Response to Referee #1 (Dr. Steven J. Ghan):

2

1

- 3 Thanks for the careful review and instructive comments. We have revised the paper
- 4 carefully based on the reviewer's comments. This is described as follows (*italic text in*
- 5 blue color is from the reviewer).

6 7

Comments:

- 8 This study uses in situ measurements of aerosol, updraft velocity, and droplet number
- 9 to evaluate a new method for estimating cloud droplet number concentration. In
- addition to quantifying the mean relative error (MRE), it isolates contributions to that
- 11 error from uncertainty in various inputs. This is a valuable contribution that is
- 12 presented clearly, is reproducible, and of high quality.
- However, its conclusions would be much stronger if it added, as it suggests at the end,
- 14 a comparison with the performance without the quasi-steady state approximation
- 15 (QSSA), i.e., using a rising parcel model with the same inputs. Without such a
- 16 comparison, it is difficult to draw conclusions about the contribution of the QSSA to
- 17 the MRE.

18 19

Response:

- We greatly appreciate the reviewer's comments. The reviewer affirmed the value of
- our work and put forward the constructive suggestion, that is, comparing the results of
- the QDGE scheme with the parcel model to reinforce our conclusions.
- 23 In the revised version, we examine the performance of the QDGE scheme by
- 24 comparing it with parcel model results by conducting a series of experiments as
- described in Ghan et al., (2011). Considering different assumed aerosol types, the
- 26 biases of simulated maximum supersaturations to the parcel model (i.e. the
- benchmark) are all below 0.18 %, showing that the QDGE scheme performs decently.
- Under the above premise, we carried out the closure experiments and analyzed the
- contributions of the QDGE to the MRE. The above simulations and comparison with
- 30 the parcel model are included in Sect. 2.2 of the revised paper.

31

Response to Referee #2:

3233

We are grateful for the careful review and instructive comments. We have revised the paper carefully based on the reviewer's comments. A point-by-point reply to the comments is described as follows (*italic text in blue color is from the reviewer*).

3738

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Overall Appraisal:

- This work develops a quasi-parcel model approximation to describe the activation of aerosol into cloud droplets near the cloud base of warm stratocumulus. The authors compile observations from several field campaigns around the world and use them to investigate the performance of their model. These closure studies reveal a good approximation of the parameterization to the observed cloud droplet number concentration at cloud base. This work adds to the existing pool of droplet activation parameterizations. The attempt of writing the parcel model equations on a dimensionless basis could help future development.
- The authors place less emphasis on trying to obtain a closed analytical solution and rather use a semi-analytical integration. However, current models may be able to handle the associated computational cost. On the other hand, the exposition of the theoretical basis and rationale behind the authors approach is flimsy and, in some cases, inaccurate. These should be clarified and corrected before the work could be published.

53 **Response:**

- We thank the reviewer for the positive confirmation to the main goal of our work.
- We agree that computing power has rapidly increased in recent years. Yet the computational cost of GCMs is still quite substantial. According to Balaji et al. (2017, doi: 10.5194/gmd-10-19-2017), the ASYPD, defined as the Actual Simulated Years Per Day for the GCMs in a 24 h period on a given platform, of models in CMIP6
- ranges from 0.04 to 25.2 (median 4.9) years. The faster CPU or parallel computation helped to enhance the model efficiency, but the physical parameterizations (such as
- 61 schemes to solve the cloud and radiation processes) in the large-scale grid are still the
- 62 most time-consuming parts of the climate model. On the other hand, it is much more
- expensive for using a parcel model (currently the most accurate tool to solve the
- 64 activation process) than a parameterization scheme. The computing time of a parcel
- 65 model to obtain the S_{max} is about several minutes, but using the QDGE scheme
- 66 costs only about 0.1 seconds, and other physically-based parameterizations (such as
- 67 the four state-of-the-art schemes used in Ghan et al., 2011,
- doi:10.1029/2011MS000074) would take even less time. For this reason, the parcel

- 69 model is not practical for applying in long-term (decades or centuries) global
- 70 simulations (Ghan et al., 2011). Therefore, it is still necessary to develop
- 71 parameterized schemes to solve the aerosol activation in GCMs at present.
- 72 In addition, we elaborated our descriptions on the QDGE scheme in more detail in
- 73 Sect. 2.1. and included the comparison between results from the QDGE scheme and a
- parcel model (Sect. 2.2 of the revised paper), to better explain the rationale behind the
- 75 QDGE scheme.

