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Abstract. This research introduces a numerically efficient aerosol activation scheme and evaluates it by using stratus and 

stratocumulus cloud data sampled during multiple aircraft campaigns in Canada, Chile, Brazil, and China. The scheme 

employs a Quasi-steady state approximation of the cloud Droplet Growth Equation (QDGE) to efficiently simulate aerosol 15 

activation, the vertical profile of supersaturation, and the activated cloud droplet number concentration (𝐶𝐷𝑁𝐶) near the 

cloud base. The calculated maximum supersaturation values usingof the QDGE scheme were compared with multiple parcel 

model simulations under various aerosol and environmental conditions. The differences are all below 0.18 %, indicating 

good performance and accuracy of the QDGE scheme. We evaluated the QDGE scheme by specifying observed 

environmental thermodynamic variables and aerosol information from 31 cloud cases as input and comparing the simulated 20 

𝐶𝐷𝑁𝐶 with cloud observations. The average of mean relative error (𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅) of the simulated 𝐶𝐷𝑁𝐶 for cloud cases in each 

campaign ranges from 17.30 % in Brazil to 25.90 % in China, indicating that the QDGE scheme successfully reproduces 

observed variations in 𝐶𝐷𝑁𝐶 over a wide range of different meteorological conditions and aerosol regimes. Additionally, we 

carried out an error analysis by calculating the Maximum Information Coefficient (MIC) between the mean relative error 

(𝑀𝑅𝐸) and input variables for the individual campaigns and all cloud cases. MIC values are were then sorted by aerosol 25 

properties, pollution level, environmental humidity, and dynamic condition according to their relative importance to 𝑀𝑅𝐸. 

Based on the error analysis, we found that the magnitude of 𝑀𝑅𝐸 is more relevant to the specification of input aerosol 

pollution level in marine regions and aerosol hygroscopicity in continental regions than to other variables in the simulation. 
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1 Introduction 

Aerosols play an important role in determining affecting the radiation balance of the earth-atmosphere system by scattering 30 

and absorbing shortwave radiation and altering the cloud reflectivity and lifetime (Twomey, 1974, 1977; Ghan, 2013; Forster 

et al., 2016; Ramaswamy et al., 2019; Wang et al., 2020). Currently, Aaerosol-cloud interactions are remain as one of the 

largest sources of climate modeling uncertainty ((IPCC AR6, Forster et al., 2021)Intergovernmental Panel on Climate 

Change, 2013).  

Aerosol-cloud interactions are largely driven by the activation of aerosols to form cloud droplets. The addition of activated 35 

aerosol to existing clouds can directly change the concentration and size of cloud droplets and thereby affect the 

microphysical properties and radiative forcing of the clouds. Aerosol activation is controlled by rapid and nonlinear aerosol 

and cloud microphysical processes (Meskhidze et al., 2005), which have not been explicitly resolved in climate models yet 

(Fountoukis et al., 2007; Kang et al., 2015). Nenes et al. (2001) pointed out that the cloud droplet activation process is 

subject to kinetic limitations, including inertial, evaporation, and deactivation mechanisms, which further adds to the 40 

complexity of the aerosol activation.  

Early parameterizations of aerosol activation in climate models were based on observations and derived through parameter 

fitting, using the aerosol number or mass concentration or other Cloud Condensation Nuclei (CCN) proxies (e.g., sulfate 

mass) to empirically determine the activated 𝐶𝐷𝑁𝐶 (Jones et al., 1994; Boucher and Lohmann, 1995; Jones and Slingo, 1996; 

Lohmann, 1997; Kiehl et al., 2000; Menon et al., 2002). Although these parameterizations have the advantages of 45 

convenience and low computational burden (Fountoukis et al., 2007), substantial uncertainties are resulting from limited 

spatiotemporal representativeness and unresolved variations in aerosol properties (Meskhidze et al., 2005). In the recent two 

decades, physically-based parameterization schemes of aerosol activation have emerged (Abdul-Razzak and Ghan, 2000; 

Cohard et al., 2000; Fountoukis and Nenes, 2005; Ming et al., 2006; Kivekäs et al., 2008; Khvorostyanov and Curry, 2009; 

Shipway and Abel, 2010; Zhang et al., 2015). These schemes are based on the Köhler theory and are used in climate models 50 

to parameterize aerosol activation near the cloud base. As Köhler theory fundamentally describes the process by which water 

vapor condenses and forms liquid cloud droplets, it can be applied to a wide range of atmospheric conditions and aerosol 

pollution levels. However, considerable approximations of the Köhler theory are employed for application in climate models, 

which leads to potential biases in comparison with results from more rigorous and accurate simulations of cloud droplet 

growth with adiabatic parcel models (e.g. (Ghan et al., (2011) Ghan et al. (2011)). The ongoing increase in computing power 55 

(Herrington and Reed, 2020) reduces the need for cost-saving approximations in climate models. In the following, we will 

introduce a Quasi-steady state approximation of the cloud Droplet Growth Equation (QDGE) that provides an efficient 

alternative to parameterizations of activated 𝐶𝐷𝑁𝐶 in climate models. 

Parameterization schemes of aerosol activation havewere often been evaluated usingwith adiabatic parcel model simulations. 

These models explicitly solve aerosol activation and droplet growth processes by mimicking vertical uplifting of an air 60 

parcel containing a specified number of aerosol particles, predicting changes in temperature, humidity/supersaturation, 
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activation of aerosols, and droplet growth from the cloud base upward. When utilizing identically specified aerosols, the 

results of a parcel model can be used as a benchmark to evaluate parameterizations. This approach has been used extensively 

used to evaluate activation schemes (Table 1). AlternativelyHowever, a less commonly used approach is to evaluate 

parameterizations by conducting a “closure experiment”, that is, to carry out a parameterized calculation by specifying 65 

observed aerosol concentrations and environmental thermodynamic conditions, and then compare the calculated and 

observed 𝐶𝐷𝑁𝐶 (e.g. Snider and Brenguier, 2000; Guibert et al., 2003; Fountoukis and Nenes, 2005; Kivekäs et al., 2008). 

Though some parameterizations have been evaluated based on comparisons of simulated and observed 𝐶𝐷𝑁𝐶 from aircraft 

campaigns, mostly regional data sets have beenwere used for very specific meteorological conditions and pollution levels. It 

is essential to select a wide range of cloud data for different atmospheric conditions and pollution levels to arrive at 70 

meaningful conclusions for global climate model simulations.  

In this study, we introduce the QDGE scheme and evaluate it by using cloud data from multiple aircraft campaigns in four 

different regions over the world, covering marine and continental conditions. This paper is organized as follows. The next 

section describes the QDGE scheme and Sect. 3 summarizes the data and method used for the closure experiment and the 

evaluation. Section 4 illustrates the results of the closure experiment and analyzes the sources of simulation errors, followed 75 

by conclusions and discussion in Sect. 5. 

Table 1. A summary of activation parameterizations and the evaluation methods in previous studies. 

Parameterization Evaluation methods 

Abdul-Razzak et al. (1998) Parcel model 

Cohard et al. (2000) Parcel model 

Snider et al. (2003) Aircraft measurements 

Fountoukis and Nenes (2005) Parcel model; Aircraft measurements 

Ming et al. (2006) Parcel model 

Kivekäs et al. (2008) Other parameterizations; Aircraft measurements 

Khvorostyanov and Curry (2009) Twomey power law (Pruppacher et al., 1998) 

Shipway and Abel (2010) Parcel model 

2 QDGE scheme 

2.1 Scheme description 

Aerosol particles that are suspended in an air parcel of air activate and grow into cloud droplets by condensation of water 80 

vapor if supersaturation with respect to water exceeds a critical value. In stratus and convective clouds, aerosol activation is 

particularly efficient in the vicinity of the cloud base, where supersaturation typically reaches its local maximum. Although 

observations provide evidence that aerosol activation is not limited to the region near the cloud base, this is omitted in the 

aerosol activation scheme described here, similar to most parcel models and parameterizations. 
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In order to determine the portion of the aerosols that activates and forms cloud droplets, a numerically efficient solution of 85 

the condensational droplet growth equation (e.g. Seinfeld and Pandis, 2016) is employed to simulate the growth of an 

ensemble of aerosol particles near the cloud base. The water vapor saturation ratio and number of activated cloud droplets 

above the cloud base are is simulated by solving a series of equations that describeassuming a vertically ascending air parcel 

containing aerosols from below the cloud base, which ascends vertically to produce supersaturated conditions above the 

cloud base. The vertical velocity of the air parcel of air, 𝑤𝑐(in m 𝑠−1), is either specified or parameterized, as described in 90 

Sect. 3.2.3. 

The change in wet aerosol particle radius, 𝑅𝑝𝑤  (in m), by condensation of water vapor as a function of the environmental 

supersaturation water vapor saturation ratio (𝑆, e.g. Emanuel, 1994) in the scheme is given by 

𝑅𝑝𝑤
𝑑𝑅𝑝𝑤

𝑑𝑡
=

𝑆−𝑆𝑝

𝐶
 ,                      (1) 

where 𝑆𝑝 is the equilibrium supersaturationwater vapor saturation ratio directly over the surface of the particle, which is 95 

obtained from 𝜅-Köhler theory (Petters and Kreidenweis, 2007): 

𝑆𝑝 − 1 =
𝐴

𝑅𝑝𝑤
−

𝐵

𝑅𝑝𝑤
3  ,.,                                  

           (2)  

where the parameters 𝐴, 𝐵, and 𝐶 account for thermodynamic conditions in the cloud and physiochemical properties of the 

aerosol particles and droplets (Appendix A).  100 

As described below, the QDGE scheme solves Eqs. (1) and (2) in combination with energy and moisture budgets to calculate 

changes in 𝑆  S driven by thermodynamic processes. For instance, the thermodynamic equations underlying the QDGE 

scheme can be used to obtain the temporal evolution of S in the air during adiabatic ascend near cloud base (Ghan et al., 

2011),: 

𝑑𝑆

𝑑𝑡
= 𝐷𝑤𝑐 − 𝐸

𝑑𝑞𝑤

𝑑𝑡
 ,                      (3)                                                                                                                                                                     105 

where tThe parameters 𝐷 and 𝐸 are weak functions of temperature and pressure, and 𝑞𝑤 is the liquid water mixing ratio, 

which is related to the activated particle  size distribution (Appendix A). 

Theoretically, each growing aerosol particle will compete with others for the water vapor in the environment, and the particle 

size increases according to Eq. (1) and affects the environmental supersaturation through Eq. (3). Eqs. (1-3) are complexly 

coupled in a complex manner thus hardly have an analytical solution. 110 

𝐴 = ,                                    (3) 

𝐵 = 𝜅 ,                       (4) 

and 

𝐶 = + ,                    (5) 

where 𝜅 is the aerosol hygroscopicity, 𝜎  the surface tension of the solution/air interface (which is approximated by the 115 

surface tension of water here),  the density of water,  the molecular weight of water, 𝑅 the universal gas constant, 𝑇 the 
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temperature,  the dry aerosol particle radius,  the saturation vapor pressure,  the latent heat of vaporization,  the modified 

thermal conductivity of air accounting for non-continuum effects,  the modified diffusivity of water vapor in air accounting 

for non-continuum effects (Seinfeld and Pandis, 2016). Petters and Kreidenweis (2007) and Kreidenweis et al. (2008) 

provided tabulated values of the hygroscopicity parameter 𝜅 for a variety of chemical compounds, based on laboratory data 120 

and modeling. They found that parameterized water contents are often within experimental uncertainty. However, the 

accuracy of this approach tends to decrease with decreasing aerosol water content. In particular, simulations of highly 

concentrated, non-ideal aqueous solutions with strong electrostatic interactions between ions with the Aerosol Inorganic 

Model (AIM; Wexler and Clegg (2002); http://www.aim.env.uea.ac.uk/aim/aim.html) give evidence for systematically 

different results at low aerosol water contents for some compounds  (Kreidenweis et al., 2008). In order to improve biases at 125 

low relative humidity, the original method was extended to account for variations in 𝜅 with relative humidity in the QDGE 

scheme. Specifically, piecewise-linear relationships between 𝜅 and aerosol water activity for different chemical components 

were determined based on results from AIM. 

