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Abstract. One of biggest uncertainties in Numerical Weather Predictions (NWPs) comes from treating the subgrid-scale 

physical processes. For the more accurate regional weather/climate prediction by improving physics parameterizations, it is 

important to optimize a combination of physics schemes as well as unknown parameters in NWP models. We have 

developed an interface system between micro-Genetic Algorithm (μ-GA) and the WRF model for the combinatorial 

optimization of CUmulus (CU), MicroPhysics (MP), and Planetary Boundary Layer (PBL) schemes in terms of quantitative 15 

precipitation forecast for heavy rainfall events in Korea. The μ-GA successfully improved simulated precipitation despite the 

non-linear relationship among the physics schemes. During the evolution process, MP schemes control grid-resolving scale 

precipitation while CU and PBL schemes determine subgrid-scale precipitation. This study has demonstrated the 

combinatorial optimization of physics schemes in the WRF model is one of possible solutions to enhance the forecast skill of 

precipitation. 20 

1 Introduction 

For numerical weather forecasting to be accurate, a numerical model should be able to represent real atmospheric conditions 

in terms of dynamics (i.e., governing equations), physics (i.e., parameterizations), and numerics (e.g., resolution and 

coordinate system). It should be also provided more accurate initial conditions. One of the biggest uncertainties in Numerical 

Weather Predictions (NWPs) comes from treating the subgrid-scale physical processes that have not been sufficiently 25 

understood. The subgrid-scale physical processes are parameterized in NWP models through empirical evidences, such as 

the derived value from observation and/or theoretical backgrounds. Therefore, the accuracy of physics parameterizations 

strongly depends on the followings: the value of parameters in given uncertainty ranges in parameterization schemes; the 

choice of parameterization schemes for each corresponding physical process. Note that prior to model simulation the 
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unknown parameters and schemes should be fitted to the regional weather/climate to reduce considerable uncertainties in 30 

models. 

The NWP models have several categories of subgrid-scale physical processes — shortwave and longwave radiation transfer, 

CUmulus (CU), MicroPhysics (MP), Planetary Boundary Layer (PBL), land surface processes, etc. In general, a model 

consists of a determined physics package, such as Unified Model (UM) (Cullen, 1993; Brown et al., 2012), Global Forecast 

System (GFS), and Korean Integrated Model (KIM) (Hong et al., 2018), whereas some models, such as the Weather 35 

Research and Forecasting (WRF) model and the community Noah Land Surface Model (LSM) with Multi-Parameterization 

options (Noah-MP) (Niu et al., 2011), have each physical category with several optional parameterization schemes so that 

users can select the schemes.  

The sensitivity experiments of the WRF model to physical parameterization schemes in simulating rainfall systems have 

been conducted (e.g., Crétat et al., 2012; Cohen et al., 2015; Evans et al., 2012; Song and Sohn, 2018). Cohen et al. (2015) 40 

introduced the various PBL schemes employed by WRF model and examined sensitivity to PBL schemes in simulating cold 

season severe weather events occurred in the southeastern United States. Evans et al. (2012) explores the performance of 

various combinations of PBL, CU, MP, and radiation schemes for the rainfall events near East Coast Lows. They suggest 

that the Mellor-Yamada-Janjic PBL scheme and the Betts-Miller-Janjic CU scheme can be selected in this region with some 

robustness. 45 

Previous studies on numerical weather and climate prediction model have manually examined one or several suitable 

schemes for rainfall events as a sensitivity test, hence not all schemes can be investigated, only selected combinations of 

schemes. This is because it takes a lot of computer resources and time to conduct the sensitivity test with all physics schemes. 

However, in addition to model development, all physics schemes need to be explored to simulate more accurate local 

weather and climate systems. Combinatorial optimization for a system or model configuration has been applied to the water 50 

distribution system (Behzadian et al., 2009; Gupta et al., 1999; Simpson et al., 1994; Weng and Liaw, 2005), groundwater 

monitoring design (Babbar-Sebens and Minsker, 2010), and multi-reservoir operation (Chen et al., 2017). Many algorithms 

have been developed for combinatorial optimization such as simplex, integer programming, simulated annealing, and 

Genetic Algorithm (GA). 

In weather and climate prediction models, most applications of GA have focused on the optimization of empirical parameters 55 

in the model to fit the modeled properties (e.g., precipitation) to observed counterparts (e.g., Lee et al, 2006; Yu et al, 2013). 

However, in this study, we created a micro-GA-WRF (μ-GA-WRF) interface to seek the an optimal set of CU, MP, and PBL 

schemes in the WRF model for rainfall events in terms of quantitative precipitation forecast (QPF). The μ-GA-WRF 

interface system is to automatically extract the optimal scheme combination from physics options in the WRF model. The 

present study attempts to find thean optimal combination of parameterization schemes, which is a new and challenging task. 60 

This paper is organized as following: Section 2 illustrates background of combinatorial optimization; Section 3 explains data 

and method, including the μ-GA-WRF interface system; case study isare presented in Section 4; Section 5 contains 

concluding remarks. 
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2 Background of combinatorial optimization 

To select a suitable optimization algorithm, we should consider the characteristics of objective functions, control variables as 65 

well as optimization problems. Jamil and Yang (2013) reviewed and compiled benchmark functions found from all the 

available literature for global optimization problems. They focused on the diverse properties of objective functions such as 

continuity, linearity, modality, separability, and dimensionality. In terms of combinatorial optimization, control variables can 

be discretized and indexed values, and the value of the control variable itself can be meaningless. These discrete control 

variables make the solution space of the cost function discontinuous. Therefore, it is important to choose an algorithm that 70 

can handle these properties.  