76 77

78

79

80

81

82

83

84

General Comments:

- a) My main concern in this work is the lack of rationale behind the proposed approach. There is very little discussion regarding the approximations taken or the validity of the assumptions. Although an acceptable closure is achieved against observations, this does not guarantee that the approach is theoretically sound. Particularly as the evaluation of the scheme seems tightly constrained by observations.
 - **Response:**
- Thanks for the constructive suggestion. We agree that the closure with observational cloud cases cannot be regarded as evidence for the theoretical rationality of the QDGE scheme. We revised Sect. 2 to improve the
- methodological description of the QDGE scheme.
- We included more details about the fundamental rationale of the QDGE scheme
- in Sect. 2.1, explaining each approximation or assumption we have made. A
- schematic diagram (Fig. 1 in the revised paper) is added to show the major steps
- of the QDGE scheme. A flow chart (Fig. 2 in the revised paper) is added to
- describe the iterative calculation to solve supersaturation (S) in each sub-level in
- 94 the QDGE scheme.
- We also compare the results from the QDGE scheme and a parcel model
- 96 (following the experimental setup in Ghan et al. (2011)) to verify the performance
- of the QDGE scheme (Fig. 3 in the revised manuscript). The theoretical
- 98 rationality and practical advantage (for future high-resolution GCM) of the
- 99 QDGE scheme are summarized at the end of Sect. 2.2.

100

- 101 b) The assumption of a constant saturation ratio, even over a short time step, is
 102 unfounded. S changes over a very short time scale and it is not likely that it would
 103 ever remain constant. Did the authors perform a timescale analysis to show
 104 under what conditions their approximation would be acceptable?
- 105 **Response:**

- We are sorry for the misleading description in the previous version of the manuscript. We assumed that S was constant locally (that is, within a sub-level with a typical height of $1\sim10$ m) but varied with time/height throughout the host grid of GCMs. We clarify the assumption (Sect. 2.1) and show the S of each sub-level (i.e. S_i in Fig. 1b, where $i = 1, ..., N_{sub}$) in a schematic diagram (Fig. 1 in the revised paper).
- In large-scale stratus clouds, the maximum supersaturation (usually less than 0.2%) in the cloud appears about 100m above the cloud base, that is, the rate of S change is $0.002\% \,\mathrm{m}^{-1}$ or so (Pandis et al. 1990). According to this characteristic of aerosol activation, we assume that the supersaturation is approximately constant in the sub-grid scale (1~10m) for the QDGE scheme. We added the description in the revised paper (Lines 112-116, Sect. 2.1).

118119

120

121

122

123

c) It is also not clear that this model can be called quasi-steady state since the environment and the droplet sizes are clearly changing, and none of their derivatives is negligible. What are the rigorous expressions from where the parameterization is derived?

Response:

- The quasi-steady state refers to the following two assumptions in each sub-level:
- 125 1) the constant environmental supersaturation; 2) the conservation of total water
- mass mixing ratio and liquid water static energy. In the revised paper, Eq. (1) is
- the rigorous expression and Eq. (4) is the numerical expression for the particle
- size growth.
- The rationality of assumption 1) has been explained in our answer comment b)
- above. For assumption 2), we assume that the air parcel ascends adiabatically in
- each sub-level, which is the same as the assumption of the parcel model.
- 132 Correspondingly, the total water mass mixing ratio and liquid water static energy
- are conservative.