Direct However, the numerical solution iss of Eq. (1) are applicable but computationally expensive., For example, Eq. (3) 

indicates that the balance between the enhancement ofd 𝑆 S due to the air parcel uplifting, and given that the reducedtion of 130 

𝑆 S due to the condensation growth of activated particles,rate of water vapor depends on the aerosol size distribution and 

chemical composition, which  leads to athe highly non-linear behavior variation of 𝑆S with time in the ascending parcel of 

cloud air/heightthe supersaturation water vapor saturation ratio vertical profile. The condensation growth is also non- linearly 

related to the environmental conditions and aerosol properties (Eqs. 1- and 2). Thereforeypically, a time steps much shorter 

than 1 second is typicallyare required to numerically solve these equations, which implies computational expenses that 135 

would prohibit applications in climate models (Khain et al., 2015). For instance, adiabatic ascending parcel models (e.g. 

Chen et al., 2016; Peng et al., 2005) to numerically solve Eqs. (1-3) require  a very high time resolution, typically with a time 

step of 10−3 to 10−4 seconds. The parcel model results are regarded as the most accurate numerical solution and can be used 

as the benchmark to verify the parameterization of activation and condensation processes .  

In large-scale stratus clouds, the maximum supersaturation (usually less than 0.2 %) occurs about 100 m above the cloud 140 

base, that is, the rate of 𝑆  change is 0.002 % m−1  or so. A similar conclusion can be derived from the change of 

supersaturation and temperature (combined with a lapse rate of atmospheric temperature; (Pandis et al. (, 1990)). Therefore, 

it is reasonable to assume a scale of several seconds (or meters) at which the supersaturation is approximately constant in the 

air parcel. ConsequentlyHoweverIn this study, we introduce a parameterization for climate model to achieve numerical 

efficiency can be achieved by using use a Quasi-steady state approximated approximation to solve the Droplet Growth 145 

Equation (QDGE), which assumes can be derived by using that the local approximation 𝑆 ≈ constis approximately a 

constant.  in Eq. (1), which can then be conveniently expressed as follows, 

𝑑𝑥

𝑑𝑢
= 𝛿 − 𝑎 (

𝑏

𝑥1/2 −
1

𝑥3/2) ,                     

(46) 
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for the time period from 𝑡 to 𝑡 + ∆𝑡𝑠  (∆𝑡𝑠  is a sub-timestep, roughly several tens of seconds in a climate model), with 150 

variable substitutions for particle size, 𝑥 = 𝑅𝑝𝑤
2 /2, and for time, 𝑢 =  𝑡|𝑆 −  1|/𝐶, and parameters that are given by: 

𝛿 = {
  −1   ,        if 𝑆 < 01 ,
     1    ,        if 𝑆 ≥ 01 ,

 ,                    

(57) 

𝑎 =
𝐵

23/2|𝑆−1|
 ,                                    

(68) 155 

𝑏 =
2𝐴

𝐵
 .                       

(79) 

In the QDGE aerosol activation scheme, numerical efficiency is achieved by using pre-calculated solutions 𝑥(𝑢) of Eq. (46), 

are used, which are are providedsd the wet particle size 𝑅𝑝𝑤 dependent on different values of 𝑎, 𝑏 and 𝛿 in the form of look-

up tables (LUTs) for different values of 𝑎, 𝑏, and 𝛿 in the model to calculate 𝑅𝑝𝑤., for different values of 𝑎 and 𝑏. The 𝑆-160 

dependent parameters 𝑎 and 𝛿, and 𝑢, are determined through an iterative procedure, for each time step and vertical level 

near cloud base, as described in the following. 

The processmajor steps of the QDGE scheme to calculate the aerosol activation isare shown in Fig. 1. A vertical grid with 

𝑁𝑠𝑢𝑏 sub-levels and (grid spacing ∆𝑧𝑠 = ∆𝑧/𝑁𝑠𝑢𝑏) is employed in the QDGE scheme, where ∆𝑧 is the grid spacing in the 

atmospheric host model, near cloud base (Fig. 1a-b). Calculations are only performed for the first host model grid layer 165 

above the cloud base, with typical values ∆𝑧𝑠 ≈ 1 − 10 m., The local approximation with constant 𝑆 applies in each sub-

level ∆𝑧𝑠, and a vertical profile of 𝑆 is eventually obtained within the host model gird  ∆𝑧 (Fig. 1c). The iterative calculation 

to obtain 𝑆 at each sub-level is  described below. to ensure that the supersaturation maximum (𝑆𝑚𝑎𝑥 ) is captured and 

sufficiently well resolved in model applications of the aerosol activation scheme. 

 170 

Figure 1. A schematic diagram to show the major steps of the QDGE scheme. 
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The growth calculations are performed for a sub-ensemble of aerosol particles which are selected from the full dry aerosol 

size distribution at regular size intervals, ∆𝜒 = 1/𝑝∆𝜑, where 𝑝 is on the order of 5 - 20 and ∆𝜑 is the simulated particle size 

range of Aitken and accumulation mode aerosols, expressed in terms of a dimensionless particle size parameter 𝜑 =

ln (𝑅𝑝/𝑅0), with 𝑅0 = 10−6 m. In this study, we set 𝑝 to 6 for the closure experiment, meaning that 6 discrete aerosol 175 

particle sizes are used. Sizes of other particles in the continuous aerosol size distribution are obtained from linear 

interpolation between the sizes of the particles in the discrete 6-member sub-ensemble. 

In each sub-level ∆𝑧𝑠 , Thesupersaturation 𝑆  in each sub − grid  (i.e. 𝑆𝑖  in Fig. 1b, where 𝑖 = 1, … , 𝑁𝑠𝑢𝑏 ) and the 𝑆 -

dependent parameters in Eq. (46) are obtained through an iterative calculation, which explicitly requires the conservation of 

mass and energy., The flow chart of the iterative calculation is as shown inasin Fig. 2.  180 

rt and h in ith sub-grid 

(Eqs. 10 and 11)

Initial Sest

Δts =Δzs / wc Calculate Rpw at z +Δzs  (Eq. 4)

Integrate PMSD to get qw

Calculate rv and T (Eqs. 8 and 9)

Calculate Scal (Eq. 12)

I = Imax

No

Si = Scal 

Yes

Update Sest using Scal and 

a bisectional method

I = 1

I = I +1

 
Figure 2. The schematicflow chart of the iterative ly solvingcalcul;ation for the sub-grid supersaturation 𝑺𝒊., where 𝑰 is the number 

of iterations. PMSD is the particle mass-size distribution. Total water mass mixing ratio, 𝒓𝒕, and liquid water static energy, 𝒉, are 

conserved. 

SpecificallyAt the beginning of an iteration, an initial value of supersaturation (𝑆𝑒𝑠𝑡𝑆  ) is first specified (“best guess” 185 

estimate) and Eq. (46) is integrated over the sub-time step ∆𝑡𝑠 = ∆𝑧𝑠/𝑤𝑐 to obtain a first estimate of the particle wet sizes 

𝑅𝑝𝑤  at the sub-level  𝑧 + ∆𝑧𝑠. Next, an integration over the particle mass- size distribution (PMSD) yields a first estimate of 

the liquid water mixing ratio , 𝐿𝑊𝐶𝑞𝑤, at 𝑧 + ∆𝑧𝑠 (Fig. 2)., subject to the initially specified 𝑆𝑖𝑛𝑖value of the water vapor 

saturation ratio. Secondly, t 

The subsequent calculations are based on the total water mass mixing ratio, 𝑟𝑡 , and liquid water static energy, ℎ, in the 190 

ascending parcel of air are calculated, as defined asby,:  

𝑟𝑡 = 𝑟𝑣 + 𝑞𝑤𝐿𝑊𝐶 ,           

          (108) 
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ℎ = 𝑔𝑧 + 𝑐𝑝𝑇 − 𝐿𝑣𝐿𝑊𝐶𝑞𝑤 ,          

         (911) 195 

whereHere, 𝑟𝑣 is the water vapor mass mixing ratio, 𝑇 is the temperature, 𝑔 is the gravitational constant, and 𝑐𝑝 is the heat 

capacity at a constant pressure of dry air.  Currently, only adiabatic processes are considered, and therefore total water mass 

mixing ratio, 𝑟𝑡  and liquid water static energy , ℎ in Eqs. (11) and (12) are conserved in each sub-level as the parcel ascends 

from 𝑧 to 𝑧 + ∆., The total water mass mixing ratio and liquid water static energy at the lower and upper boundaries of the 

current host model grid (with the superscripts 𝐿 and 𝑈 respectively) are first calculated using Eqs. (8)8, and (9). Then, the 200 

total water mass mixing ratio (𝑟𝑡
𝑖) and liquid water static energy (ℎ𝑖) in the 𝑖th sub-level are obtained by linear interpolation, 

given by.  

𝑟𝑡
𝑖 =

𝑁𝑠𝑢𝑏−𝑖+1

𝑁𝑠𝑢𝑏
𝑟𝑡

𝐿 +
𝑖−1

𝑁𝑠𝑢𝑏
𝑟𝑡

𝑈,                   (10) 

ℎ𝑖 =
𝑁𝑠𝑢𝑏−𝑖+1

𝑁𝑠𝑢𝑏
ℎ𝐿 +

𝑖−1

𝑁𝑠𝑢𝑏
ℎ𝑈.                   (11) 

Knowing 𝑟𝑡
𝑖  and ℎ𝑖 , 𝑟𝑣  and 𝑇  in the 𝑖th  sub-level can be are determined derived from Eqs. (810) and (119) using the 205 

estimated 𝑞𝑤, using the first estimate of 𝑞𝑤  𝐿𝑊𝐶, as described above. Subsequently, these results are used to update the 

supersaturation 𝑆 is calculatedwater vapor saturation ratio, based on the standard definition of the water vapor saturation 

ratio, 

𝑆 + 1 =
𝑟𝑣

𝑟∗
(

1+
𝑟∗

0.622
𝑟∗/𝜀

1+𝑟𝑣/𝜀
𝑟𝑣

0.622

) ,           

          (122) 210 

where 𝜀 ≡ 0.622, and 𝑟∗ is the saturation water vapor mass mixing ratio in the air parcel, which and of air, which depends on 

𝑇. Subsequently 

And then, tThe updated value calculated supersaturation (𝑆𝑐𝑎𝑙) after each iteration is compared to and the initial estimate 𝑆𝑒𝑠𝑡 . 

of 𝑆 are compared and are used to determine an An improved estimate of  𝑆 is determined using a bisectional method that 

minimizes the difference between different available estimates of 𝑆  through iteration, as shown in Fig. 2. The method 215 

enables quickly converges to a good-enough estimateddesired value of  𝑆 with the maximum number of iterations (𝐼𝑚𝑎𝑥) as 4, 

which solves Eq. (64) and satisfies all necessary constraints according to Eqs. (810), (119), and (1212). Here, the maximum 

number of iterations (𝐼𝑚𝑎𝑥 ) was set to 4 for the model applications discussed below. The iterations are repeated in 

eachcomplete and the sub-gridlevel to calculate 𝑆𝑖 results are is available at 𝑧 + ∆,. tThe calculations are repeated in order to 

obtain 𝑆 at the next higher level above until the vertical profile of supersaturation is results are available at all 𝑁𝑠𝑢𝑏 levels 220 

(Fig. 1b). 

