme easily. We checked the normality of 𝑤 distribution by 

drawing a quantile-quantile (Q-Q) plot using the observed 𝑤 values along the horizontal flight track of the cloud case, taking 

CN01 as an example in Fig. 4. The linearity between the Q-Q plot of observed 𝑤 samples and a standard normal distribution 

indicates that 𝑤 data does indeed follow the normal distribution.  

 345 

Figure 4. A normal quantile-quantile plot for comparing the observed 𝑤 sampled by aircraft in cloud case CN01 with a 

standard normal distribution. The linearity of the data points (blue) suggests that the observed 𝑤  are normally distributed. 

In the four campaigns of this study, 4 cloud cases in CN, 2 cases in CAN, 5 cases in AMA, and 3 cases in CL have enough 

data samples to obtain the PDF of 𝑤 (Table 2), as plotted for checking the normality of 𝑤 distribution in Fig. A2. However, 

the 𝑤 PDF in two of the CAN cloud cases does not conform to the normal distribution very well (panel (5) and (6) of Fig. 350 

A2). So, we used the mean and standard deviation of 𝑤 distribution in Peng et al. (2005) to obtain 𝑤𝑐 in the CAN campaign. 

For the CN, AMA, and CL campaigns, we directly calculated the 𝑤𝑐 from available data samples for the cloud cases plotted 

in Fig. A2 and used their mean values for cloud cases lacking enough 𝑤 values in each campaign (Table A1). 
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3.2.4 Meteorological input 

Some meteorological variables (𝑇, 𝑃, 𝑅𝐻, and 𝐿𝑊𝐶) can be obtained from AIMMS measurements directly, though, others 355 

(𝑟𝑣 , 𝑟𝑡, and ℎ) need to be calculated according to available variables (Step 6 in Fig. 2). We obtained 𝑟𝑣  by the following 

equation: 

𝑟𝑣 =
0.622𝑒∗𝑅𝐻

𝑃−𝑒∗
 ,                                                                                                                                                                           (28) 

where 𝑒∗ can be estimated by referring to Murray (1967): 

𝑒∗ = 6.1078𝑒(
17.2694(𝑇−273.16)

𝑇−35.86
)
.                                                                                                                                                  (29) 360 

Then, 𝑟𝑡 and ℎ can be obtained by Eqs. (10) and (11) from 𝑟𝑣  and other available variables. All meteorological variables were 

extracted and interpolated to model levels, as described in Sect. 3.2.1. The profiles of measured meteorological variables 

served as the initial state to drive the QDGE scheme. 

3.2.5 Determination of Nsub 

As mentioned in Sect. 2, the QDGE scheme simulates vertical profiles of supersaturation to determine 𝑆𝑚𝑎𝑥, for a vertical 365 

grid with the size ∆𝑧𝑠 = ∆𝑧/𝑁𝑠𝑢𝑏, where ∆𝑧 is the grid size of the atmospheric host model. The accuracy of the simulated 

supersaturation profile generally increases with 𝑁𝑠𝑢𝑏, though, large values of 𝑁𝑠𝑢𝑏 imply higher computational burdens.  For 

applications of the QDGE scheme in atmospheric models, it is therefore important to determine an optimal value of 𝑁𝑠𝑢𝑏 that 

yields sufficiently accurate supersaturation profiles at acceptable costs. 

Figure 5a plots the vertical profiles of 𝑆 simulated by the QDGE scheme with different 𝑁𝑠𝑢𝑏 values for the cloud case CN01. 370 

The results show that each profile with 𝑁𝑠𝑢𝑏 ≥ 3 produces a well-defined maximum of 𝑆 (𝑆𝑚𝑎𝑥), which approaches to a 

stable value as 𝑁𝑠𝑢𝑏 is further increased. All cases seem to converge to a similar value as 𝑆𝑚𝑎𝑥 with 𝑁𝑠𝑢𝑏 = 150, as plotted 

in Fig. 5a. Figure 5b shows the variation of 𝑆𝑚𝑎𝑥 with the increasing 𝑁𝑠𝑢𝑏 for all cloud cases in the four campaigns. Overall, 