134135

136

137

138

139

140

- d) The proposed model resembles a Euler integration of the regular parcel model where the differential equation describing the evolution of supersaturation was replaced by an iteration over an algebraic expression. The authors should explain the rationale behind such approach and compare it against a more rigorous model where the evolution of the supersaturation is computed explicitly using a differential equation.
- 141 Response:
- Yes, it is a good suggestion. We added more detailed explanations on the iterative

143		calculation in Sect. 2.1 of the revised paper. The Euler method was used to obtain
144		S along sub-levels for approaching an S profile (as shown in Fig. 1b and 1c of the
145		revised paper). While the iteration is to calculate the S value in each sub-levels.
146		We included more details about the fundamental rationale of the QDGE scheme
147		in Sect. 2.1, explaining each approximation or assumption we have made.
148		
149	Sp	ecific Comments:
150	1)	Line 27. "in affecting" does not sound correct. Better say "determining"
151		Have corrected (Line 29 in the revised paper, similarly hereinafter).
152		
153	2)	Lines 52-53. This is a confusing sentence. Please clarify.
154		Have rewritten (Lines 53-54).
155		
156	3)	Lines 58-63. This is misleading and inaccurate. Most theoretical
157		parameterizations are approximate solutions to the parcel model equations.
158		Hence they must be evaluated against the rigorous solution first. Then, they can
159		be evaluated against observations. These are not "alternatives". Both
160		approaches aim to elucidate a different aspect of the parameterization accuracy.
161		Yes, we agree that the evaluation by comparing against the rigorous solution
162		(such as the parcel model) is necessary before the validation against observations,
163		thus we changed "Alternatively" to "However" (Line 62).
164		
165	4)	Line 70. Is the closure experiment the same as the evaluation? Please rephrase.
166		The repeated part has been removed (Line 72).
167		
168	5)	Line 75. Remove "that are"
169		Have corrected (Line 78).
170		
171	6)	Line 80. Aerosol is plural already.
172		Have corrected (Line 83).
173		
174	<i>7</i>)	Lines 82-84. This is an awkward sentence. Please rephrase.
175		Have rewritten (Lines 85-86).
176		
177	8)	All equations. Please choose either supersaturation or saturation ratio, but not
178	-	both. Changing between s and S makes things very confusing.
179		Have corrected. We use <i>S</i> to represent supersaturation uniformly (Lines 88-89).

180		
181	9)	Line 89. Sp is the droplet equilibrium saturation ratio.
182		Have corrected (Line 91).
183		
184	10)	Line 92. Rephrase. "The parameters A, B and C account for, given by,"
185		Have rewritten (Appendix A).
186		
187	11)	Line 104. Please clarify what water content means in this context.
188		Here the "water content" means "aerosol water contents", that is the amount of
189		water vapor uptaken by hygroscopic growth of aerosol particles, defined as the
190		ratio of the wet aerosol volume to the dry one. We added the explanation in
191		Appendix A.
192		
193	12)	Line 108. Different from what? Also why would this be important near water
194		saturation, when the droplet activates?
195		We now move this part to Appendix A.
196		κ is a parameter introduced by Petters and Kreidenweis (2007) to represent the
197		hygroscopicity of aerosol with a variety of chemical compounds. Whenever the
198		chemical composition of aerosol is determined, the value of κ can be determined
199		However, Petters and Kreidenweis (2007) and Kreidenweis et al. (2008) found
200		that the calculated aerosol water content (the ratio of the wet aerosol volume to
201		the dry one) based on κ biased at low relative humidity for some compounds.
202		Therefore, the QDGE scheme accounts for the variations in κ with relative
203		humidity to avoid the possible biases at low relative humidity in calculating the
204		growth of aeroso particle.
205		
206	13)	Line 112. The system is missing equations describing the evolution of the
207		saturation ratio, the temperature, and the droplet size distribution. So direct
208		numerical solution would not be only expensive but impossible.
209		We added Eq. (3) in Sect. 2.1 of the revised paper to describe the variation of
210		environmental S. In the QDGE scheme, we calculated the variation of
211		supersaturation with time/height by dividing the vertical grid of the host model
212		(large scale climate model) into sub-levels, producing a supersaturation profile in
213		the grid. More details of the major steps of the QDGE scheme are shown in Fig. 1
214		of the revised paper. The supersaturation in each sub-level was iteratively
215		calculated based on temperature and total water mass (integration over the
216		activated particle size distribution). Fig 2 in the revised paper shows a flow chart
		Financial and the state of the