 

The maximum value of the simulated vertical supersaturation profile of S, 𝑆𝑚𝑎𝑥 , is used to diagnose the critical particle size , 

𝑅𝑐𝑤, based on Eq. (2) (Fig. 1c-d), Once 𝑆𝑚𝑎𝑥 and the critical wet radius (𝑅𝑐𝑤) are calculated in the grid, . Aall particles with 
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a wet/dry radius larger than 𝑅𝑐𝑤/𝑅𝑐 are taken as the activated particles to become cloud condensation nuclei. cloud droplets. 225 

Consequently, the cloud condensation nuclei number concentration (𝑁𝐶𝐶𝑁) is obtained by integrating the activated aerosol 

size distribution accordingly (Fig. 1e). Above cloud base, a uniform number of vertical profile of the the activated particles 

cloud dropletequal to the value at cloud base number mixing ratio is assumed, equals to the value calculated at cloud base, in 

good agreement with observations and detailed simulations ofusing cloud  resolving models (Gerber et al., 2008; Slawinska 

et al., 2012; Jarecka et al., 2013). 230 

In each grid of the host model, the dry aerosol number-size distribution is represented as particle numbers at regular size 

intervals, ∆𝜒 = 1/𝑝∆𝜑 , where 𝑝  is the number of size bins. ∆𝜑  is the particle size range covering both Aitken and 

accumulation modes, expressed in terms of a dimensionless particle size parameter 𝜑 = ln (𝑅𝑝/𝑅0), with 𝑅0 = 10−6 m. In 

this study, we set 𝑝 to 6, meaning that 6 discrete aerosol particle size bins are used. The continuous aerosol size distribution 

(such as Fig. 1e) can be obtained from linear interpolation using the particle numbers in 6 discrete size bins. 235 

Currently, only adiabatic processes are considered in each sub-level. Therefore, total water mass mixing ratio (𝑟𝑡) and liquid 

water static energy (ℎ) are conserved as the parcel ascends from 𝑧 to 𝑧 + ∆𝑧𝑠TAlthough the above calculations assume the 

adiabatic ascending of air parcel. However, entrainment could have potential impacts on theenergy and moisture profiles in 

clouds may be affected by entrainment processes.host model grid. Besides, you canTherefore, Weand we additionally 

consider the impact of entrainment  modifying to consider the effect of entrainment on the 𝑆 profile if necessary. The 240 

entrainment is considered to have a direct impacton  𝑟𝑡  and ℎ above the cloud base by using 

𝑟𝑡
𝑈𝑒 =  𝑟𝑡

𝐿 + (𝑟𝑡
𝑈 − 𝑟𝑡

𝐿)exp (−𝑒∆𝑧),                                                                                                                (13) 

ℎ𝑈𝑒 =  ℎ𝐿 + (ℎ𝑈 − ℎ𝐿)exp (−𝑒∆𝑧),                                                                                                                (14) 

where 𝑟𝑡
𝑈𝑒  and ℎ𝑈𝑒  are the values of total water mass mixing ratio and liquid water static energy considering the entrainment 

of air, with a specified entrainment rate given by e, respectively. effect𝑒, which These can be used to replace 𝑟𝑡
𝑈 and ℎ𝑈 in 245 

Eqs. (10) and (11) when entrainment needs to be consideredoccurs.  

Note that Eq. (3) can only be used for an adiabatic processes and does not work if there is entrainment or radiative cooling of 

the air, e.g. the formation of cloud droplets in radiation fog. In contrast, the QDGE scheme is much more general, as outlined 

above. The QDGE scheme can be easily modified for simulations of entrainment and radiation fog if required. 

Finally, the maximum value of the simulated vertical supersaturationwater vapor saturation ratio profile, 𝑆𝑚𝑎𝑥  (Fig. 1c), is 250 

selected and used to diagnose the critical particle size ,(𝑅𝑐𝑤), which separates activated from non-activated particles, i.e. by 

requiring that 𝑆𝑝𝑚𝑎𝑥 = 𝑆𝑚𝑎𝑥𝑝 (Fig. 1d). Particles with sizes that are equal to or greater than the critical size (𝑅𝑐, the dry size 

corresponding to 𝑅𝑐𝑤) are assumed to be activated. Consequently, the cloud condensation nuclei number droplet number 

concentration (𝑁𝐶𝐶𝑁) is obtained by integrating the activated particle size distribution accordingly (Fig. 1e).  

Above cloud base, a uniform vertical profile of the cloud droplet number mixing ratio is assumed, in good agreement with 255 

observations and detailed simulations of clouds (Gerber et al., 2008; Slawinska et al., 2012; Jarecka et al., 2013). Also, you 

can set the entrainment rate to consider the effect of entrainment on the vertical profile if necessary.exp The QDGE scheme 



10 

 

 

calculates the activated particle number near the cloud base. Above cloud base, a uniform number of vertical profile of the 

the activated particles cloud dropletequal to the value at cloud base number mixing ratio is assumed, in good agreement with 

observations and detailed simulations ofusing cloud  resolving models (Gerber et al., 2008; Slawinska et al., 2012; Jarecka et 260 

al., 2013) 

2.2 Comparison with a parcel model  

In this subsection, we examine the performance of the QDGE scheme by comparing it with parcel model results by 

conducting a series of experiments as described in Ghan et al. (2011).  

The parcel model can numerically solve the droplet growth equations in a most accurate way, by representing aerosol size 265 

distributions with finely discretizing bins and utilizing a very short time step to trace the supersaturation variation with 

time/height (Ghan et al., 2011).  

For the comparisons, we assume a tri-modal lognormal size distribution (Whitby, 1978) of ammonium sulfate aerosol, 

consistent with the experimental setup in Ghan et al. (2011) (Table B1). The  environmental conditions in the simulations 

coverwith a wide range of 𝑤𝑐  values ( 0.1 − 10 m s−1 ) and four different aerosol regimesconditions (Marine, Clean 270 

continental, Background, and Urban). When conducting QDGE simulations, we set the number of sub-levels (𝑁𝑠𝑢𝑏), the 

maximal number of iterations (𝐼𝑚𝑎𝑥), and the number of size bins (𝑝) as 60, 4, and 6, respectively, which are the same as 

those in the following closure experiment (Sect. 4.1). Comparison between the results from the simulations are shown in Fig. 

3, in which the parcel model results are identical to those in Ghan et al. (2011). In general, the QDGE scheme performs well 

with lower 𝑤𝑐 but overestimates the 𝑆𝑚𝑎𝑥 when 𝑤𝑐 is larger than 2 m s−1. The differences in 𝑆𝑚𝑎𝑥  between parcel model and 275 

the QDGE scheme in all experiments areis  within 0.18 % (with an average of 0.05 %), much lower than the differences 

between parcel model and four state-of-the-art activation schemes (within approximately ±1.5 %) in Ghan et al. (2011). 

ThisIt indicates that the QDGE scheme achieves a high accuracy in simulating the processes of activation and condensation 

growth of cloud droplets under the specified conditions.  
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 280 

Figure 3. Comparison between the calculated maximum supersaturation (𝑺𝒎𝒂𝒙) from the QDGE scheme (solid line) and the parcel 

model (dashed line, Ghan et al., 2011 Ghan et al., 2011).  

In contrast to the QDGE scheme, the four activation  schemes considered by Ghan et al. (2011) are based on parameterized 

and simplifying assumptions about the physical processes involved in the formation of clouds droplets, using the vertical 

grid of the host model. Therefore, the QDGE scheme can be used for a broader range of environmental and aerosol 285 

conditions than these schemes, in general. Although the QDGE scheme mimicks the parcel model well, it is also 

numericallymore efficient. Typically a parcel model simulation will take severakl minutes, while the QDGE scheme only 

consumes 0.1 seconds for the same case using single core on Intel Xeon E5-2660 v2.  

One more advantage of the QDGE scheme is the potential scale adaptivity for different vertical grids. The accuracy of the 

simulated supersaturation profile increases with the specified number of sub-levels (𝑁𝑠𝑢𝑏) and number of iterations ( 𝐼𝑚𝑎𝑥). 290 

Therefore, aAs the super-computer capabilities for climate model simulations isare improved, the QDGE scheme  will 

provide a more accurate solution for the activation process and easily adapts to the accuracy requirement for high-resolution 

GCMs in the future.  

An earlier version of the QDGE scheme has been successfully used for simulations with the 5 th generation of the Canadian 

atmospheric global climate model (CanAM5). It is currently being tested in additional models. 295 

 

The QDGE aerosol activation scheme has been previously used to assess Arctic indirect radiative forcing (Arora et al., 2015) 

and to determine the sensitivity of Arctic clouds to changes in future surface seawater dimethyl sulfide concentrations  

(Mahmood et al., 2019). 
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3 Data and methods 300 

3.1 Campaign description  

The worldwide cloud data used for the evaluation were sampled from four aircraft campaigns. The locations and instrument 

information of the four campaigns are shown in Fig. 41 and Table 2. The Canada (CAN) campaign provided marine stratus 

cloud data observed during the Radiation, Aerosol and Cloud Experiment (RACE) in fFall 1995 off the coast of Nova Scotia, 

Canada (Peng et al., 2002). The Chile (CL) campaign provided marine stratocumulus clouds data observed during the 305 

VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), for near-climatological atmospheric 

conditions off northern Chile and southern Peru (Wood et al., 2011). The Brazil (AMA) campaign provided continental 

stratus clouds data observed in Manaus, Brazil during the Green Ocean Amazon (GoAmazon2014/5) Experiment (Martin et 

al., 2016). The China (CN) campaign provided polluted continental stratus clouds data sampled in Beijing, China by the 

Beijing Weather Modification Office (Liu et al., 2020). These worldwide datasets comprise continental (CN and AMA), 310 

coastal (CAN), and marine (CL) meteorological conditions. Additionally, they cover different levels of human influence on 

clouds, with an observed range of the mean aerosol number concentration (𝑁𝑎) within 100 m below the cloud base from 282 

cm−3 to 1350 cm−3.  

 
Figure 14. The geographical distribution of 31 selected cloud cases in the four aircraft campaigns. The text boxes provide the 315 
locations, the periods, and the names of the cloud cases for each campaign. 

Table 2. An overview of the four aircraft campaigns in this study.  