The GA as an evolutionary algorithm is based on the natural selection of genes (i.e., parameters in the algorithm) to search 

for the optimum. Research has adopted the GA to solve network system design optimization problems with a growing trend 

from the end of the 20th century (e.g., Simpson et al., 1994; Halhal et al., 1997; Savic and Walters, 1997; Pilar et al., 1999; 

Dandy et al., 2001). Gupta et al. (1999) emphasized the GA has advantages of using discrete variables for optimization and 75 

having an insensitive initial solution (i.e., robustness in the initial solution). Azadivar and Tompkins (1999) applied the GA 

approach to optimize to qualitative variables (e.g., structural design) in a manufacturing system, as simulation optimization. 

The GA coupled with a simulation-model generator searches for the different combinations of design configurations and 

evaluates the simulations. Gupta et al. (1999) shows that the GA provided a lower cost design of water distribution networks 

(e.g., pipe networks), compared to the non-linear programming technique. Weng and Liaw (2005) established a 80 

combinatorial optimization model, called the Sewer System Optimization Model for Layout & Hydraulics, to optimize cost-

effective designs for an urban sewer system. The better alternate network layouts were created more productively by 

applying the GA. Davis et al. (2019) optimized a malaria model with the GA by clustering locations based on the 

relationships between malaria and environmental drivers (e.g., temperature, precipitation, and vegetation index). To predict 

environmentally-driven malaria outbreaks across a heterogeneous region, the GA optimized the number of clusters and the 85 

environmental predictors for the districts in each cluster in the malaria model.  

Furthermore, the GA was applied for combinatorial optimization to the Noah-MultiParameterization (Noah-MP) Land 

Surface Model (LSM), which can be coupled with numerical weather prediction model (e.g., WRF model) in Hong et al. 

(2014). Noah-MP was augmented with multiple physics options for 10 different land surface processes such as phenology, 

snow, and groundwater (Niu et al., 2011). Hong et al. (2014) performed scheme-based model optimizations in simulating 90 

evapotranspiration and runoff (i.e., water balance) in Noah-MP over the Han River basin in South Korea. In addition, they 

showed a potential advantage of the Noah-MP and GA coupled system to model diagnosis — the evolutionary process 

provides information on sensitivity and interrelationship of physics schemes with regard to further model calibrations and 

improvements. Hong et al. (2015) further evaluated the applicability of the coupling system of micro-GA (i.e., an efficient 

version of GA; μ-GA) and Noah-MP to larger and multiple regions in East Asia.  95 
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The GA does not perform a random search of the extrema, but performs gradual search toward the extrema. However, it does 

not directly use gradient information of an objective function, but instead mimics the evolutionary method to quickly reach 

the global optima. The gradual search is based on a fact that the best individual stands for the nearest point to the optima. In 

the case of temperature as a physical quantity with the a continuous nature (e.g., real number), an increase or decrease of 

temperature is meaningful. On the other hand, for physics schemes in the NWP models with a discontinuous nature (e.g., 100 

integer), the option of schemes as an index has no physical meaning. The best option of physics schemes in the model is not 

related to the nearest options. Thus, the random search is more appropriate to optimize each of the schemes,; however, the 

use of the evolutionary algorithms is reasonable when looking for a combination of physics schemes. Note that the 

combinatorial optimization must consider a randomness to avoid falling to the local optimum. The μ-GA conducts the global 

search through random number generator as well as crossover operator, hence, the μ-GA is a very useful tool for 105 

combinatorial optimization. 

3 Data and methods 

3.1 Observation data 

The observation data have strongly affected the verification results (Rossa et al., 2008). Merged gauge-radar precipitation 

has the greatest advantage of the spatially uniform information available. The composite precipitation data produced by the 110 

Korea Meteorological Administration (KMA) Radar-Automatic weather station Rain-rate (RAR) system (Suk et al., 2013) 

using 11 radars was employed to optimize the combination of the physics schemes in the WRF model. The observational 

domain covers 1241 km ×1761 km in the Korean Peninsula, centered at 38 °N and 126 °E in the Lambert conformal conic 

projection. It has enough horizontal (i.e., 1 km) and temporal resolution (i.e., 10 min) to compare with the precipitation fields 

obtained by the high resolution model. The performance of RAR system was examined for 10 heavy rainfall cases selected 115 

during the summer of 2006 in Suk et al. (2013), obtaining a squared correlation coefficient (R2) of 0.84 between RAR-

estimated rainfall and the observed daily accumulated rainfall from rain gauges.  

For comparison with model output, RAR-estimated rainfall data were aggregated to a 5 km resolution grid. A downscaled 

grid box represents the average of 25 original grid boxes. For reasonable representativeness of samples, we take the average 

if more than 80 % of original grid boxes have meaningful values. 120 

3.2 μ-GA-WRF interface system 

3.2.1 μ-GA 

The GA developed by John Holland in the 1970s is a global optimization approach based on the Darwinian principle of 

natural selection: stronger individuals in a generation are more likely to produce offspring. The aim of the GA is to find the 

best individual with either a maximum or minimum fitness by means of a stochastic global search of the solution space, 125 
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through the generations. The algorithm applies the crossover and mutation operators to avoid local maximum/minimum 

solutions. The μ-GA (Krishnakumar, 1989) is an improved version of GA with smaller population sizes (e.g., of 5) and 

simplifies the a generation to generation evolution, hence efficiently reducing the computational resources. To simplify the 

algorithm, the mutate operator is not used, but the crossover operator is used to increase the diversity at a rate of 100 %. 

Furthermore, whenever inner loop convergence is achieved, the new population for the next generation consists of all new 130 

random individuals, except one elite individual. Thus, the μ-GA can avoid trapping into the local optimum.  

The flowchart of the μ-GA interfaced to the WRF model is provided in Fig. 1. The selection operator in the μ-GA is 

tournament selection with a shuffling technique to choose random pairs for mating. Fitness function to evaluate each 

individual is of the utmost importance in the GA and it should be designed taking into account the perspective of the 

optimization. If inner loop does not converge, selection is performed and all populations go through a crossover process, 135 

then one of populations is altered by the elite. Here, the elite individual from the previous generation is saved as one of 

populations in the current generation (i.e., the elitism). Since the crossover probability of 1.0 is used without the mutation 

operator in the μ-GA, each individual quickly resembles the elite through generations (i.e., inner loop). In other words, the 

optimization within the inner loop has a feature of local search by exploring specifically the solution space around the elite. 