𝑆𝑚𝑎𝑥  fluctuates dramatically with 𝑁𝑠𝑢𝑏 < 10, but plateaus when 𝑁𝑠𝑢𝑏 is greater than 60 (10 for CAN). Results obtained for 

𝑁𝑠𝑢𝑏 = 150 and 𝑁𝑠𝑢𝑏 = 60 are similar. The mean relative error and correlation coefficient between 𝑆𝑚𝑎𝑥 with 𝑁𝑠𝑢𝑏 = 150  375 

and that with 𝑁𝑠𝑢𝑏 = 60 are 1.97% and 0.9997, respectively. Therefore, we used 𝑁𝑠𝑢𝑏 = 60 in this study (𝑁𝑠𝑢𝑏 = 10 for 

CAN). Further discussion regarding the selection of 𝑁𝑠𝑢𝑏 are provided in Sect. 5.  
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Figure 5. (a) Vertical profiles of the simulated supersaturation for different 𝑁𝑠𝑢𝑏 (1-150) in the QDGE scheme for the cloud 

case CN01. (b) Changes of the maximum supersaturation with different 𝑁𝑠𝑢𝑏 for all cloud cases in the four campaigns. 380 

3.3 Statistical parameters for evaluation and error analysis 

The QDGE scheme simulates the 𝐶𝐷𝑁𝐶 (𝐶𝐷𝑁𝐶𝑀) in each cloud case, based on 𝑆𝑚𝑎𝑥 . Considering that aerosol activation is 

particularly efficient in the vicinity of the cloud base in stratus and convective clouds, the QDGE scheme only calculates the 

𝐶𝐷𝑁𝐶 at the cloud base (Sect. 2). Here, we considered the effect of weak entrainment on the vertical profile of the cloud 

droplet number mixing ratio in order to be close to the real cloud base in the atmosphere (Sect. 3.2.1). Therefore, we 385 

evaluated the simulation effect of the QDGE scheme by comparing 𝐶𝐷𝑁𝐶𝑀 with the vertically average value of the observed 

𝐶𝐷𝑁𝐶 (𝐶𝐷𝑁𝐶𝑂) in the nearly adiabatic part of the cloud (between 𝐻𝑙𝑜𝑤 and 𝐻ℎ𝑖𝑔ℎ in Fig. A1) (Sect. 3.2.1). Correspondingly, 

the mean bias (𝑀𝐵) and mean relative error (𝑀𝑅𝐸) of each cloud case can be calculated, as follows: 

𝑀𝑅𝐸 = |𝑀𝐵| = |
𝐶𝐷𝑁𝐶𝑀−𝐶𝐷𝑁𝐶𝑂

𝐶𝐷𝑁𝐶𝑂
∙ 100%|,                                                                                                                                 (30) 

where 𝑀𝑅𝐸 of each cloud case will also be used for subsequent error analysis. 390 

To evaluate the overall accuracy of the QDGE scheme, we also calculated the mean values of 𝐶𝐷𝑁𝐶𝑂, 𝐶𝐷𝑁𝐶𝑀, 𝑀𝐵, 𝑀𝑅𝐸 

for cloud cases in each campaign, namely 𝐶𝐷𝑁𝐶𝑂
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝐶𝐷𝑁𝐶𝑀

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑀𝐵̅̅ ̅̅ ̅, and 𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅. Besides, the R square (𝑅2) between the 𝐶𝐷𝑁𝐶𝑂 

and 𝐶𝐷𝑁𝐶𝑀 in each campaign was also calculated. 