Name CAN CL AMA CN 

Date 1995/09 2008/10; 2008/11 2014/03; 2014/09 2018/05; 2018/08 

Location Nova Scotia, Canada Iquique, Chile Manaus, Brazil Beijing, China 

Cloud type stratus stratocumulus stratus stratus 

Campaign name RACE VOCALS-REx GoAmazon2014/5 / 

CDNC instrument 
FSSP (15 bins, 

2.0~47.0 μm) 

CAS (20 bins, 

0.6~56.3 μm) 

FCDP (20 bins, 

1.5~150.0 μm) 

FCDP (20 bins, 

1.5~150.0 μm) 
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Aerosol instrument 

PCASP (15 bins, 

0.13~3.00 μm) 

ASAP (13 bins, 

0.183~2.37 μm) 

PCASP (30 bins, 

0.09~3.00 μm) 

PCASP (30 bins, 

0.09~3.45 μm) 

PCASP (30 bins, 

0.10~3.00 μm) 

Chemistry 

instrument 
AMS AMS AMS / 

LWC instrument King hot-wire probe King hot-wire probe 

King hot-wire probe 

and Johnson-

Williams probe 

King hot-wire probe 

Atmospheric 

condition instrument 
AIMMS AIMMS AIMMS AIMMS 

Number of selected 

cloud cases 
10 7 7 7 

Number of cases for 

𝑤𝑐 calculation 
2 3 5 4 

𝑁𝑎 476 282 ± 116  846 ± 819  1350 ± 916  
Note:  is the integrated number of particles detected by aerosol instruments and averaged within 100 m below the cloud base. The definition of cloud base 

and selection of cloud cases refer to Sect. 3.2.1. Calculation of 𝑤𝑐 refers to Sect. 3.2.3. 

Aerosol and cloud measuring instruments utilized in the four campaigns are briefly presented in Table 2. The observed 320 

variables mainly include the 𝐶𝐷𝑁𝐶, the cloud liquid water content (𝐿𝑊𝐶), the aerosol number-size distribution, the chemical 

compositions of aerosol, and atmospheric condition parameters. For the measurement of the 𝐶𝐷𝑁𝐶, the forward scattering 

spectrometer probe (FSSP) was used in the CAN campaign. The cloud, aerosol, and precipitation spectrometer (CAS) was 

used in the CL campaign. The fast cloud droplet probe (FCDP) was used in the AMA and CN campaigns. Although FCDP, 

FSSP, or CAS can observe cloud droplets with a particle size up to 150 μm, we only integrated the number for droplets with 325 

a particle size of 2 to 30 μm to derive the 𝐶𝐷𝑁𝐶 . Because cloud droplets larger than 30  μm are subject to collision-

coalescence, and droplets smaller than 2 μm may be deactivated by evaporation (Fountoukis and Nenes, 2005). For the 

measurements of the 𝐿𝑊𝐶, the King hot-wire probe was used in all campaigns, and the Johnson-Williams probe was also 

equipped as an alternative option in GoAmazon2014/5. In terms of the aerosol observation, all the four campaigns utilized an 

onboard passive cavity aerosol spectrometer probe (PCASP), and some flights during the CAN campaign used the 330 

atmospheric solids analysis probe (ASAP), providing aerosol number concentration in multiple size bins roughly from 0.1 to 

3 μm. We integrated the number for particles within the detected size range to determine 𝑁𝑎. In the CAN, AMA, and CL 

campaigns, the mass concentrations of aerosol chemical species, including 𝑁𝐻4
+, 𝑁𝑂3

−, 𝑆𝑂4
2−, 𝐶𝑙−, and organics (𝑜𝑟𝑔), were 

measured using the aerodyne aerosol mass spectrometer (AMS). The CN campaign lacked data for aerosol chemical 

composition (see Sect. 3.2.2). For the CL campaign, five aircraft (i.e. Lockhead C-130, BAe-146, Gulfstream-1, Dornier-228, 335 

and Twin Otter) carried out observations (Wood et al., 2011). In order to ensure data integrity and consistency for aerosol 

number-size distribution and chemical composition measurements in the subsequent analysis, we only selected data from the 

Gulfstream-1 flights. The atmospheric condition parameters (𝑇, pressure (𝑃), relative humidity (𝑅𝐻), vertical velocity (w)) 

were mainly observed by the airborne integrated meteorological measurement system (AIMMS), in all campaigns. For the 
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CL campaign, vertical velocity data were not available from the Gulfstream-1 flights, thus we used the observed w data from 340 

the Twin Otter flights that occurred simultaneous with Gulfstream-1 flights. Some meteorological variables that are required 

by the QDGE scheme, particularly including 𝑟𝑣 , 𝑟𝑡, and ℎ, were not available from the aircraft observations. Therefore, we 

calculated these based on other variables (Sect. 3.2.4). Detailed descriptions of the aforementioned observational instruments 

and data quality control procedures can be obtained from the relevant publications for the different aircraft campaigns (Li et 

al., 1998; Peng et al., 2002; Wood et al., 2011; Kleinman et al., 2012; Martin et al., 2016, 2017; Wang et al., 2020). 345 

3.2 Data processing for closure experiment 

3.2.1 Data extraction 

The flow chart of data extraction and processing is shown in Fig. 52. In the first step, we conducted a screening of 

observational data to obtain suitable cloud cases fulfilling the following conditions (Step 1 in Fig. 25). First, we selected 

cloud cases with continuous 𝐿𝑊𝐶 profile with  𝑇 > 0 ℃ and 𝐿𝑊𝐶 ≥ 0.05 g cm−3 in each layer, identifying the height of the 350 

cloud base as 𝐻𝑙𝑜𝑤 (see Fig. BA11). Second, we checked whether the 𝐿𝑊𝐶 near the cloud base approximately satisfies the 

wet adiabatic assumption, that is, nearly free from entrainment. As shown in Fig. BA11, we plotted the observed 𝐿𝑊𝐶 and 

the adiabatic 𝐿𝑊𝐶 (𝐿𝑊𝐶𝑎𝑑) profiles, the later ones were calculated by assuming that 𝐿𝑊𝐶 increases linearly with the height 

above cloud base (𝐻𝑐), i.e. 𝐿𝑊𝐶𝑎𝑑 = 𝐶𝑤𝐻𝑐 . 𝐶𝑤 is the adiabatic liquid water lapse rate, which is a function of temperature  

(Brenguier, 1991). For liquid clouds, the value of 𝐶𝑤 varies from 0.5 × 10−3 to 3.0 × 10−3 g m−4 (Peng et al., 2002). For 355 

the cases shown in Fig. AB11, 𝐶𝑤  ranges from 0.6 × 10−3  to 2.8 × 10−3 g m−4 . The mean of 𝐶𝑤  in each cloud case is 

shown in Table BA12. Considering that the entrainment rate 𝑒 was set to 1.0 × 10−3 m−1 (weak entrainment, Barahona and 

Nenes, (2007)) when running the QDGE scheme in order to be close to the real atmosphere, we identify the nearly adiabatic 

part in the cloud case (i.e. data sampled between 𝐻𝑙𝑜𝑤 and 𝐻ℎ𝑖𝑔ℎ in Fig. A1B1) for obtaining the observed cloud properties 

for evaluating the simulation. Third,  we excludexcludeed the impact of collision-coalescence in the selected cloud cases, by 360 

ensuring that the water contents of cloud droplets with size greater than 30 μm were less than 0.05 g cm−3. Finally, we 

checked to make sure each cloud case has 𝑁𝑎  larger than 𝐶𝐷𝑁𝐶 . Ultimately, we obtained 31 eligible cloud cases were 

selected, as shown in Fig. A1B1. Table B2A1 listed the observed data in the selected cloud cases, 𝐶𝐷𝑁𝐶𝑂 and 𝐿𝑊𝐶 were 

averaged over the adiabatic part of each cloud case, 𝑁𝑎 and 𝑅𝐻 were averaged within 100 m below the cloud base. 

As shown in Step 2 of Fig. 52, we classified data samples of each cloud case into cloudy and clear conditions by utilizing the 365 

following criteria. Data sampled inside the cloud (cloudy condition) requires that 𝐿𝑊𝐶 ≥ 0.05 g cm−3, 𝐶𝐷𝑁𝐶 > 10 cm−3, 

and 𝑅𝐻 ≥ 99.5 %, and data samples outside the cloud  (clear condition) requires that 𝐿𝑊𝐶 < 0.05 g cm−3, 𝑁𝑎 > 10 cm−3, 

and 𝑅𝐻 < 99.5 %. 

During each flight, the sampling along the horizontal flight track was continuous, which allowed us to better characterize the 

cloudy conditions or atmospheric conditions inside or outside the cloud. In all the 31 selected cloud cases, we were able to 370 
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extract data samples at 𝑛𝑙 levels (𝑙𝑑𝑖 , 𝑑𝑖 = 1, 2, … , 𝑛𝑙 from the cloud base; where 𝑛𝑙 is usually 4, at least 2.) along horizontal 

flight tracks in each cloud case, and calculated the mean value of the observed variable 𝑣 (𝑉𝑣,𝑙𝑑𝑖
) along the horizontal track in 

each level 𝑙𝑖𝑑. 𝑉𝑣,𝑙𝑑𝑖
 is then extended to the vertical model levels (𝐿𝑓𝑗 , 𝑓𝑗 = 1, 2, … , 𝑁𝐿; where 𝐿𝑓𝑗 refers to the interfaces of 

the vertical layers in the model, i.e. ∆𝑧 = 𝐿𝑓𝑗+1 − 𝐿𝑓𝑗) for running the QDGE scheme, which is Step 3 as shown in Fig. 52. 

The extension proceeded with the following rules: The meteorological variables profile in clear condition, such as 𝑇, 𝑃, and 375 

𝑟𝑡, were extended downwards to the surface by using hydrostatic equation and ideal gas law, then extended to the top by 

linear extrapolation, and interpolated between 𝑙1 and 𝑙𝑛𝑙. The aerosol mass and number profiles were extended to surface and 

top by linear extrapolation and interpolated between 𝑙1 and 𝑙𝑛𝑙. 𝑅𝐻 was filled between 𝑙1 and 𝑙𝑛𝑙 by linear interpolation. 

For each cloud case, the data samples in the clear air were used to obtain aerosol-related input information for the model 

simulations (number and mass concentrations of aerosol components in different particle size sections) and the profiles of 380 

meteorological parameters. The data samples in cloudy conditions were used to obtain the vertical velocity and  𝐿𝑊𝐶 as 

input for the model, and to provide measured 𝐶𝐷𝑁𝐶 for comparisons with model results and closure verification. Here The 

the simulated ., and 𝐿𝑊𝐶 values in the boundariesof the host model  grid  werewere converted into 𝑞𝑤 tofor calculateinge the 

initial 𝑟𝑡 and ℎ for applying in the QDGE scheme (Fig. 2 and Eqs. 8-12). These are Steps 4, 5, and 6, as shown in Fig. 52 and 

described in the next three subsections. 385 
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Figure 52. A flow chart to schematically show the data extraction and processing for this work. 

3.2.2 Aerosol data for input 

In each of the cloud cases from the different aircraft campaigns, aerosol number concentrations 𝑁𝑎_𝑝𝑗  (𝑝𝑗 = 1, . . . , 𝑛𝑗𝑝; 

where 𝑛𝑗𝑝 is the number of size bins detected in observation, see Table 2) sampled by ASAP or PCASP were categorized in 390 

13, 15, or 30 bins. The size-resolved aerosol number concentrations were subsequently interpolated to a common particle 

size distribution (PSD) with 6 prescribed size sections for model input based on the following method (as depicted in Fig. 