The μ-GA decides that thean inner loop converges upon an optimum when the different chromosomes between thean elite 140 

individual and all the others are less than 5 % as binary bits. After the inner loop convergence, all individuals in the next 

generation, except for one surviving elite of the parent generation, are regenerated using random number generator, thus 

widening the search space (i.e., outer loop; global search). As a criterion of the outer loop convergence to finalize the 

algorithm, we commonly set the maximum number of generations. 

3.2.2 μ-GA-WRF interface system 145 

We created the μ-GA-WRF interface system to seek the optimal physics set of CU, MP, and PBL schemes in the WRF 

model for rainfall events in terms of QPF. The WRF model, one of mesoscale NWP systems, has been developed for 

atmospheric research and operational forecasting applications from the latter 1990s by a collaborative partnership of the 

National Center for Atmospheric Research (NCAR), the National Oceanic and Atmospheric Administration (represented by 

the National Centers for Environmental Prediction (NCEP) and the Earth System Research Laboratory), the U.S. Air Force, 150 

the Naval Research Laboratory, the University of Oklahoma, and the Federal Aviation Administration (FAA). The detail of 

model configuration is addressed in Sect. 3.3. 

Figure 1 shows the flowchart of the μ-GA-WRF interface system. In the μ-GA-WRF interface system, the μ-GA controls 

WRF simulations in the process of ‘Compile & Run WRF’. First, the μ-GA randomly initializes individuals (i.e., 

combinations of physics schemes) in the first generation. Through the inner and outer loop, the μ-GA evaluates the fitness 155 

value calculated by WRF results and RAR observation, and reruns the WRF models with new scheme combinations. Finally, 

if both the inner loop and outer loop converge, the optimization process in the μ-GA-WRF interface system is finished. 
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The μ-GA is implemented as input parameters. We set population size of 5, meaning that each generation has 5 individuals 

(i.e., model simulations). The maximum value of generations is set to 100, typically used in μ-GA experiments. The number 

of parameters (groups of bits) of each individual for the μ-GA is 3, which is the number of schemes to be optimized. We 160 

used single-point crossover. 

3.2.3 Fitness function 

Fitness is the basis for evaluating the superiority among individuals consisting of combinations of chromosomes. Designing 

a fitness function in the GA is critical for optimizing the model as intended. In this study, we are trying to improve the model 

simulation in terms of QPF. Thus, we used the Equitable Threat Score (ETS; Hamil, 1999) as the fitness function, also called 165 

objective function. The fitness is computed by sum of ETSs within each precipitation threshold: 

Fitness = �
𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,           
∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ,         𝑖𝑖

𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑖𝑖 = 0.1 𝑜𝑜𝑜𝑜 3.
𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑖𝑖 = 10, 20, 30,⋯ , 300.             (1) 

Where i isare specified thresholds of accumulated precipitation in mm and the ETS and chance is defined as: 

𝐸𝐸𝐸𝐸𝐸𝐸 = ℎ𝑖𝑖𝑖𝑖𝑖𝑖−𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
ℎ𝑖𝑖𝑖𝑖𝑖𝑖+𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 ,                      (2) 

𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  (ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)(ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)
(ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

.              (3) 170 

ETS hasve values in the range from -1/3 to 1. The closer the ETS is to a unity, the better the forecast skill. On the other hand, 

While if ETS is equal to or less than 0, the forecast skill is the same as, or even worse than that of a random forecast. Here, 

hits, misses, false alarms and correct negatives from a 2×2 contingency table are estimated by the joint distribution of binary 

(yes/no) forecasts and observations (Table 1). Rainfall estimations can be evaluated through the table that explicitly provides 

prediction capability and types of errors in the prediction. 175 

When focusing on heavy rainfall, total fitness value is calculated by the sum of ETS at the threshold ranging from 10 to 300 

mm with an interval of 10 mm, whereas when focusing on the precipitation detection, a precipitation threshold of 3 mm is 

used. In order to detect precipitation, the threshold of precipitation accumulated over 24 or 12 hours is generally used as a 

value between 0.1 and 0.3 mm (Rossa et al., 2008). Park et al. (2018) obtained the threshold value of 3 mm h-1 for the station 

average precipitation rate when the cumulative percentage of warm-season precipitation events in Korea reached 180 

approximately 80 % based on AWS observation data. As we would like to improve the forecast accuracy of precipitation in 

Korea, we selected the threshold value of 3 mm for hourly precipitation for the calculation of ETS. In this study, we also 

conducted the sensitivity test of precipitation accumulation period. 

3.3 Experimental design 

The WRF model (version 4.0.3) was initialized at 00:00 UTC 5 August 2018 with the 6-hourly initial and boundary 185 

conditions given by the National Center for Environmental Prediction (NCEP) Final (FNL) Operational Model Global 

Tropospheric Analyses data on 1°×1° grids. The WRF model configuration is based on the followings: horizontal grid 
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spacings of 25 and 5 km for two nested domains (Fig. 2); horizontal grid points of 60×60 and 116×136; the model top of 50 

hPa with 33 vertical levels; Dudhia shortwave radiation scheme (Dudhia, 1989), Rapid Radiative Transfer Model (RRTM) 

longwave radiation scheme (Mlawer et al., 1997), revised fifth generation National Center for Atmospheric Research 190 

(NCAR)/Penn State Mesoscale Model (MM5) surface layer scheme (Jimenez et al., 2012), and Unified Noah LSM (Chen et 

al., 1996; Koren et al., 1999). The control experiment referred to as CTL is simulated with Kain-Fritsch scheme (KF), the 

WRF Double-Moment (WDM) 6-class scheme, and the YonSei University (YSU) scheme as CU, MP, and PBL scheme, 

respectively, generally used to simulate precipitation system in Korea. The optimization results from the μ-GA-WRF 

interface system are referred to as OTPOPT. 195 

We selected the CU, MP, and PBL physical processes for the combinatorial optimization. The CU parameterization 

determines the prediction of sub-grid scale processes associated convective clouds and precipitation at a coarse resolution. 