217	of the iterative calculation for the supersaturation in each sub-level.
218	
219	14) Line 114. I am not sure what the "non-linear behavior of the water vapor
220	saturation ratio vertical profile" means.
221	That means supersaturation S is non-linear varied with height, as schematically
222	plotted in Fig 1c in the revised paper. We modified the sentence accordingly
223	(Line 106).
224	
225	15) Line 116. This is contradictory to the previous statement. If S can be assumed
226	constant, how then is it that time steps much smaller than 1 s are needed?
227	Supersaturation is relaxed quickly in cloudy parcels, so this would be wrong. The
228	authors should add more explanation and justification to their assumptions. As it
229	stands it seems very ad-hoc and possibly incorrect.
230	We largely modified Sect. 2.1 and 2.2 to clarify the assumptions for the QDGE
231	scheme. The constant supersaturation was assumed in each sub-level (typically 1
232	to 10 m in height) of the host model grid. An iterative calculation was conducted
233	in each sub-level to obtain the supersaturation. Finally, a vertical profile of
234	supersaturation was produced to represent the variation of S with height in the
235	host model grid. Figs. 1 and 2 in the revised paper show the major steps and the
236	iterative calculation in more detail.
237	
238	16) Line 156. What are the advantages of this calculation over writing a differential
239	equation for S?
240	A key for solving the differential equation for S (Eq. 3) is to determine dq_w/dt
241	by integrating wet particle size distribution calculated by Eq. (1). Whereas,
242	solving Eq. (1) needs the solutions of Eq. (2) and (3). Therefore, there is no
243	analytical solution at present for the differential equation for S .
244	Our iterative calculation is trying to use a numerical method to solve this issue
245	and makes the S in each sub-level available. We have tested that the iterative
246	method can converge to the desired value quickly, so it is efficient (Fig. 2).
247	
248	17) Line 164. Where exactly can you set the entrainment rate?
249	The entrainment is considered to have a direct impact on the total water mass
250	mixing ratio r_t and the liquid water static energy h , as shown in Eq. (13) and (14)
251	in the revised paper. Both the total water mass mixing ratio and the liquid water
252	static energy are used to calculate the sub-level supersaturation (Fig. 2 and Eqs.
253	8-12 in Sect. 2.1 of the revised paper).

254
255 18) Line 166. Couldn't find any mention of this scheme in those papers.
256 Since there was no paper describing the QDGE scheme before,

Since there was no paper describing the QDGE scheme before, we could not directly mention QDGE in the Arctic research. The description "A numerically efficient solution of the condensational droplet growth equation" in Mahmood et al. (2019) stands for the QDGE scheme. But there is no description in Arora et al.

260 (2015). Thus, we have removed this sentence in the revised paper.

19) Figure 2. Is the observed LWC used to drive the model?

Yes. LWC is converted to q_w for calculating the initial total water mass mixing ratio r_t and liquid water static energy h (Fig. 2 and Eqs. 8-11 in the revised paper), which are used to calculate S_i in the sub-level (Fig. 1b in the revised paper).

20) Line 262. How does this compare against integrating over the full aerosol size distribution?

As described in Lines 318-318 we weighed the total fitted aerosol number concentration by the observed aerosol number to ensure the conservation of total number concentration (i.e., the total N_a integrated over the QDGE sections in Fig. 6c is the same as the aerosol number integrated over the observed PSD in Fig. 6a).

21) Line 276. Internally mixed aerosol is defined as a population where all particles with the same size have the same composition. Please correct.

Have corrected (Line 328).