63). First, we used the aerosol number concentration in each size bin of the PCASP (or ASAP) data to fit a continuous PSD 

using cubic spline interpolation (Fig. 63b). Second, we integrated the fitted PSD to obtain the aerosol number concentration 

𝑁𝑎_𝑘 (k=1, … , 6) in the aerosol size sections employed by the QDGE scheme (the dry aerosol particle radius boundaries are 395 

at 0.050, 0.088, 0.155, 0.274, 0.483, 0.851, 1.500 μm, as shown in Fig. 63c). By utilizing this method, the total 𝑁𝑎 obtained 
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by integration over the 6 QDGE sections was slightly different from the observed total aerosol number due to the fitting of 

PSD, thus we further weighed the total fitted aerosol number concentration by the observed aerosol number to ensure the 

conservation of total number concentration  (i.e., the total 𝑁𝑎 integrated over the QDGE sections in Fig. 63c is the same as 

the aerosol number integrated over the observed PSD in Fig. 63a). Finally, the PSD of the aerosol number concentration in 6 400 

sections (Fig. 63c) was used as input to the QDGE scheme. 

 

 

Figure 63. The processing of the observed aerosol number-size distribution for the input to the QDGE scheme. (a) shows the 

observed aerosol number concentration in each size bin sampled by PCASP, (b) the particle size distribution curve (red line) fitted 405 
to the observations (the asterisks refer to the observations that were derived from (a)), and (c) aerosol number concentration in 6 

size sections, as prescribed in model simulations with the QDGE scheme. 

For each of the CAN, AMA, and CL campaigns, the AMS provided measurements of chemical components over the entire 

campaign, providing concentrations of 𝑁𝐻4
+, 𝑁𝑂3

−, 𝑆𝑂4
2−, 𝐶𝑙−, and 𝑜𝑟𝑔. The various chemical components in the aerosol 

were assumed to be internally mixed, thus all aerosol particles with the same size have the same compositiondifferent 410 

components share the same aerosol number concentration in each size section. To obtain the PSD of mass concentration of 

each chemical component, we made use of the AMS measurements. For continental campaigns such as CN and AMA, we 

assumed that aerosols are composed of 𝑁𝐻4𝑁𝑂3, (𝑁𝐻4)2𝑆𝑂4, 𝑁𝐻4𝐶𝑙, and organics (𝑂𝑟𝑔) (Shilling et al., 2018; Zhou et al., 

2019; Li et al., 2020). For coastal or oceanic campaigns such as CAN and CL, we took sea salt (𝑁𝑎𝐶𝑙) into account, too. For 

the CAN, AMA, and CL campaigns, we converted the AMS data of ion mass (𝐴𝑀𝑆𝑐𝑖, 𝑐𝑖 is 𝑁𝑂3
−, 𝑆𝑂4

2−, 𝐶𝑙−, or 𝑜𝑟𝑔)  to the 415 

mass of each chemical component (𝑚𝑐, 𝑐 is 𝑁𝐻4𝑁𝑂3, (𝑁𝐻4)2𝑆𝑂4, 𝑁𝐻4𝐶𝑙, organics (𝑂𝑟𝑔), or 𝑁𝑎𝐶𝑙).  

𝑚𝑁𝐻4𝑁𝑂3
=

𝐴𝑀𝑆𝑁𝑂3
−

𝑀𝑁𝑂3
−

𝑀𝑁𝐻4𝑁𝑂3
,                                                                     

(153) 

𝑚(𝑁𝐻4)2𝑆𝑂4
=

𝐴𝑀𝑆
𝑆𝑂4

2−

𝑀
𝑆𝑂4

2−
𝑀(𝑁𝐻4)2𝑆𝑂4

,                       

(146) 420 
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𝑚𝑁𝐻4𝐶𝑙 =
(1−𝛼)𝐴𝑀𝑆𝐶𝑙−

𝑀𝐶𝑙−
𝑀𝑁𝐻4𝐶𝑙,                  

(175) 

𝑚𝑁𝑎𝐶𝑙 =
𝛼𝐴𝑀𝑆𝐶𝑙−

𝑀𝐶𝑙−
𝑀𝑁𝑎𝐶𝑙 ,                    

(186) 

𝑚𝑂𝑟𝑔 = 𝐴𝑀𝑆𝑜𝑟𝑔,                    425 

(179) 

where 𝑀𝑐𝑖  and 𝑀𝑐  are the molecular weight of ion 𝑐𝑖  and chemical component 𝑐 , respectively. Here we assume that 

concentrations of  𝑁𝐻4
+ are sufficiently high to balance all anions. The mass of sea salt in different campaigns is controlled 

by a given factor 𝛼 to partition the amount of  𝐶𝑙− in sea salt and continental chemical components. We set the values of 𝛼 as 

0, 90%, and 95% for AMA, CAN, and CL campaigns. That is, 90% and 95% of 𝐶𝑙− are attributed to sea salt in the coastal 430 

campaign CAN and the oceanic campaign CL, respectively. Based on the calculated mass concentration of each chemical 

component, the average density of aerosol can be obtained: 

𝜌𝑎 =
∑ 𝑚𝑐

5
𝑐=1

∑ 𝑚𝑐/𝜌𝑐
5
c=1

,                                  

(1820) 

where 𝜌𝑐  is the density of each component 𝑐 , and they are 1725, 1769, 1527, 1900, and 1400 kg m−3  for 𝑁𝐻4𝑁𝑂3 , 435 

(𝑁𝐻4)2𝑆𝑂4, 𝑁𝐻4𝐶𝑙, 𝑁𝑎𝐶𝑙, and 𝑂𝑟𝑔, respectively (Ferek et al., 1998; Nakao et al., 2013). Consequently, we can obtain the 

mass concentration (unit kg cm−3) of each component 𝑐 in section 𝑘 following this equation: 

𝑀𝑎𝑠𝑠𝑐,𝑘 =
𝑚𝑐

∑ 𝑚𝑐
5
c=1

∙ 𝑁𝑎_𝑘
4𝜋

3
𝑅𝑘

3𝜌a ,                                                                                                                

(1219) 

where 𝑅𝑘 is the median radius of section 𝑘. 440 

Since no AMS data are available for the CN campaign, we assumed the mass fraction of different chemical components 

according to contemporaneous measurements in Beijing, China (Zhou et al., 2019; Li et al., 2020), as shown in Table A2B3. 

Under the assumption of 𝜌𝑎 = 1600 kg m−1 (Levy Zamora et al., 2019), 𝑀𝑎𝑠𝑠𝑐,k in the CN campaign can be obtained from 

Eq. (1921).  

Finally, we obtained the number concentration of total aerosol and the mass concentration of each chemical component from 445 

PCASP/ASAP and AMS measurements in each cloud case and calculated aerosol number and mass concentrations in 6 

prescribed size sections following the above procedures (Step 4 in Fig. 52). We then used the aerosol information as input to 

drive the QDGE scheme.  
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3.2.3 Vertical velocity for input 

The averaged updraft velocity (𝑤+) and sub-grid vertical velocity (𝑤𝑠𝑢𝑏) obtained from the observed vertical velocity (𝑤) 450 

samples in clouds were used to calculate 𝑤𝑐 (𝑤𝑐 = 𝑤+ + 𝑤𝑠𝑢𝑏) as input for running the QDGE scheme (Step 5 in Fig. 25). 

The updraft velocity is a key variable for parameterizing aerosol activation. Peng et al. (2005) pointed out that using a 

characteristic value of the vertical velocity distribution (0.8 times the standard deviation of the distribution) is a good 

approximation for simulating the nucleated cloud droplet number of marine stratus when running the parcel model. 

Meskhidze et al. (2005) also gave a method to calculate 𝑤+, which had the optimal closure for cumulus and stratocumulus 455 

clouds. Here, we derived a universal method for calculating 𝑤+ in stratus and stratocumulus based on the above two studies.  

According to Meskhidze et al. (2005), the averaged updraft velocity (𝑤+) can be calculated by probability density function 

(PDF) of 𝑤, 𝑝(𝑤):  

𝑤+ =
∫ 𝑤𝑝(𝑤)𝑑𝑤

∞
0

∫ 𝑝(𝑤)𝑑𝑤
∞

0

 .                                                                                                                                                                     

(2022) 460 

For the normal PDF with the mean velocity 𝑤0 and standard deviation σ, 𝑝(𝑤) can be represented as 

𝑝(𝑤) =
1

√2𝜋𝜎
exp (−

(𝑤−𝑤0)2

2𝜎2 ) = 𝛽ϕ(𝜔)  ,                                                                                                                                

(231) 

where 𝜔 = 𝛽𝑤 + 𝛾, 𝛽 = 1/σ, 𝛾 = −𝑤0/𝜎, and ϕ(𝜔) is the standard normal PDF.  

Use Eq. (23) into Eq. (22) we obtain 465 

Take Eq. (21) into Eq. (20) and obtain 

𝑤+ =
ϕ(𝛾)

(1−Φ(𝛾))𝛽
−

𝛾

𝛽
=

ϕ(𝛾)

(1−Φ(𝛾))
𝜎 + 𝑤0 ,                                                                                                                                   

(242) 

where Φ(𝛾) is the cumulative distribution function of the standard normal PDF that can be represented by error function 

(erf): 470 

Φ(𝛾) = ∫ ϕ(𝑡)𝑑𝑡 =
1

2
(1 + erf (

𝛾

√2
))

𝛾

−∞
.                                                                                                                                   

(253) 

Especially, when 𝑤0 = 0,  

𝑤+ =
ϕ(0)

(1−Φ(0))
𝜎 = √

2

𝜋
𝜎 ≅ 0.8𝜎 ,                                                                                                                                              

(264) 475 

which is consistent with the characteristic velocity pointed by Peng et al. (2005) used for assessing cloud droplet closure for 

stratocumulus clouds sampled in the CAN campaign. 
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A sub-grid vertical velocity (𝑤𝑠𝑢𝑏) is needed for the QDGE scheme, and it can be derived from the square root of the 

Turbulent Kinetic Energy (𝑇𝐾𝐸) following Morrison and Pinto (2005): 

𝑤𝑠𝑢𝑏 = √
2

3
𝑇𝐾𝐸 ,                                                                                                                                                                        480 

(275) 

where the 𝑇𝐾𝐸 is given bycan be calculated according to its definition, which is half the sum of the variances (square of 

standard deviations) of the velocity components: 

𝑇𝐾𝐸 =
1

2
((𝑢′)2̅̅ ̅̅ ̅̅ ̅ + (𝑣′)2̅̅ ̅̅ ̅̅ ̅ + (𝑤′)2̅̅ ̅̅ ̅̅ ̅) ,                                                                                                                                           

(286) 485 

In this study, we assume that no horizontal movement occurs in cloud during the horizontal flight tracks, that is, (𝑢′)2̅̅ ̅̅ ̅̅ ̅ =

(𝑣′)2̅̅ ̅̅ ̅̅ ̅ = 0 and (𝑤′)2̅̅ ̅̅ ̅̅ ̅ = 𝜎2. Therefore, the sub-grid vertical velocity can be represented by σ: 

𝑤𝑠𝑢𝑏 =
𝜎

√3
 .                                                                                                                                                                                

(297) 

If the observed 𝑤 in each selected cloud case obeyed the normal distribution, we could calculate  𝑤𝑐  (𝑤𝑐 = 𝑤+ + 𝑤𝑠𝑢𝑏 ) 490 

following Eqs. (224) and (279) as input for running the QDGE scheme easily. We checked the normality of 𝑤 distribution by 

drawing a quantile-quantile (Q-Q) plot using the observed 𝑤 values along the horizontal flight track of the cloud case, taking 

CN01 as an example in Fig. 74. The linearity between the Q-Q plot of observed 𝑤  samples and a standard normal 

distribution indicates that 𝑤 data does indeed follow the normal distribution.  