Meanwhile, the MP regulates the gridgird-resolving processes of clouds. The PBL scheme, which could indirectly influence 

precipitation by interacting with other physics, can affect temperature and moisture profiles in the lower troposphere via 

exchanges of moisture, heat and momentum through the mixing associated with turbulent eddies. The options of the CU, MP, 200 

and PBL schemes used for the optimization in the μ-GA-WRF interface system are shown in Table 2. If Mellor-Yamada-

Janjic (MYJ), Quasi-Normal Scale Elimination (QNSE), Mellor-Yamada Nakanishi and Niino Level (MYNN) 3, or Total 

Energy Mass Flux (TEMF) is selected as the PBL scheme, Eta similarity (Monin and Obukhov, 1954; Janjic, 1994, 1996, 

2002), QNSE, MYNN, or TEMF should be set as a surface-layer scheme, respectively. The surface-layer scheme is the 

lowest part of the atmospheric boundary layer where the surface fluxes (i.e., surface heat, moisture, and momentum fluxes) 205 

can be calculated not only by combining the land-surface modelLSM, but also by itself. We have found the best scheme 

combination by the μ-GA as the mechanical and objective optimization method without a model simulations of 2,688 (= 

14×16×12) which is the total possible number of scheme combinations. 

During the 12-hr period from 12:00 UTC 5 to 00:00 UTC 6 August 2018, including the first and second periods of intense 

rainfall (see Section 4.1) precipitation was evaluated by fitness functions. We perform the optimization experiments with 5 210 

different fitness functions based on ETS in Sec. 3.2.2. Table 3 shows the summary of experiments — OPT-EXP1 for 12 

hourly accumulated precipitation with precipitation thresholds ranged from 10 to 300 mm with the interval of 10 mm; OPT-

EXP2 for 12 hourly accumulated precipitation with precipitation threshold of 3 mm; OPT-EXP3 for all 6 hourly 

accumulated precipitation during the evaluation period with precipitation threshold of 3 mm;. OPT-EXP4 for all 3 hourly 

accumulated precipitation during the evaluation period with precipitation threshold of 3 mm; OPT-EXP5 for all hourly 215 

accumulated precipitation during the evaluation period with precipitation threshold of 3 mm. For OPT-EXP1, the total 

fitness value is calculated as the sum of the ETSs at all thresholds, while for OPT-EXP2 – OPT-EXP5, it is calculated as the 

average of the ETSs for each accumulated time over 12 hours. 
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4 Case study 

4.1 Case description 220 

A coastal flood occurred in Korea due to a quasi-stationary Mmesoscale Cconvective Ssystem (MCS) which produced heavy 

rainfall on 5–6 August 2018. As the unexpected event, the back-building MCS was located in Yeongdong region about a day, 

thus the heavy rainfall caused damage to property estimated at 177 million won (KMA, 2018). For the period from 11:00 

UTC 5 to 14:00 UTC 6 August, 294.5 mm of precipitation was recorded at Sokcho: the first intense rainfall continued for 4 

hrs (13:00 UTC – 17:00 UTC 5 August) with the maximum precipitation rate of 35.3 mm/h and total rainfall amount of 83.5 225 

mm, whereas the second intense rainfall (17:00 UTC 5 – 00:00 UTC 6 August) recorded the maximum precipitation rate of 

54.9 mm/h and total rainfall amount of 192 mm, due to the quasi-stationary MCS. To predict more accurately, forecasters 

essentially need the mesoscale information from NWPs as well as synoptic weather charts, vertical soundings, satellite 

observations, weather station observation, etc., at the preceding time. The NWP models can capture the important triggers 

which can be hardly found out through observations to predict rainfall. This heavy rainfall case occurred due to the 230 

mesoscale factors: 1) low-level convergence, 2) strong vertical wind shear, 3) coastal fronts and back-building convection 

bands, 4) mid-level advection of cold air and positive relative vorticity, and 5) vigorous updraft releasing potential instability 

(Park and Park, 2020). Therefore, it is necessary to improve the NWP model to more accurately identify these mesoscale 

factors. 

4.2 Results 235 

4.2.1 Combinatorial optimization of the physics schemes for QPF 

The combinatorial optimization of the physics schemes in the WRF model is targeting the improved quantitative forecasting 

of heavy rainfall. OPT-EXP1 shows the simulated results using the optimized combination of the MP, CU, and PBL schemes, 

focusing on strong precipitation intensity. Figure 3 depicts the evolution of generations of the μ-GA, represented by fitness 

values, for OPT-EXP1. The μ-GA reached the maximized evolution, which was the point that the best individual in each 240 

generation converged upon the highest fitness score (here, of 4.292), at the 12thnd generation. Before that, the local optimum 

(i.e., intermediate optimum; IMD-OPT) appeared at 4thrd generation with a fitness of 2.9896. The optimized schemes of the 

CU, MP, and PBL for this event are MSKF, NSSL-2 moment, and YSU scheme, respectively. For the IMD-OPT-EXP1, 

only the MP physics scheme selected as WSM 6-class is different from the global optimum. The optimum of the PBL 

scheme is the same as CTL, and that of the CU scheme is the updated scheme from the CU scheme for CTL. The KF (i.e., 245 

the CU scheme for CTL) is suitable for a horizontal resolution of ~25 km, at which convective clouds can be represented 

explicitly. However, MSKF (i.e., the optimum of the CU scheme) has been improved for use in the so-called grey zone 

scales (i.e., 12 to 1 km) as well as at horizontal grid spacing of 25 km (Glotfelty et al., 2019).  