To quantify the contributions of different physical variables to errors in the simulated 𝐶𝐷𝑁𝐶 with the QDGE scheme, we 

calculated the Maximum Information Coefficient (MIC) (Reshef et al., 2011), which provides a measure for the strength of 395 

the relationship between each input variable and 𝑀𝑅𝐸. MIC can be a good measure to capture the association between the 

attributive variable and MRE for different types of relationships, such as linear, exponential and many complex functional 
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relationships (Reshef et al., 2011). There is no need to standardize the data before the MIC calculation and the calculations 

have low computational complexity and high robustness. However, it should be noted that the association here does not refer 

to a specific correlation, such as temporal or spatial correlation, or positive or negative correlation, but refers to the strength 400 

of a certain relationship between the variable and MRE. The MIC value is always between 0 and 1. The higher the MIC 

value, the stronger the association between the input variable and 𝑀𝑅𝐸 , that is, the input variable contributes more 

significantly to the 𝑀𝑅𝐸. Here, we calculated the MIC base on the minepy package in Python (Albanese et al., 2018), and 

set the parameters required in MIC as the default settings suggested by the code developers. Different parameters had an 

insignificant effect on the relative importance of variables and MRE. 405 

We calculated the MIC between  𝑀𝑅𝐸 and each one of the following input variables: the relative humidity (𝑅𝐻), the mean 

vertical velocity (𝑤+) and the sub-grid vertical velocity (𝑤𝑠𝑢𝑏) to represent environmental and dynamic conditions; the total 

aerosol number (𝑁𝑎) as a proxy of pollution level; the hygroscopicity of aerosol (𝐾𝑚) weighted by composition volume 

fraction, and the effective radius of aerosol PSD (𝑅𝑒,𝑎) to represent the chemical and size properties of the aerosol. Here, 𝐾𝑚, 

and 𝑅𝑒,𝑎 are defined as: 410 

𝐾𝑚 =
∑

𝑚𝑐
𝜌𝑐

𝜅𝑐
5
𝑐=1

∑
𝑚𝑐
𝜌𝑐

5
𝑐=1

 ,                                                                                                                                                                         (31) 

𝑅𝑒,𝑎 =
∑ 𝑅𝑝

3𝑁𝑎_𝑝
𝑛𝑝
𝑝=1

∑ 𝑅𝑝
2𝑁𝑎_𝑝

𝑛𝑝
𝑝=1

 ,                                                                                                                                                                    (32) 

where 𝜅𝑐, the hygroscopicity of component 𝑐, is accounted for variations with relative humidity in the QDGE scheme (Sect. 

2). 𝑅𝑝 represents the middle radius in the 𝑝𝑡ℎ particle size bin observed by PCASP or ASAP (see Sect. 3.2.2 and Table 2). 

For MIC calculation, the values of input variables derived from observations are listed in Table A1 for each cloud case.  415 

4 Results 

4.1 Closure experiment 

The results of the closure experiment are shown in Fig. 6. Almost all 𝐶𝐷𝑁𝐶𝑀  values  fall within 30 % of the mean 

observations in the clouds.  𝑅2 is above 0.94 for all campaigns, which indicates a good agreement between simulation and 

observation. For the four campaigns covering marine to continental conditions, the 𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅ values are all below 26 % and the 420 

𝑀𝐵̅̅ ̅̅ ̅ values are within ±20 %. The AMA campaign produces the best agreement between model results and observations, 

with a 𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅ value of 17.30 %. On the other hand, the CN campaign produces a poor agreement, with a 𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅ value of 

25.90 %. However, cloud droplet number concentrations are underestimated for all cloud cases for the CL campaign (𝑀𝐵̅̅ ̅̅ ̅ =

𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅ = −19.36 %), which may be related to the high activation ratio (𝐴𝑅, the ratio of 𝑁𝑎 to 𝐶𝐷𝑁𝐶𝑂, see Table A1) in this 

region. 𝐴𝑅 in all CL cases are higher than 60 %, suggesting that the marine environment is favorable for more aerosol 425 
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particles to be activated. If particles with a smaller size than the detection limit of PCASP (about 10 nm) are activated, it 

could lead to an underestimation of the simulated 𝐶𝐷𝑁𝐶 in the CL campaign. 