 495 

Figure 74. A normal quantile-quantile plot for comparing the observed 𝒘 sampled by aircraft in cloud case CN01 with a standard 

normal distribution. The linearity of the data points (blue) suggests that the observed 𝒘  are normally distributed. 

In the four campaigns of this study, 4 cloud cases in CN, 2 cases in CAN, 5 cases in AMA, and 3 cases in CL have enough 

data samples to obtain the PDF of 𝑤  (Table 2), as plotted for checking the normality of 𝑤  distribution in Fig. A2B2. 
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However, the 𝑤 PDF in two of the CAN cloud cases does not conform to the normal distribution very well (panel (5) and (6) 500 

of Fig. A2B2). So, we used the mean and standard deviation of 𝑤 distribution in Peng et al. (2005) to obtain 𝑤𝑐 in the CAN 

campaign. For the CN, AMA, and CL campaigns, we directly calculated the 𝑤𝑐 from available data samples for the cloud 

cases plotted in Fig. A2 B2 and used their mean values for cloud cases lacking enough 𝑤 values in each campaign (Table 

A1B2). 

3.2.4 Meteorological input 505 

Some meteorological variables (𝑇, 𝑃, 𝑅𝐻, and 𝐿𝑊𝐶) can be obtained from AIMMS measurements directly, though, others 

(𝑟𝑣 , 𝑟𝑡, and ℎ) need to be calculated according to available variables (Step 6 in Fig. 25). We obtained 𝑟𝑣  by the following 

equation: 

𝑟𝑣 =
𝜀0.622𝑒∗𝑅𝐻

𝑃−𝑒∗𝑅𝐻
 ,                                                                                                                                                                                

(3028) 510 

where 𝑒∗ can be estimated by referring to Murray (1967): 

𝑒∗ = 6.1078𝑒(
17.2694(𝑇−273.16)

𝑇−35.86
)

.                                                                                                                                                  

(3129) 

Then, 𝑟𝑡 and ℎ can be obtained by Eqs. (810) and (119) from 𝑟𝑣  and other available variables. All meteorological variables 

were extracted and interpolated to model levels, as described in Sect. 3.2.1. The profiles of measured meteorological 515 

variables served as the initial state to drive the QDGE scheme. 

3.2.5 Determination of Nsub 

As mentioned in Sect. 2.1, the QDGE scheme simulates vertical profiles of supersaturation to determine 𝑆𝑚𝑎𝑥 , for a vertical 

grid with the size ∆𝑧𝑠 = ∆𝑧/𝑁𝑠𝑢𝑏, where ∆𝑧 is the grid size of the atmospheric host model. The accuracy of the simulated 

supersaturation profile generally increases with 𝑁𝑠𝑢𝑏, though, large values of 𝑁𝑠𝑢𝑏 imply higher computational burdens.  For 520 

applications of the QDGE scheme in atmospheric models, it is therefore important to determine an optimal value of 𝑁𝑠𝑢𝑏 that 

yields sufficiently accurate supersaturation profiles at acceptable costs. 

Figure 85a plots the vertical profiles of 𝑆 simulated by the QDGE scheme with different 𝑁𝑠𝑢𝑏  values for the cloud case 

CN01. The results show that each profile with 𝑁𝑠𝑢𝑏 ≥ 3 produces a well-defined maximum of 𝑆 (𝑆𝑚𝑎𝑥), which approaches 

to a stable value as 𝑁𝑠𝑢𝑏 is further increased. All cases seem to converge to a similar value as 𝑆𝑚𝑎𝑥  with 𝑁𝑠𝑢𝑏 = 150, as 525 

plotted in Fig. 58a. Figure 58b shows the variation of 𝑆𝑚𝑎𝑥 with the increasing 𝑁𝑠𝑢𝑏 for all cloud cases in the four campaigns. 

Overall, 𝑆𝑚𝑎𝑥  fluctuates dramatically with 𝑁𝑠𝑢𝑏 < 10, but plateaus when 𝑁𝑠𝑢𝑏  is greater than 60 (10 for CAN). Results 

obtained for 𝑁𝑠𝑢𝑏 = 150 and 𝑁𝑠𝑢𝑏 = 60 are similar. The mean relative error and correlation coefficient between 𝑆𝑚𝑎𝑥  with 
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𝑁𝑠𝑢𝑏 = 150  and that with 𝑁𝑠𝑢𝑏 = 60 are 1.97% and 0.9997, respectively. Therefore, we used 𝑁𝑠𝑢𝑏 = 60 in this study 

(𝑁𝑠𝑢𝑏 = 10 for CAN). Further discussion regarding the selection of 𝑁𝑠𝑢𝑏 are provided in Sect. 5.  530 

 

Figure 58. (a) Vertical profiles of the simulated supersaturation for different 𝑵𝒔𝒖𝒃 (1-150) in the QDGE scheme for the cloud case 

CN01. (b) Changes of the maximum supersaturation with different 𝑵𝒔𝒖𝒃 for all cloud cases in the four campaigns. 

3.3 Statistical parameters for evaluation and error analysis 

The QDGE scheme simulates the 𝐶𝐷𝑁𝐶 (𝐶𝐷𝑁𝐶𝑀) in each cloud case, based on 𝑆𝑚𝑎𝑥 . Noting that 𝐶𝐷𝑁𝐶𝑀 is not exactly the 535 

same as 𝑁𝐶𝐶𝑁 here, as we take wet particles with a size between 2 to 30 μm to compare with the observed one. Considering 

that aerosol activation is particularly efficient in the vicinity of the cloud base in stratus and convective clouds, the QDGE 

scheme only calculates the 𝐶𝐷𝑁𝐶 at the cloud base (Sect. 2.1). Here, we considered the effect of weak entrainment on the 

vertical profile of the cloud droplet number mixing ratio in order to be close to the real cloud base in the atmosphere (Sect. 

3.2.1). Therefore, we evaluated the simulation effectperformance of the QDGE scheme by comparing 𝐶𝐷𝑁𝐶𝑀  with the 540 

vertically average value of the observed 𝐶𝐷𝑁𝐶 (𝐶𝐷𝑁𝐶𝑂) in the nearly adiabatic part of the cloud (between 𝐻𝑙𝑜𝑤 and 𝐻ℎ𝑖𝑔ℎ 

in Fig. A1B1) (Sect. 3.2.1), given by.  

𝐶𝐷𝑁𝐶𝑂 =
1

𝑁𝑂
∑ 𝐶𝐷𝑁𝐶𝑂,𝐻

𝐻ℎ𝑖𝑔ℎ

𝐻=𝐻𝑙𝑜𝑤
 ,                                (32) 

where 𝑁𝑂 is the number of samples between 𝐻𝑙𝑜𝑤 and 𝐻ℎ𝑖𝑔ℎ, and 𝐶𝐷𝑁𝐶𝑂,𝐻 is the observed 𝐶𝐷𝑁𝐶 in height 𝐻. 

Correspondingly, the mean bias (𝑀𝐵) and mean relative error (𝑀𝑅𝐸) of each cloud case can be calculated, as follows: 545 

𝑀𝑅𝐸 == |
𝐶𝐷𝑁𝐶𝑀−𝐶𝐷𝑁𝐶𝑂

𝐶𝐷𝑁𝐶𝑂
∙ 100%|,                                                                                                                                         

(330) 

where 𝑀𝑅𝐸 of each cloud case will also be used for subsequent error analysis. 
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To evaluate the overall accuracy of the QDGE scheme, we also calculated the mean values of 𝐶𝐷𝑁𝐶𝑂, 𝐶𝐷𝑁𝐶𝑀, 𝑀𝐵, 𝑀𝑅𝐸 

for cloud cases in each campaign, namely 𝐶𝐷𝑁𝐶𝑂
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝐶𝐷𝑁𝐶𝑀

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , , and 𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅ . Besides, the R square (𝑅2) (𝑅 is the Pearson 550 

correlation coefficient) between the 𝐶𝐷𝑁𝐶𝑂 and 𝐶𝐷𝑁𝐶𝑀 in each campaign was also calculated. 

To quantify the contributions of different physical variables to errors in the simulated 𝐶𝐷𝑁𝐶 with the QDGE scheme, we 

calculated the Maximum Information Coefficient (MIC) (Reshef et al., 2011), which provides a measure for the strength of 

the relationship between each input variable and 𝑀𝑅𝐸. MIC can be a good measure to capture the association between the 

attributive variable and 𝑀𝑅𝐸 MRE for different types of relationships, such as linear, exponential and many complex 555 

functional relationships (Reshef et al., 2011). There is no need to standardize the data before the MIC calculation and the 

calculations have low computational complexity and high robustness. However, it should be noted that the association here 

does not refer to a specific correlation, such as temporal or spatial correlation, or positive or negative correlation, but refers 

to the strength of a certain relationship between the variable and 𝑀𝑅𝐸MRE. The MIC value is always between 0 and 1. The 

higher the MIC value, the stronger the association between the input variable and 𝑀𝑅𝐸, that is, the input variable contributes 560 

more significantly to the 𝑀𝑅𝐸. Here, we calculated the MIC base on the minepy package in Python (Albanese et al., 2018), 

and set the parameters required in MIC as the default settings suggested by the code developers. Different parameters had an 

insignificant effect on the relative importance of variables and 𝑀𝑅𝐸MRE. 

We calculated the MIC between  𝑀𝑅𝐸 and each one of the following input variables: the relative humidity (𝑅𝐻), the mean 

vertical velocity (𝑤+) and the sub-grid vertical velocity (𝑤𝑠𝑢𝑏) to represent environmental and dynamic conditions; the total 565 

aerosol number (𝑁𝑎) as a proxy of pollution level; the hygroscopicity of aerosol (𝐾𝑚) weighted by composition volume 

fraction, and the effective radius of aerosol PSD (𝑅𝑒,𝑎) to represent the chemical and size properties of the aerosol. Here, 𝐾𝑚, 

and 𝑅𝑒,𝑎 are defined as: 

𝐾𝑚 =
∑

𝑚𝑐
𝜌𝑐

𝜅𝑐
5
𝑐=1

∑
𝑚𝑐
𝜌𝑐

5
𝑐=1

 ,                                                                                                                                                                         

(341) 570 

𝑅𝑒,𝑎 =
∑ 𝑅𝑗

3𝑁𝑎_𝑗
𝑛𝑗
𝑗=1

∑ 𝑅𝑗
2𝑁𝑎_𝑗

𝑛𝑗
𝑗=1

 ,                                                                                                                                                                    

(352) 

where 𝜅𝑐 , the hygroscopicity of component 𝑐 , is accounted for variations with relative humidity in the QDGE scheme 

(Appendix ASect. 2). 𝑅𝑗 represents the middle radius in the 𝑗𝑡ℎ particle size bin observed by PCASP or ASAP (see Sect. 