Figure 4 compares the ETSs of each precipitation threshold for CTL, OPT-EXP1, IMD-OPT, the best individual at 1st 

generation (GEN1), and REF. REF is simulated with the CU, MP, and PBL physics schemes validated in Park and Park 250 
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(2020) — Morrison scheme is chosen as the MP scheme, and CU and PBL schemes are the same as CTL. The selected 

schemes for CTL, OPT-EXP1, IMD-OPT, GEN1, and REF are summarized in Table 4. OPT-EXP1 performs significantly 

better than CTL at precipitation thresholds above 20 mm, indicating a remarkable improvement in the ETSs. Although REF 

also shows the improved forecasting skill than CTL at all precipitation thresholds, OPT-EXP1 performs better at higher 

precipitation intensity compared to REF. The optimization process from GEN1 to IMD-OPT, corresponding to the evolution 255 

of early generations, shows increases in ETS at precipitation thresholds less than 130 mm, whereas IMD-OPT to OPT-EXP1 

shows further enhancements at heavy precipitation thresholds (≥ 40 mm) and even above 130 mm. For both observation and 

model output, the maximum amount of 12 -hour accumulatedion precipitation in thea grid box did not exceed 190 mm. 

The spatial distribution of 12-hr accumulated precipitation for observation (RAR), OPT-EXP1, CTL, and REF are shown in 

Fig. 5. CTL broadly underestimated precipitation, and REF is better than CTL in terms of both quantity and the rain cell 260 

development. Rain cells located near both Sokcho and north of Gangneung were well captured in REF and OPT-EXP1 

although the amount of precipitation underestimated over the north of Gangneung. OPT-EXP1 shows the improved 

precipitation simulation for the inland area near Gangneung and Daegwallyeong, but it still underestimated. As the MCS was 

staying near Sokcho and north of Gangneung during the period of accumulative precipitation, light rainfall occurred over the 

inland whereas heavy rainfall occurred over the sea along the coastal line. 265 

We also verified the effectiveness of the optimization by the continuous statistics for CTL, REF, and OPT-EXP1 (Table 5 

and Fig. 6). The scatter plot for OPT-EXP1 exhibits the best performance with the regressioncorrelation coefficient (R) of 

1.01, compared to CTL and REF (Fig. 6). In addition, Table 5 shows OPT-EXP1 has lower spatial mean bias and Root Mean 

Square Error (RMSE) of precipitation (-7.433 and 21.511) and greater Pearson’s Correlation Coefficient (PCC) (0.762) than 

CTL (-8.696, 25.430, and 0.673, respectively). It performs better than REF as well. In conclusion, combinatorial 270 

optimization of the physics schemes has enhanced the forecast skill not only in QPF (i.e., ETS) but also in terms of both 

spatial distribution and continuous statistics. 

4.2.2 Sensitivity of fitness functions based on the assessment of precipitation occurrence 

For the accuracy of the deep convective precipitation system, we wonder whether it would be effective to increase the 

accuracy of the precipitation occurrence or to increase the accuracy of precipitation within each precipitation threshold. In 275 

this section, we conduct the sensitivity test of accumulated precipitation time interval used in fitness function calculation to 

evaluate the precipitation occurrence with thea precipitation threshold of 3 mm (see Table 3). The ETSs for 12-hr 

accumulated precipitation, calculated by using 12 hourly (OPT-EXP2), 6 hourly (OPT-EXP3), 3 hourly (OPT-EXP4), 1 

hourly (OPT-EXP5) accumulated precipitation data, were evaluated at each time interval. In contrast to OPT-EXP1, 

precipitation thresholds for them are set as one criterion (i.e., precipitation threshold = 3 mm), so the maximum value of ETS 280 

is equal to 1. When the accumulation time interval become shortened (e.g., an hour), the precipitation prediction must also be 

more accurate on a temporal scale in order to have the higher fitness. Because the fitness is computed by the average of 

ETSs calculated at each time interval. In other words, the shorter the accumulated time intervals, the more ETSs of predicted 
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precipitation are evaluated. Thus, as expected, OPT-EXP2 shows the highest fitness value (i.e., 0.3482), followed by OPT-

EXP3 with the fitness of 0.2862, and OPT-EXP5 with the lowest fitness of 0.2249 (Fig. 7). OPT-EXP4 performs similar as 285 

OPT-EXP5, having the fitness of 0.2270. The selected schemes for OPT-EXP2, OPT-EXP3, OPT-EXP4, and OPT-EXP5 

areis shown in Table 6. 

Figure 8 shows the spatial distribution of 12-hr accumulated precipitation for OPT-EXP2 to OPT-EXP5. All experiments 

underestimate the convective system and overestimated very light precipitation over the inland area of Korean Peninsula (see 

Fig. 5 and Fig. 8). From the ETS perspective, OPT-EXP2 is the best result, but OPT-EXP3 shows the best simulation results 290 

in terms of the spatial distribution. Since no method is existed absolutely superior to others in precipitation evaluation 

methods such as ETS, CSI, POD, and continuous statics indices, several indices including spatial distribution must be 

examined together. Rain cells located near both Sokcho and north of Gangneung were well captured only in OPT-EXP3 and 

OPT-EXP4, but were still underestimated. Rainfall over the sea along the coastal line was simulated in OPT-EXP3 and OPT-

EXP4 as well. On the other hand, the evaluation of the fitness at 1 hour intervals results in poor accuracy, possibly because 295 

of including the time phase error of the model. 

Figure 9 depicts the scatter plot for OPT-EXP2 to OPT-EXP5. In terms of observed precipitation, OPT-EXP3 and OPT-

EXP4 have more accuracy lead to better agreement with observed precipitation than OPT-EXP2. OPT-EXP3 has the best fit 

for the RAR, showing the regression coefficient of a highest correlation (1.13), followed by OPT-EXP4. Moreover, OPT-

EXP4 has the lowest RMSE and the greatest PCC of precipitation (23.952 and 0.731, respectively) (Table 7). OPT-EXP3 has 300 

the lowest spatial mean bias (-8.690). In terms of fitness, OPT-EXP2 is superior, but OPT-EXP3 and OPT-EXP4 shows the 

better simulations in terms of both the spatial distribution and continuous statistics. 