 

Figure 6. A closure experiment between 𝐶𝐷𝑁𝐶𝑂 and 𝐶𝐷𝑁𝐶𝑀 for each cloud case in the (a) CN, (b) CAN, (c) CL, and (d) 

AMA campaigns. The horizontal dash lines represent the range of the observed 𝐶𝐷𝑁𝐶 within the 25% and 75% quantiles. 430 

In order to provide further context, we compare the 𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅ values of this study to previous studies with different aerosol 

activation parameterizations and aircraft measurements, as shown in Table 3. The 𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅ values are relatively high for those 

early parameterizations, basically around 50 %. In the recent two decades, the performance of physically-based 

parameterization has been significantly improved, as is evident from a reduction of the 𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅ to about 30 %. For instance, 

one of the schemes (Fountoukis and Nenes, 2005) achieved remarkable closure (with 𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅  of 13.5 %) for continental 435 
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cumuliform/stratus. In this study, the QDGE scheme performs decently (the 𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅  values are all below 26 %) in four 

different regions, indicating that the scheme is suitable for simulations of cloud droplet number concentrations over a wide 

range of different meteorological conditions and different levels of aerosol pollution. 

Table 3. Comparison of results from simulations with activation schemes and the QDGE method (Mainly referring to 

Fountoukis et al. (2007)) 440 

Parameterization or Model 𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅ (%) Observed cloud type Location Reference 

Flossmann et al. (1985) ~50.00 
Continental 

stratocumulus 
North of England (Hallberg et al., 1997) 

UWyo parcel modela <50.00 Marine stratocumulus Tenerife, Spain 

(Snider et al., 2003; 

Snider and Brenguier, 

2000) 

Fountoukis and Nenes (2005); 

Nenes and Seinfeld (2003) 
~30.00 Coastal stratus 

Monterey, California, 

USA 
(Meskhidze et al., 2005) 

Fountoukis and Nenes (2005) 13.50 
Continental 

cumuliform /stratus 

Cleveland and 

Detroit, USA 
(Fountoukis et al., 2007) 

Kivekäs et al. (2008) ~35.00 Continental stratus North of Finland (Kivekäs et al., 2008) 

QDGE scheme 

17.30 Continental stratus Manaus, Brazil 

This work 
19.36 Marine stratocumulus Iquique, Chile 

22.78 Costal stratus Nova Scotia, Canada 

25.90 Continental stratus Beijing, China 

a. UWyo parcel model, available at http://www.das.uwyo.edu/ccp/ web 

4.2 Error analysis 

Although the performance of the QDGE scheme is good in different aircraft campaigns, it is useful to analyze sources of 

biases in the simulations. Following the procedures described in Sect. 3.3, we calculated the Maximum Information 

Coefficient (MIC) between MRE and the input variables of the QDGE scheme, including aerosol properties (𝐾𝑚, and 𝑅𝑒,𝑎), 445 

thermodynamic state (𝑅𝐻), pollution level (𝑁𝑎), and atmosphere dynamic conditions (𝑤+ and 𝑤𝑠𝑢𝑏), as shown in Table A1. 

The MIC values for all cloud cases and each campaign have been shown in Table 4.  

For almost all campaigns, the aerosol number concentration and the hygroscopicity, have the most significant impacts on 

𝑀𝑅𝐸. This is consistent with the droplet growth equation, according to which the variation of supersaturation 𝑆 with height 

is essentially determined by the competition between the production of 𝑆 by adiabatic cooling and the reduction in 𝑆 from 450 

condensational growth of the particles, the latter mainly depends on the number and solubility of the aerosol particles. In 

detail, 𝑁𝑎 has a greater impact on 𝑀𝑅𝐸 in marine regions (CAN and CL), but 𝐾𝑚 is more significant in continental regions 

(CN and AMA). In marine regions, where 𝑁𝑎 is relatively low (Table 2), a small fluctuation in 𝑁𝑎 can cause noticeable 

changes in the simulated 𝑆𝑚𝑎𝑥 and CDNC, which makes 𝑀𝑅𝐸 more sensitive to 𝑁𝑎. However, in continental areas, 𝑁𝑎 is 

relatively high, and the change in hygroscopicity becomes more important to 𝑀𝑅𝐸. The atmospheric humidity and the dry 455 

size of the aerosol particle also have non-negligible impacts on 𝑀𝑅𝐸. Both affect the hygroscopic growth of aerosol particles 
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and the reduction in 𝑆. Overall, the atmosphere dynamic conditions have the most insignificant impact on 𝑀𝑅𝐸, which may 

be attributed to the weak variation of them in stratus and stratocumulus clouds (Table A1). 