3.2.2 and Table 2). For MIC calculation, the values of input variables derived from observations are listed in Table A1 B2 575 

for each cloud case.  
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4 Results 

4.1 Closure experiment 

The results of the closure experiment are shown in Fig. 96. Almost all 𝐶𝐷𝑁𝐶𝑀  values  fall within 30 % of the mean 

observations in the clouds.  𝑅2 is above 0.94 for all campaigns, which indicates a good agreement between simulation and 580 

observation. For the four campaigns covering marine to continental conditions, the 𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅ values are all below 26 % and the  

values are within ±20 %. The AMA campaign produces the best agreement between model results and observations, with a 

𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅ value of 17.30 %. On the other hand, the CN campaign produces a poor agreement, with a 𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅ value of 25.90 %. 

However, cloud droplet number concentrations are underestimated for all cloud cases for the CL campaign (Fig. 9c==

−19.36 %), which may be related to the high activation ratio (𝐴𝑅, the ratio of 𝑁𝑎 to 𝐶𝐷𝑁𝐶𝑂, see Table A1B2) in this region. 585 

𝐴𝑅 in all CL cases are higher than 60 %, suggesting that the marine environment is favorable for more aerosol particles to be 

activated. If particles with a smaller size than the detection limit of PCASP (about 10 nm) are activated, it could lead to an 

underestimation of the simulated 𝐶𝐷𝑁𝐶 in the CL campaign. 
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Figure 96. A closure experiment between 𝑪𝑫𝑵𝑪𝑶 and 𝑪𝑫𝑵𝑪𝑴 for each cloud case in the (a) CN, (b) CAN, (c) CL, and (d) AMA 590 
campaigns. The horizontal dashed lines represent the range of the observed 𝑪𝑫𝑵𝑪 within the 25% and 75% quantiles. 

In order to provide further context, we compare the 𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅ values of this study to previous studies with different aerosol 

activation parameterizations and aircraft measurements, as shown in Table 3. The 𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅ values are relatively high for those 

early parameterizations, basically around 50 %. In the recent two decades, the performance of physically-based 

parameterization has been significantly improved, as is evident from a reduction of the 𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅ to about 30 %. For instance, 595 

one of the schemes (Fountoukis and Nenes, 2005) achieved remarkable closure (with 𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅  of 13.5 %) for continental 

cumuliform/stratus. In this study, the QDGE scheme performs decently (the 𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅  values are all below 26 %) in four 

different regions, indicating that the scheme is suitable for simulations of cloud droplet number concentrations over a wide 

range of different meteorological conditions and different levels of aerosol pollution. 
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Table 3. Comparison of results from simulations with activation schemes and the QDGE method (Mainly referring to Fountoukis 600 
et al. (2007)) 

Parameterization or Model 𝑀𝑅𝐸̅̅ ̅̅ ̅̅ ̅ (%) Observed cloud type Location Reference 

Flossmann et al. (1985) ~50.00 
Continental 

stratocumulus 
North of England (Hallberg et al., 1997) 

UWyo parcel modela <50.00 Marine stratocumulus Tenerife, Spain 

(Snider et al., 2003; 

Snider and Brenguier, 

2000) 

Fountoukis and Nenes 

(2005); Nenes and Seinfeld 

(2003) 

~30.00 Coastal stratus 
Monterey, 

California, USA 
(Meskhidze et al., 2005) 

Fountoukis and Nenes (2005) 13.50 
Continental 

cumuliform /stratus 

Cleveland and 

Detroit, USA 
(Fountoukis et al., 2007) 

Kivekäs et al. (2008) ~35.00 Continental stratus North of Finland (Kivekäs et al., 2008) 

QDGE scheme 

17.30 Continental stratus Manaus, Brazil 

This work 

19.36 Marine stratocumulus Iquique, Chile 

22.78 Costal stratus 
Nova Scotia, 

Canada 

25.90 Continental stratus Beijing, China 

a. UWyo parcel model, available at http://www.das.uwyo.edu/ccp/ web 

4.2 Error analysis 

Although the performance of the QDGE scheme is good in different aircraft campaigns, it is useful to analyze sources of 

biases in the simulations. Following the procedures described in Sect. 3.3, we calculated the Maximum Information 605 

Coefficient (MIC) between 𝑀𝑅𝐸MRE and the input variables of the QDGE scheme, including aerosol properties (𝐾𝑚, and 

𝑅𝑒,𝑎), thermodynamic state (𝑅𝐻), pollution level (𝑁𝑎), and atmosphere dynamic conditions (𝑤+ and 𝑤𝑠𝑢𝑏 ), as shown in 

Table A1B2. The MIC values for all cloud cases and each campaign have been shown in Table 4.  

For almost all campaigns, the aerosol number concentration and the hygroscopicity, have the most significant impacts on 

𝑀𝑅𝐸. This is consistent with the change of environmental supersaturation (Eq. (3))droplet growth equation, according to 610 

which the variation of supersaturation 𝑆 with height is essentially determined by the competition between the production of 𝑆 

by adiabatic cooling and the reduction in 𝑆 from condensational growth of the particles, the latter mainly depends on the 

number and solubility of the aerosol particles. In detail, 𝑁𝑎 has a greater impact on 𝑀𝑅𝐸 in marine regions (CAN and CL), 

but 𝐾𝑚 is more significant in continental regions (CN and AMA). In marine regions, where 𝑁𝑎 is relatively low (Table 2), a 

small fluctuation in 𝑁𝑎 can cause noticeable changes in the simulated 𝑆𝑚𝑎𝑥 and CDNC, which makes 𝑀𝑅𝐸 more sensitive to 615 

𝑁𝑎. However, in continental areas, 𝑁𝑎 is relatively high, and the change in hygroscopicity becomes more important to 𝑀𝑅𝐸. 

The atmospheric humidity and the dry size of the aerosol particle also have non-negligible impacts on 𝑀𝑅𝐸. Both affect the 

hygroscopic growth of aerosol particles and the reduction in 𝑆. Overall, the atmosphere dynamic conditions have the most 
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insignificant impact on 𝑀𝑅𝐸, which may be attributed to the weak variation of them in stratus and stratocumulus clouds 

(Table B2A1). 620 

The MIC values also help to explain the relatively poor simulation performance of some campaigns. The chemical properties 

of the aerosol, which affect 𝐾𝑚, are very important for the simulation in the continental region, but the CN campaign lacks 

AMS data and we applied the same chemical composition for all cloud cases, based on earlier measurements in this region 

(Sect. 3.2.2). Given the importance of the chemical properties, simultaneous measurements of chemical components 

probably would have helped to enhance the accuracy of simulated 𝐶𝐷𝑁𝐶 for the CN campaign. Another possible cause of 625 

biases in simulated 𝐶𝐷𝑁𝐶 for the CN campaign is a much larger standard deviation of observed 𝑁𝑎 (see Table 2) than that of 

other campaigns, which could be responsible for the error in the simulated 𝐶𝐷𝑁𝐶. However, it should be noted that although 

the CAN campaign is characterized by the presence of coastal clouds and smaller variations in 𝑁𝑎, its 𝑀𝑅𝐸 is higher than the 

AMA campaign, which may be related to the application of uniform updraft velocity in simulations for the CAN campaign 

(Sect. 3.2.3 and Table A1B2).  630 

Overall speaking, the errors in the simulated CDNC is largely relevant to the missing data in observation (such as CN and 

CAM campaign), the analysis of MIC and error sources here could provide a good reason to develop and improve 

measurement strategies in the future aircraft campaigns.  

Table 4. The calculated MIC values between 𝑴𝑹𝑬 and different input variables for all cloud cases and each campaign. 

CN CAN CL AMA ALL 

𝐾𝑚 0.522  𝑁𝑎 0.610  RH 0.522  𝐾𝑚 0.522  𝑁𝑎 0.343  

RH 0.522  𝐾𝑚 0.396  𝑁𝑎 0.470  𝑁𝑎 0.522  𝐾𝑚 0.315  

𝑁𝑎 0.470  𝑅𝑒,𝑎 0.396  𝐾𝑚 0.292  𝑤+ 0.470  RH 0.242  

𝑤+ 0.470  RH 0.396  𝑅𝑒,𝑎 0.198  𝑤𝑠𝑢𝑏  0.470  𝑅𝑒,𝑎 0.202  

𝑤𝑠𝑢𝑏  0.470  𝑤+ 0.000  𝑤+ 0.198  RH 0.292  𝑤+ 0.170  

𝑅𝑒,𝑎 0.292  𝑤𝑠𝑢𝑏  0.000  𝑤𝑠𝑢𝑏  0.198  𝑅𝑒,𝑎 0.198  𝑤𝑠𝑢𝑏  0.170  

5 Conclusions and discussion 635 

In this paper, we introduce a numerically efficient aerosol activation scheme, which calculates the maximum cloud 

supersaturation and cloud droplet number concentration (𝐶𝐷𝑁𝐶) by employing a Quasi-steady state approximation of the 

cloud Droplet Growth Equation (QDGE) scheme. The QDGE scheme utilizes the look-up tables and an iterative 

methodcalculation for solving the sub-level variation of supersaturation and deriving the maximum supersaturation and the 

activated particle number-size distribution mass and energy budgets for efficient applications of the scheme in the large-scale 640 

grid of climate models. The cComparison between the results of the QDGE scheme and a parcel model shows that biases in 

the maximum supersaturation under different environmental and aerosol conditions are within 0.18 % (with an average of 

0.05 %), consistent with the highindicating the decent accuracyand reasonable performance of of the QDGE scheme. 

Whereafter,We we evaluated the simulated 𝐶𝐷𝑁𝐶  with worldwide cloud data sampled during four aircraft campaigns, 
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covering a wide range of different meteorological conditions and different levels of aerosol pollution. The aerosol 645 

information, updraft velocity, and meteorological conditions were carefully extracted from aircraft measurements and 

applied to drive the QDGE scheme. The simulated CDNC is compared with the observed correspondence in the nearly 

adiabatic part of the cloud, for evaluating the performance of the scheme. The average values of the mean relative error and 

the mean bias in the four campaigns are all within 26% and ±20%, respectively, indicating that the QDGE scheme can 

reasonably simulate the activated 𝐶𝐷𝑁𝐶 on a regional or global scale. We also investigated the potential sources of error in 650 

the simulated 𝐶𝐷𝑁𝐶  and found that the magnitude of the mean relative error is mostly relevant to the aerosol number 

concentration in marine regions and to aerosol hygroscopicity in continental regions than to other variables in the simulation. 

Several points are worthy of mentioning for future work. The QDGE scheme can be further optimized in several aspects. 

First, 𝑁𝑠𝑢𝑏 = 60 generates reasonably good results in four different regions in this study, but this number is a little high and 

the computation will be too demanding to apply in general circulation models. Second, the iterative calculation to derive 655 

supersaturation in each sub-grid level can be computationally expensive. Therefore, both adjustments on 𝑁𝑠𝑢𝑏 number and 

optimization on the iteration would be necessary before the QDGE scheme is applied in the climate model. Last, we also 

want to evaluate the QDGE scheme by comparing it with parcel model simulations, to further identify the sources of error 

related to the approximations in the scheme. These works would be considered in future studies. 