In this section, the sensitivity of the accumulation time interval of precipitation used in fitness function calculation (i.e., ETS) 

to the optimization in the μ-GA-WRF interface system was briefly examined. In the current model performance, the best 

result of the optimization experiments can be obtained by using the 3 or 6 hourly accumulated precipitation in theas a fitness 305 

function when focusing on precipitation detection. However, compared to OPT-EXP1, both the quantitative precipitation and 

spatial distribution in OPT-EXP1 was much more improved than other experiments (i.e., OPT-EXP2 – OPT-EXP5). 

Therefore, in order to improve the simulations of deep convective systems, it is recommended to evaluation of the 

precipitation accuracy at various precipitation thresholds rather than assessing the accuracy of precipitation occurrence. 

4.3 Discussions 310 

All physics schemes including the CU, MP, PBL, radiation, and surface schemes are interrelated, and a non-linear 

relationship among them is appeared due to the complexity of atmospheric system. Thus, in order to accurately predict 

precipitation, it is necessary to explore the combination of physics schemes rather than focusing only on individual  

schemeeach one. The evolutionary approach to find the optimum combination of the CU, MP, and PBL schemes can provide 

insightful understanding of the implemented physical schemes and their interrelationships. The accuracy of precipitation of 315 

less than 30 mm in large areas has been improved by fitted CU and PBL schemes. On the other hand, the simulation 
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accuracy of high intensity precipitation occurred in thea small area was improved by the MP schemes. It is because the MP 

schemes control the grid-resolving scale precipitation while the CU schemes determine the sub-grid scale precipitation. In 

other words, a realistic parameterization of cloud microphysics is crucial for the precipitation forecast in high resolution 

models. Typical cumulus convection can be represented by the CU schemes at horizontal grid spacing of about 25 km. 320 

However, the selected CU scheme (i.e., MSKF) has been improved for use in the so-called grey zone scales (e.g., 5 km used 

in this study); thus, it can outperform the other CU schemes. On the other hand, the KFCP scheme that is modified to better 

account for the presence of shallow clouds was selected for OPT-EXP2 and OPT-EXP5 possibly because their fitness 

functions were focused on the precipitation occurrence. Note that the single-moment MP schemes predict the mixing ratio of 

hydrometeors by representing the hydrometeor size while the double-moment schemes also predict number concentrations of 325 

hydrometeors. Thus, the double-moment schemes (e.g., NSSL 2-moment, WDM 6, Morrison) can produce a reasonable 

concentration of large droplets for a heavy precipitation system, compared to the single-moment schemes (Lim and Hong, 

2010). In addition, the YSU scheme, representing the PBL process, more accurately simulates a deeper vertical mixing in the 

thermally-induced free convection regime covering multiple vertical levels (Hong et al., 2006), thus being superior to the 

other schemes for the simulated precipitation. In addition, selected CU scheme (i.e., MSKF scheme) also has been improved 330 

for use in the so-called grey zone scales (e.g., 5 km used in this study).  

However, it is difficult to insist that the order of fitting scheme is directly related to the importance of the scheme in QPF 

because of the non-linear relationship between precipitation and the physics schemes as well as among the physics schemes. 

Moreover, it can be note that the combination of the randomly selected schemes in the first generation approaches the 

optimal solution, allowing the fitness function to converge quickly. For example, in this study, both the PBL and CU scheme 335 

are fortunately selected the same as the optimum, and this combination has a higher fitness value than the other combinations. 

Thus, in the μ-GA evolution process, the information of the optimized CU and PBL scheme in the best individual was 

inherited by the elitism, and the MP scheme of the best individual was changed to be optimized through generations. The GA 

with a randomly selected initial population is robust in finding solutions as enough generations pass, but still the initial 

population affects the convergence velocity (i.e., the generation with optimal solution). As a result of sensitivity tests with 340 

different initial populations, convergence occurred after the 50th generation in one test, and the MP scheme converged 

earlier than the CU and PBL scheme in the other. In summary, the optimized results do not depend on the initial population 

of the first generation, but the initial population may affect which scheme will be optimized first. 

The simulation results of Park and Park (2020) is more accurate than REF because of the different domain setting. For this 

case as a localized heavy rainfall, more accurate precipitation simulations can be achieved when a specific region is set as a 345 

model domain or when multiple nested domains are used. However, the selected domain in this study may be reasonable to 

derive a general scheme combination that accurately simulates precipitation over the Korean Peninsula. It is necessary to 

derive a general set of physics schemes for accurate precipitation simulations through several case studies as a further study. 
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5 Conclusions 

The uncertainties related to the subgrid-scale parameterizations significantly increase as NWP models become more complex. 350 

The accuracy of subgrid-scale parameterizations depends on both parameters in the physics schemes and the choice of the 

parameterization schemes for each corresponding physical process. In this study, we created the μ-GA-WRF interface to 

seek the optimal set of the physics parameterization schemes in the WRF model. The GA is founded on the natural selection 

and evolution to search the optimum, and the μ-GA is an efficient version of the GA. In weather and climate studies, most 

the GA applications have focused on optimizing the empirical parameters of NWP models to represent a real atmospheric 355 

system, while the current study attempts to find thean optimal combination of the parameterization schemes, a novel and 

challenging task. Because of the nonlinear relationship among the physics schemes, it is recommended to optimize several 

interesting schemes concurrently in the WRF model rather than optimizing the schemes in each physics category 

sequentially. The GA is an appropriate optimization method in that it can handle the nonlinearity of the parameters to be 

optimized. 360 

The experiments were conducted on the optimal set of the CU, MP, and PBL schemes in terms of QPF for a heavy rainfall 

event in Korea, through the μ-GA-WRF interface system. The μ-GA successfully improved simulated precipitation in spite 

of the non-linear relationship between precipitation and the physics schemes as well as among the physics schemes. The μ-

GA reached its maximum evolution in the 12thnd generation and led to the significant improvement in the ETSs, especially 

at thea threshold range of 20 – 180 mm. The optimized CU, MP, and PBL schemes of CU, MP, and PBL for this event are 365 

MSKF, NSSL-2 moment, and YSU scheme, respectively. During the evolution process, the MP schemes control grid-

resolving scale precipitation while the CU and PBL schemes determine sub-grid scale precipitation.  