The MIC values also help to explain the relatively poor simulation performance of some campaigns. The chemical properties 

of the aerosol, which affect 𝐾𝑚, are very important for the simulation in the continental region, but the CN campaign lacks 460 

AMS data and we applied the same chemical composition for all cloud cases, based on earlier measurements in this region 

(Sect. 3.2.2). Given the importance of the chemical properties, simultaneous measurements of chemical components 

probably would have helped to enhance the accuracy of simulated 𝐶𝐷𝑁𝐶 for the CN campaign. Another possible cause of 

biases in simulated 𝐶𝐷𝑁𝐶 for the CN campaign is a much larger standard deviation of observed 𝑁𝑎 (see Table 2) than that of 

other campaigns, which could be responsible for the error in the simulated 𝐶𝐷𝑁𝐶. However, it should be noted that although 465 

the CAN campaign is characterized by the presence of coastal clouds and smaller variations in 𝑁𝑎, its 𝑀𝑅𝐸 is higher than the 

AMA campaign, which may be related to the application of uniform updraft velocity in simulations for the CAN campaign 

(Sect. 3.2.3 and Table A1).  

Overall speaking, the errors in the simulated CDNC is largely relevant to the missing data in observation (such as CN and 

CAM campaign), the analysis of MIC and error sources here could provide a good reason to develop and improve 470 

measurement strategies in the future aircraft campaigns.  

Table 4. The calculated MIC values between 𝑀𝑅𝐸 and different input variables for all cloud cases and each campaign. 

CN CAN CL AMA ALL 

𝐾𝑚 0.522  𝑁𝑎 0.610  RH 0.522  𝐾𝑚 0.522  𝑁𝑎 0.343  

RH 0.522  𝐾𝑚 0.396  𝑁𝑎 0.470  𝑁𝑎 0.522  𝐾𝑚 0.315  

𝑁𝑎 0.470  𝑅𝑒,𝑎 0.396  𝐾𝑚 0.292  𝑤+ 0.470  RH 0.242  

𝑤+ 0.470  RH 0.396  𝑅𝑒,𝑎 0.198  𝑤𝑠𝑢𝑏  0.470  𝑅𝑒,𝑎 0.202  

𝑤𝑠𝑢𝑏  0.470  𝑤+ 0.000  𝑤+ 0.198  RH 0.292  𝑤+ 0.170  

𝑅𝑒,𝑎 0.292  𝑤𝑠𝑢𝑏  0.000  𝑤𝑠𝑢𝑏  0.198  𝑅𝑒,𝑎 0.198  𝑤𝑠𝑢𝑏  0.170  

5 Conclusions and discussion 

In this paper, we introduce a numerically efficient aerosol activation scheme, which calculates the maximum cloud 

supersaturation and cloud droplet number concentration (𝐶𝐷𝑁𝐶) by employing a Quasi-steady state approximation of the 475 

cloud Droplet Growth Equation (QDGE) scheme. The QDGE scheme utilizes look-up tables and an iterative method for 

solving mass and energy budgets for efficient applications of the scheme in climate models. We evaluated the simulated 

𝐶𝐷𝑁𝐶 with worldwide cloud data sampled during four aircraft campaigns, covering a wide range of different meteorological 

conditions and different levels of aerosol pollution. The aerosol information, updraft velocity, and meteorological conditions 

were carefully extracted from aircraft measurements and applied to drive the QDGE scheme. The simulated CDNC is 480 

compared with the observed correspondence in the nearly adiabatic part of the cloud, for evaluating the performance of the 

scheme. The average values of the mean relative error and the mean bias in the four campaigns are all within 26% and ±20%, 
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respectively, indicating that the QDGE scheme can reasonably simulate the activated 𝐶𝐷𝑁𝐶 on a regional or global scale. 

We also investigated the potential sources of error in the simulated 𝐶𝐷𝑁𝐶 and found that the magnitude of the mean relative 

error is mostly relevant to the aerosol number concentration in marine regions and to aerosol hygroscopicity in continental 485 

regions than to other variables in the simulation. 