Appendix A: Parameters 660 

The parameters 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸 in Eqs. (1-3) are given by 

𝐴 =
2𝑀𝑤𝜎

𝑅𝑇𝜌𝑤
 ,                                 (A1) 

𝐵 = 𝜅𝑅𝑝
3 ,                    (A2) 

𝐶 =
𝜌𝑤𝑅𝑇

𝑒∗𝐷𝑣
′𝑀𝑤

+
𝐿𝑣𝜌𝑤

𝐾𝑎
′ 𝑇

(
𝐿𝑣𝑀𝑤

𝑅𝑇
− 1) ,                 (A3) 

𝐷 =
𝑔𝑀𝑤𝐿𝑣

𝑐𝑝𝑅𝑇2 −
𝑔𝑀𝑎

𝑅𝑇
,                   (A4) 665 

𝐸 =
𝑃𝑀𝑎

𝑒∗𝑀𝑤
+

𝑀𝑤𝐿𝑣
2

𝑐𝑝𝑅𝑇2,                   (A5) 

where 𝜅 is the aerosol hygroscopicity, 𝜎 is the surface tension of the solution/air interface (which is approximated by the 

surface tension of water here), 𝜌𝑤  is the density of water, 𝑀𝑤  is the molecular weight of water, 𝑅  is the universal gas 

constant, 𝑇 is the temperature, 𝑅𝑝 is the dry aerosol particle radius, 𝑒∗ is the saturation vapor pressure, 𝐿𝑣 is the latent heat of 

vaporization, 𝐾𝑎
′  is the modified thermal conductivity of air accounting for non-continuum effects, 𝐷𝑣

′  is the modified 670 

diffusivity of water vapor in air accounting for non-continuum effects (Seinfeld and Pandis, 2016), 𝑔 is the gravitational 

constant, 𝑀𝑎  is the molecular weight of dry air, 𝑃 is the atmospheric pressure, and 𝑐𝑝  is the heat capacity at a constant 

pressure of dry air.  
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Petters and Kreidenweis (2007) and Kreidenweis et al. (2008) proposed provided tabulated values of the hygroscopicity a 

parameter 𝜅 for representing the hygroscopicity of aerosol with a variety of chemical compounds, and provided tabulated 675 

values of 𝜅 based on laboratory data and modeling. They found that the aerosol water content (the ratio of wet aerosol 

volume to the dry aerosol volume) parameterized on 𝜅 was generally within the experimental uncertainty, but biased at low 

relative humidity (Kreidenweis et al., 2008; Petters and Kreidenweis, 2007). parameterized aerosol water contents are often 

within experimental uncertainty. However, the accuracy of this approach tends to decrease with decreasing aerosol water 

content. In particular, (Kreidenweis et al., (2008) Kreidenweis et al., (2008) also evaluated the calculated aerosol water 680 

content based on 𝜅 simulations of highly concentrated, non-ideal aqueous solutions with strong electrostatic interactions 

between ions with the Aerosol Inorganic Model (AIM; Wexler and Clegg (2002)), which gives evidence for systematically 

different results from a rigorous thermodynamic model at low aerosol water contents for some compounds. In order to 

improve biases at low relative humidity, the original method was extended to account for variations in 𝜅 with relative 

humidity in the QDGE scheme. Specifically, piecewise-linear relationships between 𝜅 and aerosol water activity for different 685 

chemical components were determined based on results from AIM. 

 

Appendix B: Tables and FiguresA 

Table B1. Aerosol distribution and property parameters, referring to Whitby (1978) and (Ghan et al., (2011b). 

Aerosol type 
Mode number 

concentration (cm−3) 
Mode radius (um) 

Mode geometric 

standard deviation 
𝜅 𝑒 

Condensation 

coefficient 

Marine 340, 60, 3.1 0.005, 0.035, 0.31 1.6, 2.0, 2.7 

0.7 0 1 
Clean continental 1000,800,0.72 0.008, 0.034, 0.46 1.6, 2.1, 2.2 

Background 6400,2300,3.2 0.008, 0.038, 0.51 1.7, 2.0, 2.16 

Urban 106000,32000,5.4 0.007, 0.027, 0.43 1.8, 2.16, 2.21 

Table BA21. A summary of observed (𝑪𝑫𝑵𝑪𝑶, 𝑵𝒂, 𝑹𝑯, and 𝑳𝑾𝑪), derived (𝑨𝑹, 𝑺𝒐𝒍, 𝑪𝒘, 𝑲𝒎, 𝑹𝒆,𝒂, 𝒘+, and 𝒘𝒔𝒖𝒃), simulated and 690 
evaluative (𝑪𝑫𝑵𝑪𝑴, 𝑴𝑩, a and 𝑴𝑹𝑬) variables of each cloud case in four campaigns. 

Case 

Observed variables Derived variables 
Simulated and 

evaluative variables 

𝐶𝐷𝑁𝐶𝑂 

(cm−3) 

𝑁𝑎 

(cm−3) 

𝑅𝐻 

(%) 

𝐿𝑊𝐶 

(g cm−3) 

𝐴𝑅 

(%) 
𝑆𝑜𝑙 

(%) 

𝐶𝑤 ×

10−3(10−3  

( g cm−4) 𝐾𝑚 
𝑅𝑒,𝑎 

(μm) 

𝑤+ 

(m s−1) 

𝑤𝑠𝑢𝑏  

(m s−1) 
𝐶𝐷𝑁𝐶𝑀 

(cm−3) 

𝑀𝑅𝐸 

(%)𝑀𝐵 

(%) 

𝑀𝑅𝐸 

(%) 

CN01 863.25 3016.27 67.92 0.20 28.62  65.00 0.69  0.37 0.23 0.469 0.340 767.86 -11.05 
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11.05 

CN02 148.17 372.77 61.89 0.06 39.75  65.00 0.71  0.39 0.41 0.609 0.441 212.3 
43.28 

43.28 

CN03 424.41 432.05 61.89 0.08 98.23  65.00 1.04  0.39 0.15 0.609 0.441 195.84 
-53.86 

53.86 

CN04 157.49 1738.09 57.71 0.12 9.06  65.00 0.81  0.40 0.98 0.609 0.441 121.33 
-22.96 

22.96 

CN05 1044.72 1550.93 88.12 0.43 67.36  65.00 1.99  0.33 0.18 0.714 0.516 777.82 
-25.55 

25.55 

CN06 392.89 850.10 72.42 0.22 46.22  65.00 1.93  0.35 0.56 0.444 0.314 453.34 
15.39 

15.39 

CN07 596.01 1486.6 66.79 0.11 40.09  65.00 2.36  0.37 0.22 0.609 0.441 651.10 
9.24 

9.24 

CAN01 102.28 108.26 95.27 0.12 94.48  62.50 1.03  0.54 0.84 0.299 0.215 81.26 
-20.55 

20.55 

CAN02 312.43 461.86 82.95 0.23 67.65  73.95 1.37  0.76 0.17 0.299 0.215 388.57 
24.37 

24.37 

CAN03 72.69 110.60 97.07 0.28 65.72  79.40 2.40  0.68 0.3 0.299 0.215 73.31 
0.85 

0.85 

CAN04 263.02 547.91 86.30 0.22 48.00  73.95 1.50  0.71 0.67 0.299 0.215 338.82 
28.82 

28.82 

CAN05 72.12 176.43 84.60 0.11 40.88  62.50 1.15  0.65 0.28 0.299 0.215 117.77 
63.30 

63.30 

CAN06 201.15 441.24 90.82 0.19 45.59  73.95 1.67  0.66 0.85 0.299 0.215 293.30 
45.81 

45.81 

CAN07 283.26 673.60 84.23 0.18 42.05  73.95 1.67  0.74 0.18 0.299 0.215 299.97 
5.90 

5.90 

CAN08 236.61 561.35 79.83 0.25 42.15  73.95 1.82  0.79 0.22 0.299 0.215 221.63 
-6.33 

6.33 

CAN09 255.29 1064.55 79.83 0.26 23.98  73.95 1.51  0.79 0.31 0.299 0.215 223.57 
-12.43 

12.43 

CAN10 419.06 609.57 81.25 0.21 68.75  73.95 0.62  0.78 0.12 0.299 0.215 337.48 
-19.47 

19.47 

CL01 364.78 493.78 54.36 0.15 73.88  72.25 2.54  0.60 0.13 0.618 0.447 332.53 
-8.84 

8.84 

CL02 260.91 339.76 64.86 0.13 76.79  84.79 2.70  0.59 0.13 0.537 0.389 200.93 
-22.99 

22.99 

CL03 199.93 309.33 41.98 0.18 64.63  80.27 1.86  0.74 0.14 0.618 0.447 192.45 
-3.74 

3.74 

CL04 227.94 272.76 40.43 0.09 83.57  70.36 1.53  0.96 0.13 0.618 0.447 179.44 
-21.28 

21.28 

CL05 179.08 187.54 57.02 0.19 95.49  79.45 2.06  0.63 0.12 0.618 0.447 119.84 
-33.08 

33.08 
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CL06 112.37 141.17 67.65 0.31 79.60  83.83 2.19  0.58 0.33 0.429 0.310 89.67 
-20.20 

20.20 

CL07 166.17 226.35 58.74 0.22 73.41  91.20 1.21  0.72 0.20 1.189 0.694 123.98 
-25.39 

25.39 

AMA01 179.50 307.47 90.50 0.09 58.38  17.94 1.07  0.07 0.86 0.761 0.55 223.88 
24.72 

24.72 

AMA02 137.19 296.02 84.32 0.10 46.34  27.56 1.01  0.12 0.68 1.074 0.777 158.08 
15.23 

15.23 

AMA03 321.21 548.11 78.67 0.30 58.60  26.58 1.03  0.12 0.77 1.203 0.870 344.32 
7.19 

7.19 

AMA04 199.21 368.46 78.25 0.32 54.07  26.58 1.06  0.11 0.76 1.628 1.178 142.86 
-28.29 

28.29 

AMA05 320.88 445.44 77.21 0.30 72.04  18.91 0.99  0.07 0.72 0.959 0.595 281.98 
-12.12 

12.12 

AMA06 380.27 1535.06 59.22 0.13 24.77  16.86 1.46  0.12 0.20 1.074 0.777 374.47 
-1.53 

1.53 

AMA07 498.91 2419.76 68.04 0.32 20.62  29.36 1.03  0.11 0.35 1.245 0.901 658.73 
32.03 

32.03 

 

Table BA23. The observed mass fractions of different aerosol compositions in Beijing, China in two previous studies, as well as the 

assumed fractions used in this work. 

Date 
Particle 

size range 
Sampler 

𝑜𝑟𝑔 

fraction 

𝑆𝑂4
2− 

fraction 

𝑁𝑂3
− 

fraction 

𝑁𝐻4
+ 

fraction 

𝐶𝑙− 

fraction 
Reference 

Summer, 

2017/2018 
PM1  ACSMa 37% 26% 22% 14% 1% 

Zhou, et al., 

2019 

Summer, 2018 PM2.5 ACSM 34% 31% 22% 13% ~1% Li, et al., 2020 

Summer, 2018 0.01~3um PCASP 35% 29% 22% 13% 1% This work 

a. ACSM: Aerosol Chemical Speciation Monitor. 695 
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Figure AB11. The profiles of observed 𝑳𝑾𝑪 (black) and adiabatic 𝑳𝑾𝑪 (𝑳𝑾𝑪𝒂𝒅, blue) for 31 liquid water cases. 
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Figure BA22. The normal quantile-quantile plot for comparing the observed 𝒘 sampled by aircraft with a standard normal 700 
distribution, for each cloud case with sufficient data. The linearity of the data points (blue dots) suggests that the observed 𝒘  are 

normally distributed under a 90 % confidence level. 
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