We also conduct the sensitivity test of accumulated precipitation time interval used in fitness function (i.e., ETS) with 

precipitation threshold of 3 mm. The best result of the optimization experiments has obtained by using the 3 or 6 hourly 

accumulated precipitation. However, in order to improve the simulation of deep convective systems, it is recommend to 370 

evaluate the accuracy of precipitation at various precipitation thresholds (i.e., precipitation thresholds = 10, 20, 30, …, 300 

mm) rather than assessing the accuracy of precipitation occurrence (e.g., precipitation threshold = 3 mm). 

In recent studies, optimization experiments for parameter estimation for multiple heavy rainfall events have been conducted 

to obtain a set of optimal parameters to improve the precipitation prediction (e.g., Duan et al., 2017; Di et al., 2018). We 

address that the optimized scheme set obtained in this study is specific to the selected rainfall case or at the best to the 375 

rainfall systems that occur under similar synoptic and geographical environment; thus, it is not robust to all the precipitation 

cases in Korea, which depend on different mechanisms of initiation and development. As a future study, we plan to perform 

the combinatorial optimization of physical parameterization schemes for several heavy rainfall cases under the same 

category in terms of location and synoptic environment, expecting to find an optimal scheme set robust to the heavy rainfall 

systems in that category. 380 
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Note that prior to model simulation unknown parameters and schemes should be fitted to the regional weather/climate to 

reduce considerable uncertainties in NWP models. In addition, in terms of model development, all physics schemes need to 

be explored to simulate more accurate local weather and climate systems if sufficient computer resources and time are 

available. This study has demonstrated that the combinatorial optimization of physics schemes in the WRF model is one of 

possible solutions to enhance the forecast skill of the regional or local prediction. We also significantly reduced the number 385 

of model simulations for optimization using the GA, one of the artificial intelligence methods. Furthermore, the experiments 

for combined scheme-based with parameter-based optimization are essentially required to investigate the effect of parameter 

calibrations on the model sensitivity to scheme selections. As a further study, we strongly suggest to conduct comprehensive 

parameter and scheme estimation to improve the model performance. 

Code and data availability 390 

The current version of the WRF model is available from the github website: https://github.com/wrf-model/WRF. The GA 

code, used in this study, was developed by David L. Carroll and last updated on 2 April 2001. The current version of the GA 

driver is available from the website: https://cuaerospace.com/products-services/genetic-algorithm/ga-drive-free-download. 

The exact versions of both the WRF model and the GA driver, used to produce the results in this study, are archived on 

Zenodo (https://doi.org/10.5281/zenodo.5076930), along with the input data, namelist files, and scripts to run the model and 395 

produce the plots of all the simulations presented in this study. The NCEP FNL Operational Model Global Tropospheric 

Analyses data, used for the initial and boundary conditions of the WRF model, can also be downloaded from the website of 

Research Data Archive of NCAR: https://rda.ucar.edu/datasets/ds083.2/. The RAR-estimated rainfall data were obtained by 

the Korea Meteorological Administration (KMA). The KMA does not provide this data set through the public service, called 

“Open MET Data Portal” (https://data.kma.go.kr/resources/html/en/ncdci.html), but one can obtain the data via separate 400 

request to the KMA.  
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Figure 1: The flowchart of the μ-GA-WRF interface system.  

 615 
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Figure 2: WRF nested domains — Domain 1 (d01) and Domain 2 (d02). d01 is centered at 38 °N and 126 °E in the Lambert 
conformal conic projection. 

 

 620 
Figure 3: Evolution of generations in the optimization process, leading to changes in fitness values. OPT and IMD-OPT represent 
the final optimized phase and one of intermediate optimized phases, respectively. 
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Figure 4: ETS for 12-hr accumulated precipitation of each precipitation threshold for CTL (black line), OPT-EXP1 (red line), 625 
IMD-OPT (dashed blue line), GEN1 (dashed gray line), and REF (dashed black line). 
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Figure 5: The spatial distribution of 12-hr accumulated precipitation of RAR, CTL, OPT-EXP1, and REF. Black dots depict 
locations of weather stations: Sokcho (S; 38.25 ºN, 128.56 ºE; 18.06 m), Gangneung (G; 37.75 ºN, 128.89 ºE; 26.04 m), and 630 
Daegwallyeong (D; 37.68 ºN, 128.86 ºE; 772.57 m). 

 
Figure 6: Scatter plot of CTL, REF, and OPT-EXP1. 
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 635 
Figure 7: Same as Fig. 3 but for OPT-EXP2 to OPT-EXP5. 
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Figure 8: Same as Fig. 4 but for OPT-EXP2 to OPT-EXP5. 640 
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Figure 9: Scatter plot of OPT-EXP2 to OPT-EXP5. 

 

 645 

 

 

Table 1. A 2 × 2 contingency table. 

 
Observed events 

Yes No 

Forecast events 
Yes hits False alarms 

No misses Correct negatives 
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Table 2. Summary of CU, MP, and PBL physics schemes used in the μ-GA-WRF interface system for the optimization. 