Several points are worthy of mentioning for future work. The QDGE scheme can be further optimized in several aspects. 

First, 𝑁𝑠𝑢𝑏 = 60 generates reasonably good results in four different regions in this study, but this number is a little high and 

the computation will be too demanding to apply in general circulation models. Second, the iterative calculation to derive 

supersaturation in each sub-grid level can be computationally expensive. Therefore, both adjustments on 𝑁𝑠𝑢𝑏 number and 490 

optimization on the iteration would be necessary before the QDGE scheme is applied in the climate model. Last, we also 

want to evaluate the QDGE scheme by comparing it with parcel model simulations, to further identify the sources of error 

related to the approximations in the scheme. These works would be considered in future studies. 

Appendix A 

Table A1. A summary of observed (𝐶𝐷𝑁𝐶𝑂, 𝑁𝑎, 𝑅𝐻, and 𝐿𝑊𝐶), derived (𝐴𝑅, 𝑆𝑜𝑙, 𝐶𝑤, 𝐾𝑚, 𝑅𝑒,𝑎, 𝑤+, and 𝑤𝑠𝑢𝑏), simulated 495 

and evaluative (𝐶𝐷𝑁𝐶𝑀, 𝑀𝐵, and 𝑀𝑅𝐸) variables of each cloud case in four campaigns. 

Case 

Observed variables Derived variables 
Simulated and evaluative 

variables 

𝐶𝐷𝑁𝐶𝑂 

(cm−3) 

𝑁𝑎 

(cm−3) 

𝑅𝐻 
(%) 

𝐿𝑊𝐶 

(g cm−3) 

𝐴𝑅 

(%) 
𝑆𝑜𝑙 
(%) 

𝐶𝑤 × 10−3 

(g cm−4) 
𝐾𝑚 

𝑅𝑒,𝑎 

(μm) 

𝑤+ 

(m s−1) 

𝑤𝑠𝑢𝑏  

(m s−1) 
𝐶𝐷𝑁𝐶𝑀 

(cm−3) 

𝑀𝐵 
(%) 

𝑀𝑅𝐸 
(%) 