22) Line 310. Please explain where this comes from. Wsub and W+ represent similar things. That is, each parcel moves with a given vertical velocity. A rigorous approach would integrate the parameterization over the distribution of W. In absence of that, a mean (in the sense of the mean value theorem) could be used. That would be either W+ or Wsub, but not both.

As illustrated by Ghan et al. (2011) (doi:10.1029/2011MS000074), updrafts are not adequately resolved in global models, so subgrid variations in updraft velocity must be taken into account. Most climate models (e.g. Lohmann et al., 2007; Ming et al., 2007; Gettelman et al., 2008; Wang and Penner, 2009) often represent the grid updraft velocity using the sum of the large-scale grid-mean updraft velocity (w_{*}) and the subgrid variation in updraft velocity (w_{*}) within

291	the grid cell (See Ghan et al. (2011) P16 for more details). Here we use a s	ımılar
292	approach, w_+ and w_{sub} are obtained from the average and the sta	ındard
293	deviation of the probability density of function (PDF) of the sampled ve	ertical
294	velocity from aircraft measurement on clouds (Sect. 3.2.3), as derived in P	eng et
295	al. (2005) and Meskhidze et al. (2005). Therefore we regarded w_+ and w_5	_{sub} as
296	the correspondences to the large-scale grid mean and the subgrid variation	of the
297	updraft velocity.	
298		
299	23) Line 322. This sounds akward. Maybe use, "using Eq.(21) into Eq. (2	0) we
300	obtain"	
301	Have rewritten (Line 374).	
302		
303	24) Line 334. Awkward sentence. Maybe just say TKE is given by	
304	Have rewritten (Line 386).	
305		
306	25) Line 382. Please explicitly define CDNC_M and CDNC_O	
307	We have explained the $CDNC_M$ in more detail and explicitly defined CDN	C_0 in
308	Sect. 3.3.	
309		
310	26) Line 392. Is R2 this the Pearson correlation coefficient?	
311	R^2 is the square of the Pearson correlation coefficient in our research	ı. We
312	modified the sentence to clarify it (Line 447).	
313		
314	27) Line 418. This agreement is somehow unexpected. Given the assumptions	
315	my suspicion is the observed LWC is used to drive the parameterization	
316	along with the total aerosol number provides a strong constraint to C	DNC.
317	Please clarify whether this is the case.	
318	In the closure experiment, LWC is used to calculate the initial r_t (total	
319	mass mixing ratio) and h (liquid water static energy) by converting LV	
320	q_w (Fig. 2 and Eqs. 8-12 in the revised paper), which is used to calculate	
321	the sub-level (Fig. 1b). However, LWC has no direct impact on N_{CCN} (Fig.	_
322	Therefore, the decent performance of the QDGE scheme in the c	losure
323	experiment is not determined by using the input LWC from observation.	
324		
325	28) Line 450. As written, Eq. (1), i.e., the droplet growth equation, does not imp	ly this.
326	The supersaturation balance is missing.	
327	This is our fault, the sentence "This is consistent with the droplet growth eq	uation"

328 should be "This is consistent with the change of environmental supersaturation 329 (Eq. (3))". We have corrected it (Line 504). 330 331 29) Line 476. How efficient? It would be appropriate to include some timing 332 benchmarks rigorous solutions or other (against commonly 333 parameterizations) to assess the applicability of the scheme in large scale 334 atmospheric models. 335 Yes, thanks for the good suggestion. We added some descriptions about the time 336 consumption for the QDGE scheme and the parcel model in Sect.2.2 in the revised paper (Line 210). The time of a parcel model to obtain the S_{max} for a 337 cloud case is several minutes, but it is only about 0.1 seconds for the QDGE 338 339 scheme. We also added a comparison between the results of the QDGE scheme 340 and a parcel model for different aerosol and environmental conditions (Fig. 3 and 341 Sect. 2.2 in the revised paper), it confirmed the good performance and acceptable 342 accuracy of the QDGE scheme.