CU (14) MP (16) PBL (12) 

no cumulus Kessler (Kessler, 1969) YSU (Hong et al., 2006) 

KF (Kain, 2004) Purdue Lin (Chen and Sun, 2002) MYJ (Janjic, 1994) 

Betts-Miller-Janjic (Janjic, 1994) WRF Single-Moment (WSM) 5-class  

(Hong et al., 2004) 

QNSE (Sukoriansky et al., 2005) 

Grell-Freitas ensemble 

(Grell and Freitas, 2014) 

Eta microphysics (NOAA, 2001) MYNN 2.5 (Nakanishi and Niino, 2006, 

2009; Olson et al., 2019) 

Old Simplified Arakawa-Schubert (SAS)  

(Pan and Wu, 1995) 

WSM 6-class (Hong and Lim, 2006) MYNN 3  (Nakanishi and Niino, 2006, 2009; 

Olson et al., 2019) 

Grell 3D ensemble  

(Grell, 1993; Grell and Devenyi, 2002) 

Goddard (Tao et al., 1989; Tao et al., 2016) Asymmetric Convective Model (ACM) 2 

(Pleim, 2007) 

Tiedtke (Tiedtke, 1989; Zhang et al., 2011) Thompson (Thompson et al., 2008) Bougeault and Lacarrere (BouLac) 

(Bougeault and Lacarrère, 1989) 

KF-Cumulus Potential (KFCP)  

(Berg et al., 2013) 

Milbrandt-Yau 2-moment 

(Milbrandt and Yau, 2005a; 2005b) 

University of Washington Boundary Layer 

(Bretherton and Park, 2009) 

Multi-Scale KF (MSKF) 

(Zheng et al, 2016; Glotfelty et al., 2019) 

Morrison 2-moment (Morrison et al., 2009) TEMF (Angevine et al., 2010) 

KIAPS SAS (Kwon and Hong, 2017) CAM V5.1 2-moment (Eaton, 2011) Shin-Hong Scale-aware  

(Shin and Hong, 2015) 

NewTiedtke scheme (Han and Pan, 2011) Stony Brook University (SBU) 

(Lin and Colle, 2011) 

Grenier-Bretherton-McCaa (GBM)  

(Grenier and Bretherton, 2001) 

Previous NEW GFS simplified Arakawa-

Schubert scheme from YSU  

(Han and Pan, 2011) 

WDM 5-class  (Lim and Hong, 2010) Medium Range Forecast (MRF)  

(Hong and Pan, 1996) 

Grell-Devenyi ensemble  

(Grell and Devenyi, 2002) 

WDM 6-class  (Lim and Hong, 2010) 

Old KF (Kain and Fritsch, 1990) NSSL 2-moment (Mansell et al., 2010) 

NSSL 1-moment (Mansell et al., 2010) 

P3 2-moment (Morrison and Milbrandt, 2015) 
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Table 3. The summary of the experiments. In fitness function, i and t represents precipitation threshold and the number of 
accumulated time instants, respectively. N is the total number of accumulated time instants. 

 Accumulated time (hr) Precipitation threshold (mm) Fitness function 

OPT-EXP1 12 10, 20, 30,…, 300 
Fitness = �𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑡𝑡=1

𝑖𝑖

, 

𝑖𝑖 = 10, 20, 30,⋯ , 300 

OPT-EXP2 12 3 Fitness = 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖=3𝑡𝑡=1 

OPT-EXP3 6 3 
Fitness =

1
𝑁𝑁
�𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖=3𝑡𝑡

𝑡𝑡

, 

𝑡𝑡 = 1, 2 

OPT-EXP4 3 3 
Fitness =

1
𝑁𝑁
�𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖=3𝑡𝑡

𝑡𝑡

, 

𝑡𝑡 = 1, 2, 3, 4 

OPT-EXP5 1 3 
Fitness =

1
𝑁𝑁
�𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖=3𝑡𝑡

𝑡𝑡

, 

 𝑡𝑡 = 1, 2, 3,⋯ , 12 

 

 655 

Table 4. The summary of selected schemes for CTL, OPT-EXP1, IMD-OPT, GEN1, and REF. 

 CTL OPT-EXP1 IMD-OPT GEN1 REF 

CU KF MSKF MSKF MSKF MSKF 

MP WDM 6-class NSSL 2-moment WSM 6-class Purdue Lin Morrison 

PBL YSU YSU YSU YSU YSU 

 

 

Table 5. Continuous statistics of CTL, REF, and OPT-EXP1. 

 
CTL REF OPT-EXP1 

Bias -8.70 -7.43 -7.17 

RMSE 25.43 24.94 21.51 

PCC 0.67 0.65 0.76 

 660 
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Table 6. The selected schemes for OPT-EXP2, OPT-EXP3, OPT-EXP4, and OPT-EXP5. 

 OPT-EXP2 OPT-EXP3 OPT-EXP4 OPT-EXP5 

CU KFCP KF KF KFCP 

MP CAM V5.1 2-moment P3 2-moment WSM 6-class WDM 6-class 

PBL MRF MYNN 2.5 MYNN 3 MYNN 2.5 

 

Table 7. Continuous statistics of OPT-EXP2 to OPT-EXP5. 

 
OPT-EXP2 OPT-EXP3 OPT-EXP4 OPT-EXP5 

Bias -10.01 -8.69 -8.76 -14.11 

RMSE 27.34 24.03 23.95 32.17 

PCC 0.63 0.70 0.73 0.26 

 


	1 Introduction
	2 Background of combinatorial optimization
	3 Data and methods
	3.1 Observation data
	3.2 μ-GA-WRF interface system
	3.2.1 μ-GA
	3.2.2 μ-GA-WRF interface system
	3.2.3 Fitness function

	3.3 Experimental design

	4 Case study
	4.1 Case description
	4.2 Results
	4.2.1 Combinatorial optimization of the physics schemes for QPF
	4.2.2 Sensitivity of fitness functions based on the assessment of precipitation occurrence

	4.3 Discussions

	5 Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Acknowledgements
	References