CN01 863.25 3016.27 67.92 0.20 28.62  65.00 0.69  0.37 0.23 0.469 0.340 767.86 -11.05 11.05 

CN02 148.17 372.77 61.89 0.06 39.75  65.00 0.71  0.39 0.41 0.609 0.441 212.3 43.28 43.28 

CN03 424.41 432.05 61.89 0.08 98.23  65.00 1.04  0.39 0.15 0.609 0.441 195.84 -53.86 53.86 

CN04 157.49 1738.09 57.71 0.12 9.06  65.00 0.81  0.4 0.98 0.609 0.441 121.33 -22.96 22.96 

CN05 1044.72 1550.93 88.12 0.43 67.36  65.00 1.99  0.33 0.18 0.714 0.516 777.82 -25.55 25.55 

CN06 392.89 850.10 72.42 0.22 46.22  65.00 1.93  0.35 0.56 0.444 0.314 453.34 15.39 15.39 

CN07 596.01 1486.6 66.79 0.11 40.09  65.00 2.36  0.37 0.22 0.609 0.441 651.10 9.24 9.24 

CAN01 102.28 108.26 95.27 0.12 94.48  62.50 1.03  0.54 0.84 0.299 0.215 81.26 -20.55 20.55 

CAN02 312.43 461.86 82.95 0.23 67.65  73.95 1.37  0.76 0.17 0.299 0.215 388.57 24.37 24.37 

CAN03 72.69 110.60 97.07 0.28 65.72  79.40 2.40  0.68 0.3 0.299 0.215 73.31 0.85 0.85 

CAN04 263.02 547.91 86.3 0.22 48.00  73.95 1.50  0.71 0.67 0.299 0.215 338.82 28.82 28.82 

CAN05 72.12 176.43 84.6 0.11 40.88  62.50 1.15  0.65 0.28 0.299 0.215 117.77 63.30 63.30 

CAN06 201.15 441.24 90.82 0.19 45.59  73.95 1.67  0.66 0.85 0.299 0.215 293.30 45.81 45.81 

CAN07 283.26 673.60 84.23 0.18 42.05  73.95 1.67  0.74 0.18 0.299 0.215 299.97 5.90 5.90 

CAN08 236.61 561.35 79.83 0.25 42.15  73.95 1.82  0.79 0.22 0.299 0.215 221.63 -6.33 6.33 

CAN09 255.29 1064.55 79.83 0.26 23.98  73.95 1.51  0.79 0.31 0.299 0.215 223.57 -12.43 12.43 

CAN10 419.06 609.57 81.25 0.21 68.75  73.95 0.62  0.78 0.12 0.299 0.215 337.48 -19.47 19.47 

CL01 364.78 493.78 54.36 0.15 73.88  72.25 2.54  0.6 0.13 0.618 0.447 332.53 -8.84 8.84 

CL02 260.91 339.76 64.86 0.13 76.79  84.79 2.70  0.59 0.13 0.537 0.389 200.93 -22.99 22.99 

CL03 199.93 309.33 41.98 0.18 64.63  80.27 1.86  0.74 0.14 0.618 0.447 192.45 -3.74 3.74 

CL04 227.94 272.76 40.43 0.09 83.57  70.36 1.53  0.96 0.13 0.618 0.447 179.44 -21.28 21.28 
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CL05 179.08 187.54 57.02 0.19 95.49  79.45 2.06  0.63 0.12 0.618 0.447 119.84 -33.08 33.08 

CL06 112.37 141.17 67.65 0.31 79.60  83.83 2.19  0.58 0.33 0.429 0.310 89.67 -20.20 20.20 

CL07 166.17 226.35 58.74 0.22 73.41  91.20 1.21  0.72 0.20 1.189 0.694 123.98 -25.39 25.39 

AMA01 179.50 307.47 90.5 0.09 58.38  17.94 1.07  0.07 0.86 0.761 0.55 223.88 24.72 24.72 

AMA02 137.19 296.02 84.32 0.10 46.34  27.56 1.01  0.12 0.68 1.074 0.777 158.08 15.23 15.23 

AMA03 321.21 548.11 78.67 0.30 58.60  26.58 1.03  0.12 0.77 1.203 0.870 344.32 7.19 7.19 

AMA04 199.21 368.46 78.25 0.32 54.07  26.58 1.06  0.11 0.76 1.628 1.178 142.86 -28.29 28.29 

AMA05 320.88 445.44 77.21 0.30 72.04  18.91 0.99  0.07 0.72 0.959 0.595 281.98 -12.12 12.12 

AMA06 380.27 1535.06 59.22 0.13 24.77  16.86 1.46  0.12 0.20 1.074 0.777 374.47 -1.53 1.53 

AMA07 498.91 2419.76 68.04 0.32 20.62  29.36 1.03  0.11 0.35 1.245 0.901 658.73 32.03 32.03 

 

Table A2. The observed mass fractions of different aerosol compositions in Beijing, China in two previous studies, as well as 

the assumed fractions used in this work. 

Date 
Particle 

size range 
Sampler 

𝑜𝑟𝑔 

fraction 
𝑆𝑂4

2− 

fraction 

𝑁𝑂3
− 

fraction 

𝑁𝐻4
+ 

fraction 

𝐶𝑙− 

fraction 
Reference 

Summer, 

2017/2018 
PM1  ACSMa 37% 26% 22% 14% 1% 

Zhou, et al., 

2019 

Summer, 2018 PM2.5 ACSM 34% 31% 22% 13% ~1% Li, et al., 2020 

Summer, 2018 0.01~3um PCASP 35% 29% 22% 13% 1% This work 

a. ACSM: Aerosol Chemical Speciation Monitor. 500 
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 Figure A1. The profiles of observed 𝐿𝑊𝐶 and adiabatic 𝐿𝑊𝐶 for 31 liquid water cases. 
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Figure A2. The normal quantile-quantile plot for comparing the observed 𝑤 sampled by aircraft with a standard normal 

distribution, for each cloud case with sufficient data. The linearity of the data points (blue dots) suggests that the observed 𝑤  

are normally distributed under a 90 % confidence level. 505 
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